当前位置: 仪器信息网 > 行业主题 > >

噪声温度仪

仪器信息网噪声温度仪专题为您提供2024年最新噪声温度仪价格报价、厂家品牌的相关信息, 包括噪声温度仪参数、型号等,不管是国产,还是进口品牌的噪声温度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合噪声温度仪相关的耗材配件、试剂标物,还有噪声温度仪相关的最新资讯、资料,以及噪声温度仪相关的解决方案。

噪声温度仪相关的论坛

  • 【讨论】关于我国温度自然基准的讨论~

    对于温度单位开尔文,一直沿用之际的是按照水的三相点来定义和导出单位。但最近发现同位素效应会造成温度单位的附加误差。从海洋中以及从陆地上各处提取的纯水导出的温度单位因同位素含量的不同而有微小差别。因此用玻尔兹曼常数直接导出热力学温度单位的工作得到了重视。如果能测出电阻热噪声电压的绝对数值,就可以达到测定玻尔兹曼常数的目的。12月28日,由中国计量科学研究院承担的《玻尔兹曼常数测量和热力学温度基准研究》课题通过了国家质检总局组织的专家验收。该课题通过对玻尔兹曼常数测量和热力学温度基准及其关键技术的研究,建立玻尔兹曼常数测量装置和光谱辐射法、噪声法测量热力学温度装置,使我国首次具备玻尔兹曼常数测量和辐射法热力学温度测量能力,步入国际计量前沿研究领域。 该课题为国家“十一五”科技支撑计划重点项目“以量子物理为基础的现代计量基准研究”项目中的一项。在研究过程中实现了多方面的创新: 建立国际首创的定程圆柱声学法玻尔兹曼常数测量装置,在新型传感器应用、圆柱坐标系非理想因素修正分析体系建立、圆柱腔体绝对测量等几个关键技术问题上有突破。新获得的玻尔兹曼常数的相对标准不确定度与国际科技基本常数委员会(CODATA)2006年公布值的相对偏差小于1×10-6,成为目前国际计量界已获得的几个最高准确度的测量结果之一,使我国首次具备开展玻尔兹曼常数测量这一国际温度计量界最尖端领域的实验能力。对于我国参与温度单位开尔文的重新定义与国际温标赋值、紧跟国际温度计量的发展趋势具有里程碑性的意义。热力学温度基准研究方面,该课题组在国内首次建立了绝对辐射温度计及与之配套的性能测量实验装置,自主完成对金属-碳共晶点(钴-碳、铂-碳、铼-碳共晶点)和银凝固点热力学温度测量,相对标准不确定度达到(1.0~1.7)×10-4。实现对高温固定点的热力学温度赋值,对于我国参与为对新型高温固定点热力学温度国际赋值测量具有重要意义。在噪声法测量热力学温度方面,在国内首次研制了准绝热法氩三相点装置,达到拥有同类技术国际先进水平,并在国际上首次提出了噪声温度计残余电磁干扰余量修正方法,拓展了我国在中低温区的热力学温度测量。据了解,在此项研究过程中,课题组还建成了我国声学法频率测量前沿研究实验室,所掌握的声学共鸣、微波和激光干涉等尖端技术理论经验,对于高温热力学温度准确测量、流体物性准确测量、温室气体排放计量、核电反应堆等特殊环境温度的可靠测量、空间站温度开尔文单位可靠准确复现等领域的研究与应用,都具有重要的意义。

  • 噪声测试仪

    噪声测试仪,是用于工作现场,广场等公共场所的噪声检测和测试的仪器。噪声污染是影响较大的环境污染之一,较高分贝的噪音甚至会对人的耳膜造成严重的损伤,致使失聪等。噪声测试仪的应用可以提供噪声所达到的分贝以便采取相关措施控制和减小噪音。声音大小的计量单位是分贝,专业的噪音测试仪具有高灵敏的传感器,精度高,适用范围广,能广泛用于各种环境的噪音测量。  环境噪声监测仪器的选用  为防治噪声污染, 保障城乡居民生活工作和学习的声环境质量, 国家环境保护部最近发布了  GB3096-2008《声环境质量标准》.  GB12348-2008《工业企业厂界环境噪声排放标准》  以及GB22337-2008《社会生活环境噪声排放标准》,并于2008年10月1日开始实施。  在以上三个环境噪声测量标准中,都提到环境噪声监测仪器为积分平均声级计或环境噪声自动监测仪, 其性能应不低于GB3785和GB/T17181对2型仪器的要求。在老的声级计标准中,将声级计按准确度等级分为0型、1型、2型和3型。新的声级计标准将声级计按准确度等级分为1级和2级,它们与老的1型和2型相当,不再有0型和3型。  在GB12348-2008和GB22337-2008标准中, 还规定测量35dB以下的噪声应使用1型声级计, 且测量范围应满足所测量噪声的需要, 这是因为1级仪器的性能则要比2级仪器好得多。例如准确度2级仪器和1级仪器综合起来两者的误差差异可能在1.0dB以上。在新的声级计标准中,要求1级声级计的工作温度范围为-10℃~+50℃,在此温度范围内相对于参考温度灵敏度变化不大于±0.5dB;而2级声级计的工作温度范围为0℃~+40℃,在此温度范围内相对于参考温度灵敏度变化不大于±1.0dB。由于环境噪声监测仪器大多在现场使用,环境条件变化较大,显然1级仪器更能满足环境噪声测量的要求。  在GB22337-2008和GB12348-2008标准中, 首次提出结构传播固定设备室内噪声排放限值, 规定当排放的噪声通过建筑物结构传播至噪声敏感建筑物室内时, 噪声敏感建筑物室内等效声级既不得超过规定的A声级限值, 也不得超过规定的室内噪声倍频带声压级限值,( 倍频带中心频率为31.5Hz,63Hz,125Hz250Hz,500Hz, 其复盖频率为22Hz-707Hz) 这是考虑到不管是工业企业固定设备排放的噪声, 还是社会生活噪声排放源排放的噪声, 它们通过建筑物结构传播至噪声敏感建筑物室内(指医院, 学校机关, 科研单位, 住宅等需要保持安静的建筑物) 时, 噪声的主要成份呈低频特性, 这时测量A声级可能不会超过规定限值, 但是对于人的干扰却不能忽视, 因此只用A声级限值还不能保证噪声敏感建筑物室内声环境质量,新标准增加了低频段的倍频带声压级限值要求, 而且这些限值一个都不得超过, 这样就要求在测量A声级的同时, 进行噪声的倍频带频谱分析。  测量噪声监测仪器性能和品种的差异很大,用于环境噪声监测的仪器至少应具有时间平均的积分功能,也就是至少能测量等效连续声级Leq值,这对于环境监理部门已经足够。但对于需要进行交通噪声测量或噪声普查的环境监测站,则还应有统计声级LN(N=5,10,50,90,95)测量和24小时监测功能。为了减少手工记录和便于数据进一步处理,往往还需要配备微型打印机和将数据传送至计算机以及数据存储等功能,考虑到社会生活噪声中低频成分较多,仅仅用A声级难以评价其对人的影响,因此在测量A声级的同时,也要对噪声进行倍频程谱分析,然后用NR曲线来衡量每个倍频带声压级是否在允许范围内。这就需要电脑辐射使用带倍频程或1/3倍频程滤波器的噪声频谱分析测量仪器。

