当前位置: 仪器信息网 > 行业主题 > >

窄带滤波器

仪器信息网窄带滤波器专题为您提供2024年最新窄带滤波器价格报价、厂家品牌的相关信息, 包括窄带滤波器参数、型号等,不管是国产,还是进口品牌的窄带滤波器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合窄带滤波器相关的耗材配件、试剂标物,还有窄带滤波器相关的最新资讯、资料,以及窄带滤波器相关的解决方案。

窄带滤波器相关的资讯

  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 5G时代到来,岛津助力基站陶瓷滤波器及导电银浆工艺研究和生产
    背景简介5G技术是第五代移动通信技术的简称,相较于4G技术,具有高传输速率、低时延、超大网络容量等特点。2019年是中国5G商用元年,先期5G架构的搭建会集中在基站建设。而5G信号频段高,穿透能力差,传输距离短,覆盖能力弱,因此5G基站数量将远大于4G。在国家“新基建”推动下,三大通信运营商计划2020年在国内建设5G基站50万个。5G时代,基站天线设计集成化,用于信号处理的射频部件有了较大改变,其中的每个天线滤波器所需数量倍数增加,因而重量轻、体积小的陶瓷介质滤波器将成首选,逐步替代现有金属腔体滤波器。 陶瓷介质滤波器生产工艺?行业面临的技术难点及要求 岛津助力研究生产测试方案岛津具备多种表征及测试设备,能帮助企业研究陶瓷滤波器生产工艺提供必要手段。 岛津特色应用 金属化步骤中导电银浆生产及工艺研究测试方案其中金属化步骤中所需导电银浆,为了保证其均匀性、流平性,银浆的配方、制备工艺及生产也需得到研究及控制。银浆生产企业需要特别关注。 更多详细信息,请联系岛津。
  • 德州仪器推出独立式有源EMI滤波器IC 支持高密度电源设计
    2023年3月28日,德州仪器 (TI)(纳斯达克股票代码:TXN)宣布推出业内先进的独立式有源电磁干扰 (EMI) 滤波器集成电路 (IC),能够帮助工程师实施更小、更轻量的 EMI 滤波器,从而以更低的系统成本增强系统功能,同时满足 EMI 监管标准。随着电气系统变得愈发密集,以及互连程度的提高,缓解 EMI 成为工程师的一项关键系统设计考虑因素。得益于德州仪器研发实验室 Kilby Labs 针对新概念和突破性想法的创新开发,新的独立式有源 EMI 滤波器 IC 产品系列可以在单相和三相交流电源系统中检测和消除高达 30dB 的共模 EMI(频率范围为 100kHz 至 3MHz)。与纯无源滤波器解决方案相比,该功能使设计人员能够将扼流圈的尺寸减小 50%,并满足严苛的 EMI 要求。更多有关德州仪器新的电源滤波器 IC 产品组合的信息,请参阅TI.com/AEF。   德州仪器开关稳压器业务部总经理 Carsten Oppitz 表示:"为了满足客户对更高性能和更低成本系统的需求,德州仪器持续推动电源创新,从而以具有成本效益的方式应对 EMI 设计挑战。我们相信,新的独立式有源 EMI 滤波器 IC 产品组合将进一步助力工程师解决他们所面临的设计挑战,并大幅提高汽车、企业、航空航天和工业应用中的性能和功率密度。"   显著缩减系统尺寸、重量和成本,并提高可靠性   如何实施紧凑和高效的 EMI 输入滤波器设计是设计高密度开关稳压器时的主要挑战之一。通过电容放大,这些新的有源 EMI 滤波器 IC使工程师能够将共模扼流圈的电感值降低多达 80%,这将有助于以具有成本效益的方式提高机械可靠性和功率密度。   新的有源 EMI 滤波器 IC 系列包括针对单相和三相商业应用的 TPSF12C1 和 TPSF12C3,以及面向汽车应用的 TPSF12C1-Q1 和 TPSF12C3-Q1。这些器件可有效降低电源 EMI 滤波器中产生的热量,从而延长滤波电容器的使用寿命并提高系统可靠性。   新的有源 EMI 滤波器 IC 包括传感、滤波、增益、注入阶段。该 IC 采用 SOT-23 14 引脚封装,并集成了补偿和保护电路,从而进一步降低实施的复杂性并减少外部组件的数量。   减轻共模发射以满足严格的EMI标准   国际无线电干扰特别委员会 (CISPR) 标准是限制电气和电子设备中 EMI 的全球基准。TPSF12C1、TPSF12C3、TPSF12C1-Q1 和 TPSF12C3-Q1 有助于检测、处理和降低各种交流/直流电源、车载充电器、服务器、UPS 和其他以共模噪声为主的类似系统中的 EMI。工程师将能够应对 EMI 设计挑战,并满足 CISPR 11、CISPR 32 和 CISPR 25 EMI 要求。   德州仪器的有源 EMI 滤波器 IC 满足 IEC 61000-4-5 浪涌抗扰度要求,从而大幅减少了对瞬态电压抑制 (TVS) 二极管等外部保护元件的需求。借助 PSpice® for TI 仿真模型和快速入门计算器等支持工具,设计人员可以轻松地为其系统选择和实施合适的元件。   德州仪器始终致力于通过持续的突破性成果进一步推动电源发展,例如,低 EMI 电源创新可帮助工程师缩减滤波器尺寸和成本,同时显著提高设计的性能、可靠性和功率密度。   封装及供货情况   车规级TPSF12C1-Q1 和 TPSF12C3-Q1 现已预量产,仅可从 TI.com.cn 购买,采用 4.2mm x 2mm SOT-23 14 引脚封装。2023 年 3 月底,商用级 TPSF12C1 和 TPSF12C3 的预量产产品将可通过 TI.com.cn 购买。TPSF12C1QEVM 和 TPSF12C3QEVM 评估模块可在 TI.com.cn 上订购。TI.com.cn 提供多种付款方式和配送选项。德州仪器预计各器件将于 2023 年第二季度实现量产,并计划在 2023 年晚些时候发布另外的独立式有源 EMI 滤波器 IC。
  • 合工大在高灵敏硅基超窄带探测器领域取得重要进展
    近日,合肥工业大学微电子学院先进半导体器件与光电集成实验室的王莉副教授和罗林保教授,成功研发出一种基于单p-型硅肖特基结的超灵敏近红外窄带光电探测器。相关成果以“Ultra-Sensitive Narrow-Band P-Si Schottky Photodetector with Good Wavelength Selectivity and Low Driving Voltage”为题于2023年12月31日作为封面文章在线发表在半导体器件领域的著名杂志IEEE Electron Device Letters上。图1. IEEE Electron Device Letters 2024年第一期封面窄带光电探测器由于仅对目标波长敏感,可以有效抑制背景噪声光的干扰,因此在机器视觉、特定波段成像、光学通信和生物材料识别等领域均具有重要的应用价值。但现有的加装滤波片、电荷收集变窄或热电子效应等窄带探测机制普遍存在着量子效率低的问题。为了提高窄带探测的灵敏度,研究人员通过将电荷陷阱引入有源层进行界面隧穿注入,或者利用场增强激子电离过程来实现器件内的光电倍增效应。但这些机制往往需要几十伏较高的电压才能激发启动,导致窄带探测器的性能易退化和工作能耗高。该研究团队在深入分析了上述问题的基础上,提出并实现了一种可在低驱动电压下工作的高灵敏窄带光电探测器。通过采用双层结构肖特基电极以及增大光生电子和空穴之间的渡越时间差,在保证高波长选择性的前提下实现了器件光电转化效率的大幅提高。该探测器仅在1050nm附近有探测峰,对紫外及可见光几乎无响应。在零偏压下器件的比探测率达∼4.14×1012Jones,线性动态范围约为128 dB。当工作偏压由0 V增加到- 3 V时,器件外部量子效率可以从96.2 %显著提升到6939%,同时探测峰半高宽保持在约74 nm不变。这一成果为实现可在低驱动电压下工作的超高灵敏窄带光电探测器提供了新思路,有望在光电子领域得到广泛应用。图2. (a)器件内光强分布模拟结果,零偏压下(b)器件在不同波长光照下的电流-电压曲线,(c)线性动态范围,(d)不同偏压下器件的外部量子效率随波长变化曲线。上述工作得到国家自然科学基金、安徽省重点研发计划、安徽省自然科学基金、中央高校基本科研业务费专项等项目的资助。论文链接:https://ieeexplore.ieee.org/ d ocument/10312826
  • 上海微系统所实现集成3D打印编码滤波器的超导单光子光谱仪
    近日,中科院上海微系统所尤立星、李浩团队,陶虎团队以及上海交通大学王增琦团队合作,结合超导纳米线单光子探测技术、双光子3D打印编码滤波技术、计算重构技术等实现单光子计数型光谱分析仪。相关成果以“Superconducting Single-Photon Spectrometer with 3D-Printed Photonic-Crystal Filters”为题于2022年9月27日在线发表在中科院一区学术期刊ACS Photonics上,并被选为当期副封面论文。 图1 集成3D-打印滤波器的超导单光子光谱仪概念图   光谱作为物质的指纹,是人类认知世界的有效手段,在科学研究、生物医药等领域已经有了较为普遍的应用。目前,在单光子源表征、荧光探测、分子动力学、电子精细结构等领域的光谱测量,已经达到了量子水平,例如,在生物、化学和纳米材料领域需要对单个原子、分子、杂质等微弱光谱进行探测分析,这些光谱覆盖范围广,强度弱,因此,对宽谱、高灵敏度、高分辨率的光谱探测器存在迫切需求。   传统的半导体探测器如光电倍增管(PMT)、雪崩二极管(SPAD)等虽然实现了单光子灵敏度的探测,但是存在近红外探测效率低,噪声大,探测谱宽有限等问题。近年来快速发展起来的超导纳米线单光子探测器(SNSPD)因其高效率(90%)、低暗计数(0.1cps)、低抖动(~3ps )、宽谱(可见~红外)的优异性能,在众多领域都得到了应用。将SNSPD集成到光谱分析仪中,不仅能够实现极弱光的光谱测量,还具备非常宽的工作范围,在量子信息技术、天文光谱、分子光谱等领域具有重要的应用价值。该工作中,合作团队利用超导单光子探测器的高效、宽谱等性能优势,首先设计制备4*4阵列型偏振不敏感超导单光子探测器,然后借助双光子3D打印技术的灵活性在每个探测器像元上制备光子晶体编码滤波器,最后通过分析探测像元光谱响应特性等建立了计算光谱重构问题的数学模型,最终实现光子计数型光谱分析仪。   文中该光谱分析仪工作范围覆盖 1200~1700nm,灵敏度达到-108.2dBm,分辨率~5nm。相比当前商业光谱仪的灵敏度(一般灵敏度在-60~90dBm),具有两个数量级以上的提升,为单光子源表征、前沿天文光谱学、荧光成像、遥感、波分复用量子通信等微弱光谱分析领域的研究提供了有效的解决方案。论文第一作者为上海微系统所博士研究生肖游,第二作者为上海微系统所博士研究生维帅,第三作者为上海交通大学徐佳佳。通讯作者为上海微系统所陶虎研究员、李浩研究员、尤立星研究员。该研究得到了国家自然科学基金(61971408 、61827823), 重点研发计划 (2017YFA0304000), 上海市量子重大专项 (2019SHZDZX01), 上海市启明星(20QA1410900)以及中科院青促会 (2020241、2021230)等项目的支持。论文致谢清华大学张巍教授、郑敬元博士的讨论。
  • 金泰光电推出国内首台自主研发的商用中阶梯光纤光谱仪
    p    strong 仪器信息网讯 /strong 2017年4月6-8日,中国仪器仪表行业协会主办的“第十五届中国国际科学仪器及实验室装备展览会”(CISILE 2017)在北京· 国家会议中心隆重开幕。北京金泰祁氏光电科技有限公司(简称金泰光电)携最新产品亮相。 /p p   金泰光电是一家年轻的公司,2016年6月才刚刚注册成立。公司目前主要从事基于中阶梯的宽光谱、高分辨、高灵敏光纤光谱仪器研发生产及销售。据副总经理武建芬博士介绍,公司推出的中阶梯光纤光谱仪属国内首次自主研发的商用中阶梯光谱仪。 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201704/insimg/eb8e85c2-de00-4a0b-8450-6c065ad93349.jpg" title=" 中阶梯.jpg" / /p p style=" text-align: center " strong ES-3800中阶梯光纤光谱仪 /strong /p p   传统Rowland和C-T型光谱仪常常采用刻线密集的光栅或大成像焦距,来提高其光谱分辨率,其结果导致高的成本和庞大的仪器体积,且光谱范围有限。而金泰光电的ES-3800中阶梯光纤光谱仪克服了这一缺点,采用中阶梯光栅、低色散棱镜元件、非球面像差校正聚焦镜、高性能CCD或ICCD探测器件,借由软件分析功能和内置丰富的标准谱线库还原出完整光谱曲线,具有分辨率高、谱线范围宽、动态范围广、检出限低等特点,精密度和稳定性均达到国际领先水平。 /p p   ES-3800有两个型号, ES-3800A和ES-3800B。ES-3800A适用于全元素分析,具有超高的分辨率和灵敏度,应用于科研及工业领域的高分辨光谱测量系统,如ICP-AES或者LIBS等。ES-3800B以分辨率略降为代价,但是能够进行全光谱分析,应用于连续光谱高分辨测试领域,如拉曼光谱等。 /p p   那么,该系列产品与主要竞争对手、国外品牌的产品相比,表现如何呢?武建芬博士自信的回答到,“我们的产品在性能指标方面与国外品牌接近,可以说达到了国际先进水平。”就在前不久,2017年3月20日,ES-3800A被用于丽江天文观测台的仪器内光学器件的光谱检测。因为天文观测台所用日冕仪采用530.3nm窄带滤波器,通用的光谱仪无法满足超窄的光谱带宽以及极小的波长准确度要求。而ES-3800A则可以稳定提供高达0.01nm的超高光谱分辨率以及小于0.005nm的波长准确度,在高海拔、低温等恶劣环境下完美实现了窄带滤波器的光谱检测。云南丽江天文观测台和长春光机所的工作人员对精确的检测结果表达了一致认可。 /p p   不过,目前金泰光电只有中阶梯光纤光谱仪这一款产品,其潜在的客户又以科研单位高校为主,即该产品的市场比较“小众”。并且,多数情况下需要从为客户量身定做的光谱仪入手。面对这种局面,金泰光电对未来是如何规划的呢?武建芬博士谈到,在公司的后续发展规划中,将便携和在线光谱仪器产品作为了新产品目标,开展多元化经营,不断拓展产品的更多领域。具体的发展方向是,在今年年底将研制推出在线、便携的光谱仪器,如紫外可见、近红外光谱仪器 而明年公司的目标是融资,以研制基于中阶梯光栅的ICP-AES和LIBS仪器。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201704/insimg/d2374dc8-0434-419d-97fd-e0f4681e8bf6.jpg" title=" 武建芬.jpg" / /p p style=" text-align: center " strong 金泰光电副总经理武建芬博士 /strong /p p /p p    strong 附录:北京金泰祁氏光电科技有限公司 /strong /p p   北京金泰祁氏光电科技有限公司致力于光谱仪器领域先进技术的探索和产品开发,公司拥有多项核心自主研发技术,希望竭诚服务于各行业科研单位或仪器设备厂商,并与客户团队通力协作,向客户提供专业的设计支持,定制产品和客户驱动的解决方案。 /p
  • 上海微系统所在自参考太赫兹双光梳研究方面取得进展
