采用多重介电阻挡放电(DBD)等离子体制动器控制高升力翼型下弯襟翼的流动分离

  1. 类别:分析方法/应用文章
  2. 上传人:欧兰科技
  3. 上传时间:2011/2/12 23:47:35
  4. 文件大小:4097K
  5. 下载次数:4
  6. 消耗积分 : 免积分

收藏

简介:

In current wing design, multiple flaps are incorporated into the trailing edge to allow mixing of high and low pressure sides to reduce flow separation. These flaps reduce the efficiency by adding weight and complexity to the aircraft. A single hinged flap would reduce these inefficiencies but is more susceptible to flow separation. Active flow control is a means by which the fluid flow over a body is deliberately altered and can be altered such that it becomes less likely to separate from the object. By energizing the flow, the degree of separation of the flow can be controlled, and this inherently controls lift. Dielectric barrier discharge (DBD) plasma actuators are a form of active flow control. These actuators are created by asymmetrically aligning two electrodes and adding a dielectric layer between the electrodes. When the electrodes are electrically connected, ionized air (plasma) travels from the exposed electrode towards the covered electrode. Collisions occur between the plasma and neutral air over the body, and momentum is transferred to the neutral air, effectively energizing it. The purpose of this study is to examine the lift enhancement and flow control authority that multiple DBD plasma actuators have on a high-lift airfoil when compared to the flow exhibited by noncontrolled and single DBD plasma actuator controlled cases. Electrodes were mounted onto a simplified NASA Energy Efficient Transport airfoil near the flap. The airfoil was tested in a closed, recirculating wind tunnel operating at a Reynolds number of 240,000, 20° flap deflection angle and 0° degree angle of incidence. The actuators were independently powered in order to determine the most effective input parameters. Using multiple actuators operated in-phase has increased the lift and has delayed flow separation on the trailing edge flap when compared to baseline and single actuation cases.

打开失败或需在电脑查看,请在电脑上的资料中心栏目,点击"我的下载"。建议使用手机自带浏览器。

  • 注意:
  • 1、下载文件需消耗流量,最好在wifi的环境中下载,如果使用3G、4G下载,请注意文件大小
  • 2、下载的文件一般是pdf、word文件,下载后如不能直接浏览,可到应用商店中下载相应的阅读器APP。
  • 3、下载的文件如需解压缩,如果手机没有安装解压缩软件,可到应用商店中下载相应的解压缩APP。