  • 色谱仪器的噪声

    噪声(noise)又称噪音,定义为没有溶质通过检测器时,检测器输出的信号变化,以ND表示。噪声是指与被测样品无关的检测器输出信号的随机扰动变化。噪声分为短噪声和长噪声两种形式。短噪声俗称毛刺,使基线呈绒毛状,因信号频率的波动而引起,是比色谱峰的有效值频率更高的基线扰动。短噪声的存在并不影响色谱峰的分辨,但对检测限有一定影响。短噪声通常来自仪器的电子系统和泵的脉动,可以用适当的滤波器加以消除。长噪声是输出信号随机的和低频的变化情况,是由与色谱峰相类似频率的基线扰动构成的。长噪声可能是有规律的波动,基线呈波浪形,也可能是无规律的波动,引起色谱峰分辨的困难。对不同类型的检测器,长噪声的主要来源可能是不同的。有的是由于检测器本身部件不稳定,有的是由于流动相含有气泡或被污染,还可能是温度变化和流速波动等引起长噪声。对示差折光检测器而言,来源于周围环境和流动相流速变化而引起的温度和压力的波动,使检测池内液体的折光率发生改变,是引起长噪声的主要原因。降低长噪声可以通过改进检测器的设计来完成。

  • 气相色谱仪噪声过大如何解决呢

    [align=center][b][size=18px]气相色谱仪噪声过大如何解决呢[/size][/b][/align] 气相色谱仪启动后不久或色谱柱更换后不久,噪声是不可避免的,这是正常现象。噪声过大是指比正常的标准高得多的噪声或某些不正常的突变。发现噪声过大时,请先检查气相色谱仪和积分仪使用的电网电源是否有异常波动或突变,特别是在同一电网电源上接有大功率装置时,更要注意。此外,请检查仪器的接地是否正确并且良好。  一、改变量程范围,噪声的大小还是基本不变时,要考虑是否信号线的故障、放大器电路板的故障、输出信号线的故障、积分仪的故障。  二、将火焰熄灭之后噪声如果还是很大,要考虑从检测器到放大器电路板这一段是否存在问题,请进行下列项目的检查:  1、检查检测器的喷嘴、收集极、离子信号线插座、点火线等部分是否固定可靠,请排除接触不良的可能。  2、检查检测器是否被污染,如果污染请进行清洗。  3、要考虑是极化电压、放大器电路板、工作电源的故障。  三、将火焰熄灭之后噪声如果降低或消失,要考虑是否检测器本身产生过大噪声:  1、检查是否使用的气体纯度太低,请更换气体或使用气体过滤器去除气体中的杂质。  2、检查检测器是否被污染,如果污染请进行清洗。  3、检查空调器等冷暖设备的排风是否正对着气相色谱仪,请改变风向或更换仪器的位置。  四、降低进样口温度后如果噪声变小,要考虑是否进样口有污染现象。  五、降低色谱柱温度后如果噪声变小,要考虑是否载气纯度不够或色谱柱的老化不足,请更换载气或使用气体过滤器去除载气体中的杂质,并对色谱柱进行老化。

  • 气相色谱仪噪声过大如何解决呢

    [align=center] [b][size=18px] 气相色谱仪噪声过大如何解决呢[/size][/b][/align] 气相色谱仪启动后不久或色谱柱更换后不久,噪声是不可避免的,这是正常现象。噪声过大是指比正常的标准高得多的噪声或某些不正常的突变。发现噪声过大时,请先检查气相色谱仪和积分仪使用的电网电源是否有异常波动或突变,特别是在同一电网电源上接有大功率装置时,更要注意。此外,请检查仪器的接地是否正确并且良好。  一、改变量程范围,噪声的大小还是基本不变时,要考虑是否信号线的故障、放大器电路板的故障、输出信号线的故障、积分仪的故障。  二、将火焰熄灭之后噪声如果还是很大,要考虑从检测器到放大器电路板这一段是否存在问题,请进行下列项目的检查:  1、检查检测器的喷嘴、收集极、离子信号线插座、点火线等部分是否固定可靠,请排除接触不良的可能。  2、检查检测器是否被污染,如果污染请进行清洗。  3、要考虑是极化电压、放大器电路板、工作电源的故障。  三、将火焰熄灭之后噪声如果降低或消失,要考虑是否检测器本身产生过大噪声:  1、检查是否使用的气体纯度太低,请更换气体或使用气体过滤器去除气体中的杂质。  2、检查检测器是否被污染,如果污染请进行清洗。  3、检查空调器等冷暖设备的排风是否正对着气相色谱仪,请改变风向或更换仪器的位置。  四、降低进样口温度后如果噪声变小,要考虑是否进样口有污染现象。  五、降低色谱柱温度后如果噪声变小,要考虑是否载气纯度不够或色谱柱的老化不足,请更换载气或使用气体过滤器去除载气体中的杂质,并对色谱柱进行老化。

  • 【分享】色谱检测器的噪声和漂移

    噪声和漂移是检测器稳定性的主要表现。噪声(noise)又称噪音,定义为没有溶质通过检测器时,检测器输出的信号变化,以ND表示。噪声是指与被测样品无关的检测器输出信号的随机扰动变化。噪声分为短噪声和长噪声两种形式(图1—1)。短噪声俗称毛刺,使基线呈绒毛状,因信号频率的波动而引起,是比色谱峰的有效值频率更高的基线扰动。短噪声的存在并不影响色谱峰的分辨,但对检测限有一定影响。短噪声通常来自仪器的电子系统和泵的脉动,可以用适当的滤波器加以消除。长噪声是输出信号随机的和低频的变化情况,是由与色谱峰相类似频率的基线扰动构成的。长噪声可能是有规律的波动,基线呈波浪形,也可能是无规律的波动,引起色谱峰分辨的困难。对不同类型的检测器,长噪声的主要来源可能是不同的。有的是由于检测器本身部件不稳定,有的是由于流动相含有气泡或被污染,还可能是温度变化和流速波动等引起长噪声。对示差折光检测器而言,来源于周围环境和流动相流速变化而引起的温度和压力的波动,使检测池内液体的折光率发生改变,是引起长噪声的主要原因。降低长噪声可以通过改进检测器的设计来完成。 漂移(drift)是指基线随时间的增加朝单一方向的偏离。它是比色谱峰有效值更低频率的输出扰动,不会使色谱峰模糊,但是为了有效地工作则需要经常地调整基线。造成漂移的原因是电源电压不稳;温度及流动相流速的缓慢变化;固定相从柱中冲刷下来;更换的新溶剂在柱中尚未达到平衡等。 噪声和漂移直接影响分析工作的误差及检测能力,严重时使仪器系统无法工作,应根据不同情况采取相应措施加以消除。 测定噪声和漂移时,需要使流动相从柱中不断地流出进入检测器。在较低的衰减挡,取超过长噪声一个周期测量长短噪声总的最大幅值。 ND=KH=H/B (1—1) 式中,ND为检测器噪声,K为衰减倍数;B为放大倍数;H是测量得到的记录仪毫伏数标度。 由公式可知,放大倍数与衰减倍数是互成倒数的关系。通过相互变换,噪声可以用检测器自身的物理量作单位来表示,或者用最高灵敏度下记录仪满量程的百分比来表示。漂移则是在同一条件下,测量一小时基线偏离原点的数值,用检测器自身的物理量作单位来表示。 噪声除了可以用如上所述的最常用的峰对峰噪声表示方法,即校正过漂移后,在测量时间内最大值减最小值的峰值差,如图1—1(d)。此外,还可以将漂移以回归曲线斜率的方式给出,测定线性回归的标准偏差的6倍值作为噪声(图1—1(e))。美国国家标准协会规定的ASTM(美国材料试验标准)噪声测定方法, 以峰对峰的测量为基础,按时间周期大小分为长期噪声、短期噪声和超短期噪声。长期噪声是指每小时内有6~60个变化周期的噪声,测定时间应至少lh;短期噪声是指每分钟内有1~10个变化周期的噪声,测定时间应在10min~60min内;超短期噪声是指每分钟内有10个以上的变化周期,测定时间应至少大于lmin。另外,在一个周期内应至少取7个数据点进行计算。在ASTM方法中,漂移的测定是以噪声对噪声的中间值为基础进行的。

