荧光光纤氧气测量技术具有高精确度、高可靠性、响应时间短、适用于气相和液相等优势,因此随着技术的问世,精确、高通量测量微小生物的呼吸和评估其能量代谢成为可能。高通量呼吸测量系统基于荧光光纤氧气测量技术,能够对斑马鱼的胚胎及幼鱼进行测量,测定其耗氧量,进而评估其代谢水平。系统在生物医学、实验生物学、污染生态学与环境毒理学、环境科学、气候变化研究等领域具有越来越重要的应用价值。
系统由内置荧光光纤氧气传感器的微型呼吸室、氧气测量主机及数据采集分析软件组成,可对96个通道的样品进行同步测量。
功能特点
l 氧气测量高精度、高可靠性、低功耗、低交叉敏感性、快速响应时间
l 轻松校准
l 非侵入性和非破坏性测量
l 紧凑设计,适用于温控培养箱和/或摇床
技术参数
1. 检测技术:光纤氧传感器技术。
2. 适用场景:原位检测,可在培养箱里或摇床上使用,便于温度控制。
3. 呼吸室:透明聚苯乙烯材质,支持预消毒处理,可重复使用。
4. 氧气测量主机:单个重670 g,162 x 102 x 32 mm
5. 主机内置温度传感器:0-50°C,分辨率0.012°C,精度±0.5°C
6. 主机内置压强传感器:300-1100mbar,分辨率0.11mbar,精度±6mbar
7. 最大采样频率:单通道激活时可达10-20次每秒
8. 氧气测量精度:±0.1% O2@1% O2或±0.05 mg/L@0.44 mg/L
9. 氧气测量分辨率:0.01% O2@1% O2或0.005 mg/L@0.44 mg/L
10. 电源:5VDC,USB供电
11. 响应时间<30s
12. 通道数:96
13. 系统适配其他鱼类的胚胎及幼鱼
14. 可选配斑马鱼成鱼的静态及动态呼吸测量系统
参考文献
1. Feng, W.-W., Chen, H.-C., Audira, G., Suryanto, M.E., Saputra, F., Kurnia, K.A., Vasquez, R.D., Casuga, F.P., Lai, Y.-H., Hsiao, C.-D., Hung, C.-H., 2024. Evaluation of Tacrolimus’ Adverse Effects on Zebrafish in Larval and Adult Stages by Using Multiple Physiological and Behavioral Endpoints. Biology (Basel) 13, 112.
2. Glass, B.H., Jones, K.G., Ye, A.C., Dworetzky, A.G., Barott, K.L., 2023. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 11, e16574.
3. Heuer, R.M., Wang, Y., Pasparakis, C., Zhang, W., Scholey, V., Margulies, D., Grosell, M., 2023. Effects of elevated CO2 on metabolic rate and nitrogenous waste handling in the early life stages of yellowfin tuna (Thunnus albacares). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 280, 111398.
4. Kämmer, N., Reimann, T., Ovcharova, V., Braunbeck, T., 2023. A novel automated method for the simultaneous detection of breathing frequency and amplitude in zebrafish (Danio rerio) embryos and larvae. Aquatic Toxicology 258, 106493.
5. Louhi, P., Pettinau, L., Härkönen, L.S., Anttila, K., Huusko, A., 2023. Carryover effects of environmental stressors influence the life performance of brown trout. Ecosphere 14, e4361.
6. Mandic, M., Pan, Y.K., Gilmour, K.M., Perry, S.F., 2020. Relationships between the peak hypoxic ventilatory response and critical O2 tension in larval and adult zebrafish ( Danio rerio ). Journal of Experimental Biology jeb.213942.
7. Mathiron, A.G.E., Gallego, G., Silvestre, F., 2023. Early-life exposure to permethrin affects phenotypic traits in both larval and adult mangrove rivulus Kryptolebias marmoratus. Aquatic Toxicology 259, 106543.
8. Moore, B., Jolly, J., Izumiyama, M., Kawai, E., Ryu, T., Ravasi, T., 2023. Clownfish larvae exhibit faster growth, higher metabolic rates and altered gene expression under future ocean warming. Science of The Total Environment 873, 162296.
9. Park, K.-H., Ye, Z., Zhang, J., Hammad, S.M., Townsend, D.M., Rockey, D.C., Kim, S.-H., 2019. 3-ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish. Sci Rep 9, 1138.
10. Ricarte, M., Prats, E., Montemurro, N., Bedrossiantz, J., Bellot, M., Gómez-Canela, C., Raldúa, D., 2023. Environmental concentrations of tire rubber-derived 6PPD-quinone alter CNS function in zebrafish larvae. Science of The Total Environment 896, 165240.
11. Saputra, F., Lai, Y.-H., Roldan, M.J.M., Alos, H.C., Aventurado, C.A., Vasquez, R.D., Hsiao, C.-D., 2023. The Effect of the Pyrethroid Pesticide Fenpropathrin on the Cardiac Performance of Zebrafish and the Potential Mechanism of Toxicity. Biology 12, 1214.
12. Schuster, L., Cameron, H., White, C.R., Marshall, D.J., 2021. Metabolism drives demography in an experimental field test. Proceedings of the National Academy of Sciences 118, e2104942118.
13. Scovil, A.M., Boloori, T., de Jourdan, B.P., Speers-Roesch, B., 2023. The effect of chemical dispersion and temperature on the metabolic and cardiac responses to physically dispersed crude oil exposure in larval American lobster (Homarus americanus). Marine Pollution Bulletin 191, 114976.
14. Varshney, S., Gora, A.H., Kiron, V., Siriyappagouder, P., Dahle, D., Kögel, T., Ørnsrud, R., Olsvik, P.A., 2023. Polystyrene nanoplastics enhance the toxicological effects of DDE in zebrafish (Danio rerio) larvae. Science of The Total Environment 859, 160457.
15. Varshney, S., Gora, A.H., Siriyappagouder, P., Kiron, V., Olsvik, P.A., 2022. Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae. Journal of Hazardous Materials 424, 127623.
16. Varshney, S., Lundås, M., Siriyappagouder, P., Kristensen, T., Olsvik, P.A., 2024. Ecotoxicological assessment of Cu-rich acid mine drainage of Sulitjelma mine using zebrafish larvae as an animal model. Ecotoxicology and Environmental Safety 269, 115796.
17. Wang, Y., Pasparakis, C., Grosell, M., 2021. Role of the cardiovascular system in ammonia excretion in early life stages of zebrafish ( Danio rerio ). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 321, R377–R384.
1年
否
有
1次
根据使用情况
1年
根据使用情况
相关产品