应用分享 | AES俄歇电子能谱仪表面分析技术

2024/08/28   下载量: 0

方案摘要

方案下载
应用领域 半导体
检测样本 其他
检测项目
参考标准 其他

俄歇电子能谱(Auger Electron Spectroscopy, AES)作为一种高度灵敏的表面分析技术,广泛应用于材料科学、半导体工业及化学工程等领域,用于研究固体表面的化学组成及元素分布。

方案下载
配置单
方案详情

俄歇电子能谱(Auger Electron Spectroscopy, AES)作为一种高度灵敏的表面分析技术,广泛应用于材料科学、半导体工业及化学工程等领域,用于研究固体表面的化学组成及元素分布。ULVAC-PHI公司匠心打造的PHI 710扫描俄歇纳米探针系统,采用同轴筒镜式电子能量分析器的设计,实现对纳米表面特征、薄膜结构和表面污染物成分全方面表征和二次电子成像同步观测。

图1. PHI 710设备外观图。

PHI 710扫描俄歇纳米探针系统是该领域的先进设备,其结构构成复杂而精密,主要包括以下几个关键部分:超高真空系统、电子设备系统、电子能量分析器、五轴样品台和离子设备等。

图2. PHI 710激发源、分析器和探测器结构示意图。

一、超高真空(UHV)系统

整个AES系统需要在超高真空(UHV)环境下运行,既可以减少电子束与残留气体分子的相互作用,又可以避免样品在测试过程中遭受污染。真空系统包括机械泵、分子泵、离子泵和钛升华泵等设备,用于维持系统的超高真空状态。肖特基场发射电子源特别配备了单独的离子泵抽气系统以延长发射源寿命。

二、电子源系统

AES系统采用肖特基热场发射电子源,其发射材料被制成尖点形状,利用热电子发射效应产生稳定、高亮度且低能散的电子束。该系统还包括一系列精密设计的静电透镜和偏转线圈,用于精确控制电子束的加速、聚焦、偏转和扫描。通过准确控制,可以在25 kV时将场发射源聚焦到纳米尺度,实现空间分辨率< 3nm,同时保持其位置稳定在±< 5nm以内;在电压为20 kV与发射电流为1 nA时,实现俄歇空间分辨率< 8 nm。此外,该电子源在CMA分析器内采用独特的同轴几何构造,可以确保利用 1 kV弹性峰值对样品Z高度精确对准。

三、能量分析器系统

同轴筒镜式电子能量分析器(Cylindrical Mirror Electron Energy Analyzer,简称CMA),作为AES系统的一个重要部件,用于收集和分析从样品表面激发出的俄歇电子。CMA通过静电场和磁场的组合作用,实现对俄歇电子进行能量色散和聚焦,结果将不同能量的电子按能量顺序投射到检测器上,形成俄歇电子能谱图。相较于传统的半球型能量分析器(Spherical Capsule Analyzer,简称SCA),CMA具有独特的优势和特点,特别是在俄歇电子的收集效率和避免阴影效应方面。如图3所示,CMA的设计使能量分析器能够360°无死角地接收样品表面飞出的俄歇电子。这意味着无论样品的形状如何复杂,或者样品表面是否倾斜,CMA都能够有效地收集和分析从样品表面逸出的俄歇电子。

图3. PHI 710同轴筒镜式电子能量分析器示意图。

这种同轴几何结构设计很大的提高了俄歇电子的收集效率,使得俄歇的灵敏度在很宽的发射角范围内保持不变,从而增强了AES分析的准确性和可靠性。尤为值得一提的是,样品复杂的形状或特殊表面特征可能导致阴影效应,进而干扰电子的收集和分析。然而,CMA的设计使得它能够避免这种阴影效应,从而确保分析的可靠性和稳定性。

图4. 不同发射角下CMA和SCA俄歇灵敏度比较。

图5直观展示了CMA和SCA在工作原理和成像对比方面的差异。可以看到,SCA分析器因其电子源和分析器非同轴构造特征,不可避免地遭遇了明显的阴影效应。在对Ni球这类典型样品进行分析时,阴影效应如同一道屏障,导致图像中出现了明显的暗区或信息缺失。相比之下,CMA分析器以其同轴几何设计的独特优势,在相同条件下对Ni球进行分析时,展现出了好的成像质量:图像清晰无阴影,细腻地捕捉到了样品表面的每一个细节,准确无误地反映了样品的真实信息。这一对比不仅彰显了CMA在避免阴影效应方面的好能力,也进一步印证了其在提升AES分析准确性与可靠性方面的巨大潜力。

图5. CMA与SCA能量分析器工作原理及成像对比。

四、五轴样品台

五轴样品台集成了精密的平移和旋转机构,可沿X轴、Y轴、Z轴、T轴(倾斜轴)、R轴(旋转轴)的自由运动。该设计允许在X轴与Y轴上实现±25毫米的大范围平移,这一范围确保了在样品无需倾斜时,即可轻松测试直径达50毫米的样品区域。同时,20毫米的Z轴平移结合0°至60°的倾斜调节功能,赋予了用户精确调整样品位置以优化分析条件的能力。如图6所示,在深度剖析溅射时,五轴样品台通过共心旋转(Zalar Rotation)能够围绕待测样品中心点进行精确旋转,有效减少因溅射引起的表面粗糙度,并明显提升界面分辨率。

五、离子设备

氩气离子设备作为AES的溅射源,可对材料进行表面清洁及纵向深度组成与结构分析。离子设备通过发射的电子束撞击氩气气体分子,使其电离成带正电的离子,随后被聚焦和加速,形成一个高能离子束,然后轰击到样品表面。

图6.深度剖析结果对比:(左)Zalar Rotation,(右)非Zalar Rotation。

PHI 710作为纳米尺度的表面分析技术,提供了高稳定性的 AES 成像平台。该系统集成了隔声罩、低噪声电子系统、稳定的样品台和可靠的成像匹配软件,可实现AES对纳米级形貌特征的采谱和成像。此外,PHI 710具有强大的可扩展性,用户可根据研究需求,灵活配置冷脆断样品台、能量色散X射线能谱(EDS)、聚焦离子束(FIB)、电子背散射衍射(EBSD)和背散射电子(BSE)探测器等功能模块。这些关键配置协同工作,共同赋予了PHI 710扫描俄歇纳米探针系统无法比拟的分析能力与灵活性,使其成为材料科学、半导体工业等领域不可或缺的分析设备。

-转载于《PHI表面分析 UPN》公众号

上一篇 全新台式D6 PHASER应用报告系列(六)— 织构分析- X射线衍射XRD
下一篇 应用分享|少子寿命测试仪(MDP)在碳化硅材料质量评估中的应用

文献贡献者

相关仪器 更多
相关方案
更多

相关产品

当前位置: 束蕴仪器 方案 应用分享 | AES俄歇电子能谱仪表面分析技术

关注

拨打电话

留言咨询