+关注 私聊
  • 问无止境!

    第11楼2008/11/30

    质谱真空泵的维护

    前期油泵泵的维护
    1.安全信息
     泵必须由接受过适当培训的技术员来维护
     确认该技术员对泵油及系统的产物十分熟悉
     做维护之前必须将泵停下,降到安全的温度
     断开泵及其他元件与电路的连接,以避免发生意外
     维护完毕,在没接上电源之前,重新检查一下泵的旋转方向
     ‘O’ rings 和垫圈如果损坏不可重复利用
     在运转过程中,泵和油会受到化学品的污染。所以,应确认泵是否清洗干净,并采取足够的措施防止这些有害物质对人员的伤害
     维护完毕后,应检查是否有泄露的地方,如有,应重新密封
     不要接触或吸入泵受高温(260℃)产生的热降解的产物,它们是很危险的,包括油、油脂和真空脂

0
    +关注 私聊
  • 问无止境!

    第12楼2008/11/30

    检查前置真空泵油位
    根据需要,可以在泵运转的时候检查油位,但如果要往里加油时则需断开前置真空泵及相关部件与电源的连接。
    1.透过前置真空泵的可视窗口检查油位是否在最低限以上,最高限以下。
    2.如果油位在最低限或低于最低限,打开加油孔,加油至最高限,如加得过满可从出口放掉点。
    3.如果油污染严重时,放掉受污染的油,清洗泵后加入干净的油。

    更换前置真空泵油
    1.开启泵运转10分钟以加热泵油,然后关泵(油加热后可降低其粘性,比较容易倒出来)。
    2.断开泵和电路及真空系统的连接。
    3.取下加油孔的塞子
    4.将泵放在一个适当的支撑物(如:凳子)上以方便泵的倾斜,在排油口下放合适的容器。取下排油口的塞子,让油在重力的作用下流到容器中。
    5.油受到污染时:
    5.1取下加油孔的塞子,倒进干净的油。
    5.2重新连上泵和电路的连接,开泵运转5-10分钟。
    5.3断开泵和电路的连接,取下排油口的塞子,让油流出来。
    5.4重复上述步骤直到将泵清洗干净。
    6.塞上排油口的塞子,移掉支撑物,重新接上泵和电路及真空系统的连接 。
    7.装上新油,直到油位达到MAX位置附近。
    8.等几分钟直到油抽到泵中,需要的话,可再添油(需再关泵)。塞上加油孔的塞子。
    检查和清洁前置真空泵入口过滤器
    1.旋开入口转接器,取下‘O’ ring,弹性挡圈和入口过滤器。
    2.用适当的溶液清洗入口过滤器,阴干入口过滤器。
    3.重新装上入口过滤器、弹性挡圈、‘O’ ring和入口转接器。

0
    +关注 私聊
  • 问无止境!

    第13楼2008/11/30

    离子淌度质谱及其理论研究进展

    [摘要] 离子淌度质谱是离子淌度分离与质谱联用的一种新型二维质谱分析技术,离子淌度分离原理是基于离子在飘移管中与缓冲气体碰撞时的碰撞截面不同,离子可按大小和形状进行分离。经过30多年的发展,离子淌度质谱已配有多种最新的离子源及质量分析器,理论研究也日渐成熟,并在蛋白质、多肽及复杂化合物异构体分析方面越发显示出独特的优势,正在发展成为一种新型的重要分析工具。

    [关键词] 离子淌度;质谱;碰撞截面;理论进展

    20世纪80年代后,由于各种软电离技术相继问世,质谱(mass spectrometry,MS)的应用拓展到对高极性、难挥发和热不稳定的生物大分子的分析研究,发展成为生物质谱,并迅速成为现代分析化学最前沿的领域之一 。离子淌度质谱(ion mobility mass spectrometry,IMMS)是离子淌度光谱(ion mobility spectrometry,IMS)技术与质谱的联用。是一种新型的二维分离质谱技术。IMS技术出现于20世纪70年代,由于其具有多样性的分析能力、良好的检测限及实时的检测能力,在当时受到人们广泛关注,但由于IMS分辨率较低且不能给出离子质量信息,加之当时人们对离子组成的重要性缺乏理解,因此在1976年以后,有关离子淌度的研究逐渐减少。直到20世纪80年代末,特别是以MALDI和ESI 为代表的各种软电离方法应用以来,IMS在化合物异构体分离方面具有的独到优势才又引起了人们的关注,相继推出了配备各种新型离子源的IMS—MS联用技术,精确的离子几何形状和淌度计算方法得到飞速发展,IMMS技术有了实质性进展。目前,IMMS已经用来检测化学战剂、爆炸物 、环境污染 、麻醉剂 、半导体及生物大分子(如肽和蛋白质类),并显示出其强大的分析能力。

0
    +关注 私聊
  • 问无止境!

