仪器信息网APP
选仪器、听讲座、看资讯

中科院金属研究所二维半导体器件研究获得重要突破

导读:近日,中科院金属所信息显示,在山西大学韩拯教授领衔下,提出了一种全新的基于界面耦合(理论表明量子效应在其中起到关键作用)的p-掺杂二维半导体方法,为后摩尔时代未来二维半导体器件的发展提供了思路。

经过数十年发展,半导体工艺制程不断逼近亚纳米物理极限,传统硅基集成电路难以依靠进一步缩小晶体管面内尺寸来延续摩尔定律。发展垂直架构的多层互连CMOS逻辑电路,从而获得三维集成技术的突破,是国际半导体领域积极探寻的新路径之一,多家半导体公司争相发布相关研究计划。

由于硅基晶体管制备工艺采用单晶硅表面离子注入的方式,很难实现在一层离子注入的单晶硅上方再次生长或转移单晶硅。虽然可以通过三维空间连接电极、芯粒等方式提高集成度,但是关键的晶体管始终分布在最底层,无法获得z方向的自由度。新材料、或颠覆性原理因此成为备受关注的重要突破点。

近日,在山西大学韩拯教授领衔下,中国科学院金属研究所李秀艳研究员、辽宁材料实验室王汉文副研究员、中山大学侯仰龙教授、中国科学院大学周武教授等参与合作,提出了一种全新的基于界面耦合(理论表明量子效应在其中起到关键作用)的p-掺杂二维半导体方法。该方法采用界面效应的颠覆性路线,工艺简单、效果稳定、并且可以有效保持二维半导体本征的优异性能。进一步,利用垂直堆叠的方式,制备了由14层范德华材料组成、包含4个晶体管的互补型逻辑门NAND以及SRAM等器件。这一创新方法打破了硅基逻辑电路的底层“封印”,基于量子效应获得了三维(3D)垂直集成多层互补型晶体管电路,为后摩尔时代未来二维半导体器件的发展提供了思路。

该研究成果以“Van der Waals polarity-engineered 3D integration of 2D complementary logic”为题于2024年5月29日在Nature杂志在线发表。

中科院金属研究所二维半导体器件研究获得重要突破

图片来源:中科院金属所


来源于:中国科学院金属研究所

打开APP,掌握第一手行业动态
打赏
点赞

近期会议

更多

热门评论

新闻专题

更多推荐

写评论…
0

经过数十年发展,半导体工艺制程不断逼近亚纳米物理极限,传统硅基集成电路难以依靠进一步缩小晶体管面内尺寸来延续摩尔定律。发展垂直架构的多层互连CMOS逻辑电路,从而获得三维集成技术的突破,是国际半导体领域积极探寻的新路径之一,多家半导体公司争相发布相关研究计划。

由于硅基晶体管制备工艺采用单晶硅表面离子注入的方式,很难实现在一层离子注入的单晶硅上方再次生长或转移单晶硅。虽然可以通过三维空间连接电极、芯粒等方式提高集成度,但是关键的晶体管始终分布在最底层,无法获得z方向的自由度。新材料、或颠覆性原理因此成为备受关注的重要突破点。

近日,在山西大学韩拯教授领衔下,中国科学院金属研究所李秀艳研究员、辽宁材料实验室王汉文副研究员、中山大学侯仰龙教授、中国科学院大学周武教授等参与合作,提出了一种全新的基于界面耦合(理论表明量子效应在其中起到关键作用)的p-掺杂二维半导体方法。该方法采用界面效应的颠覆性路线,工艺简单、效果稳定、并且可以有效保持二维半导体本征的优异性能。进一步,利用垂直堆叠的方式,制备了由14层范德华材料组成、包含4个晶体管的互补型逻辑门NAND以及SRAM等器件。这一创新方法打破了硅基逻辑电路的底层“封印”,基于量子效应获得了三维(3D)垂直集成多层互补型晶体管电路,为后摩尔时代未来二维半导体器件的发展提供了思路。

该研究成果以“Van der Waals polarity-engineered 3D integration of 2D complementary logic”为题于2024年5月29日在Nature杂志在线发表。

中科院金属研究所二维半导体器件研究获得重要突破

图片来源:中科院金属所