    近日,中国科学院上海微系统与信息技术研究所研究员曹俊诚、黎华团队与华东师范大学教授曾和平团队合作,在高稳定自参考太赫兹双光梳方面取得研究进展。研究团队提出自参考方法,完全消除了THz双光梳共有载波噪声,同时抑制了重复频率噪声,将THz双光梳梳齿线宽由未稳频的2-3 MHz量级压缩至14.8 kHz,大幅提升了THz双光梳光源的稳定度。相关成果以Terahertz Semiconductor Dual-comb Source with Relative Offset Frequency Cancellation为题发表在《激光与光子学评论》(Laser & Photonics Reviews)上,并被遴选为封面论文。双光梳由两个重复频率略有不同的光频梳组成,通过多外差采样将光谱信息直接映射在微波波段,这种不依赖机械扫描的时间延迟结构令双光梳天然具有高速、高分辨等优势,在高精度光谱、成像、测距以及大容量高速通信方面具有重要应用。在THz波段,基于电泵浦的半导体量子级联激光器(quantum cascade laser,QCL)是实现THz光频梳与双光梳的理想载体。当前,THz QCL双光梳通常工作于自由运行模式,具有较高的相位噪声,限制其高精度应用。提高双光梳频率稳定性的主要思路是分别控制两个光频梳基础频率分量,即载波包络偏移频率和重复频率。要完全锁定THz QCL双光梳需要同时锁定四个不同频率,即两个载波包络偏移频率和两个重复频率。尽管研究团队在前期工作中将THz双光梳一根梳齿通过锁相环实现了锁定,提升了双光梳的稳定性,但是还未实现THz双光梳的完全硬件锁定,而要在实验室实现四个频率的完全锁定,将涉及复杂的硬件系统。该工作中,研究人员提出了自参考“软锁定”方法,不采用任何硬件锁模模块,对双光梳整体信号进行操控,实现了高稳定自参考THz QCL双光梳光源。双光梳梳齿噪声来源于两个未锁定的光频梳的载波包络偏移频率和重复频率噪声,通过多外差拍频产生的双光梳的每根梳齿都享有相同的载波包络频率及噪声。通过消除共有的载波包络频率噪声,则可以显著提高每根双光梳梳齿的稳定性。研究通过窄带滤波器将双光梳的一根梳齿滤出并将其与整个双光梳信号进行混频,从而彻底消除双光梳梳齿的共有载波噪声,同时还可以抑制重复频率噪声,构造出无载波包络偏移频率的零偏双光梳,显著提高双光梳信号的长期稳定性【图1(a)】。未稳频THz双光梳光谱在15 s的测试时间内,测得的梳齿“最大保持”线宽为2 MHz【图1(b)】。施加自参考稳频之后测得的THz双光梳光谱,在60 s内,测得的“最大保持”线宽为14.8 kHz,比未稳频的THz双光梳梳齿线宽提升了130倍以上【图1(c)】。研究工作提出的自参考稳频方法,不依赖任何锁定元件,同时可方便移植于其他激光系统中,为提高光谱、成像等各种应用的稳定性提供一种简单有效的稳频方法。 相关研究工作得到国家自然科学基金重点项目、国家优秀青年科学基金项目、中科院稳定支持基础研究领域青年团队计划、中科院“从0到1”原始创新项目、中科院科研仪器设备研制项目、上海市优秀学术带头人计划等的支持。  图1(a)自参考稳频原理。其中frep1和frep2分别是两个光频梳的重复频率,其中frep2通过微波注入锁定到fRF。“彩虹”频谱表示MHz范围内的下转换双光梳信号,通过带通滤波器将其中一根梳齿滤出(虚线框),从而采用混频实现零偏自参考双光梳。(b)未稳频THz双光梳“最大保持”频谱,测量时间为15 s。(c)自参考双光梳“最大保持”频谱,测量时间为60 s。
  • 理化所等在超窄带发光石墨烯量子点的超分辨光谱和空间传感研究中获进展
    超窄带发光材料在多种光电器件、激光、超分辨、成像和传感等应用中具有重要的科学价值和技术意义。碳点作为一种新型的碳纳米发光材料,因具有发光稳定性好、带隙宽度可调、双光子吸收截面积大、选择性的荧光淬灭/增强、生物相容和低毒性等优势受到广泛关注。碳点在长波长和高效率发光等方面快速发展,但在窄带发射方面的研究较少。相对于稀土材料5~15 nm和量子点材料15~30 nm的窄带发光,目前所报道的大部分碳点的发射半峰宽在40~60 nm以上,如何降低碳点的发射半峰宽成为发光碳点材料领域的关键问题和研究热点。  近年来,中国科学院理化技术研究所特种影像材料与技术中心系统提出了二维共轭小分子化合物作为碳源制备出高效窄带长波长发光碳点的新方法(Physical Chemistry Chemical Physics 2016, 25002 Particle & Particle Systems Characterization 2016, 811 ACS Applied Materials & Interfaces, 2018, 16005 Journal of Materials Chemistry C, 2018, 5957 Nanoscale, 2019, 11577等)。科研人员以酞菁类平面共轭大环化合物为碳源,采用一步法制备出两种窄带发射的红光石墨烯量子点,这两种石墨烯量子点的发光半峰宽(分别为21 m和30 nm)已达到发光材料中超窄带发射的范围。该工作为进一步开展制备超窄带发射的石墨烯量子点提供了新思路,并拓展了窄带发射石墨烯量子点在发光材料、激光发射、光路复用、生物传感、LED等方面的应用范围。  除超窄带发光外,这两种石墨烯量子点还具有发射波长在远红光范围( 680 nm)、发射峰位置相近、激发波长和荧光寿命部分依赖等特点。基于此,理化所特种影像材料与技术中心与以色列巴伊兰大学工学院合作提出了基于超窄带发射石墨烯量子点的超分辨传感策略,并应用于光谱和空间超分辨成像传感检测。该方法无需使用光谱仪即可提取光谱信息,通过两种类型的窄带发光石墨烯量子点的独特波长和时间“特征”实现空间分离,在超分辨光谱和空间传感领域有潜在应用价值,如超分辨技术可以克服光学成像应用的光学衍射极限,有望填补电子显微镜(~1 nm)和普通可见光学显微镜(200-250nm)之间的空缺,观察到更精细的结构或更高分辨率的图像。  相关研究成果以Ultra-narrow-bandwidth graphene quantum dots for superresolved spectral and spatial sensing为题,在线发表在NPG Asia Materials上,并已申请中国发明专利。理化所研究员谢政和巴伊兰大学工学院院长、教授Zeev Zalevsky为论文通讯作者,理化所硕士研究生王真为论文第一作者。  此外,这类碳点因良好的光声特性,可应用于光声成像超分辨方面。中以双方团队通过进一步合作,将另外一类两色可逆转换碳点(绿光和红光的最高发光效率为80%,ACS Applied Materials & Interfaces, 2018, 10, 16005)应用到了光声超分辨成像中,提出一种基于多个亚像素吸收器的分离和定位的扩展分辨率成像概念,该技术提高了光声成像超分辨率。相关研究成果以Autoencoder based blind source separation for photoacoustic resolution enhancement为题,发表在Scientific Reports上。  上述两项研究工作得到国家自然科学基金和中科院国际人才计划-外国专家特聘研究员计划项目等的资助。两种窄带发光红光石墨烯量子点的发光特性和超分辨成像应用示意图
  • 中国科大研制成功全光控制的非互易多功能光子器件
    p   中国科学院院士、中国科学技术大学教授郭光灿团队在非互易光子器件研究方面取得新进展。该团队的董春华研究组首次利用回音壁模式微腔中腔光力的非互易特性,实现了全光控制的非互易多功能光子器件,并首次实现集成光学定向放大器。该成果于5月4日在线发表在国际期刊《自然-通讯》(Nature Communications)上。 /p p   光在一般介质中具有双向传输的互易性,而打破这种互易性,即实现对光传输方向的非互易性,在经典和量子信息处理中具有重要意义。光环形器、隔离器、定向放大器等是典型的非互易器件。其中光环形器允许光以“环形”的方式传输,可用于光源保护、精密测量,这种功能还可实现经典或量子计算或通讯中信号的双向处理,有利于提高信道容量与降低功耗。定向放大器也已经被证明在基于超导回路的量子计算中具有重要意义。最常见的光学非互易器件主要利用磁光晶体的法拉第效应,但在器件集成化方面却面临着挑战,难点包括磁光材料与传统半导体材料不匹配、需要外加强磁场、在光频范围内磁光材料具有很高的传输损耗等。因此全光控制的片上光环形器、隔离器以及定向放大器一直是研究的热点。 /p p   2016年该研究组实验验证了回音壁模式微腔中腔光力的非互易特性[Nature Photonics 10, 657-661 (2016)]。在此基础上,研究组利用单个光力微腔与双波导耦合的体系,实现了多功能的光子器件,包括窄带滤波器,具有非互易功能的四端口光环形器与定向放大器,并且这些功能模式可以通过改变控制光来实现任意切换。对于环形器而言,从端口1入射的信号光从端口2出射,从端口2入射的信号光从端口3出射,依此类推,构成1-2-3-4-1的环形路径,当只关注端口1和2时,它也是一个高效的光隔离器 对于定向放大器,从端口1入射的信号光被放大后从端口2出射,但从端口2入射的信号光从端口3出射,而不会从端口1出射,因此在1-2的方向上具有定向放大的功能。该器件结构简单,原理具有普适性,甚至可实现单光子水平的光环形器,同时可推广到任一具有行波模式的光力学体系,包括微波超导器件和集成声学器件。 /p p   助理研究员沈镇、博士后张延磊、博士研究生陈元为该论文的共同第一作者,董春华、邹长铃、孙方稳为通讯作者。上述研究得到了科技部重点研发计划、中科院、国家自然科学基金委、量子信息与量子科技前沿协同创新中心的支持。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/noimg/8011d69f-0177-4b3b-9e7f-d914803f5866.jpg" title=" 001.png" / /p p style=" text-align: center " strong 基于腔光力学的环形器与定向放大器示意图 /strong /p p br/ /p
  • 我国高温超导滤波系统实现规模商业应用
    记者10月22日从在清华大学召开的高温超导滤波技术成果鉴定会上获悉,我国自主研制、拥有完全自主知识产权的高温超导滤波系统首批产品订货已完成生产并交付用户使用,在全国16个省市区的通信装备上投入长期实际应用。这是我国高温超导应用研究的重大突破,标志着我国高温超导在通信领域已进入规模商业应用和产业化阶段。鉴定会专家对项目成果给予高度评价,鉴定意见指出,项目总体技术达到国际先进水平,为采用高温超导技术提高通信装备的抗带外干扰性能和电磁兼容性奠定了坚实的技术基础,为我国通信现代化作出了重大贡献。   据该项目负责人、清华大学物理系教授曹必松介绍,自1986年高温超导材料发现至今,26年来我国投入大量人力物力进行应用研究和技术攻关,其最终目的就是要实现高温超导材料的大规模商业应用。“这次高温超导滤波系统由最终用户采购,在全国16个省市区批量供货投入运行,与一般的研究或以试验为目的的应用完全不同,标志着经过长期不懈的研究,我国高温超导研究已经从实验室研究阶段发展到了面向最终用户的大规模商业应用。高温超导真正的实际应用已经成为现实。”   据了解,在微波频段,高温超导材料的电阻比普通金属低2—3个数量级,用超导薄膜材料制备的滤波器带内损耗小、带边陡峭、带外抑制好,具有常规滤波器无法比拟的、近于理想的滤波性能。“但是高温超导材料必须在其转变温度Tc以下才能实现其超导零电阻特性,所以高温超导滤波系统的研发难度非常大。我们和综艺超导科技有限公司共同研发的超导滤波系统是由超导滤波器、在零下200摄氏度工作的低噪声放大器和小型制冷机等部件组成的,具有极低的噪声和极好的频率选择性,可应用于各种无线通信装备,同时大幅提高灵敏度和选择性、提高抗干扰能力和探测距离等。”曹必松说。   2005年,在国家科研经费支持下,该项目组在北京建成了超导滤波系统移动通信应用示范基地,实现了小批量长期应用。为实现超导滤波系统在我国的规模化商业应用,在国家相关部门和各级领导支持下,清华大学和综艺超导科技有限公司的研究团队十余年如一日,艰苦奋斗,攻克了高性能超导滤波器和低温低噪声放大器设计制备技术、多通道超导滤波器性能一致性研制技术、满足装备苛刻使用要求的环境适应性技术和超导滤波系统集成技术等一系列技术难题,获得超导滤波技术授权发明专利10多项,于2009年12月完成了超导滤波系统产品样机的研制。   2010年1月至11月,在国家主管部门的组织下,由7个专业测试单位对超导滤波系统产品进行了全面性能测试,包括电性能测试,满足通信装备高低温、冲击、振动、低气压、盐雾、霉菌、湿热等苛刻使用要求的环境适应性试验,通信装备加装超导滤波系统前后的性能对比试验和用户长期试用等。   试验结果表明,超导滤波系统的全部性能都达到或超过了通信装备实际应用的技术要求。在通信装备上加装超导滤波系统前后的性能对比试验表明,超导滤波系统使重度干扰下原本无法工作的通信装备恢复了正常工作,使中度干扰下装备最大作用距离比原装备平均增加了56%。自2010年10月起,超导滤波系统在该型通信装备上投入长期运行,至今已连续无故障运行2年以上。   2011年1月19日,超导滤波系统通过了国家主管部门组织的技术鉴定,获得了在我国通信装备实际应用的许可。同年8月,综艺超导公司获得了首批5种型号超导滤波系统产品的订货合同,在全国10多个省市区推广应用。其他型号超导滤波系统产品也将在未来几年内陆续投入市场。   据介绍,综艺超导科技有限公司由江苏综艺股份有限公司等股东投资、在2006年成立的高新技术企业,公司设在北京中关村科技园区。目前,综艺超导已建成一流水平的超导滤波系统生产基地,并且已经顺利完成首批高温超导滤波系统批量生产和用户交付。   曹必松说,高温超导滤波技术在移动通信、重大科学工程和国防领域具有广阔的应用前景。为进一步推广超导滤波技术的应用,还需要攻克适应于各种不同通信装备应用要求的高难度的超导滤波系统设计、制备技术、适应于各种应用环境的环境适应性技术等研究难题。   与会专家认为,经过未来几年的努力,该技术将在更多无线通信领域获得大规模应用,并带动超导薄膜、制冷机、专用微波元器件等相关产业链的形成和发展,在我国形成一个全新的高温超导高技术产业,为我国通信技术的升级换代提供一种全新的、性能优异的解决方案。
  • 上海微系统所在自参考太赫兹双光梳方面取得重要进展
    近日,中国科学院上海微系统与信息技术研究所曹俊诚、黎华研究员领衔的太赫兹(THz)光子学研究团队与华东师范大学曾和平教授团队合作,在高稳定自参考太赫兹双光梳方面取得重要研究进展。项目团队提出自参考方法,完全消除了THz双光梳共有载波噪声,同时抑制了重复频率噪声,将THz双光梳梳齿线宽由未稳频的2-3 MHz量级压缩至14.8 kHz,大幅提升了THz双光梳光源的稳定度。相关成果于2023年2月3日以“Terahertz Semiconductor Dual-comb Source with Relative Offset Frequency Cancellation”为题发表在Laser & Photonics Reviews期刊,并被遴选为封面论文。双光梳由两个重复频率略有不同的光频梳组成,通过多外差采样将光谱信息直接映射在微波波段,这种不依赖机械扫描的时间延迟结构令双光梳天然地具有高速、高分辨等优势,在高精度光谱、成像、测距以及大容量高速通信方面具有重要应用。在THz波段,基于电泵浦的半导体量子级联激光器(quantum cascade laser, QCL)是现实THz光频梳与双光梳的理想载体。当前,THz QCL双光梳通常工作于自由运行模式,具有较高的相位噪声,限制其高精度应用。提高双光梳频率稳定性的主要思路是分别控制两个光频梳基础频率分量,载波包络偏移频率和重复频率。因此,要完全锁定THz QCL双光梳需要同时锁定四个不同频率,即两个载波包络偏移频率和两个重复频率。四个不同频率的复杂系统。尽管项目团队在前期工作中将THz双光梳一根梳齿通过锁相环实现了锁定,并提升了双光梳的稳定性,但是还未实现THz双光梳的完全硬件锁定。而要在实验室实现四个频率的完全锁定,将涉及非常复杂的硬件系统。在本工作中,研究人员提出了自参考“软锁定”方法,不采用任何硬件锁模模块,对双光梳整体信号进行操控,实现了高稳定自参考THz QCL双光梳光源。双光梳梳齿噪声来源于两个未锁定的光频梳的载波包络偏移频率和重复频率噪声,通过多外差拍频过程,双光梳的每根梳齿都共享相同的载波包络频率及噪声。通过消除共有的载波包络频率噪声,则可以显著提高每根双光梳梳齿的稳定性。如图1(a)所示,通过窄带滤波器将双光梳的一根梳齿滤出并将其与整个双光梳信号进行混频,从而彻底消除双光梳梳齿的共有载波噪声,同时还可以抑制重复频率噪声,构造出无载波包络偏移频率的零偏双光梳,显著提高双光梳信号的长期稳定性。图1(b)为未稳频THz双光梳光谱,在15 s的测试时间内,测得的梳齿“最大保持”线宽为2 MHz。图1(c)为施加自参考稳频之后测得的THz双光梳光谱。在60 s内,测得的“最大保持”线宽为14.8 kHz,比未稳频的THz双光梳梳齿线宽提升了130倍以上。本工作提出的自参考稳频方法,不依赖任何锁定元件,同时可方便移植于其它激光系统中,为提高光谱、成像等各种应用的稳定性提供一种简单有效的稳频方法。本论文共同第一作者为中科院上海微系统所副研究员李子平、博士生马旭红,黎华研究员、曹俊诚研究员、曾和平教授为论文共同通讯作者。同时,上海理工大学李敏副教授和华东师范大学闫明研究员为该工作也做出了重要贡献。该研究工作得到了国家自然科学基金重点项目(62235019)、国家优秀青年科学基金项目(62022084)、中科院稳定支持基础研究领域青年团队计划(YSBR-069)、中科院“从0到1”原始创新项目(ZDBS-LY-JSC009)、中科院科研仪器设备研制项目(YJKYYQ20200032)、上海市优秀学术带头人计划(20XD1424700)等支持。图1(a)自参考稳频原理。其中frep1和frep2分别是两个光频梳的重复频率,其中frep2通过微波注入锁定到fRF。“彩虹”频谱表示MHz范围内的下转换双光梳信号,通过带通滤波器将其中一根梳齿滤出(虚线框),从而采用混频实现零偏自参考双光梳。(b)未稳频THz双光梳“最大保持”频谱,测量时间为15 s。(c)自参考双光梳“最大保持”频谱,测量时间为60 s。图2 论文封面论文链接:https://doi.org/10.1002/lpor.202200418封面链接:https://doi.org/10.1002/lpor.202370016