    第14楼2008/11/30

    1 原理与仪器组成
    1.1 IMMS基本原理
    离子淌度(ion mobility,IM),又称离子迁移率,是指在电场强度为1 V/m或电场力为1N时正离子或负离子的运动速度,单位为m /V。在IMS中,离子受电场力加速的作用向前运动,运动中又与飘移区缓冲气体分子发生碰撞产生阻力使速度降低。碰撞过程中离子失去的动能可转化为内能使离子温度升高,再次的碰撞又可将升高的内能传递给气体分子,回复到系统温度 。因此,离子在运动过程中温度和速度并不保持恒定。离子之间、离子与缓冲气体之间也可能存在着静电引力与库仑斥力,决定了离子在飘移区的运动过程是极其复杂的,只能由其平均速度(即离子淌度 )或离子通过飘移区的时间td来计量。这种分离过程与色谱的分离过程类似,因此IMS在早期又被称为等离子体色谱(plasmachromatography,Pc)。为了使不同实验条件下的测量值能够相互比较,在实际应用中通常将离子淌度转换为折合离子淌度(reduced ionmobility, ),即在温度为273 K,压力为760 Tort的条件下的离子淌度,离子的大小和形状可用离子与缓冲气体发生碰撞时的平均可用截面即碰撞截面(collision Cross section,n)来衡量。由上述可知,离子淌度分离主要是基于离子的形状和大小。因此,对于用常规质谱方法不能区分的异构体或复合物等分析,这种分离手段具有独特优势。离子按淌度预分离后,再通过每一组分质荷比求得质量数,便可获得离子淌度质谱二维图谱或三维图谱(图1)。
    1.2 仪器组成
    离子淌度质谱仪与常规质谱仪的主要区别在于前者在离子源和质量分析器之间增加了一个离子飘移管。离子飘移管通常由不导电的高纯度氧化铝制成,中间镶嵌若干不锈钢环,不锈钢环之间以高温电阻相连,两端不锈钢环之间施加驱动离子前进的电场。质量分析器可采用四极质量分析器或飞行时间质量分析器,由于四极分析器扫描离子费时较长,现在IMMS分析器多为飞行时间质谱(TOF—MS)。仪器中飘移管部分通以缓冲气体,质量分析器部分采用高真空,二者之间配以由锥体和离子透镜组成的接口。典型的离子淌度质谱的组成见图2。由于离子在飘移管中通过的时间为毫秒级,在飞行管中通过时间为微秒级,在下一组分到来前有充足的时间求得离子的质量数,因此对每一组分可在一次实验中同时求得淌度和质量数,整个实验可在1 min内完成。
    有时为了获得更多的离子信息,可在飘移管前和(或)后串联使用几种质量分析器,如离子阱或四极滤质器等。

0
    +关注 私聊
  • 问无止境!

    第15楼2008/11/30

    2 离子淌度理论的研究进展
    2.1 缓冲气体对碰撞截面的影响
    IMS区分离子是通过与缓冲气体分子碰撞过程而实现的,缓冲气体的种类直接影响分离过程。氮气和氦气是最常用的两种气体,氮气一般用于常规分析,氦气常用于结构分析。其他气体还有二氧化碳、六氟化硫、氨 和四氟化碳 。使用不同缓冲气体的理论研究在1975年之后便很少,即使是现在也还没有引起人们足够的重视,但在实际应用中,使用不同的气体对获得良好的分辨率和检测灵敏度相当重要。
    离子的碰撞截面不仅与缓冲气体的质量数有关,而且取决于缓冲气体极化率的大小 。Matz等 研究6种苯丙胺(安非他明)衍生物在氦气、氩气、氮气与二氧化碳4种不同缓冲气体下的碰撞截面,结果显示碰撞截面随缓冲气体质量数的上升而上升,但并无严格的线性关系。而极化率与碰撞截面之间有良好的线性关系,碰撞截面随极化率的上升而上升,这也说明碰撞截面更依赖于缓冲气体的极化率而不是质量数。Els等 研究了不同浓度的氮气/二氧化碳混合气体作为缓冲气体在l0 水平分离5种氯代和溴代乙酸的情况,使用100% 氮气,2种组分淹没在其他峰中,若在缓冲气体中加入3%二氧化碳,则能达到完全分离,表明载气的组成明显影响峰形的检出。

0
    +关注 私聊
  • 问无止境!

