光谱技术在职业卫生中的应用 英文

  1. 类别:分析方法/应用文章
  2. 上传人:James yu
  3. 上传时间:2006/1/6 9:35:39
  4. 文件大小:296K
  5. 下载次数:21
  6. 消耗积分 : 10积分 移动终端:免积分

收藏

简介:

Over the past few decades the pace of change in spectroscopic techniques has been remarkable. Spectroscopic techniques are emerging as important, powerful, and versatile tools in determining exposure levels of hazards generated in working environments. Occupational safety and health studies employ spectroscopic techniques to analyze hazardous chemicals, biomarkers, and particulate matters of exposure. In comparison with many traditional detection techniques such as gravimetric methods, spectrometric techniques are much more sensitive, selective and accurate. The major spectroscopic techniques used in industrial hygiene include mass spectrometry (MS), scanning electron microscopy (SEM), X-ray microanalysis (XM), atomic spectrometry (AS), ultraviolet/visible (UV/VIS) photometry, fluorescent spectrometry (FS), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy (RS). Interest in using MS in industrial hygiene is driven by its value in understanding basic physical, chemical, and biological processes related to workers’ exposure to occupational hazards, and in devising new methodologies to monitor exposures. SEM has become particularly useful in the study of pneumoconioses and workplace environmental particles since being complemented with energy dispersive X-ray (EDX) analysis and automated image analysis capabilities. SEM and EDX have been used extensively to characterize particles found in lung tissues. Atomic spectrometric methods are used widely for occupational health evaluation of inorganic metals. The development of inductively coupled plasma atomic emission spectrometry (ICPAES) techniques has become increasingly attractive, and has been applicable to analysis of nearly all the elements. FTIR and Raman spectroscopies are employed to detect highly toxic gas and vapor mixtures. Additionally, field-portable methods for monitoring airborne workplace contaminants and toxins have received increasing attention. To date, highly specific, selective, and sensitive spectroscopic technologies have allowed for the development of novel methodologies and new indicators for exposure characterization. Assessment of actual body burden of chemicals, which are more directly related to potential adverse occupational health effects, can be accomplished. The major spectroscopic techniques and their applications to industrial hygiene are described in this article.

打开失败或需在电脑查看,请在电脑上的资料中心栏目,点击"我的下载"。建议使用手机自带浏览器。

  • 注意:
  • 1、下载文件需消耗流量,最好在wifi的环境中下载,如果使用3G、4G下载,请注意文件大小
  • 2、下载的文件一般是pdf、word文件,下载后如不能直接浏览,可到应用商店中下载相应的阅读器APP。
  • 3、下载的文件如需解压缩,如果手机没有安装解压缩软件,可到应用商店中下载相应的解压缩APP。