  • 三星开发CMOS超光谱图像传感器,有望成为光谱成像的新平台
    光谱仪在材料分析、天文学、食品化学以及医学诊断等许多领域都有应用。市场需求正在迅速增长,但光谱仪的尺寸阻碍了其在更广泛领域的普及。因此,市场急需高性能的紧凑型光谱仪,不断缩小光谱传感器尺寸已成为当前的研究热点。为了使光谱仪小型化,已经进行了各种尝试,例如传统的色散方法、傅里叶变换干涉技术(FTI),以及使用带有随机滤波器阵列和窄带通滤波器的探测器等。与色散和傅里叶变换干涉系统相比,滤波器阵列与探测器的集成,由于无需长光路和光学元件的精确对准来获得高分辨率而具有优势。此外,将滤波器阵列与电荷耦合器件(CCD)或CMOS图像传感器(CIS)等探测器集成,可以通过单次捕捉二维图像实现高光谱成像。特别是,与随机滤波器方案相比,窄带通滤波器阵列的集成无需进行后处理分析。然而,为了获得高分辨率需要大量的信道,意味着更复杂的制造工艺,例如蚀刻和沉积,因为每个信道都需要不同厚度的薄膜。为了解决这个问题,有研究使用组合蚀刻技术来制造多信道。业界对光谱仪中使用的窄带通滤波器的谐振结构进行了研究,但大多数研究仅限于改变电介质多层膜的厚度,以形成不同波长和品质因数的光学腔。这对于器件的大规模生产很麻烦,因为它需要过多的电介质沉积、蚀刻和光刻步骤,尤其是在像素尺寸级别的制造工艺。据麦姆斯咨询介绍,三星高级技术研究所光子器件实验室的Jaesoong Lee及其同事通过将被称为超表面的亚波长纳米结构集成到直接位于CMOS图像传感器顶部的带通滤波器阵列中,开发出了一种紧凑型超光谱(meta-spectral)图像传感器。由于窄带通滤波是通过亚波长光栅结构而不是通过改变层的厚度来调谐的,因此所有信道都可以通过一步光刻工艺制造。这种方案简化了制造,并且与CMOS工艺完全兼容。这种紧凑型超光谱图像传感器具有窄带高效率、与相邻信道的低串扰和高光谱分辨率。利用该器件,研究人员从波长混合图像中获得了高光谱图像。超光谱图像传感器示意图超光谱图像传感器制造研究人员在CMOS图像传感器晶圆(三星S5K4E8)上采用标准的洁净室工艺(包括PECVD和干法蚀刻)制作了超表面带通滤波器阵列。首先,研究人员为底部介质反射器沉积了多层硅和二氧化硅;然后利用电子束光刻定义纳米柱阵列;再使用电感耦合等离子体反应离子刻蚀(ICP-RIE)形成纳米柱阵列,并再次沉积二氧化硅以填充纳米柱之间的间隙;然后进行化学机械抛光(CMP)工艺,以平整二氧化硅顶面;最后,为顶部反射器沉积了一层由硅和二氧化硅制成的多层膜。超光谱图像传感器制造过程示意图高光谱成像为了验证演示其高光谱成像性能,研究人员拍摄了由3 x 5颗多波长LED组成的LED面板的光谱图像。每颗LED可以发射多个波长的组合,这些波长被选择以显示以下大写字母:770 nm显示“S”,810 nm显示“I”,850 nm显示“A”,950 nm显示“T”,如下图(a)底部所示。超光谱成像仪的高光谱成像演示作为概念证明,研究人员拍摄了一张所有LED都打开的面板照片,如上图(b)顶部所示。图像中的所有字母都无法区分,因为面板上的所有LED都已打开。通过将这个组合图像分成20个信道,如上图(b)底部所示,研究人员发现了隐藏的“SAIT”字母。在对应829.1 nm的信道11处,由于810 nm和850 nm LED的宽带发射,“I”和“A”被结合在一起。对于更长的波长(信道12和信道13),研究人员观察到字母“I”变得更模糊,而字母“A”变得更清晰。通过实验结果,研究人员证实了这款超光谱图像传感器具有良好的光谱成像性能。
  • 应用案例 |吸收光谱优化基于深度学习网络的自适应Savitzky Golay滤波算法
    Recently, a collaborative research team from Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, and Shandong Normal University published a research paper titled Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy.近日,来自安徽大学、山东师范大学联合研究团队发表了一篇题为Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy的研究论文。研究背景 Research BackgroundNitrogen oxide (NO2) is a major pollutant in the atmosphere,resulting from natural lighting, exhaust, and industrial emissions. Short- and long-term exposure to NO2 is linked with an increased risk of respiratory problems. Secondary pollutants produced by NO2 in the atmosphere can cause photochemical smog and acid rain. Laser spectroscopy such as absorption spectroscopy, fluorescence spectrum, and Raman spectrum play progressively essential roles in physics, chemistry, biology, and material science. It offers a powerful platform for tracing gas analysis with extremely high sensitivity, selectivity, and fast response. Laser absorption spectroscopy has been used for quantitative analysis of NO2. However, the measured gas absorption spectra data are usually contaminated by various noise, such as random and coherent noises, which can warp the valid absorption spectrum and affect the detection sensitivity.氮氧化物(NO2)是大气中的主要污染物,源自自然光照、排放和工业排放。长时间暴露于NO2与呼吸问题的风险增加有关。NO2在大气中产生的二次污染物可能导致光化学烟雾和酸雨。激光光谱学,如吸收光谱、荧光光谱和拉曼光谱,在物理学、化学、生物学和材料科学中发挥着日益重要的作用。它为追踪具有极高灵敏度、选择性和快速响应的气体分析提供了强大的平台。激光吸收光谱已被用于NO2的定量分析。然而,测得的气体吸收光谱数据通常受到各种噪声的污染,如随机和相干噪声,这可能扭曲有效吸收光谱并影响检测灵敏度。The Savitzky–Golay (S–G) filtering algorithm has recently attracted attention for spectral filtering because it has fewer parameters, faster operating speed, and preserves the height and shape of spectra. Moreover, the derivatives and smoothed spectra can be calculated in a simple step. Rivolo and Nagel developed an adaptive S–G smoothing algorithm that point wise selects the best filter parameters. With simple multivariate thresholding methods, the S–G filter can remove all types of noises in continuous glucose monitoring (CGM) signal and further process for detecting hypo/hyperglycemic events. The S–G smoothing filter is widely used to smooth the spectrum of the Fourier transform infrared spectrum that can eliminate random seismic noise, remote sensing image merging, and process pulse wave.最近,Savitzky-Golay(S-G)滤波算法因其参数较少、操作速度较快且保留了光谱的高度和形状而受到关注。此外,可以在一个简单的步骤中计算导数和平滑的光谱。Rivolo和Nagel开发了一种自适应S-G平滑算法,逐点选择最佳滤波参数。通过简单的多变量阈值方法,S-G滤波器可以去除连续葡萄糖监测(CGM)信号中的所有类型噪声,并进一步用于检测低血糖/高血糖事件。S-G平滑滤波器广泛用于平滑傅立叶变换红外光谱的光谱,可消除随机地震噪声、遥感图像融合和脉动波的处理。The performance of S–G smoothing filter depends on the proper compromise of the polynomial order and window size. However,the noise sources and absorption spectra are unknown in a real application. Obtaining the optimal filtering effect with fixed window size and polynomial degree is difficult. To address this issue,we proposed an optimized adaptive S–G algorithm that combined the deep learning (DL) network with traditional S–G filtering to improve the measurement system performance. S–G 平滑滤波器的性能取决于多项式阶数和窗口大小的适当折中。然而,在实际应用中,噪声源和吸收光谱是未知的。在固定的窗口大小和多项式阶数下获得最佳的滤波效果是困难的。为解决这个问题,我们提出了一种优化的自适应S-G算法,将深度学习(DL)网络与传统的S-G滤波结合起来,以提高测量系统的性能。实验设置Experimental setupFig. 1 presents the experimental setup, which consists of anoptical source, a multi-pass cell with a gas pressure controller, a series of mirrors, a detector, and a computer. The laser source is a thermoelectrically cooled continuous-wave room-temperature quantum cascade laser (QC-Qube&trade , HealthyPhoton Co., Ltd.),which works with a maximum peak output power of 30 mW controlled by temperature controllers and operates at ~6.2 mm driven by current controllers. The radiation of QCL passes through theCaF2 mirror is co-aligned with the trace laser (visible red light at632.8 nm) using a zinc selenide (ZnSe) beam splitter. The beams go into the multipass cell with an effective optical path length of2 m, the pressure in multipass cell is controlled using the flow controller (Alicat Scientific, Inc, KM3100) and diaphragm pump (Pfeiffer Vacuum, MVP 010–3 DC) in the inlet and outlet of gas cell,respectively. A triangular wave at a typical frequency of 100 Hzis used as a scanning signal. The wave number is tuned from1630.1 to 1630.42 cm 1 at a temperature of 296 K. The signal is detected using a thermoelectric cooled mercury cadmium telluride detector (Vigo, VI-4TE-5), which uses a 75-mm focal-length planoconvex lens. A DAQ card detector (National Instruments, USB-6259) is placed next to detector to transmit the data to the computer, and the data is analyzed by the LabVIEW program in real time.图1展示了实验设置,包括光源、带有气体压力控制器的多通道吸收池、一系列镜子、探测器和计算机。Fig. 1. Experimental device diagram.宁波海尔欣光电科技有限公司为此项目提供了量子级联激光器(型号:QC-Qube&trade 全功能迷你量子级联激光发射头)。激光器由温度控制器控制,最大峰值输出功率为30 mW,由电流控制器控制,工作在~6.2 mm,通过钙氟化物(CaF2)镜子的辐射与追踪激光(可见红光,波长632.8 nm)共线,使用氧化锌硒(ZnSe)分束器。光束进入具有2 m有效光程的多通道池,通过流量控制器和气体池入口和出口的隔膜泵控制池中的压力。典型频率为100 Hz的三角波用作扫描信号。在296 K的温度下,波数从1630.1调至1630.42 cm-1。使用热电冷却的汞镉镓探测器进行信号检测,该探测器使用75 mm焦距的平凸透镜。DAQ卡探测器放置在探测器旁边,将数据传输到计算机,数据由LabVIEW程序进行实时分析。