聚苯并恶嗪(polybenzoxazines,PBZs),是一类高性能热固性酚醛塑料。因其优异的热稳定性、力学性能、高的残碳率、优异的阻燃性、低吸水率、几乎为零的体积收缩率,使得PBZs在众多领域都有广泛的应用,例如防腐涂层、电子、航空复合材料、混纺纤维以及合金等。然而,PBZs本身比较脆,并且因其高的固化温度(通常为180-250 ℃)而导致加工性差。此外,常规的制备工艺例如挤出和熔融都十分难制备复杂的PBZs结构,这也极大地限制了其进一步的应用。
3D打印技术是一种创新性的材料加工技术,可突破材料限制实现传统加工方式难以制备的三维复杂结构。在众多3D打印技术中,基于光聚合的面投影微立体光刻(PμSL)3D打印技术因其制备的结构具有高精度和微小的细节尺寸的特点而广受关注。进一步地,通过将上述光固化3D打印技术与热固化处理相结合,可有效实现具有复杂三维结构的高性能功能化器件。
基于上述背景,南洋理工大学胡晓课题组设计并合成了低粘度的可光固化苯并恶嗪(Benzoxazine,BZs),并使用PμSL 3D打印技术实现了三维复杂结构的成型。初步研究结果表明,制备所得的双固化PBZs具有很高的玻璃化转变温度Tg (264 ℃)和弯曲模量(4.91 GPa),且通过使用高精度PμSL打印设备(nanoArchS140,摩方精密)和热处理可对该体系的PBZs进行复杂三维结构的制备。这些发现都极为有利地推动了可光固化3D打印BZ材料的设计,并为高效制造高性能热固性材料以满足各种高要求的工程应用提供了一种新途径。该研究成果,以“The molecular design of photo-curable and high-strengthbenzoxazine for 3D printing”为题发表在Chemical Communication上。
原文链接:
https://doi.org/10.1039/D0CC07801H
图1.(a) 合成路线;(b) BZ-C2, BZ-C5和BZ-BA粘度与剪切速率的对比曲线; (c) BZ-C2 和BZ-C5 在稀释的三氯甲烷溶剂中的UV吸收光谱;(d)PBZ-C2在不同温度下固化的DSC曲线;(e) 光固化BZ-C2/C5和PBZ-C2/C5 在N2气氛下TGA (热重分析)。
图二 (a) 存储模量 (插图:测试样条);(b) BZ-C2/C5和PBZ-C2/C5 tan ẟ(Tg的指标参数)随温度变化曲线;(c) PBZ-C2和PBZ-C5在不同温度下热固化的弯曲应力-应变曲线;(d)光固化BZ和PBZ的开环实验机理以及相应的网络结构示意图。
表一使用摩方精密nanoArch S140设备打印的不同3D结构热处理前后的尺寸变化。
摩方携手国内科研团队,从实验室创新到全球产业化
微纳3D打印:推动生物支架研发进程,实现高端医疗器械自主创新
韩国航空宇宙研究院《JGR Planets》:基于3D打印月壤三维模拟物在小相位角下的光散射特性研究
摩方精密圣地亚哥研究院研发突破性仿生三维可灌注血管化皮肤芯片成功,开启药物与化妆品测试新时代
摩方材料BMF 3D打印微流控生物芯片
摩方精密BMF-复合精度光固化3D打印机 - microArch® D0210
摩方精密BMF-复合精度光固化3D打印机 - microArch® D1025
摩方材料BMF Material 3D打印服务 连接器3D打印
摩方材料BMF Material 3D打印服务 微针3D打印
摩方材料BMF Material 3D打印服务 内窥镜3D打印
摩方精密BMF-多材料光固化3D打印机- MultiMatter C1
摩方精密-LMM光固化金属3D打印机-Hammer Lab35
摩方精密BMF-光固化3D打印机(25μm)- microArch® S350
摩方精密BMF-生物3D打印机-P150
摩方精密BMF-生物3D打印机-microArch S240A
摩方精密BMF-生物3D打印机-S140
摩方精密BMF-生物3D打印机-S230
摩方精密BMF-生物3D打印机-S130
摩方精密-Exaddon CERES-微纳金属3D打印系统
关注
拨打电话
留言咨询