  • 色谱检测器的噪声和漂移

    噪声和漂移是检测器稳定性的主要表现。噪声(noise)又称噪音,定义为没有溶质通过检测器时,检测器输出的信号变化,以ND表示。噪声是指与被测样品无关的检测器输出信号的随机扰动变化。噪声分为短噪声和长噪声两种形式(图1—1)。短噪声俗称毛刺,使基线呈绒毛状,因信号频率的波动而引起,是比色谱峰的有效值频率更高的基线扰动。短噪声的存在并不影响色谱峰的分辨,但对检测限有一定影响。短噪声通常来自仪器的电子系统和泵的脉动,可以用适当的滤波器加以消除。长噪声是输出信号随机的和低频的变化情况,是由与色谱峰相类似频率的基线扰动构成的。长噪声可能是有规律的波动,基线呈波浪形,也可能是无规律的波动,引起色谱峰分辨的困难。对不同类型的检测器,长噪声的主要来源可能是不同的。有的是由于检测器本身部件不稳定,有的是由于流动相含有气泡或被污染,还可能是温度变化和流速波动等引起长噪声。对示差折光检测器而言,来源于周围环境和流动相流速变化而引起的温度和压力的波动,使检测池内液体的折光率发生改变,是引起长噪声的主要原因。降低长噪声可以通过改进检测器的设计来完成。 漂移(drift)是指基线随时间的增加朝单一方向的偏离。它是比色谱峰有效值更低频率的输出扰动,不会使色谱峰模糊,但是为了有效地工作则需要经常地调整基线。造成漂移的原因是电源电压不稳;温度及流动相流速的缓慢变化;固定相从柱中冲刷下来;更换的新溶剂在柱中尚未达到平衡等。 噪声和漂移直接影响分析工作的误差及检测能力,严重时使仪器系统无法工作,应根据不同情况采取相应措施加以消除。 测定噪声和漂移时,需要使流动相从柱中不断地流出进入检测器。在较低的衰减挡,取超过长噪声一个周期测量长短噪声总的最大幅值。 ND=KH=H/B (1—1) 式中,ND为检测器噪声,K为衰减倍数;B为放大倍数;H是测量得到的记录仪毫伏数标度。 由公式可知,放大倍数与衰减倍数是互成倒数的关系。通过相互变换,噪声可以用检测器自身的物理量作单位来表示,或者用最高灵敏度下记录仪满量程的百分比来表示。漂移则是在同一条件下,测量一小时基线偏离原点的数值,用检测器自身的物理量作单位来表示。 噪声除了可以用如上所述的最常用的峰对峰噪声表示方法,即校正过漂移后,在测量时间内最大值减最小值的峰值差,如图1—1(d)。此外,还可以将漂移以回归曲线斜率的方式给出,测定线性回归的标准偏差的6倍值作为噪声(图1—1(e))。美国国家标准协会规定的ASTM(美国材料试验标准)噪声测定方法, 以峰对峰的测量为基础,按时间周期大小分为长期噪声、短期噪声和超短期噪声。长期噪声是指每小时内有6~60个变化周期的噪声,测定时间应至少lh;短期噪声是指每分钟内有1~10个变化周期的噪声,测定时间应在10min~60min内;超短期噪声是指每分钟内有10个以上的变化周期,测定时间应至少大于lmin。另外,在一个周期内应至少取7个数据点进行计算。在ASTM方法中,漂移的测定是以噪声对噪声的中间值为基础进行的。[em61] [em61]

  • 【求助】玻碳电极噪声一问

    用玻碳电极制备修饰电极,在红外灯下烘干。用了一段时间后,发现电极噪声很大,玻碳电极都没有办法用了。用不同粒径的三氧化铝粉末逐级抛光,最后玻碳电极噪声依然很大。不知道是什么原因?还有救吗?会不会是因为电极温度高了导致里面电路故障?

  • 双分子层膜实验温控器特色及应用

    [url=http://www.f-lab.cn/microinjectors/thermomaster.html][b]双分子层膜实验温控器[/b][/url]ThermoMaster是专业为双分子层实验而设计的[b]分子层膜温度控制器[/b],与游离脂质双层膜控制仪Ionovation Explorer联合使用,提供完美的温度控制和实验操作,只需要把热电偶的框架和传感器装到双分子层实验温控器上部,选择温度控制程序,就可开始实验。[b][url=http://www.f-lab.cn/microinjectors/thermomaster.html]双分子层膜实验温控器[/url][/b]ThermoMaster是[b]生物化学温度控制[/b]和[b]生物物理温度控制[/b]的[b]精密温控仪[/b]器,非常适合[b]膜生物物理实验[/b],精确的温度控制和温度监测可为科学家带来意想不到的科学实验结果.[b]双分子层膜实验温控器ThermoMaster应用[/b]在生理条件下运行实验不同温度下的动力学研究使你的实验适应各种脂肪混合物的熔化温度。研究蛋白质-蛋白质、蛋白质配体和蛋白质-脂质相互作用的温度依赖性。慢下来的离子通道,快速激活动力学监测膜组件扩散时间的变化[b]双分子层膜实验温控器ThermoMaster特色[/b]温度范围约10°C - 40°C专有的,高导热性能的热滑器紧邻膜的低噪声温度监测实时性温度记录自动温度协议选项通过patchmaster脚本控制与Ionovation Explore同时使用[img=双分子层膜实验温控器]http://www.f-lab.cn/Upload/ionovation-explorer.jpg[/img][img=双分子层膜实验温控器]http://www.f-lab.cn/Upload/membranescan_.jpg[/img]

  • 仪器受温度的影响

    仪器的灵敏度和温度有关,一般温度越高,灵敏度也就越高,但噪声和漂移也会变大。总之,仪器灵敏度高了,受温度影响就会变得尤为明显。控制仪器的灵敏度、稳定性,控制温度是非常必要的。

  • ECD的噪声和漂移问题

    俺家新装了ECD,在参照国家检定规程检定ECD的时候,出现了一点小小的问题:国家检定规程中,规定ECD的噪声和漂移的单位是mv,可是安捷伦的工作站是HZ,这两个物理量是没有办法换算的,所以俺想问一下,安捷伦的ECD检测器,在常规运行的时候,比如温度300℃,尾吹60ml/min,噪声和漂移一般多少算是合格?