QC-Qube&trade , HealthyPhoton Co., Ltd.Fig. 2. Simulation of the NO2 gas absorption spectra of the ASGF and MAF algorithms (under the background of Gaussian noise), and the filtered results and the SNRs of different filtering methods.Fig. 3. Simulation of the NO2 gas absorption spectra of the two filtering algorithms (under the background of Non-Gaussian noise), and the filtered results of different filtering methods.结论ConclusionAn improved Savitzky–Golay (S–G) filtering algorithm was developed to denoise the absorption spectroscopy of nitrogen oxide (NO2). A deep learning (DL) network was introduced to the traditional S–G filtering algorithm to adjust the window size and polynomial order in real time. The self-adjusting and follow-up actions of DL network can effectively solve the blindness of selecting the input filter parameters in digital signal processing. The developed adaptive S–G filter algorithm is compared with the multisignal averaging filtering (MAF) algorithm to demonstrate its performance. The optimized S–G filtering algorithm is used to detect NO2 in a mid-quantum-cascade-laser (QCL) based gas sensor system. A sensitivity enhancement factor of 5 is obtained, indicating that the newly developed algorithm can generate a high-quality gas absorption spectrum for applications such as atmospheric environmental monitoring and exhaled breath detection.在这项研究中,我们开发了一种改进的Savitzky-Golay(S-G)滤波算法,用于去噪氮氧化物(NO2)的吸收光谱。我们引入了深度学习(DL)网络到传统的S-G滤波算法中,以实时调整窗口大小和多项式阶数。DL网络的自适应和跟踪反馈能够有效解决数字信号处理中选择输入滤波器参数的盲目性。我们将优化后的自适应S-G滤波算法与多信号平均滤波(MAF)算法进行比较,以展示其性能。优化后的S-G滤波算法被用于检测氮氧化物在基于中量子级联激光器(QCL)的气体传感器系统中的应用。实验结果表明,该算法获得了5倍的灵敏度增强,表明新开发的算法可以生成高质量的气体吸收光谱,适用于大气环境监测和呼吸气检测等应用。reference参考来源:Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 263 (2021) 120187
  • 大面阵窄带F-P干涉仪实现长波红外光谱传感
    西澳大利亚大学研究人员利用基于MEMS的固定腔法布里-珀罗(F-P)干涉仪实现了在长波红外(LWIR)波段的光学遥控成像和传感,并完成了该光谱系统的轻型化和便携式。F-P干涉仪基于锗 (Ge) 氟化钡 (BaF2) 薄膜分布式布拉格反射器。研究人员之所以选择BaF2,是因为它在LWIR波长范围内表现出低折射率并可提供高折射率对比度,有利于提高器件的性能。该干涉仪具有与薄膜、表面微加工 MEMS兼容的架构。当与单点红外探测器或焦平面成像阵列结合使用时,可用于开发轻便的便携式光谱仪。据研究人员称,这是首次实现将低指数的BaF 2薄膜与的高指数Ge薄膜相结合来构建干涉仪。该团队使用三层Ge/BaF2/Ge光学薄膜结构构建了扁平、独立的分布式布拉格反射器。在10到20nm范围内,跨越数百微米的空间尺寸,独立结构实现了峰间平坦度。实验表明,所制备的F-P干涉仪线宽约为110nm,峰值透过率约为50%,满足可调谐、基于MEMS的LWIR光谱传感和成像这些需要窄线宽的光谱分辨应用的要求。研究人员对固定气腔滤光片进行了表征,并将测量的光学性能与建模结果和先前研究的结果进行了比较。在考虑到制造缺陷对分布式布拉格反射器的影响后,他们发现F-P干涉仪的测量光学特性与模拟的光学响应非常吻合。Mariusz Martyniuk教授表示:“这些微型化的片上、轻型和小尺寸设备被视为未来用于简单和低成本的微型光谱远程系统的解决方案,而面向热红外发射波段,轻量化、小尺寸和低功率等需求均至关重要。”该研究以“Large-area narrowband Fabry–Pérot interferometers for long-wavelength infrared spectral sensing”为题发表于 Journal of Optical Microsystems 。
  • Moku:Go轻松助力校园无线电接收实验的教学
    Moku:Go轻松助力校园无线电接收实验的教学Moku:Go将10几种实验室仪器结合在一个高性能设备中,具有2个模拟输入、2个模拟输出、16个数字I/O和可选的集成电源。 一. 介绍本实验的目的是介绍调幅无线电接收器的基本原理,并演示使用锁相放大器的基本原理。你将使用Moku:Go的锁定放大器、数字滤波器、频谱分析仪和集成电源来设计和优化AM无线电接收器。调幅(AM)无线电,虽然在很大程度上被调频(FM)无线电所取代,但它仍然是通过无线电波传输信息中非常有用的一种方法。本实验设计并实现一个调幅无线电接收器。可以学习到如何找到本地AM无线电频率,并使用锁定放大器实现无线电接收器。图1显示了使用频谱分析仪在澳大利亚堪培拉接收到的AM无线电信号。图1 堪培拉地区频谱分析仪的例子 扫码查看产品详情二. 背景2.1 调幅广播在调幅收音机中,信号的振幅是经过调制的;与调幅收音机相比,调频收音机的信号频率是经过调制的。这种差异可以从图2中看出,在调幅调制波形中,波的振幅明显变化,而在调频调制波形中,正弦波的频率随时间变化。两种类型的无线电传输都有优点和缺点。商业调幅广播电台工作在535kHz至1605kHz的范围内,因此与调频广播相比,其覆盖范围通常更大在88-108 MHz范围,但它更容易受到噪声的影响,与基于音乐的广播节目相比,更适合谈话广播。图2 使用Moku:Go上的波形发生器的调幅波形和调频波形示例。 AM收音机通过使用正弦载波工作,该载波由消息信号(音频信号)调制;正在发送的信息就是这个音频。在这种类型的调制中,载波的振幅被信息信号被改变(因此称为AM)。特定无线电台的调制信号在频域中可以清楚地被视为尖峰(例如图1),尽管在时域中通常很难看到。Moku:Go的FIR滤波器生成器可以帮助我们在无线电台周围设置一个窄带通滤波器,去除电台以外的几乎所有信号。图3给出了一个例子,FIR滤波器生成器挑选出一个大约600 kHz的AM无线电台。蓝色轨迹中可以清楚地看到用语音信号调制的AM载波。红色的轨迹(天线输入)表明,如果没有窄带通,就不可能接收这个或任何其他电台;事实上,该信号完全由截图所在办公室的可调光LED照明的~25 kHz开关控制。 图3 FIR滤波器生成器将AM广播电台(蓝色轨迹)与背景信号(红色)隔离开来。 为了接收和收听消息信号,无线电接收器需要接收特定的AM无线电频率并对其进行解调,以从消息信号中分离出载波信号。简单AM无线电接收器的框图如图4所示。图4 调幅无线电接收器框图接收器通过使用无线电天线检测无线电波来工作;然而,这种信号通常相对较弱,因此需要一个RF放大器来增强信号,以便进一步处理。由于天线将捕捉所有可能的频率,因此需要一个调谐器来找到所需的特定频率。 图5 LC电路原理图示例 2.2 模拟解调模拟解调调谐器通常由一个LC(电感电容)电路组成,如图5所示。根据所用的电感和电容,电路将在特定频率下谐振。高于和低于该谐振频率的所有其他频率将被阻挡。消息信号可以被整流为仅给出DC信号,并通过二极管和旁路电容器从载波中解调。该信息信号然后可以被放大并发送到扬声器、耳机等。2.3 锁定放大器锁定放大器是一种功能强大的器件,可以从噪声背景中分离出调制信号,在我们的情况下,是从一系列信号中分离出特定的AM信号。这意味着锁定放大器可以作为无线电接收器,因为它包含无线电接收器的几个关键部件。Moku:Go的锁定放大器能够通过使用相敏检波器(PSD)解调调制信号,例如无线电波。它使用与载波信号频率相同的正弦参考信号。它可以跟踪参考信号的任何变化,因此能够跟踪频率漂移。PSD将两个信号相乘或“混合”在一起,产生两个信号的和项和差项。所需频率和参考信号由相同的频率组成,因此频率之间的差异为零。因此,所需的无线电波信号被设置为DC。混合信号然后通过低通滤波器发送,该低通滤波器去除调制信号的交流分量。这仅留下与信号幅度成比例的DC信号,在这里,信号然后可以使用直流放大器放大。输出幅度可以从通过混频器和低通滤波器发送的信号中找到。这些可以在直角坐标或极坐标中找到。振幅R可以通过坐标之间的转换得到,其中 。对于AM信号,只需要振幅或R(在极坐标中);信号的相位可以忽略。三. 实验前练习找到并详细列出你所在地区的AM电台列表。你觉得什么信号会最强?为什么?实验装置成分:○ Moku:Go [2x]○ 天线○ 扬声器○ 低噪声放大器(可选)1○ 鳄鱼夹○ 实验室程序3.1 第一部分确保您拥有最新版本的在地址:Moku: desktop app2将磁性电源适配器插入每个Moku:去等待前面的LED变成绿色。这些最初的步骤将解决Moku:Go #1的配置问题。将天线连接到Moku:Go的输入1,如图6和图7所示。图6 第一部分照片Moku:去设置 1、常用的30分贝LNA。如需完整的物料清单,请联系我们。2、Moku:Go可以通过三种不同的方式连接到笔记本电脑:以太网、USB-C和Wi-Fi。请参考Moku:Go Quick StartGuide 如何连接你的Moku:去你的电脑。一旦连接,Moku:Go将出现在Windows或MacOS应用程序的设备选择屏幕上。图7 Moku:go:设置第1部分 双击频谱分析仪。找到调幅范围,并随意平均频谱,以改善图表。找到最主要的调幅无线电信号频率,你可以通过添加一个跟踪光标来完成。信号应在小于2 MHz的范围内。频谱分析仪和设置配置的示例如图8所示。 图8 如何配置频谱分析仪 ○ 将您的扬声器连接到Moku:Go #1的输出1。○ 返回仪器选择屏幕,双击锁定放大器。打开示波器部分,确保可以看到A和b。○ 将探针A添加到输入1(天线)○ 将探头B添加到输出1(扬声器)在图9中可以看到锁定放大器仪器页面的一个例子。 图9 锁定放大器解调AM广播电台的示例。上面(红色)的轨迹是天线信号,下面(蓝色)的轨迹是音频。 改变本地振荡器到你最主要的调幅信号的频率。首先将低通滤波器设置为12kHz。根据需要改变极性和增益。您可能需要改变低通滤波器和增益,以改善信号并产生尽可能清晰的声音。小心不要让信号饱和。图10给出了堪培拉地区各种变量的设置示例。 图10 堪培拉地区锁定放大器设置示例。 3.2 第二部分在第2部分中,我们将使用第二个Moku:Go作为数字滤波器来进一步增强接收到的无线电信号。将扬声器连接电缆移至Moku:Go #2的输出2。将一根电缆从Moku:Go #1的输出1连接到Moku:Go #2的输入2。这种设置可以在图11和图12中看到。 图11 Moku的照片:去设置第2部分 图12 Moku:go:设置第2部分 返回主屏幕,双击Moku:Go #2的图标。双击数字滤波器框。数字滤波器盒界面如图13所示。 图13 数字滤波器盒用户界面 将探针A添加到输入2,将探针B添加到输出2。首先,将滤波器改为贝塞尔带通滤波器,并根据需要改变增益。改变频率,仅隔离信息信号,即音乐或声音,从而尝试去除低频噪音。试着瞄准音乐和声音产生的频率。图14给出了堪培拉地区的数字滤波器盒变量。 图14 堪培拉地区的数字滤波器盒示例 3.2 第3部分将低噪声放大器连接在天线和Moku:Go #1的输入1之间。为低噪声放大器供电,将鳄鱼夹连接到电源连接和Moku:Go #1的背面。设置如图15所示。图15 Moku的框图:设置第3部分 确保它连接到PPSU2或类似的12 V电源。单击 打开电源,并将电压设置为12 V。电源弹出窗口可能如图16所示。 图16 PPSU的例子 根据需要改变数字滤波器盒和锁定放大器的变量,以产生尽可能清晰的信号。尝试改变你所在区域的其他AM信号,你能通过改变锁定放大器和数字滤波器盒中的变量来优化你的音质吗?3.3.1 摘要本实验探索在Moku:Go上使用锁定放大器作为AM无线电接收器。锁定放大器是一个强大的工具,帮助学生了解如何从嘈杂的背景中解调信号。此外,学生还能够学习如何利用许多其他工具进一步提高信号清晰度。在Moku: App中,通过截屏或文件共享可以轻松发布和报告结果。您可以通过点击屏幕顶部的云图标来完成此操作。Moku的好处:Go面向教育工作者和实验室助理有效利用实验室空间和时间易于实现一致的仪器配置专注于电子设备而非仪器设置最大限度地利用实验室助教的时间个人实验室,个人学习通过屏幕截图简化评估和评级对于学生来说各个实验室按照自己的节奏加强理解和保留便携式,选择实验室工作的速度、地点和时间,无论是在家里、在校园实验室,甚至是在熟悉的Windows或macOS笔记本电脑环境中进行远程协作,同时使用专业级仪器。3.3.2 Moku:Go演示模式您可以在Liquid Instruments网站下载适用于macOS和Windows的Moku:Go应用程序。演示模式操作不需要任何硬件,并提供了使用Moku:Go的一个很好的概述。关于昊量光电:上海昊量光电设备有限公司是目前国内知名光电产品专业代理商,也是近年来发展迅速的光电产品代理企业。除了拥有一批专业技术销售工程师之外,还有拥有一支强大技术支持队伍。我们的技术支持团队可以为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等工作。秉承诚信、高效、创新、共赢的核心价值观,昊量光电坚持以诚信为基石,凭借高效的运营机制和勇于创新的探索精神为我们的客户与与合作伙伴不断创造价值,实现各方共赢!
  • 小菲课堂|详细解读制冷型与非制冷型光学气体成像热像仪