    第16楼2008/11/30

    2.2 离子淌度与质荷比的关系
    IMS分辨率较低,即使是高分辨IMS也只能达到与常规HPLC相同或稍高的分辨能力,这使其单独分离复杂混合物变得困难。在IMS发明之初,研究者就试图通过建立 与m/z的关系,由 推知离子的质量数。但大量实验数据表明, 与m/z之间只是一种粗略的线性趋势,远远不能满足人们对离子质量数的精确要求,IMS在质荷比(m/z)
    IMMS中只能作为一种前质量分析器。尽管有的物质能够通过单一的离子淌度技术快速鉴别开来,但IMMS能够提供的二维“淌度/质量”模式能够达到对复杂混合物的高分辨分离。在二维IMMS(2-D IMMS)中,不同电荷的离子其“淌度/质量”线性趋势明显不同,通过对复杂产物的2-D数据进行分析,找出其不同的“淌度/质量”关系已经成为鉴定和解释这些产物的一种重要技术。Clemmer等已经通过 与m/z趋势关系鉴别了低淌度(单电荷)和高淌度(双电荷)的两组肽混合物 J。Russel等使用内标作为参照标准,根据 与m/z关系将蛋白质酶解后的肽混合物分开 。Stciner 利用ESI—API—IM—TOF—MS分析水溶性化学战剂降解产物,使用相同系列的n一烷基胺作为基线标准,利用不同降解产物的与m/z趋势使其得到鉴定。
    离子淌度的测定受各种因素的影响,如电喷雾溶剂组成、飘移区温度、喷雾电压、溶剂流速、缓冲气体流速、冷却气体流速等诸多因素影响。

0
    +关注 私聊
  • 问无止境!

    第17楼2008/11/30

    2.3 离子电荷、取代基与碰撞截面的关系
    尽管还没有方法证明气相离子和溶液中离子的结构之间有如何紧密的关系,但精确测量离子的碰撞截面还是能提高对肽、蛋白质等复杂物质结构的理解。离子中原子间氢键和范德华力使其呈现折叠和紧凑状态,电荷和库仑斥力则克服离子内的相互吸引而使分子呈现松散状态。Kindy等利用同位素标记研究了3种蛋白质的酶解产物,发现单乙酰化肽段的碰撞截面比未乙酰化的要高出25% ~35% ;双乙酰化的增加更多,这种增加(特别对大的肽段)远远大于乙酰基的体积增大因素,表明乙酰基具有对肽离子整体结构改变的特殊作用。Badman等 叫研究了泛素从ESI进入IM管过程中碰撞截面的变化过程,认为离子进入飘移管的初期均为紧凑结构,受加速电压的作用才快速伸展成开放结构。
    离子中电荷的位置和数量是影响气相离子碰撞截面的重要参数。Wu等 研究了强啡肽A的3个片段F7(Tyr—Gly—Gly—Phe—Leu—Arg—Arg)、F8(Tyr—Gly—Gly—Phe—Leu—Arg—Arg一Ⅱe)、F、9(Tyr—Gly—Gly—Phe—Leu—Arg—Arg—He—Arg)带1—3个电荷时的碰撞截面变化情况,结果见表1。单电荷和双电荷的碰撞截面从F7至F、9增加值稳定在约9% ,这可用在C端增加一个氨基酸的“大小效果”很好地解释。另外,所有3种肽从单电荷到双电荷碰撞截面的增加都保持在相似的7% 一8%水平。随着电荷的增加,库仑斥力增加使肽呈现更松散状态。然而,在F7和F8中引入第3个电荷,却使碰撞截面急剧上升,这是因为在这些肽中只存在3个碱性位点,相邻的两个精氨酸残基必须同时质子化,急剧增加的库仑斥力能使得离子以一种更加伸展的状态存在,而使碰撞截面急剧增加。F、9离子增加不显著是因为末端精氨酸残基的存在可以避免两个相邻氨基酸均被质子化。Badman等 总结了1996—2001年间发表的细胞色素e气态离子碰撞截面的数据,所带电荷从+3至+20,虽然同电荷离子的碰撞截面数值稍有不同,但均表现为随电荷的增加而增加,增加幅度也极为相似。
    利用碰撞截面最具优越性的地方在于区别具有相同电荷、相似质量的不同离子或质量数相同的异构体离子。Hen.derson等 研究了细胞色素c两个酶解碎片IFVQK.CAQCHTVEK(相对分子质量为1 633.820)和heme.CAQCHTVEK(相对分子质量为1 633.615),二者具有极为相似的质量数,在序列已知的情况下,利用软件模拟其电荷分布情况,分别计算其所需的碰撞截面和加速电压,测量其离子淌度,求出碰撞截面并与计算值相比较,从而区分两种碎片,结果显示两个碎片均带两个电荷,分别为I rVQK—CAQCHTVEK 和heme—C“AQCHTVEK (上标为质子化位置)。
    文献[35]列出了34种常见蛋白质酶解后的66O种肽离子的碰撞截面数据,并从统计学角度在理论上分析了氨基酸残基的内在形状参数与碰撞截面的关系,从而可通过氨基酸序列预测肽离子的碰撞截面。文献[36]也有类似报道。