  • 【资料】-色谱检测器的噪声和漂移

    【资料】-色谱检测器的噪声和漂移

    [b]色谱检测器的噪声和漂移[/b]噪声和漂移是检测器稳定性的主要表现。噪声(noise)又称噪音,定义为没有溶质通过检测器时,检测器输出的信号变化,以ND表示。噪声是指与被测样品无关的检测器输出信号的随机扰动变化。噪声分为短噪声和长噪声两种形式(图1—1)。短噪声俗称毛刺,使基线呈绒毛状,因信号频率的波动而引起,是比色谱峰的有效值频率更高的基线扰动。短噪声的存在并不影响色谱峰的分辨,但对检测限有一定影响。短噪声通常来自仪器的电子系统和泵的脉动,可以用适当的滤波器加以消除。长噪声是输出信号随机的和低频的变化情况,是由与色谱峰相类似频率的基线扰动构成的。长噪声可能是有规律的波动,基线呈波浪形,也可能是无规律的波动,引起色谱峰分辨的困难。对不同类型的检测器,长噪声的主要来源可能是不同的。有的是由于检测器本身部件不稳定,有的是由于流动相含有气泡或被污染,还可能是温度变化和流速波动等引起长噪声。对示差折光检测器而言,来源于周围环境和流动相流速变化而引起的温度和压力的波动,使检测池内液体的折光率发生改变,是引起长噪声的主要原因。降低长噪声可以通过改进检测器的设计来完成。[img]http://ng1.17img.cn/bbsfiles/images/2006/09/200609091040_26337_1613333_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2006/09/200609091041_26338_1613333_3.jpg[/img]漂移(drift)是指基线随时间的增加朝单一方向的偏离。它是比色谱峰有效值更低频率的输出扰动,不会使色谱峰模糊,但是为了有效地工作则需要经常地调整基线。造成漂移的原因是电源电压不稳;温度及流动相流速的缓慢变化;固定相从柱中冲刷下来;更换的新溶剂在柱中尚未达到平衡等。 噪声和漂移直接影响分析工作的误差及检测能力,严重时使仪器系统无法工作,应根据不同情况采取相应措施加以消除。 测定噪声和漂移时,需要使流动相从柱中不断地流出进入检测器。在较低的衰减挡,取超过长噪声一个周期测量长短噪声总的最大幅值。 ND=KH=H/B (1—1) 式中,ND为检测器噪声,K为衰减倍数;B为放大倍数;H是测量得到的记录仪毫伏数标度。 由公式可知,放大倍数与衰减倍数是互成倒数的关系。通过相互变换,噪声可以用检测器自身的物理量作单位来表示,或者用最高灵敏度下记录仪满量程的百分比来表示。漂移则是在同一条件下,测量一小时基线偏离原点的数值,用检测器自身的物理量作单位来表示。 噪声除了可以用如上所述的最常用的峰对峰噪声表示方法,即校正过漂移后,在测量时间内最大值减最小值的峰值差,如图1—1(d)。此外,还可以将漂移以回归曲线斜率的方式给出,测定线性回归的标准偏差的6倍值作为噪声。美国国家标准协会规定的ASTM(美国材料试验标准)噪声测定方法, 以峰对峰的测量为基础,按时间周期大小分为长期噪声、短期噪声和超短期噪声。长期噪声是指每小时内有6~60个变化周期的噪声,测定时间应至少lh;短期噪声是指每分钟内有1~10个变化周期的噪声,测定时间应在10min~60min内;超短期噪声是指每分钟内有10个以上的变化周期,测定时间应至少大于lmin。另外,在一个周期内应至少取7个数据点进行计算。在ASTM方法中,漂移的测定是以噪声对噪声的中间值为基础进行的。来源:中国水质网

  • 【讨论】近红外的噪声

    马上开始做近红外了,近些天看了一些资料,我要做的是液体,其中也看了有关噪声方面的,近红外的噪声是指温度,水分和仪器本身的振动或者是仪器台面造成的振动,呵呵,不包含环境噪音,当然了,没噪音肯定要好些。无论对人还是机器。一点浅见,敬请指正。

  • 基线噪声太大如何解决?

    气相刚启动不就或者色谱柱刚更换后不久,噪声是不可避免的,所谓的噪声过大是指比正常的标准高得多的噪声或某些不正常的突变。1、降低进样口温度后如果噪声变小,要考虑是否进样口有污染现象。2、改变量程范围,噪声的大小还是基本不变时,要考虑是否信号线的故障,放大器电路板的故障、输出信号线的故障,积分仪的故障。3、将火焰熄灭之后噪声如果还是很大,要考虑从检测器到放大器电路板这一段是否存在问题,请进行下列项目的检查:检查检测器的喷嘴、收集极、离子信号线插座、点火线等部分是否固定可靠,请排除接触不良的可能;检查检测器是否被污染,如果污染请进行清洗;要考虑是极化电压、放大器电路板、工作电源的故障。4、降低色谱柱温度后如果噪声变小,要考虑是否载气纯度不够或色谱柱的老化不足,请更换载气或使用气体过滤器去除载气体中的杂质,并对色谱柱进行老化。5、将火焰熄灭后噪声如果降低或消失,要考虑是否检测器本身产生过大噪声:检查是否使用气体纯度太低,请更换气体或使用气体过滤器去除气体中的杂志;检查检测器是否被污染,如果污染请进行清洗;检查空调器等冷暖设备的排风是否正对着气相色谱仪,请改变风向或更换仪器的位置。【来源:实验与分析】

  • 基线噪声和基线漂移

    基线噪声和基线漂移

    [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]FID检测器,在柱箱温度为160℃,检测器和进样口230℃条件下进行核查;核查基线噪声和基线漂移时,记录基线30min,得如下图:(时间为0时相应信号值为12.699mV,最大响应信号值为12.702mV,最小响应信号值为11.677mV)请问基线噪声和基线漂移为多少?[img=,690,297]https://ng1.17img.cn/bbsfiles/images/2019/07/201907221706297112_2150_3475986_3.png!w690x297.jpg[/img]

  • 【分享】一般工业企业噪声测量方法

    工业企业噪声测量方法测量工业企业噪声时,传声器的位置应在操作人员的耳朵位置,但人需开。测点选择的原则是:1)若车间内各处A声级波动小于3dB,则只需在车间内选择1-3 个测点;2)若车间内各处声级波动大于3dB,则应按声级大小,将车间分成若干区域,任意两区域的声级应大于或等于3dB,而每个区域内的声级波动必须小于3dB,每个区域取1-3个测点。这些区域必须包括所有工人为观察或管理生产过程而经常工作、活动的地点和范围。如为稳态噪声则测量A声级,记为dB(A),如为不稳态噪声,测量等效连续 A声级或测量不同A声级下的暴露时间,计算等效连续A声级。测量时使用慢档,取平均读数。测量时要注意减少环境因素对测量结果的影响,如应注意避免或减少气流、电磁场、温度和湿度等因素对测量结果的影响。

  • GC基线噪声太大如何解决?