    十多年来,FLIR光学气体成像(OGI)热像仪一直用来可视化各种气体泄漏。这些OGI热像仪的开发是为了“看到”各种气体,包括碳氢化合物、二氧化碳、六氟化硫、制冷剂、一氧化碳、氨等。FLIR OGI热像仪被应用于各行各业,包括减少排放、提高生产效率和确保安全的工作环境。与其他检测技术相比,OGI热像仪的一大优势是该技术能够在不中断工业过程的情况下精准定位气体泄漏部件。从历史上看,OGI热像仪一直采用制冷型红外探测器,与非制冷型红外探测器相比具有多个优势,但成本往往更高。非制冷型红外探测器技术的进步使得像FLIR OGI热像仪这样的制造商,能够为相关行业设计和开发成本较低的OGI解决方案。尽管成本较低,但与使用制冷型探测器的热像仪相比,使用非制冷型红外探测器的热像仪存在一定局限性。光学气体成像背后的科学在我们讨论OGI热像仪中制冷或非制冷探测器的问题之前,我们可以先解释这项技术背后的理论。光学气体成像可以比作通过普通的摄像机进行观察,但操作员看到的是一股类似烟雾的气体喷出。如果没有OGI热像仪,这将是肉眼完全看不见的。为了能看到这种气体飘动,OGI热像仪使用了一种独特的光谱(依赖于波长)过滤方法,使它能够检测到特定的气体化合物。在制冷型探测器中,滤波器将允许通过探测器的辐射波长限制在一个非常窄的波段,称为带通,这种技术被称为光谱自适应。光谱自适应OGI热像仪利用某些分子的吸收特性,将它们在原生环境中可视化。热像仪焦平面阵列(FPAs)和光学系统专门调整到非常窄的光谱范围,通常在数百纳米左右,因此具有超选择性。只能检测到由窄带通滤波器分隔的红外区域中的被气体吸收的红外波段。大多数化合物的红外吸收特性取决于波长。氢、氧和氮等惰性气体无法直接成像。黄色区域显示了一个光谱滤波器,设计用于对应大部分背景红外能量将被甲烷吸收的波长范围。(图中横坐标代表波长,纵坐标代表甲烷气体的透射率)如果将OGI热像仪对准没有气体泄漏的场景,视野中的物体将通过热像仪的镜头和滤光片透射和反射红外辐射。如果物体和热像仪之间存在气体云,并且该气体吸收滤波器带通范围内的辐射,那么通过气体云到达探测器的辐射量将减少或增加。具体情况要看气体云与背景的关系,云与背景之间必须有一个辐射的对比。总而言之,让气体可见的关键是:气体必须吸收热像仪看到的波段中的红外辐射;气体云必须与背景形成辐射对比;气体云的表面温度必须与背景不同。此外,运动使气体云更容易可视化。熟悉光学气体成像相关的波长为了解决理解“制冷与非制冷”光学气体成像热像仪的挑战,您需要了解与光学气体成像相关的波长以及这些热像仪中使用的探测器。OGI热像仪的两个主要波长通常被称为中波(3到5微米)和长波(7到12微米)。在气体成像领域,这些区域也可以称为“功能区”和“指纹区”。在功能区,一个热像仪可以看到单一类别的更多气体,而许多单独的气体在指纹区有特定的吸收特征。几乎所有碳氢化合物气体都在FLIR GF320的过滤区域(黄色部分)吸收能量,但在长波或指纹区域(蓝色部分)有不同的吸收特征虽然许多气体在中波和长波区域都有吸收特性,但也有气体仅在一个红外波段发射和吸收。有些气体在中波而非长波光谱中发射和吸收(如一氧化碳/CO)和吸收,另一些仅在长波光谱中发射和吸收(如六氟化硫/SF6)。这些气体不属于指纹或功能区,通常指烃类气体。下面是CO和SF6气体的红外光谱图。制冷与非制冷型探测器制冷型OGI热像仪使用需要冷却到低温(约77K或-321°F)的量子探测器,可以是中波或长波探测器。检测功能区碳氢化合物气体(如甲烷)的中波热像仪通常在3-5μm(微米)范围内工作,并使用锑化铟(InSb)探测器。检测SF6等气体的制冷型长波热像仪在8-12μm范围内工作,可以使用量子阱红外光电探测器(QWIP)。制冷型OGI热像仪有一个集成了低温冷却器的成像传感器,其可以将传感器温度降低到低温。传感器温度的降低对于将探测器噪声降低到低于被成像场景的信号水平是必要的。制冷机运动部件的机械公差非常小,随着时间的推移会磨损,氦气也会慢慢通过气体密封。最终,在运行1万至1.3万小时后,需要对冷却器进行重建。带有制冷探测器的热像仪有一个与探测器连接的滤波器。这种设计可以防止滤波器和探测器之间的任何杂散辐射交换,从而提高图像热灵敏度,进而会使光学气体成像仪更有效地可视化某些气体,甚至使OGI热像仪符合美国环保局的OOOOa或其他要求等监管标准。用制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像用非制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像非制冷OGI热像仪使用微测辐射热计探测器,不需要制冷探测器所需的额外零件。它们通常由氧化钒(VOx)或非晶硅(a-Si)制成,在7-14μm范围内具有响应性。它们比制冷型热像仪更容易制造,但热灵敏度或噪声等效温差(NETD)较差,这使得更难以可视化较小的气体泄漏。NETD是一个指标,表示热像仪可以探测的最小温度差异。上图显示了制冷和非制冷探测器灵敏度的差异。更好的NETD将使制冷型OGI热像仪检测气体的效果至少是非制冷的五倍。用于确定OGI热像仪检测气体效果的类似标准是噪声等效浓度长度(NECL),该标准确定在定义的拍摄距离上可以检测到多少气体。例如,用于甲烷检测的FLIR GF320制冷型OGI热像仪(3-5μm探测器)的NECL小于20 ppm*m,而非制冷型(7-14μm探测器)的NECL大于100 ppm*m。对于非制冷型的OGI热像仪,另一个需要考虑的是滤波器。有些热像仪没有在长波光谱中过滤,这意味着它们只是一个完全开放的探测器,使用独特的分析来可视化气体。FLIR的高灵敏度模式(HSM)是利用软件和分析来增强气体可视化的热像仪示例。有些热像仪内部设置更有针对性的过滤器。这些滤波器可能与镜头有关,在探测器和镜头之间,以多种方式设计。使用非制冷过滤,由于限制到达热像仪探测器的辐射,您会失去热灵敏度。这将导致产生更高的NETD热灵敏度值,但可以提供与气体成像相关的更好图像。随着光谱滤波器宽度变窄以聚焦于特定气体时,来自场景的辐射减少,而探测器的噪声保持不变,来自滤波器的反射辐射增加。这会产生与气体成像相关的更高质量的图像,但会降低热像仪用于温度测量(辐射测量)的热灵敏度。当你使用冷滤镜时,比如制冷型OGI热像仪,这种现象就可以避免,因为反射的辐射量非常小。如何选择制冷与非制冷型OGI热像仪FLIR GF320甲烷和VOC检测用红外热像仪
  • 华东师大实现超高速大视场的中红外高光谱成像
    近日,华东师范大学精密光谱科学与技术国家重点实验室曾和平教授与黄坤研究员团队在中红外光谱成像方面取得进展,结合非线性上转换成像与可调谐声光滤波技术,有效提升了空间-波长三维图谱信息的采集速度,实现了超灵敏、大视场、高帧率的中红外高光谱视频成像,可为化学瞬态过程分析、生物原位成像检测、医学实时光谱影像及燃烧场快速诊断等应用提供有力支撑。相关研究成果以“Wide-field mid-infrared hyperspectral imaging beyond video rate”为题发表于Nature Communications期刊。华东师范大学为论文的第一完成单位,博士生方迦南为论文第一作者,曾和平教授和黄坤研究员为共同通讯作者。图1 曾和平教授与黄坤研究员团队在Nature Communications 刊发研究成果高光谱成像是将成像技术与光谱技术相结合的多维信息获取手段,可在百个甚至更多谱段对目标进行非侵入式成像,生成包含空间和光谱信息的图谱数据立方。因此,高光谱图像具有“图谱合一”的重要特征,每个像素都对应一组光谱信息,所含的丰富信息能够对样品的化学成分、含量与分布进行测定与表征。特别地,中红外波段位于分子的指纹光谱区,包含许多官能团的吸收峰,实现该波段的高光谱成像能够对待测目标进行无标记精确识别。因此,中红外高光谱成像技术已被广泛应用于痕量分析、环境监测、生物医药、材料科学等领域。图2 中红外高速高光谱成像原理概念图然而,兼具多谱段与大画幅的红外高光谱成像系统长期以来局限于观测静态样品或低速运动场景,难以用于快速目标测量或动态过程捕捉。一方面,高光谱成像所生成的图谱数据提供了丰富的目标信息,有助于准确分析与识别样品;另一方面,庞大的数据采集量极大限制了高光谱成像速率。例如,传统摆扫式和推扫式高光谱成像系统主要借助光栅、棱镜等器件实现信号色散分光,在空间信息获取上往往需要依赖点扫描或线扫描来实现二维图像覆盖。为了克服冗长的机械扫描,全幅式光谱成像技术应运而生,其采用可调谐窄带光源(如光参量振荡器、量子级联激光器)或波长可调滤波器(如声光、液晶滤波器)进行光谱扫描,有效提升了多像素图像的采集效率。即便如此,中红外高光谱成像速度仍很大程度上受限于该波段焦平面探测阵列的工作帧频(尤其对于大面阵多像素相机),单色光谱图像采集帧率的典型值为50 Hz @ 512×512像素。相应地,采集百个波长通道以上的高光谱成像往往需要数秒甚至更长时间,距离可实时观测的视频帧率还有量级上的差距。当前,实现大视场、多波段、高帧频的中红外高光谱成像仍颇具挑战,需要同时实现高速光谱扫描与高速图像采集。图3 中红外高速高光谱成像装置图为此,研究团队创新结合非线性广角成像技术与高速声光滤波技术,能够同时提升红外图像采集速率与红外光谱切换速率,克服了传统方案在图谱信息获取上的短板,实现了高达百赫兹的三维图谱刷新率,在同等谱段数与像素规模下,比此前记录提升了至少两个数量级。具体地,研究人员采用特殊设计的啁啾极化铌酸锂晶体,实现宽波段非线性光学和频,将超连续谱中红外信号一次性转换至可见光波段。该过程具有大视场空间映射和高保真度光谱转换的特点,可在空间和光谱维度上保留完整的目标图谱信息。为了实现高速率、高精度的波长调控,研究人员采用声光可调滤波技术,获得了微秒级的波长切换速度与纳米级的窄带滤波带宽。滤波后的单色图像由高性能硅基相机捕获,规避了现有红外焦平面探测阵列在灵敏度、像素数、帧率等方面的不足,从而实现大视场、多像素、高帧频的红外图像采集。图4 高帧频中红外高光谱视频成像(A)实验测定的苯与乙醇红外吸收光谱。(B)每个高光谱数据立方包含100个精细谱段,单色图像拍摄时间仅需100 μs。(C-D) 选取不同的光谱通道,可以方便区分显示不同物质成分。(E)对两种液体吸收峰对应的单色图进行RGB色彩合成,可以清晰展示不同介质扩散与融合的动态过程。实验中,所搭建的高光谱成像系统工作波长为2.4-4.1 μm,涵盖多种CH/OH化学键的红外伸缩与振动吸收谱线,是有机物材料鉴别的重要谱段。为了展示高光谱成像在物质鉴别与动态场景中的应用,研究人员选用了乙醇和苯两种化学样品,他们在肉眼下观察均为无色透明,而通过高光谱成像可测量得到迥异红外特征光谱(图4A),利用独特的分子选择性即可实现样品成分的有效甄别。在高光谱三维数据采集中,单波长大视场成像(近百万像素画幅)的积分时间仅为100 μs,获取100个谱段的图谱立方数据则仅需10 ms(图4B),从而实现100 Hz水平的大视场高光谱影像。与传统机械式波长调谐方式不同,声光可调滤波器不受机械惯性限制,可对光谱进行快速动态调控,实现连续不间断的循环波长扫描,为实时光谱视频成像提供了可能。如图4C-4E所示,可根据样品吸收光谱特征,选取多幅单色灰度图像进行RGB填色合成,实现对样品化学差异与浓度分布更直观的可视化。值得一提的是,所发展的上转换光谱成像技术得益于非线性光学混频过程中所需的相位匹配条件,使得不同波长的单色上转换图像具有不同的空间缩放因子,从而形成波长-空间耦合的独特成像效果,结合特定信息编码和计算成像算法,可以从单幅灰度图像恢复出三维图谱信息,进而发展出单发快照式红外高光谱成像,为实现超高速光谱摄影提供了有效途径。此外,该技术可以扩展到长波红外或太赫兹波段,以满足该谱段对于高速光谱成像的迫切需求,可为材料、化学、生物、医学等领域提供具有吸引力的光谱影像分析手段。近年来,曾和平教授与黄坤研究员课题组在中红外多维成像领域开展了系列创新研究,先后发展了中红外非线性广角成像 [Nature Comm. 13, 1077 (2022)]、中红外单光子单像素成像[Nature Comm. 14, 1073 (2023)]、以及中红外单光子三维成像 [Light Sci. Appl. 12, 144 (2023)]等。相关工作得到了科技部、基金委、上海市、重庆市与华东师大的资助。论文链接:https://doi.org/10 . 1038/s41467-024-46274-z
  • 太原市妇幼保健院2442.45万元采购高压灭菌器,波散型XRF,空气压缩机,CCD相机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 太原市妇幼保健院高清电子胃肠镜系统、高清电子鼻咽喉镜、腹腔镜器械等设备公开招标采购的采购公告 山西省-太原市-万柏林区 状态:公告 更新时间: 2023-08-25 招标文件: 附件1 一、项目基本情况项目编号:1401992023AGK00847项目名称:太原市妇幼保健院高清电子胃肠镜系统、高清电子鼻咽喉镜、腹腔镜器械等设备公开招标采购 资金来源:财政资金 预算金额:第一包24,424,480元,第二包1,546,220元; 最高限价:第一包24,398,320元,第二包826,000元采购需求:共两包,详见招标文件“第四部分 采购需求”。第一包(进口产品) 序号 名称 数量 预算单价(元) 金额小计(元) 对应的中小企业划分标准所属行业 1 小儿膀胱镜 1套 232,300 232,300 工业 2 小儿膀胱电切镜 1条 94,920 94,920 工业 3 宫腔镜检查镜 2条 100,000 200,000 工业 4 听力计及声场测听系统 1套 250,000 250,000 工业 5 听力测试平台(听力计+真耳分析) 1套 330,000 330,000 工业 6 声阻抗仪 1台 250,000 250,000 工业 7 听力测试平台(宽频声导抗) 1套 450,000 450,000 工业 8 听力测试平台(诊断型耳声发射) 1套 350,000 350,000 工业 9 客观听觉测试平台(ABR+ASSR) 1套 500,000 500,000 工业 10 客观听觉测试平台(ABR+ASSR+OAE) 1套 600,000 600,000 工业 11 高清电子鼻咽喉镜 1套 5,530,000 5,530,000 工业 12 主动脉球囊反博仪 1台 1,500,000 1,500,000 工业 13 超声内镜系统 1套 4,150,000 4,150,000 工业 14 高清电子胃肠镜系统 1套 5,500,000 5,500,000 工业 15 肺功能测试系统 1套 1,000,000 1,000,000 工业 16 核磁呼吸机 1台 580,000 580,000 工业 17 宫腔镜影像系统 1套 2,305,560 2,305,560 工业 18 宫腔镜电切设备 2套 287,770 575,540 工业 总价(元) 24,398,320 第二包(国产产品) 序号 名称 数量 预算单价(元) 金额小计(元) 对应的中小企业划分标准所属行业 1 单孔腹腔镜 2条 73,000 146,000 工业 2 宫腔镜检查镜 3条55,000 165,000 工业 3 腹腔镜器械 2套 155,000 310,000 工业 4 小儿腹腔镜器械 1套 205,000 205,000 工业 总价(元) 826,000 第一包(进口产品)参数要求 序号 名称 性能参数 1 小儿膀胱镜 1、微型内窥镜 0°,直径≤1.2 mm, 有效工作长度≥20 cm, 可高温灭菌2、尿道膀胱镜镜鞘套,8Fr.拥有4Fr.工作通道,工作长度≥16cm3、抓钳,双动钳夹,软性设计,3 Fr,长≥28 cm4、活检抓钳,双动钳夹,软性设计,3 Fr,长≥28 cm5、电凝电极,3 Fr6、配专用消毒盒,小型器械专用 2 小儿膀胱电切镜 1、尿道电切镜鞘,LUER锁开关2、工作手件,8Fr3、凝固电极,钝化。4、配专用消毒盒,小型器械专用 3 宫腔镜检查镜 1、直径≤3mm,视角30°光学视管, 2、可高温高压灭菌,含专用消毒盒,冲水口旋阀3、外径≤4.5mm,3Fr.器械通道,持续灌流式管鞘 4 听力计及声场测听系统 (一)听力计1、输入:纯音、啭音、白噪声、CD1+2、麦克风1+2、波形文件2、掩蔽信号:根据纯音测试结果或言语测试结果自动选择窄带噪声或白噪声3、输出:气导,骨导,插入式耳机,声场1+24、测试:气导,骨导及掩蔽,言语测试,FF,ABLB,伪聋,自动测试5、频率范围:气导 125Hz – 8kHz,骨导 250Hz - 8kHz6、强度范围:气导:-10 - 120dBHL,步进:1、2、5dB骨导:-10 – 80dB 步进:1、2、5dB7、给声刺激:手动或反转给声,单脉冲或多脉冲;可选择默认测试频率提高工作效率8、信号发放:轻触式静音给声,手动或自动,单脉冲、复合脉冲9、患者应答:一个按钮式应答器10、平均听阈:自动计算平均听阈PTA11、患者通讯:授话和回话12、监听:通过内置、外置扬声器或外接耳机13、内置存储:听力计可独立存储大于400个患者信息/40000次测试结果14、频率选择:125Hz, 250Hz, 750Hz, 1500Hz or 8kHz可以被取消15、显示:大于5英寸高分辨率彩色中文显示屏 ≥640X480像素,全屏幕显示双耳听力图,及所有频率掩蔽信息16、接口:背后:>2个USB,配有:1个网络接口,适应将来网络化建设;2个声场接口;气导L/R;插入式气导L/R;骨导;患者应答;回话;麦克风;CD1;左边:耳机,麦克风17、打印:支持多种打印方式可选:通过USB接口直接连接打印机输出测试结果;连接电脑打印18、操作模式:支持多种操作模式,可选单机独立操作或电脑控制操作测试19、外接设备:标准的电脑鼠标和键盘(数据录入)20、数据库:数据库可整合纯音测听、阻抗测试、耳声发射、诱发电位等测试结果,可对同品牌所有设备进行数据共享和数据管理,可实现自动联网上传、随时随地共享数据等功能;可通过其自身的HL7协议连接医院电子病历系统EMR,进行数据无缝对接(二)声场1、数字智能液晶显示视觉强化测听,TFT LCD全彩液晶屏2、可存储任何使用者想要提供的影音档案3、视频资料可持续循环转换档案,墦放丰富有变化高画质动态视频图像4、个性化设置可帮助小朋友更好建立条件反射,帮助验配师更便捷、准确的完成听力测试5、经编程设定的无线遥控器6、可移动落地支架。 