德国弗莱贝格电池片PID测试仪PIDcon bifacial技术

2023/06/27   下载量: 0

方案摘要

方案下载
应用领域 半导体
检测样本 其他
检测项目
参考标准 /

自2010年以来,潜在的诱导退化被认为是导致模块故障的主要原因之一。利用弗劳恩霍夫CSP开发的新技术,以及弗莱贝格仪器公司的台式工具PIDcon,可以对太阳能电池和微型组件的PID敏感性进行测试,现在已经投入市场。

方案下载
配置单
方案详情

2010年以来,潜在的诱导退化被认为是导致模块故障的主要原因之一。利用弗劳恩霍夫CSP开发的新技术,以及弗莱贝格仪器公司的台式工具PIDcon,可以对太阳能电池和微型组件的PID敏感性进行测试,现在已经投入市场。 

了解更多关于PID的原因以及如何研究太阳能电池、微型模块和封装材料的敏感性。

PID-s的物理性质

电势诱导退化(PID)是在晶体硅组件中观察到的较高危险的退化现象之一。在了解分流型PIDPID-s)的基本机制方面已经取得了很大进展。

PID use-11.png


PID-s的物理性质

PID use-12.png

在现场,模块中的前玻璃表面和太阳能电池之间可能会出现较大的电位,硅太阳能电池的p-n结会发生分流,从而导致电阻和功率输出下降。

以下模型是由[1]提出的:

模块中存在的高场强导致Na+漂移通过SiNx层。钠离子在SiNx/Si界面(SiOx)横向扩散,并装饰了堆叠故障。pn结通过高度装饰的堆积断层的缺陷水平被分流(过程1),另外,由于耗尽区的缺陷状态的重组过程,J02增加(过程2)。请注意,Na离子应该是来自Si表面而不是玻璃。

因此,模块的易感性主要取决于SiNx层以及玻璃和EVA箔的电阻率。


参考文献:

[1] V. Naumann et al., The role of stacking faults for the formation of shunts during potential induced degradation (PID) of crystalline Si solar cells, Phys. Stat. Solidi RRL 7, No. 5 (2013) 315-318


上一篇 晶体日记(二十)- 有效的数据收集是较省时间的方式据- X射线衍射XRD
下一篇 PHI XPS对科学研究的重要作用

文献贡献者

相关仪器 更多
相关方案
更多

相关产品

当前位置: 束蕴仪器 方案 德国弗莱贝格电池片PID测试仪PIDcon bifacial技术

关注

拨打电话

留言咨询