纳米粒度测量应用案例-56-90Plus

  1. 类别:其他资料
  2. 上传人:美国布鲁克海文
  3. 上传时间:2015/7/20 15:17:08
  4. 文件大小:14K
  5. 下载次数:4
  6. 消耗积分 : 免积分

收藏

简介:

文献名: Dynamics and rheology of nonpolar bijels 作者: Lian Bai, John W. Fruehwirth, Xiang Cheng and Christopher W. Macosko Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, USA 摘要:Bicontinuous, interfacially jammed, emulsion gels (bijels) are a novel class of materials composed of two immiscible phases with interpenetrating domains that are stabilized by a monolayer of colloidal particles at the interface. However, existing bijel systems so far all consist of at least one polar fluid, which is believed to be essential to induce electrostatic repulsion for stabilizing interfacial particles. It is not known whether two nonpolar fluids can form a bijel. Here, we experimentally achieve a bijel using styrene trimer and low molecular weight polybutene—two nonpolar fluids that are similar to polymer blends, which are important in technical applications. By combining laser scanning confocal microscopy, cryo-SEM and rheology measurement, we systematically investigate the dynamics and rheology of this nonpolar bijel. In contrast to previous studies on polar bijels, we observe the formation of localized regions of high particle concentration or “particle patches” on the interface which assemble during coarsening. We also provide the first quantitative relation between the morphology of a bijel, the interfacial particle coverage and the shear modulus during bijel coarsening. Moreover, we reveal a previously unnoticed increase in the elastic modulus of bijels that can be attributed to the rearrangement of interfacial particles at long time scales. In addition, we also found a hydrophobic particle framework that survives after the direct remixing of the nonpolar bijel. Our study provides important insights into the formation of bijels and is the first step to explore the missing link between polar bijels and particle-stabilized bicontinuous polymer blends.

打开失败或需在电脑查看,请在电脑上的资料中心栏目,点击"我的下载"。建议使用手机自带浏览器。

  • 注意:
  • 1、下载文件需消耗流量,最好在wifi的环境中下载,如果使用3G、4G下载,请注意文件大小
  • 2、下载的文件一般是pdf、word文件,下载后如不能直接浏览,可到应用商店中下载相应的阅读器APP。
  • 3、下载的文件如需解压缩,如果手机没有安装解压缩软件,可到应用商店中下载相应的解压缩APP。