5 听力测试平台(听力计+真耳分析) (一)工作台要求:1、操作系统 :64 位操作系统2、内存:4GB 及以上3、显示分辨率:≥1024 x 768 4、CPU:2.0GHz intel i3及以上5、兼容軟件:XML;Noah4,支持NOAH Link,软件可升级;可与同品牌听力设备数据共享组成听力诊断系统,灵活快速调取患者报告和信息,同一局域网内联网功能共享数据,可对接体检系统、医院HIS/EMR系统传输数据,实现不同设备间,科室内,院内,院际之间的数据共享(二)听力计模块参数1、刺激声:纯音、啭音、脉冲音、双通道CD输入、双通道麦克风输入、音频文件 (內含中文单音节、双音节词汇及句子词表)、真实言语、窄带噪声、白噪声、言语噪声2、频率范围:≥125—8000Hz3、准确度:≤±1%4、失真:气导〈1.5%,骨导〈3%5、测试声强范围:气导平均为 -10-120 dB HL;骨导平均为 -10-80 dB HL 步进 1,2,5dB步进6、声强准确度:气导:≤±2dB ;骨导≤±5dB7、刺激声调制:啭音 调制幅度1—10Hz,调制深度±5 %窄带噪声 符合IEC 60645-1:2001;5/12 倍频程白噪声 恒定带宽80—16000Hz言语噪声 符合IEC 60645-2:1993 及 ANSI S3.6 2010脉冲音 脉冲时长可自行调整,200ms – 500ms8、测试类型:支持气导、骨导、声场下的双声道测听。9、测试项目:纯音测听、言语测听、噪音下言语测听 (SIN)、安静下言语测听 (SIQ)、Stenger、交替响度平衡测试 (ABLB)、韦伯测试 (Weber)、Lagenbeck测试、助听器验配模拟(MHA) 10、听力图纪录内容 纯音测听:dBHL、MCL、UCL、Tinnitus、R+L言语测听:WR1、WR2、WR3、MCL、UCL、助听后、未助听、双耳(三)真耳分析模块参数1、刺激声类型:ISTS、啭音、纯音、随意噪声、假随意噪声、带宽限制白噪声、粉红噪声、Chirp、ICRA、IFFM、纯音扫频、滤波言语、其他声音文件2、刺激声频率范围:100-8000 Hz3、准确度〈±1%4、失真 对侧刺激强度范围:≥110dB HL2.2声反射衰减:自动阈值上10dB,时间10—30秒可调2.3声反射衰减:同侧/对侧,手动控制2.4手动分项重做自动测试结果2.5手动控制所有激励电平2.6手动/自动声反射测试:自动搜索声反射阈值,同侧和对侧自由混合2.7声反射潜伏期:300ms3、宽频声导抗测试:3.1刺激声:Click声3.2刺激频带范围:226Hz—8000Hz3.3刺激声强度:96—100dB peSPL3.4测试方式:宽频吸收率3.5显示:彩色3D研究模型3.6无压吸收率测试:为鼓膜脆弱患者得到中耳测试结果4操作模式4.1可单机操作4.2可连接电脑操作:USB线连接、蓝牙连接4.3内存:≥1GB存储卡,可存储数十万测试4.4打印方式:可将数据传输至电脑通过电脑进行自定义打印。二.标准:1.安全标准:IEC60601-1内置电源,B型BF型2.EMC:IEC60601-1-23.导抗:IEC 60645-5/ANSI S3.39, 1型三.软件性能: 1.中文操作界面2.数据格式:XML3.全面网络兼容,无限存储空间4.数据库可整合纯音测听、阻抗测试、诱发电位等测试结果,可实现自动联网上传、随时随地共享数据等功能;可通过其自身HL7协议连接医院电子病历系统EMR,进行数据无缝对接 8 听力测试平台(诊断型耳声发射) 一.标准:1.安全标准:IEC60601-1内置电源,B型BF型2.EMC:IEC60601-1-23.测试信号:ICE60645-1/ANSI S3.6, IEC 60645-34.OAE:IEC60645-6 2009, 2型二.软件性能1.数据格式:XML2.全面网络兼容,无限存储空间3.可与听力计、声阻抗计、助听器分析仪等其他设备数据共享组成听力诊断系统4.数据库:兼容HIS、EMR及更多专业数据库三.技术参数1.设备类型:便携式2.测试类型: DPOAE 畸变产物耳声发射3.频率范围:500—10000Hz4.强度:30-80dB SPL5.测试频点数:无限制6.配有226Hz鼓室图排查中耳对结果的影响7. DP-Gram功能8.DP-I/O功能9. 手动测试/电脑控制测试;用户自定义测试协议10.给压OAE11.有诊断型耳声发射、筛查型耳声发射功能,一机两用12.AD分辨率:24位13.最大输出(保护): 90 dB SPL14.分析时间:最小2秒,无最大时间限制15.通过判断标准:频段SNR,刺激数量,测试时间,Min OAE,Min重复性等条件,可自定义16.测试压力:可选根据鼓室图测得的峰压四.操作模式:1.可单机操作2.可电脑操作:USB线连接、蓝牙连接五.内存:≥1GB存储卡,可存储数十万测试六.多种打印方式:可选蓝牙打印机,数据也可通过数据库传输至电脑通过电脑打印七.数据库软件:可连接多种常用数据库,可兼容NOAH数据库 9 客观听觉测试平台(ABR+ASSR) 一、功能:可测试功能至少包含听觉脑干诱发电位ABR、耳蜗电图EcochG、电刺激听性诱发电位eABR、中潜伏期测试AMLR、长潜伏期测试ALR、中长潜伏期分辨能力测试P300/MMN、多频稳态反应测试ASSR、40Hz测试二.硬件性能参数1.标准: 1.1 IEC 60601-1(一般安全)I类,BF型1.2 IEC 60601-1-1(系统安全)I类,BF型1.3 IEC 60601-1-2(电磁兼容) 1.4符合GB/T7341.12.安全: 2.1内置医疗安全转换器2.2前置放大器光电隔离保护3.前置放大器: 3.1双通道(标准)EPA4前置放大器(4电极)3.2增益:80dB/60dB;频率响应:0.5 - 5000Hz3.3噪声:≤4nV/√Hz,0.22μV RMS (0 - 3kHz)3.4 CMRR:最小值>110dB 4.阻抗检查: 4.1 33Hz矩形波,单独显示每个电极的阻抗信息4.2 无需拔掉电极4.3直接从前置放大器读数,测试电流:19μA,范围:0.5kΩ-25kΩ耳机: 插入式耳机、B81骨导耳机6. 滤波器:低通及高通数字滤波器7.数据库: 7.1 数据库可整合纯音测听、阻抗测试、诱发电位等测试结果,可实现自动联网上传、随时随地共享数据等功能,可通过其自身HL7协议连接医院电子病历系统EMR,进行数据无缝对接8.可用的软件模块:ABR、ASSR9.可升级的软件模块:≥ABRIS、DPOAE、TEOAE、VEMP三.听性脑干反应测试ABR性能参数:1.宽频带刺激声:Chirp 声、短声(Click),刺激率:≤0.1—80.1次/秒2.频率特异性刺激声: 2.1短纯音:频率:0.5 kHz -4kHz2.3 NB CE-Chirp 500Hz,1kHz,2kHz,4kHz2.4带宽:±1/2倍频程3.刺激强度:≤20-130dB peSPL (-10 —100 dB nHL),1dB步进4.掩蔽:白噪声,低于刺激声强度0-40dB5.计权运算:具备计权运算6.测试质量指示:反应可信目标值95%、97.5%或99% 7.残余噪声计算:测试过程中实时计算,可选择自动停止测试标准,以所选范围内曲线上的≥5个点为基础进行计算8. 通道数:双通道9. 每次测试曲线数:无限制10. 自动测试协议: 10.1内含多个预设自动测试协议10.2操作者可自定义并添加任意多个自动测试10.3在自动测试过程中也可插入手动控制11.数据采集: 11.1分析时间:≤0-900ms时窗11.2采集开始:刺激声开始时间±2ms11.3 A/D分辨率:≥16bit11.4每条曲线点数:≥450点12.增益: 12.1自动:在开始测试新的强度之前,自动选择最适合的增益 12.2手动:74-104dB (10μV - 320μV输入),6dB步进13.伪迹拒绝系统:可选择14.实时EEG: 14.1在线显示14.2刷新率:典型值10Hz15.电子耳蜗植入:可受控或控制电子耳蜗刺激强度16.测试:耳蜗电图EcochG、中潜伏期测试AMLR、长潜伏期测试ALR、中长潜伏期分辨能力测试P300/MMN,按钮功能、输入字段等在线帮助,包括带有查找功能和交互引用功能的电子操作手册四.多频稳态反应测试ASSR性能参数:1.抗混叠滤波器:模拟5kHz 24dB/倍频程(30kHz采样率)2.通道数:双通道反应探测(EPA,8通道刺激信号控制)3. 自动测试协议:3.1包含儿童和成人测试协议(睡眠及清醒状态)3.2用户可自定义测试协议4. 刺激声:4.1 NB CE-Chirp 500Hz,1kHz,2kHz,4kHz4.2带宽:±1/2倍频程-3dB4.3同时刺激数:8个(每耳4个)5. 调制率:90Hz和40Hz,在同一测试中可做更改6. 掩蔽:白噪声,0-100dB HL7. 刺激声控制:7.1独立控制≥8个同时发放的刺激声(每耳4个)7.2独立控制≥8个刺激声强度,动态提示可选强度范围间前未完成提交的,将拒收投标文件。开标时登录中国政府采购网山西分网在规定时间内解密电子投标文件,解密设备及网络环境由投标人自行准备。五、招标公告期限自本项目招标公告发布之日起5个工作日。六、其他补充事宜1.投标人应于开标前在全国公共资源交易服务平台(山西省)(http://prec.sxzwfw.gov.cn)主体库免费注册。联系电话:0351-77313132.投标人应于开标前在中国政府采购网山西分网(www.ccgp-shanxi.gov.cn)进行供应商注册。 联系电话:957633.投标人参与项目遇到系统操作问题,请及时联系客服电话。联系电话:95763 七、对本次招标提出询问,请按以下方式联系1.采购人信息名称:太原市妇幼保健院 地址:太原市长风西街113号 联系人:王小燕联系电话:13633440188 2.集中采购代理机构信息名称:太原市公共资源交易中心 地址:太原市万柏林区南屯路1号太原市为民服务中心四层 联系人:王军联系电话:0351-2377183 附件信息: 公开招标文件.docx228.8K × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('
  • 动态光散射技术入门及仪器采购指南
    作者:马尔文仪器公司纳米颗粒及分子鉴定产品营销经理 Stephen Ball   动态光散射(DLS)是一项用于蛋白质、胶体和分散体的极具价值的粒度测量技术,其应用范围可轻松扩展到1 nm以下。本文中,马尔文仪器公司产品营销经理Stephen Ball将向您介绍DLS的工作原理,并就购买光散射系统时的关注事项为您并提供一些专业建议。   通过观察散射光,可以测定粒子分散体系或分子溶液的特性,如粒度、分子量和zeta电位。光散射系统充分挖掘利用这些特性之间关联,并在近几十年间经过不断完善,目前已经能为常规实验室应用提供高度自动化的检测。利用光散射仪器的检测快速而高效,可用来表征分散体系、胶体和蛋白质。   理论上,光散射仪器中使用的各种技术看起来可能很相似,但它们的功能和检测结果却在实际应用中千差万别,从而对仪器的寿命期价值产生显著影响。光散射系统中的组件和设计的差异也会导致数据质量及仪器适用范围产生很大的差异。例如,某些光散射系统可通过测量蛋白质电泳迁移率对蛋白质电荷以及粒度进行测定,从而成为生物制药应用中高效的选择方案。   撰写本文的目的在于为考虑采用动态光散射DLS技术的读者提供一个入门指南。本文将考察DLS的主要用途、应用领域,尤其会侧重系统设计中对于特定性能的重要性,从而为那些正为自身需求而关注DLS技术的用户提供背景信息和理论支持。   了解基本知识   当我们要开始对一种新的分析技术进行评估时,第一个重要步骤就是要了解它的基本工作原理。DLS的优势之一是它操作非常简单,而这直接源于它的测量原理。   由于热能,溶剂分子不断运动,和悬浮的颗粒物产生碰撞,使得分散体或溶液中的小颗粒做无规则的布朗运动。可以通过观测散射光随时间的波动性得到颗粒布朗运动的速度,这种技术被称为光子相关光谱法(PCS)或准弹性光散射法(QELS),但现在通常称作动态光散射法(DLS)。   斯托克斯 - 爱因斯坦方程定义了颗粒布朗运动速度与颗粒大小之间的关系:      其中,D = 扩散速度, k = 波尔兹曼常数,T = 绝对温度,h = 粘度,DH = 流体力学直径   上述关系式清楚地表示了在样品温度和连续相粘度已知的情况下,如何根据扩散速度测定粒径。尽管必须是控制检测温度,但很多商用仪器还是会对温度进行测量 而对于许多分散剂,尤其是水而言,粘度是已知的。在很多情况下,DLS实验所需的补充信息也仅仅是粘度测量。   DLS的优势   DLS固有的操作简便性意味着操作者无需具备很强的专业知识就能得到详尽而有用的数据,这个优点在最新的高度自动化系统中表现得尤为明显&mdash &mdash 一般分析只需要几秒钟的时间,并且分散剂的选择余地比较大,不管是水性还是非水性的,只要它们呈透明状并且不太粘稠,就都可以使用。这种测试方法所需的样品量也很小,最少时只需要几微升即可,这一点对于涉及宝贵的样品的早期研究而言是极具吸引力的。   实际上,DLS法在测量0.1 nm ~ 10 µ m范围的粒径时十分出色。它在测量小颗粒方面的能力尤为突出,对于绝大多数待测体系提供2nm及以上的准确、可重复的数据。从理论上讲,检测低密度分子的粒径仅仅受到仪器灵敏度的限制,但对致密颗粒而言,沉降是可能导致分析不准确的一个潜在问题。例如,对于密度为10g/ml的颗粒,最大检测粒径通常会限制在大约100nm以内。   无论是稀释样品还是混浊样品都可以用DLS法来进行测量,可分析的浓度范围最低可至0.1ppm,最高可达40%w/v。不过,由于样品浓度会大大影响其外观尺寸,因此当粒子含量较高时对样品的制备需要加倍小心。   上述适用的粒径和浓度范围以及该测量技术的高重现性(粒径20nm时可达到+/- 0.1nm),使得DLS这种测量方法具有广泛的适用性。比如,它特别适合检测平均粒径的细微变化,这种变化可能会反映出胶体样品的稳定性 它也可以测得少量聚集体的出现。上述这些现象很有可能是某种样本解体的前兆,当用于药物的蛋白质研究时,这类情况的出现有可能对药物性能产生不利甚至有害的影响。   DLS法的局限性   DLS方法的大多数局限性可以或已经通过对实验操作过程进行改进,或对DLS技术进行改进来加以克服 但在区分仪器类型,尤其是对于那些要求异常苛刻的应用而言,它的局限性仍然值得我们加以关注。一般来说,DLS使用过程中遇到的大多数问题是出于以下原因:   &diams 存在较大的颗粒   超出仪器最高量程范围的颗粒应该事先被过滤掉。或者,如果大颗粒的存在量极少也可以通过软件进行处理。   &diams 沉淀   这种现象在较为致密的颗粒中尤其比较容易出现。提高分散液密度是比较有效的抑制方法(比如在系统中加入蔗糖),但这种方法仅适用于密度不高于1.05 g/ml的样品体系。   &diams 分辨率较低   DLS不属于高分辨率的技术。当样品的粒度分布排列十分密集,且存在三种以上的粒度分布差异时,DLS 将无法对多重分散样品进行精确表征。在这种情况下,建议最好在测量之前对样品进行分离 而在测量方法上,则需要将DLS与制备技术如凝胶渗透法或尺寸排除色谱法(GPC / SEC)和(或)流场分离技术(FFF)联合使用。   &diams 多重光散射   多重散射是指从一个颗粒发出的散射光在到达探测器之前又会被其它粒子再次散射,在较致密的样品中,这种现象会使粒径计算的精确度受到影响。背散射检测器以大于90° 的角度进行测量,大大抑制了这一现象,从而扩大了该技术的测量范围。   &diams 分散剂的选择   虽然大多数分散剂都适用于DLS,但如果分散剂粘度大于100mPa.s,往往会影响测量的可靠性,另外分散剂对光的吸收也会对检测产生干扰。比如有色样品的散射光强度可能会有所降低。一种可行的解决方案是根据系统的灵敏度,采用不同的激光波长进行分析或对样品进行稀释。样品中的荧光也会对信噪比造成影响,但可以通过使用窄带滤波器来解决,以排除荧光杂散光的影响。   界定DLS检测仪的特性   上述的讨论是在对DLS仪器的界定特征进行检验的背景下展开的。