电子鼻技术在棉花早期棉铃虫虫害检测中的应用---德国AIRSENSE电子鼻

  1. 类别:其他资料
  2. 上传人:盈盛恒泰
  3. 上传时间:2021/5/6 14:04:00
  4. 文件大小:10061K
  5. 下载次数:0
  6. 消耗积分 : 免积分

收藏

简介:

摘要:为了更好地获取棉花虫害信息,该文使用电子鼻和气质联用技术对受到不同数量棉铃虫早期危害的棉花进行检测。基于气质联用技术获得了棉花挥发物的成分和含量,基于电子鼻响应曲线提取了稳定值、面积值、平均微分值、小波能量值和多项式拟合曲线参数值5种特征值,筛选出3种较优单特征:稳定值、平均微分值和面积值,之后基于多特征分别使用多层感知神经网络、径向基函数神经网络和极限学习机3种神经网络方法进行分类分析。最后采用支持向量机回归分别基于3种较优单特征及多特征对危害棉花的棉铃虫数量进行回归预测。结果表明:多特征的分类效果优于单特征,基于多特征"稳定值和平均微分值"和极限学习机分类效果较好,训练集和测试集的分类正确率均达到100%。多特征的预测能力优于单特征,基于多特征"面积值和平均微分值"的回归模型预测效果较佳,训练集回归模型的决定系数(R2)和均方根误差(RMSE)分别为0.9940和0.0860,测试集回归模型的R2和RMSE分别为0.9230和0.3709,电子鼻对棉花早期棉铃虫虫害具有较好的区分和预测能力,电子鼻在棉花早期棉铃虫虫害中的检测具有一定的应用潜力。 关键词:电子鼻,神经网络,预测,棉花,棉铃虫,特征选择

打开失败或需在电脑查看,请在电脑上的资料中心栏目,点击"我的下载"。建议使用手机自带浏览器。

  • 注意:
  • 1、下载文件需消耗流量,最好在wifi的环境中下载,如果使用3G、4G下载,请注意文件大小
  • 2、下载的文件一般是pdf、word文件,下载后如不能直接浏览,可到应用商店中下载相应的阅读器APP。
  • 3、下载的文件如需解压缩,如果手机没有安装解压缩软件,可到应用商店中下载相应的解压缩APP。