资料摘要
资料下载QCM-D是一种高灵敏技术,可用于检测频率(f),和耗散(D)的微小变化。高灵敏度是QCM-D分析表界面相互作用和过程的优势,但是如果测量条件不受控制也可能影响数据的重复性。 在这里,我们列举了一份清单,通过最大限度地减少f和D的意外变化,帮助您在得到高质量数据的同时,可以优化QCM-D测量的重现性。 有些测量结果可能是误差 所有影响耦合质量或芯片性能的过程将或多或少都会反映在测量信号中。这意味着污染物、样品变化、温度变化、气泡等都会影响测量结果。在实验准备和执行过程中,这些扰动可能被认为是“微小”的反应变化,但实际上它们可能会对测量得到的f和D信号产生很大的影响,从而破坏结果。要生成高质量的数据,最重要的是要密切关注意外的扰动源。为了消除误差源并优化重现性,需要对实验设计和测量条件进行计划和充分考虑。请注意,某种特定的污染物可能在某种测量情况下是灾难性的,但在另一种测量情况下则无关紧要。 避免可能干扰测量质量信号的污染物 应避免可能无意中与芯片表面相互作用并影响测量质量的污染物。与样品相互作用并通过芯片的所有表面和溶液,例如烧杯、试管、模块内部、O圈、去离子水瓶等都可能是污染源,因此所有这些物品的清洁度是最重要的。为了消除可能的污染源,请确保您拥有: ? 干净的仪器,即液体通道 ? 干净的工具,如镊子、烧杯等 ? 干净的传感器(芯片) ? 干净的样品和溶剂:避免污染、沉淀、不均匀性和不必要的生长物(微生物) 更多详情请下载附件指南以获得完整的清单
杨晓泉教授团队Langmuir封面论文|利用石英晶体微天平研究磷脂酰胆碱增强肠道黏液屏障功能的作用机制
简介:2024年8月,华南理工大学杨晓泉教授课题组在国际期刊Langmuir发表题为“Phosphatidylcholine Surface Hydration-Dependent Adsorption to Mucin Enhances Intestinal Mucus Barrier Function”的研究性论文,并被选为该期的封面论文,这是杨晓泉教授课题组关于Food-Mucus相互作用相关研究的第4篇封面论文。 在这篇文章中,QSense耗散型石英晶体微天平(QCM-D)技术被用于研究磷脂酰胆碱囊泡在肠道黏蛋白层表面的动态界面吸附行为。具体来说,QCM-D技术帮助揭示了表面水合作用差异的磷脂酰胆碱囊泡(如DPPC和DOPC)在黏蛋白层上的吸附速度和质量。
百欧林用户成果分享 | 广东工业大学邱学青团队
简介:瑞典百欧林科技始终以“共同进步(Progress Together)”为宗旨,持续为前沿科学家提供专业的技术与应用支持,并与用户一起探讨实验解决方案和创新科技研发思路。在此过程中,我们不断地收集并学习百欧林众多用户的创新性工作,我们也非常乐意与您分享他们的研究成果! 瑞典百欧林科技将陆续推出百欧林用户及其工作介绍,本期我们介绍的是广东工业大学邱学青教授团队。
通过在空气-水界面形成未改性金属氧化物纳米颗粒的Langmuir膜改变薄膜物理性质的方法
简介:报告内容简介:金属氧化物纳米颗粒(NPs)薄膜因其可能具备的光学和电学特性,在纳米技术领域如半导体和太阳能电池中被广泛应用。通过在空气-水界面形成纳米颗粒的Langmuir薄膜,然后将这些薄膜沉积或烧结到衬底上,可以制备出具有可控堆积密度的纳米颗粒薄膜。然而,金属氧化物纳米颗粒 (如SiO2或TiO2)的Langmuir膜不能在空气-水界面形成,因为它们的高亲水性使其在空气-水界面上不稳定。克服这一问题的常用方法是使用表面活性剂或聚合物对纳米颗粒进行疏水改性。 在本次讲座中,我们将讨论另外一种使未改性金属氧化物纳米颗粒在空气-水界面稳定的替代方法,该方法涉及向水相中添加无机盐。我们还将探讨如何通过在空气-水界面混合不同尺寸和类型的纳米颗粒来改变转移薄膜的物理性质如粗糙度和表面电荷等。 报告人简介:Cathy McNamee教授,日本信州大学
QSense用户会议精彩回放 | 使用耗散型石英晶体微天平解读复杂生物大分子的相互作用
简介:耗散型石英晶体微天平技术(QCM-D) 是一种用于表征固液界面上复杂生物大分子相互作用的高灵敏度工具。 在本次演讲中,Jackman博士将介绍两个生物大分子结构转化的应用案例,并讨论QCM-D数据分析的不同策略。 第一种情况涉及肽介导的软囊泡粘附层破裂,形成刚性支撑的磷脂双分子层; 第二种情况涉及抗菌脂质引发的刚性支撑磷脂双分子层转化为由异质突起组成的软膜; 同时也将讨论文献中的相关示例,以展示分析可能性的广度并提供一些提示和建议。
QSense用户会议精彩回放 使用耗散型石英晶体微天平解读复杂生物大分子的相互作用
简介:报告亮点阐述: 耗散型石英晶体微天平技术(QCM-D) 是一种用于表征固液界面上复杂生物大分子相互作用的高灵敏度工具。 在本次演讲中,Jackman博士将介绍两个生物大分子结构转化的应用案例,并讨论QCM-D数据分析的不同策略。 第一种情况涉及肽介导的软囊泡粘附层破裂,形成刚性支撑的磷脂双分子层; 第二种情况涉及抗菌脂质引发的刚性支撑磷脂双分子层转化为由异质突起组成的软膜; 同时也将讨论文献中的相关示例,以展示分析可能性的广度并提供一些提示和建议。 报告人简介:Joshua Jackman, 2010年在佛罗里达大学获得化学学士学位,2015年在南洋理工大学获得材料科学与工程博士学位。2015年至2018年在斯坦福大学医学院进行博士后研究。 Joshua Jackman的研究领域为膜生物物理学和转化医学的融合,聚焦基于脂质的工程策略,致力于解决传染病和癌症问题。已在包括Nature Materials、Nature Protocols、Nature Human Behaviour等期刊上发表了大量的科学论文。
Attension Theta Flow 光学接触角测量仪
QSense High Pressure 高压石英晶体微天平
QSense全自动八通道石英晶体微天平
QSense卓越版四通道石英晶体微天平
QSense Explorer扩展版石英晶体微天平
KSV NIMA roll to roll 柔性LB膜制备系统
KSV NIMA LB膜分析仪
Attension Theta Flex 光学接触角仪
KSV NIMA Microbam 独立式小型布鲁斯特角显微镜
KSV NIMA 布鲁斯特显微镜
KSV NIMA常规 交替型LB膜分析仪
KSV NIMA 缎带型Langmuir膜分析仪
KSV NIMA Langmuir膜分析仪
QSense 石英晶体微天平定制表面芯片
高温高压表面/界面测量系统
关注
拨打电话
留言咨询