对于任何分析技术,灵敏度都是最基本的要素,对于DLS系统,这方面的性能是由光学硬件和相应的设置来确定的。稀释度较高时,具有优越光学设置的系统能对较小的颗粒进行可靠测量,但对于在这些功能方面要求不高的应用而言,替代方案可能会更为经济。光学设置的主要元件包括:   &diams 激光源   具有低噪特性的稳定激光源最为合适,如某些氦氖气体激光器。也可以使用某些特定的固态激光器,但价格要贵得多 低成本的固态激光器使测量结果的精度和可重现性受到极大影响。   &diams 光学设置   光学设置的核心是进行测量的散射角。测量角固定于90o 时,可使系统简便而经济高效,为许多应用(见图1)提供合适的灵敏度级别。这类系统已得到广泛使用。   当实验需要灵敏度更高,或样品浓度更高时,最好选择较大的测量角度。例如马尔文仪器公司Zetasizer Nano系列激光粒度仪,采用非侵入式背散射检测器 (NIBS),将测量角度调到175o(参见图1),扩大了颗粒粒度与浓度的测量范围。由于入射光无需通过整个样品,因此显著减少了多重散射引起的测量不准确性,同样也排除了大灰尘颗粒的影响。   在上述两种类型的设置中采用了光纤光学收集组件,其提供的信噪比优于传统的相应部件,从而大大提高了数据质量。   &diams 检测器   检测器有两种类型:一种是便宜、灵敏度较低的光电倍增管PMT,另一种是较昂贵的、性能更好的雪崩光电二极管检测器(APD)。后者宣称效率高达65%,远远优于替代产品PMT4-20%的效率,从而使数据收集最大化,测量速度更快、质量更高。   要获得精确的DLS测量,另一项基本要求是必须对温度进行很好的控制。如同分散剂粘度一样,颗粒的布朗运动也直接和温度相关,因此温度控制较差造成的影响非常严重。例如,在环境温度下对水性体系进行测量,1oC的温度误差将导致2.4%的检测结果偏差,超过ISO13321 [1] 标准规定的+/-2% 或更新的 ISO 22412[2] 标准规定的范围。对于使用的各类比色皿,DLS仪器温度控制的合理目标是 +/-0.2oC。   比起在检测仪外部连接水浴装置,内置温度控制器在使用上更加方便,在测量精度、稳定性和重现性方面也更加可取。此外,具有高性能控制系统的仪器,既能进行快速的系统预热,又能迅速调整温度,从而对温度变化所产生的影响(如蛋白质热不稳定性)进行研究。   日常使用   当选择仪器时,评估整体性能特点尤为重要。然而,如果每天使用一个不太符合操作要求的系统所造成的不便会令人非常烦恼,甚至不想再去用它。因此,当需要在最终几个备选仪器之间进行选择时,以下几个问题是值得考虑一番的:   &diams 我最重要的需求是什么:速度还是准确性?   &diams 我的样品粒径的范围?   &diams 我要测量的样品属于什么类型,比如是否有毒?或者具有特别强的腐蚀性?   &diams 今后仪器的操作者是专家还是新手?他们具备多少关于光散射的专业知识?   速度与准确性   DLS测量通常成批进行,样品通常不同、且体积较小。测量时间一般按照能达到要求的重复性水平设置,但一般不大会超过几分钟。不过,分析效率可能因样品制备和系统清洗要求而有所不同,不同系统的使用方便性也会有较大的差异。如果DLS系统被用作 GPC/SEC 检测器,系统将设置为流体工作模式。由于样品流经仪器,为达到必要的精度,测量必须在短短几秒钟之内完成。   具有良好测试速度和准确性的仪器通常都价格较高,但考虑使用寿命期的成本更为重要。考虑到因不能满足重复性标准而进行反复实验所花费的时间和成本,以及因仪器装备不能满足常规实验室使用要求而造成的分析效率下降等因素,更昂贵一些的系统也许更能体现物有所值。   适用于各种样品类型的比色皿   大多数光散射系统在批量样品分析期间使用各种比色皿池或比色皿来盛放样品。它们通常是塑料(通常是聚苯乙烯)、玻璃或石英材质的,但大小各不相同。样品的最小用量取决于光学设置,通常为2-3 ml。不过,如果不考虑任何样品回收要求,也有一些系统测量只需要2µ l的样品用量。   一次性塑料比色皿无需清洗,消除了交叉污染的风险,特别适用于盛放有毒材料 有些比色皿只有50 &mu L大小。采用比色皿可以避免产生&lsquo 非比色皿&rsquo 系统(即把样品直接放在玻璃片上进行测量)因清洗不彻底而导致测量不准确的问题。石英比色皿具有更佳的测量质量,尤其是用于低浓度或小粒径样品时,这是因为石英材料具有优异的光学特性和抗划伤性。   减轻分析负担   光散射通常只是许多研究人员在实验室中常规使用的多种技术之一。仪器操作者可能不是光散射方面的专家,因而仪器操作的简便性是很有帮助的。   一些DLS系统在数据收集过程中即对数据进行评估,剔除因大颗粒存在而被污染的结果。这类些系统有助于提高样品制备的速度和容许范围。粒径大于10微米的颗粒主要发生向前散射,因此含背散射检测器的仪器对这些颗粒的存在不太敏感。测量浓度范围宽的系统尽可能降低了样品稀释的需求,进一步提高了测量效率。   大多数现代化测量系统在数据采集过程中都无需操作员干预,从而减少了分析师的工作量,并提高测量的可重复性。但是有些比较复杂的样本可能需要采用特殊方法进行测量,因此应在标准操作程序(SOPs) 中包含这些特殊方法,从而确保应用的标准化。   虽然自动测量现在已很普遍,但在内置数据分析支持程度方面,不同仪器之间的差异很大。如果是给非专业人员使用的光散射测量系统,那么含有内置数据分析和专家意见的先进软件将极富价值,就好像在电话另一端有一位可靠的、活生生的专家一样。   总结   DLS是一项比较成熟的技术,可为各种类型的样品进行粒径和分子尺寸测量。因此,在选择仪器时,必须将系统能力与用户要求紧密联系起来,使两者相匹配。光散射系统在测量粒径的同时,还可以测量分子量、蛋白质电荷和Zeta电位,甚至还能具有微流变学测量功能。   不同系统之间的灵敏度有很大差别,如同在高浓度下也能进行测量一样,也可对各种大小的颗粒或分子进行有效的测量。与那些90o 度探测器相比,背散射仪器具有很实际的优势。   除了性能以外,还有其它因素也会影响仪器使用寿命期内的价值,包括易于清洁 能获得的支持以及友好的用户软件界面。无论是什么规格的仪器,最好的建议是在购买前进行测试,看看你能否轻松得到有用的数据。DLS问世已经多年,因此不论你的用途是什么,你都可以期望拥有一套有使用针对性的、富有成效并且易于操作的测量系统。   结束   参考文献:   [1] ISO 13321 (1996) 粒度分析 - 光子相关光谱。   [2] ISO 22412 (2008) 粒度分析 - 动态光散射   [3] GPC / SEC静态光散射技术说明,(马尔文仪器公司白皮书)。下载网址:www.malvern.com/slsforgpc   [4] www.malvern.com/aurora   图片   图1:DLS系统的关键组件包括(1)激光器,(2)测量单元,(3)检测器,(4)衰减器,(5)相关器和(6)数据处理PC。探测器可置于90° 或更大的角度,例如这里所显示的NIBS检测器设置在175° 。   图2:在悬浮液稳定性研究中采用Zeta电位对粒子之间斥力进行量化   laser:激光器   attenuator:衰减器   detector:检测器   digital signal processor 数字信号处理器   correlator:相关器   Electrical double layer:双电层   Stern layer:严密电位层   Diffuse layer:扩散层   Negatively charged particle:带负电荷的颗粒   Slipping plane:滑动面   Surface potential:表面电位  Zeta potential:Zeta电位   Distance from particle surface:到颗粒表面的距离
  • 纳米梁光谱仪,从彩虹得到的灵感
    “据我了解,中国‘嫦娥五号’月球探测器上也配有小型光谱分析仪,除能分析月球常见的矿物组成,还具有研究矿物风化层水合作用的能力。其探测范围覆盖可见光到中红外光,并分别使用 CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)光谱成像、铟镓砷探测器、碲镉汞探测器。而如果利用我们的纳米梁光谱仪,借助其扩展性和移植性,则有望大幅减少探测器种类和数目。除此之外,随着应用目标需求的变更,比如新的工作波段、更大波长范围等,都可通过类似的设计流程,对器件进行快速迭代,充分发挥纳米梁光谱仪的通用化、可定制、灵活性的优势。比如,对于老百姓来说,将来某天去水果摊只需手机扫一下,便可知道瓜是不是保熟。”对于课题组研发的纳米梁光谱仪,华中科技大学武汉光电国家研究中心教授董建绩表示。图 | 董建绩(来源:董建绩)该纳米梁器件具有小尺寸、小模式体积、高 Q 值(衡量电感器件的主要参数)的突出优势,以及结构多样的可调性、对各种集成材料平台的兼容性等性能。除了用作光谱仪以外,它在作为满足集成光子技术发展需求的新型基本单元结构上,同样有较大的应用潜力。此前已经有人使用增益材料结合纳米梁谐振腔实现了室温下的连续激光器,还有人结合石墨烯等二维材料制作出高效的热光调制器。未来有望将这一器件应用到更多的场景,例如发光器件、电光调制器件、力学传感、气相探测等领域。从彩虹到纳米梁器件看似是一个硬件,其背后原理却要从美丽的彩虹说起。“虹”是一种常见的自然现象。通常雨后转晴时,阳光射到空中接近球型的小水滴,产生各种颜色的图谱即自然界的“光谱”。光谱最早是指自然界中的分光图案,后来拓展到整个电磁波段的辐射能量随波长或频率的分布。光谱仪是研究光辐射强度特性随频率变化的光学仪器,它将不同频率的光辐射按照一定规律分开,配合一系列机械、电子、计算机等系统,实现对光辐射的精密测定和研究。光谱分析在现代光学应用中有重要的作用,被广泛应用于工业生产、化学成分分析、环境监测、航天遥感等领域。传统的光谱仪存在结构组成复杂、占用体积大、价格昂贵等劣势,在很多要求便携式设备的应用场合存在限制。而光谱仪的小型化和集成化,可满足各种新兴光谱分析应用的低成本、小尺寸的需求,比如片上实验系统、细胞组织检测分析、乃至移动设备搭载光谱仪等,都是近年来的重要研究方向。一般的微型化光谱仪,都是通过将传统的大型台式光谱仪中的色散元件、或者滤波元件使用集成光子技术小型化后得到的。然而,常见的色散分光型和傅里叶变换型光谱仪,通常需要较长的衍射路径,才能积累足够的光程或光程差,从而分辨不同的光谱分量,故而难以兼得小尺寸和高精度。图 | 级联纳米梁光谱仪工作原理(来源:Optica)光谱计算重建(Computational reconstruction)方法,是近年来新兴的一种光谱仪实现方法。该方法通过计算机辅助计算重建算法,降低了对光谱分光或滤波的严格要求,促使了基于随机结构、量子点、单纳米线等新型光谱仪的涌现。计算重建方法,通过对入射光场和输出通道间的映射进行预先标定,再借助重建算法并使用计算机进行迭代求解线性方程组,从而求出输入光谱。这些基于计算重建方法的光谱仪方案,既具有简单的结构和紧凑的尺寸,同时又表现出更优异的特性。然而,现有方案存在无法根据需求扩展、不够灵活的缺点。例如,在材料加工和集成上,基于精细的材料工程、所获得的材料光谱响应渐变的方案,有着很高的复杂度,由此带来了高成本和低产率,这也导致其较难迁移到其他波段。此外,预校准传输响应也会影响光谱仪的准确率。也就是说,构造一系列具有高度正交性的传输谱,是提高重建光谱性能的关键。在此之前,该团队已经对光子晶体纳米梁谐振腔器件,建立了良好的研究基础和积累,比如应用到光开关[1]、高消光比滤波器[2]、通用模块化光谱仪[3]等。他们发现,纳米梁的传输谱经过热调谐后,可以构成一系列正交的基函数,并且纳米梁单元还具有易于级联扩展的特点,有望解决重建型光谱仪的性能限制问题。图 | 纳米梁单元的热调谐传输谱(来源:Optica)同时,有别于通过材料成分渐变结构获得的光谱仪,该方案是基于结构参数渐变,不仅对不同工作波段具有扩展性和移植性,而且制作工艺与标准 CMOS 工艺兼容,无需精细调节材料组份。因此,课题组将纳米梁谐振腔与计算重建算法相结合,得到了兼顾小尺寸、可扩展、高分辨率的级联纳米梁光谱仪。相比传统的窄带滤波型光谱仪,重建算法使得分辨率突破了谐振峰半高全宽的限制。而相对于其他重建型光谱仪,窄带响应提供了高正交性的预校准基函数,这进一步提高了性能。近日,相关论文以《具有高分辨率和可扩展性的级联纳米梁光谱仪》(Cascaded nanobeam spectrometer with high resolution and scalability )为题,发表在 Optica(IF 11.1)上[4],张佳晖担任第一作者,董建绩担任通讯作者。审稿人给予高度评价:“该工作提出的级联纳米梁光谱仪设计方案是非常新颖的,特别是提高了重建型光谱仪的测量分辨率。”并称赞纳米梁结构具有工作波段可扩展性,非常适合发表在 Optica 上。借“光”前行,成就新型光仪器事实上,该团队很早就注意到微型光谱仪这一领域的发展动态。2013 年,耶鲁大学团队就曾经提出一种基于随机结构的光谱仪[5],成功实现了 0.5nm 窄峰和 0.75nm 间距双峰的重建。2015 年,清华大学、麻省理工学院、加州理工大学的研究人员发表了关于量子点光谱仪的论文[6]。2019 年,英国剑桥大学的学者在 Science 上发表了纳米线光谱仪的工作[7]。这些工作分别提出了不同种类的重建型光谱仪,也为此次研究开拓了思路。2021 年,加州大学圣地亚哥分校的团队提出一种基于分层波导的片上光谱仪,并证明滤波器的传输谱正交性对于提高分辨率是至关重要的[8]。这让董建绩更加深入地思考进一步突破微型化重建光谱仪性能限制的可能性。同时,该团队也注意到,现有的这些重建光谱仪方案使用的宽谱响应基函数存在难以根据实际需求扩展的问题。这一问题也启发了他们对纳米梁光谱仪的研究。本质来看,光子晶体纳米梁是一种一维光子晶体谐振腔,它呈现出和波导尺寸类似的狭窄条状梁。当沿着梁的方向刻蚀周期性的孔,孔中部会有破坏晶体周期性的缺陷。形成的缺陷模式光,会被周围的光子晶体结构约束,仅在缺陷附近形成小模式体积的光场,这就形成了光子晶体谐振腔。由于具有超小的模式体积,纳米梁被视为一种超小型的片上谐振器件,在集成化、微型化应用方面有重要价值,因此也非常适合用作小型化光谱仪的基本单元。图 | 纳米梁单元结构(来源:Optica)于此,该团队希望找到能有效提高分辨率的正交频谱响应,而纳米梁的传输谱完美地具备这个特性。同时,基于设计周期结构尺寸而获得的光子禁带的纳米梁谐振腔不仅易于级联,还可通过改变结构扩展波段,符合他们对可扩展性能的需要。因此,纳米梁是一个符合微型化光谱仪需求的合适器件。为了实现纳米梁光谱仪的设想,该团队制定了“三步走”的研究计划。第一步是空间光谱仪方案。他们将大量纳米梁阵列按照空间排布,通过对空间光进行采集获得不同的频谱响应,结合重建算法设计了空间光谱仪[3]。在这个阶段,课题组对纳米梁的加工工艺进行了探索,包括孔径、波导宽度的工艺误差对谐振性能的影响,为后续工作打好基础。第二步是片上集成化光谱仪方案。引入热调谐以实现超小尺寸,将纳米梁阵列转化为少量级联的单元,通过频率扫描的方式获得高精度测量[4]。研究中,该团队进行了一系列优化设计,还在纳米梁单元引入部分透过结构以实现 Fano 谐振增强,从而进一步提升性能。作为分辨率的表征,他们演示了 0.16nm 线宽的窄带信号以及 0.32nm 间距的双峰信号的重建,还展示了不对称双峰、多峰以及基于3通道级联单元工作的 16nm 宽带信号的重建。图 | 信号重建结果(来源:Optica)第三步是高度集成化光谱仪。“这是未来的目标,就是希望把光谱仪和光电探测器、电路高度集成,实现商用化的光谱分析模块。”董建绩表示。有望用于无人机勘察和宝石鉴定由于具有小尺寸和高性能的特点,级联纳米梁光谱仪有望在各类微型化、便携式需求的光谱分析中得到应用。比如,植被覆盖率是生态环境的重要指标之一。通过将便携式光谱仪集成到无人机上,即可采集目标区域的可见光遥感影像,并通过光谱分析地理类型,获得植被分布情况。不仅可应用于检测植物的物候状态,还可用于估算粮食产量、提供环境政策参考。另外,在宝石考古研究中,由于不同的成因,古代的玛瑙石具有不同的矿物组成、颜色机理、结构特点。而有些宝石出于文物保护价值,无法移动到实验室进行组分分析。便携式的光谱仪就可以很好地解决这个问题。通过对宝石内纤维结构、元素成分的光谱分析,还原出新的历史信息。再比如,蔬菜、水果等农产品的成熟度,对农业采摘、市场交易、长途运输等具有重要的意义,而成熟度较好的水果会在某些波段(通常是红外)具有特定的光谱特性。对于微型化光谱仪来说,它可利用这一特点检测水果是否成熟,甚至帮助量化采摘、销售、保存的最佳时间。某些水果的水分、糖含量、坚实度也可以反映在光谱特性中,这都可以通过便携式光谱仪设备进行检测,具有成本低、快速、方便的特点。此外,得益于纳米梁是一种能带工程器件,可充分发挥其可扩展、可移植的灵活性优势,组装成适用性更广泛的其他商业产品,有望应用在更多集成化、便携式的使用场景中。与人交谈一次,胜过闭门劳作未来,该团队主要有两方面打算。一方面希望实现集成片上功率探测的完整芯片化光谱分析系统,借此达成工程化应用,进一步开发出相关产品,实现一定的演示功能,并希望和有兴趣的公司开展合作。另一方面,在基础研究上,从不同的能带结构设计出发,开发出不同波段需求的光谱仪。董建绩表示,每当遇到实际问题或工作难点,大家总能集思广益、寻找办法。他说:“我常跟大家讲,与人沟通是提高自己的一种有效方式,是一个团队行稳致远的重要基石。沟通不仅体现在老师对学生的引导,还有学长与学弟的传承,更有成员与成员间的探讨。这个项目攻关历时 9 年,期间培养了 3 个博士生,而且攻关仍在继续。列夫托尔斯泰曾说过,‘与人交谈一次,往往比多年闭门劳作更能启发心智。’我想在今后的科研道路上,我们应当继续保持这种良好的习惯。”-End-参考文献:1、Opt. Lett. 45, 2363-2366 (2020)2、Opt. Lett. 46, 3873-3876 (2021)3、ACS Photonics 9, 74-81 (2022)4、Optica, 9(5), 517-521.(2022)5、Nature Photon 7, 746-751 (2013)6、Nature 523, 67-70 (2015)7、Science, 365, 1017-1020 (2019)8、Nat. Commun. 12, 2704 (2021)
