悬停状态下小尺度旋翼的近场压力

  1. 类别:分析方法/应用文章
  2. 上传人:欧兰科技
  3. 上传时间:2012/7/9 23:38:35
  4. 文件大小:5491K
  5. 下载次数:4
  6. 消耗积分 : 免积分

收藏

简介:

The pressure field within the near field periphery of a small scale rotor blade is investigated by means of classical statistical analysis techniques and proper orthogonal decomposition. The signatures are acquired using a circular arc array of dynamic pressure transducers, centered on the rotor tip at a distance of 1.5 chord lengths and below the tip path plane. The rotor is set to collective pitch angles ranging from 0. to 12. and is operated at 35Hz and 25Hz rotor speeds under hover conditions. Each blade from this two bladed rotor is investigated independently in order to isolate pressure signal differences existing between the blades. The results show that while the average inter-blade signatures are relatively constant, the variance of the fluctuations possess noticeably different amplitudes. Given the scale of the rotor, these differences are attributed to the surface roughness effects. A low-dimensional analysis reveals that the first few most energetic modes produced by each blade are relatively consistent in shape and so concerns about differences between the signatures produced by each blade are contracted. Two important features about the near-field signatures are then revealed. The first is a low frequency, low wave-number type oscillation and is observed in all microphone signals positioned between the tip path plane and 75. below. The second signature however comprises a high frequency, high wave-number signature that manifests itself at shallow angles relative to the tip path plane of the rotor. The latter of these is believed to be the associated with the radiating component of the pressure field produced by interactions of the rotor blade with the tip-vortex. A low-dimensional reconstruction of the raw pressure signal illustrates how each of these signatures contribute independently to the original raw signal.

打开失败或需在电脑查看,请在电脑上的资料中心栏目,点击"我的下载"。建议使用手机自带浏览器。

  • 注意:
  • 1、下载文件需消耗流量,最好在wifi的环境中下载,如果使用3G、4G下载,请注意文件大小
  • 2、下载的文件一般是pdf、word文件,下载后如不能直接浏览,可到应用商店中下载相应的阅读器APP。
  • 3、下载的文件如需解压缩,如果手机没有安装解压缩软件,可到应用商店中下载相应的解压缩APP。