    所谓的噪声太大是指比正常的标准高得多的噪声或某些不正常的突变。(备注:气相刚启动不就或者色谱柱刚更换后不久,噪声是不可避免的。)那GC基线噪声太大如何解决呢?具体可参考以下方法逐一排除:1、降低进样口温度后如果噪声变小,要考虑是否进样口有污染现象。2、改变量程范围,噪声的大小还是基本不变时,要考虑是否信号线的故障,放大器电路板的故障、输出信号线的故障,积分仪的故障。3、将火焰熄灭之后噪声如果还是很大,要考虑从检测器到放大器电路板这一段是否存在问题,请进行下列项目的检查:检查检测器的喷嘴、收集极、离子信号线插座、点火线等部分是否固定可靠,请排除接触不良的可能;检查检测器是否被污染,如果污染请进行清洗;要考虑是极化电压、放大器电路板、工作电源的故障。4、降低色谱柱温度后如果噪声变小,要考虑是否载气纯度不够或色谱柱的老化不足,请更换载气或使用气体过滤器去除载气体中的杂质,并对色谱柱进行老化。5、将火焰熄灭后噪声如果降低或消失,要考虑是否检测器本身产生过大噪声:检查是否使用气体纯度太低,请更换气体或使用气体过滤器去除气体中的杂志;检查检测器是否被污染,如果污染请进行清洗;检查空调器等冷暖设备的排风是否正对着气相色谱仪,请改变风向或更换仪器的位置。各位版友,平时你们在做GC实验时,有遇到基线噪声太大吗?如何解决的呢?

  • 【分享】风机噪声治理技术

    锅炉房的鼓风机和引风机噪声一般在90分贝左右,因输送的锅炉烟气温度高达180℃,采用封闭隔声会导致散热不良,电机温度过高,甚至烧毁电机。因此,在工艺上将风机降噪和节能两方面结合起来。经实践,锅炉风机节能降噪综合治理方案为:对锅炉房的工艺布置保持不变,将鼓风机、引风机分别置在隔声室内,用通风管将它们与主机相连接,在隔声室顶上或墙面上开设进气口,并安装消声器供机房进风使用。平面布置时将鼓风机靠近锅炉房一侧,进风口在上风侧,电机置于气流通道中间。锅炉运行时,由于鼓风机在隔声室内产生负压,大量的室外新鲜空气就会自动进入隔声室,首先和引风机电机进行热交换,使之冷却降温,室内温度保持50℃左右。该方案中由于隔声室和进风消声器的降噪能力都比较大,降噪的效果容易实现。鼓风机将预热的空气送入锅炉燃烧,回收利用能源,具有一定的经济效益。 为保证治理效果和锅炉设备正常运行,在设计施工中,应根据具体要求,考虑噪声的声强、声频等因素,对隔声、吸声和通风散热进行详细设计,做好细部处理。对隔声室的大小厚度,吸声材料的种类、厚度进行计算。进风消声器的消声量一般选用25db(a)左右。尽量减少噪声辐射面积,去掉不必要的金属板面。控制板面的振动,在声源与隔声罩及基础之间用软性材料连接。鼓风机的连接管道和薄壁钢板烟囱是噪声治理的薄弱环节,在管壁外包扎5cm厚的玻璃纤维棉,用钢丝扎紧后,再用2cm厚的钢丝网水泥粉刷。将玻璃纤维棉固定在钢板上,吸收隔声室内的混响噪声。

  • 【求助】气相色谱基线噪声变大,基流升高,是咋子回事?

    天美GC7890II,FID检测器,小口径OV-1701毛细柱,作溶剂残留分析,柱温60-120程序升温,进样温度180,检测温度200。昨天晚上基线噪声在0.007mV左右,基流23.8mV;今天早上一开机,发现噪声大的离谱0.12mV,基流在25.1左右,判断原因认为是柱子或检测器被污染,然后高温(柱温200,进样220,检测250)老化了2个小时,噪声降到0.06mV左右,貌似不会再降了,噪声基本保持在25mV。不知是咋子回事?基线噪声和基流还能不能回到原来的状态?急……出现这种情况,除了柱子和检测器受污染外,还有没有其他原因??哪位仁兄碰到过,请指点一下???

  • 气相色谱仪检测中检测器温度设定的原则

    在气相色谱仪分析中要保证样品组分的分离效果,必须考虑检测器的温度设定。鲁创分析认为温度设定太高,会增大组分的响应值和基线噪声,降低仪器的灵敏度;温度设定太低,样哦组分会在检测器内冷凝、不出峰甚至污染检测器。 气相色谱仪常用于分析组分复杂、沸点差异大的样品,检测器是气相色谱的“眼神”。 要保证样品组分的分离效果,必须考虑检测器的温度设定。温度设定太高,会增大组分的响应值和基线噪声,降低仪器的灵敏度;温度设定太低,样哦组分会在检测器内冷凝、不出峰甚至污染检测器。 在气相色谱仪分析中,检测器温度的设定我们鲁创分析认为要遵循以下两点原则: 1要满足检测器灵敏度的要求; 2要保证流出色谱柱的组分在检测器内部冷凝。 检测器温度设定太高,如提高FID的温度会增大响应和噪声,而提高TCD和FPD的温度则灵敏度降低,通常设定温度为250℃左右即可。 气相色谱仪ECD检测器的操作温度一般要高一些,常用温度范围为250~300℃。无论色谱柱温度多么低,ECD温度均不应低于250℃。这是因为温度低时,检测器很难平衡。 热离子源的温度变化对气相色谱仪NPD检测器灵敏度的影响极大,温度高,灵敏度就高,一般设定300℃左右,在该温度下检测器灵敏度和稳定程度都比较好。

  • 【求助】请问各位高手岛津GC-14B气相色谱仪怎么进行基线噪声和基线漂移?

