借助于阵列式微型制动器控制同轴喷嘴实现起升火焰的稳定燃烧

  1. 类别:分析方法/应用文章
  2. 上传人:欧兰科技
  3. 上传时间:2008/6/16 22:46:28
  4. 文件大小:3296K
  5. 下载次数:80
  6. 消耗积分 : 免积分

收藏

简介:

Active control of a lifted flame is investigated using a coaxial nozzle with magnetic flap actuators arranged on the inner periphery of the annular nozzle. Near-field vortical structures of the methane/air coaxial jet are manipulated by introducing disturbances directly to the initial shear layer. Through the manipulation, we can improve flame stability and flexibly control the liftoff height. It is found that the large-scale vortical structures play a dominant role in the flame stabilization, and its spatio-temporal evolution is examined with the aid of PIV and LIF to elucidate the control mechanism. By introducing flap motion driven with a saw-wave signal, we can force the outer shear layer to roll up into strong vortices in synchronization with the flaps. When the flapping Strouhal number is unity, the lifted flame is anchored at x/Do ~ 1.5. The strong vortices induced by the flaps produce a blob of flammable mixture, which has velocity smaller than the flame speed. The possible stabilization mechanism is that the time period of the premixture supply is balanced with the consumption time of the premixture at the flame base. On the other hand, when the jet is manipulated by a square-wave signal, the lifted flame is located stably at x/Do ~ 4, which is downstream of the inner potential core. It is found that vortical structures in the shear layers break into turbulence close to the nozzle exit. The possible mechanism of the flame stabilization is that the flame propagating upstream is undisturbed due to the absence of intermittent passage of large-scale vortices.

打开失败或需在电脑查看,请在电脑上的资料中心栏目,点击"我的下载"。建议使用手机自带浏览器。

  • 注意:
  • 1、下载文件需消耗流量,最好在wifi的环境中下载,如果使用3G、4G下载,请注意文件大小
  • 2、下载的文件一般是pdf、word文件,下载后如不能直接浏览,可到应用商店中下载相应的阅读器APP。
  • 3、下载的文件如需解压缩,如果手机没有安装解压缩软件,可到应用商店中下载相应的解压缩APP。