0
    +关注 私聊
  • 问无止境!

    第18楼2008/11/30

    3 展望
    质谱技术是当今分析化学领域最重要的技术之一。离子淌度质谱结合了离子淌度技术灵敏、快速、能够提供离子结构信息和质谱能够提供准确质量信息的特点,在化合物异构体分析、生物大分子相互作用分析等方面正显示出越来越多的优越性。目前国内有关离子淌度质谱的报道很少,国外也仅有为数不多的科研机构进行离子淌度质谱的研究。目前离子淌度质谱仪还没有上市,还有一些需要解决的问题,但经过30多年的发展,其理论研究已近成熟,仪器已配备了MALDI和ESI等新型离子源,有些还同时串联了四极杆质谱和(或)离子阱质谱,具有更低的检测限和更高的灵敏度和分辨率。可以相信,在不久的将来,离子淌度质谱会成为功能基因组、蛋白质组学研究,以及药学、医学和化工等领域不可缺少的重要工具。

0
    +关注 私聊
  • 问无止境!

    第19楼2008/11/30

    质谱技术及其应用

    21世纪的最前沿科学之一,随着人类第一张基因序列草图的完成和发展,生命科学的研究也将进入一个崭新的后基因组学,即蛋白质组学时代。正如基因草图的提前绘制得益于大规模全自动毛细管测序技术一样,后基因组研究也将会借助于现代生物质谱技术等得到迅猛发展。本文拟简述生物质谱技术及其在生命科学领域研究中的应用。1 质谱技术质谱( Mass SPectrometry)是带电原子、分子或分子碎片按质荷比(或质量)的大小顺序排列的图谱。质谱仪是一类能使物质粒子高化成离子并通过适当的电场、磁场将它们按空间位置、时间先后或者轨道稳定与否实现质荷比分离,并检测强度后进行物质分析的仪器。质谱仪主要由分析系统、电学系统和真空系统组成。质谱分析的基本原理用于分析的样品分子(或原子)在离子源中离化成具有不同质量的单电行分子离子和碎片离子,这些单电荷离子在加速电场中获得相同的动能并形成一束离子,进入由电场和磁场组成的分析器,离子束中速度较慢的离子通过电场后编转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。

0
    +关注 私聊
  • 问无止境!

    第20楼2008/11/30

    与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,其焦面接近于平面,在此处用检测系统进行检测即可得到不同质荷比的谱线,即质谱。通过质谱分析,我们可以获得分析样品的分子量、分子式、分子中同位素构成和分子结构等多方面的信息。质谱技术的发展质谱的开发历史要追溯到20世纪初J.J.Thomson创制的抛物线质谱装置,1919年Aston制成了第一台速度聚焦型质谱仪,成为了质谱发展史上的里程碑。最初的质谱仪主要用来测定元素或同位素的原子量,随着离子光学理论的发展,质谱仪不断改进,其应用范围也在不断扩大,到20世纪50年代后期已广泛地应用于无机化合物和有机化合物的测定。现今,质谱分析的足迹已遍布各个学科的技术领域,在固体物理、冶金、电子、航天、原子能、地球和宇宙化学、生物化学及生命科学等领域均有着广阔的应用。质谱技术在生命科学领域的应用,更为质谱的发展注入了新的活力,形成了独特的生物质谱技术。2 生物质谱技术电喷雾质谱技术和基质辅助激光解吸附质谱技术是诞生于80年代末期的两项轨电离技术。这两项技术的出现使传统的主要用于小分子物质研究的质谱技术发生了革命性的变革。它们具有高灵敏度和高质量检测范围,使得在pmol(10-12甚至fmol(10-15的水平上准确地分析分子量高达几万到几十万的生物大分子成为可能,从而使质谱技术真正走入了生命科学的研究领域,并得到迅速的发展。以下主要介绍与生物医学有关的几项质谱技术。

0
查看更多