    我们单位这个机器只有一个FID在使用,而且是非常老的机器,我一个新人,一点都不懂,单位要进行期间核查,只好上来问一声.请问各位高手岛津GC-14B[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]怎么进行基线噪声和基线漂移? 技术要求:基线噪声≤1×10-12 A。 基线漂移≤1×10-11 A/30min。 条 件:色谱柱:内径3mm,长2m,不锈钢柱。 担 体:80~100目上试101白色硅烷化担体。 固定液:5%OV-101。 载 气:氮气(纯度≥99.99%),压力100Kpa。 燃 气:氢气(纯度≥99.99%),压力43Kpa。 助燃气:空气(经干燥,净化)压力50Kpa。 柱 温:160℃。 检测室温度:220℃。 汽化室温度:220℃。 量 程:103。 衰 减:1。

  • 气相检测器升温时噪声大

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](FID)检测器温度升高时噪声变大,大约升到200摄氏度左右时开始变大,正常时用的250摄氏度,单独升柱箱(50摄氏度)和进样口(200)的温度噪声没变检测器已经反复老化清洗过了,请问还可能是什么原因

  • GC-2010基线噪声大解决一例

    仪器型号:GC-2010症状:高温时(380度,用的不锈钢高温柱子)噪声大,并且点火困难,且点着火以后 会是不是 无缘无故的熄灭。但是低温的时候却正常,比如320度的检测器温度就没问题。解决办法:初步判定是检测器污染,高温老化后无效果。拆下喷嘴,用极细的金属丝(由于2010喷嘴内径很细,一般的细丝很难插进去,用的是dsc中热传感器的金属线)伸进去,来回拉几下,其实没发现什么异物。重装上去,问题没了。按照我的预期,应该有异物,难道是异物太小没看见?可惜了,没照片。

  • 【分享】噪声测量的有关概念术语的定义

    一 声音与噪声 声音的本质是波动。受作用得空气发生振动,当震动频率在20-20000Hz时,作用于人的耳鼓膜而产生的感觉称为声音。声源可以是固体、也可以是流体(液体和气体)的振动。声音的传媒介质有空气。水和固体,它们分别称为空气声、水声和固体声等。噪声监测主要讨论空气声。人类是生活在一个声音的环境中,通过声音进行交谈、表达思想感情以及开展各种活动。但有些声音也会给人类带来危害。例如,震耳欲聋的机器声,呼啸而过的飞机声等。这些为人们生活和工作所不需要的声音叫噪声,从物理现象判断,一切无规律的或随机的声信号叫噪声;噪声的判断还与人们的主观感觉和心理因素有关,即一切不希望存在的干扰声都叫噪声,例如,在某些时候,某些情绪条件下音乐也可能是噪声。环境噪声的来源有四种:一是交通噪声,包括汽车、火车和飞机等所产生的噪声;二是工厂噪声,如鼓风机、汽轮机,织布机和冲床等所产生的噪声;三是建筑施工噪声,像打桩机、挖土机和混凝土搅拌机等发出的声音;四是社会生活噪声,例如,高音喇叭,收录机等发出的过强声音。 二、声音的发生、频率、波长和声速 频率:声源在一秒中内振动的次数,记作f。单位为Hz。 周期:声源振动一次所经历的时间,记作T,单位为s。T=1/f。 波长:沿声波传播方向,振动一个周期所传播的距离,或在波形上相位相同的相邻两点间距离,记为λ,单位为m。 声速:声波每秒在介质中传播的距离,记作c,单位为m/s。声速与传播声音的介质和温度有关。在空气中,声速(c)和温度(t)的关系可简写为:c = 331.4+0.607t常温下,声速约为345m/s。 频率f、波长λ和声速c三者之间的关系是: c = λf当物体在空气中振动,使周围空气发生疏、密交替变化并向外传递,且这种振动频率在20-20000Hz之间,人耳可以感觉,称为可听声,简称声音,噪声监测的就是这个范围内的声波。频率低于20Hz的叫次声,高于20000Hz的叫超声,它们作用到人的听觉器官时不引起声音的感觉,所以不能听到。 三、声功率、声强和声压(一) 声功率(W) 声功率是指单位时间内,声波通过垂直于传播方向某指定面积的声能量。在噪声监测中,声功率是指声源总声功率。单位为W。(二) 声强(I) 声强是指单位时间内,声波通过垂直于传播方向单位面积的声能量。单位为 W / s2。(三) 声压(P) 声压是由于声波的存在而引起的压力增值。单位为Pa。声波在空气中传播时形成压缩和稀疏交替变化,所以压力增值是正负交替的。但通常讲的声压是取均方根值,叫有效声压,故实际上总是正值,对于球面波和平面波,声压与声强的关系是: I= P2 / ρc式中:ρ-空气密度,如以标准大气压与20℃的空气密度和声速代入,得到ρ• c =408 国际单位值,也叫瑞利。称为空气对声波的特性阻抗. 四、分贝、声功率级、声强级和声压(一) 分贝 人们日常生活中遇到的声音,若以声压值表示,由于变化范围非常大,可以达六个数量级以上,同时由于人体听觉对声信号强弱刺激反应不是线形的,而是成对数比例关系。所以采用分贝来表达声学量值。所谓分贝是指两个相同的物理量(例A1和A0)之比取以10为底的对数并乘以10(或20)。N = 10lg(A1/A0) 分贝符号为"dB",它是无量纲的。式中A0是基准量(或参考量),A是被量度量。被量度量和基准量之比取对数,这对数值称为被量度量的"级"。亦即用对数标度时,所得到的是比值,它代表被量度量比基准量高出多少"级"。(二) 声功率级 Lw =10lg(W/W0)式中:Lw——声功率级(dB); W—— 声功率(W); W0—— 基准声功率,为10-12 W。(三) 声强级 LI = 10lg(I/I0)式中:LI —— 声压级(dB); I —— 声强(W/m2); I0 —— 基准声强,为10-12 W/m2。(四) 声压级 LP = 20lg(P/P0)式中: LP—— 声压级(dB); P ——声压(Pa); P0—— 基准声压,为2×10-5Pa,该值是对1000HZ声音人耳刚能听到的最低声压。 五、噪声叠加和相减(一)噪声的叠加两个以上独立声源作用于某一点,产生噪声的叠加。声能量是可以代数相加的,设两个声源的声功率分别为W1和W2,那么总声功率W总 = W1+ W2。而两个声源在某点的声强为I1 和I2 时,叠加后的总声强 总 = I + I2 。但声压不能直接相加。由于 I1 =P12/ρc I2 = P22/ρc故 P总2 = P12 + P22又 (P1/ P0)2= 10(Lp1/10) (P2 / P0)2 = 10(Lp2/10)故总声压级: LP =10 lg[(P12 + P22)/ P02] =10 lg[10(Lp1/10)+10(Lp2/10)]如LP1=LP2,即两个声源的声压级相等,则总声压级: LP = LP1+ 10lg2 ≈ LP1 + 3(dB)也就是说,作用于某一点的两个声源声压级相等,其合成的总声压级比一个声源的声压级增加3dB。当声压级不相等时,按上式计算较麻烦。可以利用书上图7-1查曲线值来计算。方法是:设LP1 LP2 ,以 LP1 - LP2值按图查得ΔLP ,则总声压级 LP总 = LP1 + ΔLP 。(二) 噪声的相减 噪声测量中经常碰到如何扣除背景噪声问题,这就是噪声相减问题。通常是指噪声源的声级比背景噪声高,但由于后者的存在使测量读数增高,需要减去背景噪声。图7-2为背景噪声修正曲线,。例:为测定某车间中一台机器的噪声大小,从声级计上测得声级为104dB,当机器停止工作,测得背景噪声为100dB,求该机器噪声的实际大小。解: 设有背景噪声时测得的噪声为LP ,背景噪声为LP1,机器实际噪声级为LP2由题意可知 LP - LP1 =4dB 从图7-2中可查得ΔLP = 2.2dB,因此该机器的实际噪声声级为: LP2 = LP -ΔLP = 104dB-2.2dB = 101.8dB

  • 气相色谱仪的计量检定(二):基线漂移和基线噪声

    1 [font=宋体]引言[/font][font=宋体]上一期的文章中,我们谈到在《[/font]JJG 700-2016 [font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]》中,对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进行检定的项目主要包括以下几项:载气流速稳定性、柱箱温度稳定性、程序升温重复性、检测器([/font]TCD/FID/FPD/NPD/ECD[font=宋体])的噪声、漂移和检出限(灵敏度),并介绍了启动时间[/font]——[font=宋体]来自于《[/font]GB/T 30431-2013 [font=宋体]实验室[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]》的测定项目[/font]——[font=宋体]的测定方法;在这一期中,我们将介绍检测器的基线噪声和基线漂移的测定方法。[/font][font=宋体]基线噪声和基线漂移是用来衡量检测器稳定性的重要参数,而基线噪声又参与到检测器检测限的计算,因此显得尤为重要。[/font]2 [font=宋体]基线噪声和漂移的定义[/font][font=宋体]我们将[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]输出的信号记录在色谱工作软件上随时间而形成的图线称之为“基线”,理想状况下基线应当是一条光滑的直线,但是[color=red]由于各种原因会引起基线的波动,这种波动则称之为[/color]基线噪声([/font]N[font=宋体])[/font][font=宋体]。[/font][font=宋体]这里所说的各种原因,指的是在没有组分进入检测器的情况下,检测器本身和色谱条件的波动:检测器本身的原因包括检测器密封、温度控制波动、电路信号放大等;色谱条件原因则包括色谱柱固定相流失、进样垫流失、载气[/font]/[font=宋体]燃气纯度、助燃气的杂质含量、载气流速波动、柱温箱温度波动、电网电压波动和漏气等。[/font][font=宋体]基线噪声可以分为短期噪声和长期噪声两种,实际中测量的噪声是两种噪声叠加。见下图:[/font][font=宋体][/font][img]https://img.antpedia.com/instrument-library/attachments/wxpic/04/c6/c04c62ff434707ca20dd7fd9d26cf492.png[/img][font=宋体]在上图中,可以看到,[color=red]基线随时间会有单方向的缓慢变化[/color],这种缓慢则称之为基线漂移。[/font][img]https://img.antpedia.com/instrument-library/attachments/wxpic/73/2e/8732e5fb3eb51a198c7a42857b520f09.png[/img][font=宋体]在计量检定规程《[/font]JJG 700-2016 [font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]》中对常见的五种检测器的基线噪声和漂移的规定如下:[/font][font=宋体][/font][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ed/c8/cedc887327731b8522ebc57f326e9f57.png[/img][font=宋体]可以看到有有两个比较明显的特点:[/font][font=宋体]([/font]1[font=宋体])除了[/font]TCD[font=宋体]和[/font]ECD[font=宋体]之外,[/font]FID[font=宋体]、[/font]PFD[font=宋体]和[/font]NPD[font=宋体]的指标要求值是电流值,这样就要求了厂家或者用户需要提供电流和电压之间的换算公式;[/font][font=宋体]([/font]2[font=宋体])[/font]ECD[font=宋体]的指标要求除了电压值之外,还提供了频率的要求,这样与[/font]ECD[font=宋体]检测器的原理更加切合,也能够适应众多的国外品牌[/font]GC[font=宋体]的检定;[/font]3 [font=宋体]基线噪声和漂移的测定条件[/font][font=宋体]一般情况下,测定基线噪声和漂移是仪器在工作状况下才可以测定的——这个工作状况指的是介入色谱柱并通载气后,[/font]FID[font=宋体]检测器处于点火状态,[/font]TCD[font=宋体]的打开桥温[/font]/[font=宋体]桥电流、[/font]FPD[font=宋体]检测器点火并打开光电倍增管高压、[/font]ECD[font=宋体]检测器打开脉冲开关等状况。[/font][font=宋体]但是在进行计量检定的时候,一般要在以下状态下才能进行基线噪声和漂移的测定,此种状况下测得的数值才更加真实和有说服性:[/font][font=宋体]([/font]1[font=宋体])正常的工作条件下,见以上描述;[/font][font=宋体]([/font]2[font=宋体])没有样品注入色谱系统和检测器;[/font][font=宋体]([/font]3[font=宋体])仪器稳定,这里包括两个方面:[/font][font=宋体]①仪器启动后,在规定的启动时间要求之内测定基线漂移;[/font][font=宋体]②仪器启动后,在规定的启动时间基线漂移达到规定的要求下,测定基线噪声;[/font][font=宋体]以上强调在规定的启动时间之内,否则的话,仪器是不合乎要求的;另外就是,在仪器基线漂移较大的情况下,基线噪声通过人工测量的话往往会偏小。[/font]4 [font=宋体]基线噪声和漂移的测定方法[/font][font=宋体]检定规程中规定:记录基线[/font]30min[font=宋体],选取基线中噪声最大峰[/font]-[font=宋体]峰高对应的信号值为仪器的基线噪声;基线偏离起始点最大的响应信号值为仪器的基线漂移。[/font][font=宋体]([/font]1[font=宋体])基线漂移的测定[/font][font=宋体]基线漂移的测定相应简单,如下图示意:[/font][font=宋体][/font][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ea/c0/deac08a626445131f649da30ccaabca2.png[/img][font=宋体]([/font]2[font=宋体])基线噪声的测定[/font][font=宋体]目前多数[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的工作站软件均具有测定基线噪声的功能,如下图是安捷伦工作站软件给出的噪声计算结果,利用工作站软件的自带功能计算简单方便:[/font][font=宋体][/font][img]https://img.antpedia.com/instrument-library/attachments/wxpic/cf/86/ecf863d70e92430119f4ed788bd56d5c.png[/img][font=宋体]下图是另外一家[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器厂家工作站给出的测定结果:[/font][font=宋体][/font][img]https://img.antpedia.com/instrument-library/attachments/wxpic/14/ea/c14eae154cc32e0f21b8750ddc62643a.png[/img][font=宋体]其中都包括了三种测量的方法。[/font][font=宋体]常用的基线噪声的测定方法有三种:[/font][font=宋体]([/font]1[font=宋体])使用给定时间范围内的所有数据点来计算线性回归,以[/font]6[font=宋体]倍选定的时间范围内所有数据点的线性回归的标准偏差作为基线噪声;[/font][font=宋体]([/font]2[font=宋体])通过选定时间范围内的所有数据点确定线性回归来计算漂移,再将该时间范围内的所有数据点减去线性回归线,以提供已修正漂移的信号;最后使用修正后的信号中的最大峰[/font]-[font=宋体]噪音最小峰来计算噪声;[/font][font=宋体]([/font]3[font=宋体])[/font]ASTM [font=宋体]噪声测定[/font] (ASTM E 685-93)[font=宋体]:依据的是用于对[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]中所用的可变波长光度检测器进行测试的标准做法,该标准做法由美国材料试验协会[/font] (American Society forTesting and Materials, ASTM) [font=宋体]制定。根据时间范围的大小,可区分三种不同类型的噪声。[/font][font=宋体]噪声测定依据的是在定义的时间范围内的峰[/font]- [font=宋体]峰测量。[/font][font=宋体]以上三种方法中的后两种实质上都是峰[/font]-[font=宋体]峰测量,只不过对其进行了一些修正;而在实际的计量检测中,如果使用的工作站软件没有测定噪声的功能,那么以上三种方法手动进行操作的难度较大,测定噪声的方法只能是手动进行没有修正的峰[/font]-[font=宋体]峰测量。[/font]5 [font=宋体]基线噪声和漂移的测定实例[/font][font=宋体]下面将以一段基线为例,按照计量检定规程的规定,介绍基线噪声和漂移的计算。[/font][font=宋体]([/font]1[font=宋体])按照计量检定规程的要求,待仪器稳定后,记录基线[/font]30min[font=宋体];[/font][font=宋体]([/font]2[font=宋体])基线漂移的计算[/font][font=宋体]基线偏离起始点最大的响应信号值为仪器的基线漂移,如下图:[/font][font=宋体][/font][img]https://img.antpedia.com/instrument-library/attachments/wxpic/91/2a/6912ac5ede710892163baff9a675f144.png[/img][font=宋体]绿线部分为分别记录基线起始点位置([/font]0.118mV[font=宋体])和偏离最大点位置([/font]0.08mV[font=宋体]),则基线漂移为[/font]0.118-0.08=0.038mV[font=宋体];[/font][font=宋体]红线部分则是将基线的最高点和最低点分别作为起始点和结束点来计算基线漂移,这种情况下计算出来的漂移值为[/font]0.062mV[font=宋体]。[/font][font=宋体]在实际的测量过程中,红线的测量值明显大于绿线的测量值,但是为了简便的寻找最高点和最低点,手动测量时候一般采用了红线的测量方法。[/font][font=宋体]图中表格中软件计算的漂移值为[/font]0.0298 mV[font=宋体]。[/font][font=宋体]([/font]3[font=宋体])基线噪声的计算[/font][font=宋体]选取基线中噪声[color=red]最高位置[/color][/font][color=red]-[/color][font=宋体][color=red]最低位置[/color][/font][font=宋体]对应的值为仪器的基线噪声,如下图:[/font][font=宋体][/font][img]https://img.antpedia.com/instrument-library/attachments/wxpic/27/1f/3271f36d91ed12e559e42b3855fa1074.png[/img][font=宋体][/font]30min[font=宋体]基线中噪声最高位置为[/font]0.152[font=宋体],最低的位置为[/font]0.105[font=宋体],计算出来的基线噪声值为[/font]0.037mV[font=宋体];[/font][font=宋体]以上是在在基线整体比较平滑的情况下,且没有考虑基线漂移进行了上述的计算;假若基线波动比较厉害或者漂移比较厉害,如果采用上述方法,计算出来的值反倒是基线漂移的值了;所以,在基线波动比较大或者漂移比较厉害又不能进行漂移修正的情况下,在一般采用的方法是:[/font][font=宋体]选取[/font]30min[font=宋体]基线中[color=red]任意[/color][/font][color=red]1min[/color][font=宋体][color=red](当然也可以是[/color][/font][color=red]0.5min[/color][font=宋体][color=red])的最高位置[/color][/font][color=red]-[/color][font=宋体][color=red]最低位置[/color][/font][font=宋体]最大的那个值作为噪声,如下图:[/font][img]https://img.antpedia.com/instrument-library/attachments/wxpic/46/c0/946c0aaf4942a5cb9daceabf124ae0e2.png[/img]0.032mV[font=宋体]是任意一分钟内的最大值,选取其作为基线噪声;我们可以和工作站软件计算出来的噪声做一个简单的对比:[/font][img]https://img.antpedia.com/instrument-library/attachments/wxpic/14/ea/c14eae154cc32e0f21b8750ddc62643a.png[/img]6[font=宋体]倍标准偏差计算出来的是[/font]0.0308mV[font=宋体];按照[/font]ASTM[font=宋体]计算出来的值为[/font]0.0268,[font=宋体]彼此之间略有差别,可以接受。[/font][font=宋体]在上述实际测定过程使用的一些术语和方法与计量检定规程描述的略有差别,可能会引起误会:计量检定规程使用的是噪声最大峰[/font]-[font=宋体]峰高[/font][font=宋体],实际操作使用的[color=red]最高位置[/color][/font][color=red]-[/color][font=宋体][color=red]最低位置[/color][/font][font=宋体],[/font][font=宋体]其中后者计算出来的值会偏大一些,但是会更加具有可操作性。[/font][font=宋体]最后还有一个问题是,计量检定规程中规定的噪声指标的单位是电流值([/font]A[font=宋体]或者[/font]pA[font=宋体]),但多数工作站测定出来的数值是电压值([/font]V[font=宋体]或者[/font]mV[font=宋体]);关于电压值和电流值的换算,会在后续的检测器的检测限计算章节中具体说明。[/font][font=宋体][/font][font=宋体]以上便是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]检测器基线漂移和基线噪声测定的具体内容。下一期,我们将介绍[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]热导池检测器([/font]TCD[font=宋体])灵敏度的计算和测定[/font]

  • 【求助】气相基线噪声和漂移的问题

    用的是GC-2014的气相,大概目测了下噪声有120-150uv不等,应该算偏大的吧,把火熄灭基线也不是很稳,有时候还会出现鬼峰,很不规律,柱子也老化过,还是这样,检测器温度也升过,还有斜率测过一般是7000-8000不等,比以前的3000高了很多,这应该就是漂移大吧? 这样我做样品分析影响太大,因为基线不稳,积分就很乱,一色谱图几白个小峰,虽然可以改变斜率以及最小峰面积可以处理,但这不是长久之计。所以请教各位大哥大姐帮帮忙。还有气路的话应该没问题,因为前些日子还好的,而且这些天没换过气。

  • 温度对液相色谱的影响

    液相色谱对温度的要求还是很高的,比如温度影响流动相或样品的粘度,从而影响泵流速或进样量,温度影响保留时间,温度还影响检测器的灵敏度,当然对基线噪声和基线漂移也有很大的影响。其它的影响应该还有很多吧。大家畅所欲言,都来说说温度对液相色谱的影响吧。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制