  • 西安电子科技大学红外物理与工程团队成功研制微型低成本便携式重建型光谱仪
    西安电子科技大学光电工程学院红外物理与工程团队利用光化学重塑技术,对金纳米棒及薄膜光谱透过率进行原位调节,设计出一种微型低成本便携式重建型光谱仪。相关科研成果题为“Miniature Spectrometer Based on Gold Nanorod-Polyvinylpyrrolidone Film”近日在线发表于国际期刊《Acs光子学》。该研究首次提出了基于金纳米棒-聚乙烯吡咯烷酮薄膜的重建型光谱仪,在满足光谱仪微型化发展需求的基础上,实现了简化的器件加工工艺、降低了制造成本,对微型光谱仪的普及具有重要意义。光谱被称为物质的“指纹”。通过对物质的透射、反射、吸收或发光光谱的分析,便可得知物质的光学特征、温度、元素成分等信息。近年来,光谱仪的微型化发展十分迅速,相关研究成果使光谱分析得以应用于现场检测、芯片实验室等领域。光谱仪是获取光谱信息的重要工具,相比于实验室中笨重且昂贵的传统台式光谱仪,微型化、便携化的光谱仪可适用于更多场景。其中重建型光谱仪作为一种新型的光谱仪微型化策略受到广泛关注,这类光谱仪不使用复杂的机械结构以及较长的光学路径,因此可以实现超紧凑的系统设计。但是,重建型光谱仪所使用的色散、滤光器件通常需要较为复杂和昂贵的微纳制造工艺流程,这在一定程度上限制了重建型光谱仪的研究和广泛应用。金是一种贵金属材料,物理化学性质非常稳定。而金纳米颗粒根据尺寸和形状,可以表现出独特的光学特性,其光谱吸收特征可以随着金纳米棒长度和直径比例的变化而改变。在成像传感器表面的聚合物薄膜内,嵌着一种被称为金纳米棒的棒状金纳米颗粒。该团队引入光化学重塑技术,利用金纳米棒的光热效应和再成型化学反应,在原位改变金纳米棒的长径比,从而达到改变薄膜的光谱透射率的目的。“针对金属纳米颗粒的光热与光化学重塑现象已被广泛研究。我们发现该效应可应用于重建型光谱仪滤光器件的加工。”西安电子科技大学光电工程学院博士研究生叶云龙说,“我们将光化学重塑技术应用于金纳米棒—聚乙烯吡咯烷酮薄膜,获得了具有丰富光谱透射特征的滤光器件。”“目前,重建型光谱仪使用的色散元件或滤波器,大多采用复杂且昂贵的微纳加工制造工艺。相比之下,利用光化学重塑金纳米棒聚合物薄膜的技术,可以实现滤光结构的低成本快速制造和灵活设计,而且这种技术并不限于金纳米棒这种材料。”团队指导教师王昱程说。据介绍,实验验证了重建型光谱仪设计思路的可行性,所加工的样机可对600纳米至700纳米范围内的光谱具有较好的窄带和宽带光谱重建效果。
  • 爱丁堡发布英国爱丁堡仪器一体化全自动显微共聚焦拉曼光谱仪RM5新品
    产品介绍:RM5是爱丁堡全新推出适用于科研及分析工作的高端显微拉曼光谱仪!这是一款紧凑型全自动显微拉曼光谱仪,可满足高端科研及分析工作的需求。RM5具有市场上独一无二的真共焦设计,能实现超高的光谱分辨率、空间分辨率和灵敏度。产品特点:1. 独特的真共聚焦设计—可调狭缝结合多位置可调的共焦针孔,使系统具有更高的图像清晰度,更好的荧光背景抑制,且可根据应用进行灵活优化;2. 集成式窄带宽拉曼激光器—多至三个软件自动控制的激光器,使用方便,稳定性高,占用面积小;3. 5位光栅塔轮—具有无与伦比的光谱分辨率1.4cm-1 (FWHM),可在50cm-1-4000cm-1 的全光谱范围内进行优化;4. 集成式探测器—可同时配置两个探测器,包括高效CCD、EMCCD和InGaAs阵列检测器,用于降低噪声,加快扫描速度、提高灵敏度和拓展光谱范围;5. 内置标准物质和自动校准功能—确保该系统始终可以获得高质量数据6. 4位拉曼滤光片塔轮—全自动陷波滤光片和边缘滤光片,自动匹配不同的拉曼光谱范围和激光波长;7. Ramacle?软件—功能强大的软件包,包含所有的系统控制、数据采集和分析,且易于升级;8. 高性能显微镜—兼容所有最新附件RM5配置灵活,支持包括Mapping功能 、全自动样品台、偏振拉曼以及外置相机等多种附件和功能的实现,并且均可通过Rmancle软件直接控制(包括设置,测试及数据分析等)。核心技术参数:1. 光谱分辨率1.4cm-12. 光谱覆盖范围:50cm-1-4000cm-13. 焦长:225cm4. 空间分辨率低至1μm5. 最低波数:<50cm-1应用领域:生命科学化学制药高分子材料纳米材料化妆品半导体艺术文物法医学地质学等创新点:RM5是一款拓展性及灵活性最强的紧凑型显微拉曼光谱仪: -具有独特的真共聚焦设计,可调狭缝结合多位置可调的共焦针孔,使系统具有更高的图像清晰度,更好的荧光背景抑制,且可根据应用进行灵活优化;共焦针孔有超过10档以上可供选择, 全电脑控制,使系统针对不同样品具有更高的灵活性 -最多可配置5块不同光谱色散的光栅,用户可以根据样品散射波数范围以及分辨率要求不同,具有更多的光栅选择。 -最多可配置3个激光器,匹配自动切换4位激光滤波器,除了常规低波数斯托克斯拉曼散射测试之外,还可同时配置限波滤光片,进行反斯托克拉曼散射测试。 -最多可配置2个探测器,在标配一个探测器的前提下,RM5预留第二个检测器端口,根据需求灵活选择EMCCD、InGaAs等探测器,实现快速拉曼成像及近红外区拉曼散射测试。 -自动化程度高,所有光学元件均为软件控制切换,无需手动切换。 -使用一体式光学底板设计,可以更好地保证仪器整体的稳定性。 英国爱丁堡仪器一体化全自动显微共聚焦拉曼光谱仪RM5
  • 可用于医疗诊断或药效检测的新技术“波长诱导频率滤波”
    美国麻省理工学院工程师开发出一种用于激发任何荧光传感器的新型光子技术,其能够显著改善荧光信号。通过这种方法,研究人员可在组织中植入深达5.5厘米的传感器,并且仍然获得强烈的信号。科学家使用许多不同类型的荧光传感器,包括量子点、碳纳米管和荧光蛋白质,来标记细胞内的分子。这些传感器的荧光可以通过向它们照射激光来观察。然而,这在厚而致密的组织或组织深处不起作用,因为组织本身也会发出一些荧光。这种“自发荧光”淹没了来自传感器的信号。为了克服这一限制,研究团队开发了一种被称为“波长诱导频率滤波(WIFF)”的新技术,使用三个激光来产生具有振荡波长的激光束。当这种振荡光束照射到传感器上时,它会使传感器发出的荧光频率增加一倍。这使得研究人员很容易将荧光信号与自发荧光区分开来。使用该系统,研究人员能够将传感器的信噪比提高50倍以上。这种传感器的一种可能应用是监测化疗药物的有效性。为了证明这一潜力,研究人员将重点放在胶质母细胞瘤上。这种癌症的患者通常选择接受手术,尽可能多地切除肿瘤,然后接受化疗药物替莫唑胺,以消除任何剩余的癌细胞。但这种药物可能有严重的副作用,且并非对所有患者都有效,所以研究人员正在研究制造小型传感器,这样就可以植入肿瘤附近,从体外验证药物在实际肿瘤环境中的疗效。当替莫唑胺进入人体后,它会分解成更小的化合物,其中包括一种被称为AIC的化合物。研究团队设计了可以检测AIC的传感器,并表明他们可以将其植入动物大脑中5.5厘米深的地方,甚至能够通过动物的头骨读取传感器发出的信号。这种传感器还可以用于检测肿瘤细胞死亡的分子特征。除了检测替莫唑胺的活性外,研究人员还证明可以使用WIFF来增强来自各种其他传感器的信号,包括此前开发的用于检测过氧化氢、核黄素和抗坏血酸的基于碳纳米管的传感器。研究人员说,新技术将使荧光传感器可跟踪大脑或身体深处其他组织中的特定分子,用于医疗诊断或监测药物效果。相关研究论文近日发表在《自然纳米技术》上。
  • 二维微机电(MEMS)阵列为移动光谱分析仪打下基础
    近日,德州仪器 (TI) DLP® 产品部的业务拓展经理 Mike Walker和 Optecks 的首席技术官 Hakki Refai 博士发表文章:二维微机电(MEMS)阵列为移动光谱分析仪打下基础,如下是文章全文。  在近红外 (NIR) 光谱分析领域中,一个将便携性与高性能实验室系统的准确性和功能性组合在一起的系统将极大地改进实时分析。由一块电池供电的小型手持式光谱分析仪的开发可以实现对工业过程、或食品成熟度的评估在现场进行更有效的监控。  大多数色散光谱分析测量在一开始采用的都是同样的方式。被分析的光通过一个小狭缝 这个狭缝与一个光栅组合在一起,共同控制这个仪器的分辨率。这个衍射光栅专门设计用于以已知的角度反射不同波长的光。这个波长的空间分离使得其它系统可以根据波长来测量光强度。  传统光谱测量架构的主要不同之处在于散射光的测量方式。两种常见的方法有(1)与散射光物理扫描组合在一起的单元素(或单点)探测器,以及(2)将散射光在一组探测器上成像。  使用 MEMS 技术的方法  使用具有一个单点探测器、基于光学微机电系统 (MEMS) 阵列技术的全新方法可以克服传统光谱分析方法中的很多限制。在基于单点探测器的系统中,一个固态光学 MEMS 阵列用简单、空间波长滤波器取代了传统的电动光栅。这个方法可以在消除精细控制电动系统中问题的同时,利用单点探测器的性能优势。近些年,此类系统已经投入生产,其中,扫描光栅被取代,并且 MEMS 器件过滤每一个特定波长进入单点探测器。这个方法在实现更加小巧和稳健耐用光谱分析仪的同时,也表现出很高的性能。  相对于线性阵列探测器架构,光学 MEMS 阵列的使用具有数个优势。首先,可以使用更大的单元素探测器,以提高采光量,并极大降低系统成本和复杂度,这对于红外系统更是如此。此外,由于不使用阵列探测器,像素到像素噪声被消除了,而这可以极大地提升信噪比 (SNR) 性能。SNR 性能的提高可以在更短时间内获得更加准确的测量结果。  在一个使用 MEMS 技术的光谱分析系统中,衍射光栅和聚焦元件的功能与之前一样,但来自聚焦元件的光在 MEMS 阵列上成像。要选择一个用于分析的波长,一个特定的光谱响应波段被激活,这样的话,就可以将光引入到单点探测器中进行采集和测量。  如果 MEMS 器件高度可靠,能够生成可预计的滤波器响应,并且在不同的时间和温度下保持恒定,那么这些优势就可以实现。  将一个 DLP® 芯片或数字微镜器件 (DMD) 用作一个空间光调制器,并且在一个光谱分析仪系统架构中将其用作 MEMS 器件的话,可以克服数个难题。首先,使用一组铝制微镜来接通和关闭进入单点探测器的光,这在广泛的波长范围内是光学有效的。其次,数字微镜的打开和关闭状态由机械止动装置和互补金属氧化物半导体 (CMOS) 静止随机访问存储器 (SRAM) 单元的锁存电路控制,从而提供固定的电压镜控制。这个固定电压、静止控制意味着这个系统不需要机械扫描或模拟控制环路,并且能够简化校准。它还使得光谱分析仪设计更能免受温度、老化或振动等错误源的影响。  DMD 的可编程属性具有很多优势。其中某项优势会在进行光谱分析仪架构设计时显现 -- 如果以被用作滤波器的微镜的寻址列为基础。由于 DMD 分辨率通常高于所需的光谱,DMD 区域会出现欠填充的情况,并且会对光谱过采样。这使得波长选择完全可编程,并且在光引擎出现极端机械位移的情况下,将额外微镜用作重新校准列。  此外,DMD 是一个二维可编程阵列,这为用户提供高度的灵活性。通过选择不同的列数量,可以调节分辨率和吞吐量。扫描时间可动态调整,如此一来,用户可对所需波长进行更长时间、更加详细的检查,从而更好地使用仪器时间和功能。此外,相对于固定滤波器器具1,诸如采用的 Hadamard 图形等高级孔径编码技术,可实现高度的灵活性和更高性能。  总之,与目前的光谱分析系统相比,使用 DMD 的光谱分析器件可实现更高分辨率、更高灵活性、更加稳健耐用、更小的外形尺寸和更低的成本,从而使得它们对于广泛的商业和工业应用更有吸引力。  单探测器架构消除噪声  目前基于线性阵列的光谱分析仪主要受到两个因素的限制。首先,探测器的波长选择受到像素孔径的限制。探测器的尺寸决定了采集到的光量,从而影响SNR。诸如Hamamatsu G9203-256的常见磷化砷镓铟 (InGaAs) 256像素线性阵列的尺寸为50微米 x 500微米。相反地,一个数字微镜阵列是一个完全可编程的矩阵,可以针对应用来配置列的数量和扫描技术。这可以将更大的信号呈现给通常与DMD一同使用的更大的1毫米或2毫米的单点探测器。将窄带光过滤到一个线性阵列中 -- 通常是50微米宽像素 -- 也许会出现串扰的问题。像素到像素干扰会成为读取过程中产生噪声的主要原因。这些干扰可通过单探测器架构消除。此外, 通过利用1kHz至4kHz的数字微镜扫描速度,单点探测器可以达到与平行多点采样相类似的驻留时间。对于基于MEMS -- 或基于DMD -- 的紧凑型光谱分析仪引擎,结果显示SNR的范围大于10000:1。  对于超级移动光谱分析仪十分关键的小型、高分辨率2D MEMS阵列  为了尽可能地提高性能,用户需要考虑可被用于将光线反射至探测器的MEMS总面积。然后,将这个面积与可用单点探测器孔径尺寸仔细匹配。  一个采用5.4微米微镜的DMD具有超过40万个可用像素,并且可以针对700纳米至2500纳米的波长进行优化。该款DMD是DLP2010NIR,它采用一个被称为TRP的全新像素架构。如图1中所见,这个像素提供17度的倾斜角。DLP2010NIR在一个评估模块中运行 这个评估模块提供针对光谱分析应用场景的独特光学架构。一个利用17度接通和关闭角度的光学路径可以用一个尽可能减少散射光的小巧引擎实现高性能感测分辨率。  图2中显示了这个针对光谱分析使用情况的独特光学引擎。这个系统优化了整个光路径中光学信号。来自样本的响应在DMD上成像,从而实现对每个波长的空间控制。这个评估模块的目的在于,通过将高效MEMS用作光谱分析中的高速2D滤波器,来获得设计优势。它是一款小巧、结实耐用且高度自适应系统,能够使光谱分析走出实验室,直接应用于现场测量或含光源测量。与传统光谱分析仪相比,同一个器件中的透射和反射测量头互换功能可以实现性能基准测试。  一个利用DLP2010NIR芯片的光谱分析光引擎有数个照明模块,并且每个模块的工作方式稍有不同。在一个传输模块中,光源、比色皿支架、高精度比色皿和和其它安装硬件被用于完成透射样本的吸收量和散射属性的测量。NIR透射测量值可用于液体样本,诸如果汁的水含量或出现的气体特征。这些数据能够提供与果汁原产地有关的很多信息。在固体样本中,NIR透射可以测量塑料管的不透光度,而这是观察气体和液体在传送线路中流动的重要参数。线路内的透射测量也被用于分析黄油在生产过程中的水含量,这样可以及时调整黄油制作工艺,从而节省了时间、尽可能降低成本,并且增加最终产品的质量。  或者,在样本无需与光谱分析仪窗口接触的测量中,反射模块是一个选择。它可以在几厘米的距离之外灵活地执行扫描操作,比如肉品被包装在塑料薄膜后监测肉品质量。诸如血糖预测等健康应用方面,也可以使用皮肤的漫反射来成为NIR区域内特色应用。  最后,在光纤耦合模块中,不论是透射测量,还是反射测量,它们都是通过光纤实现。这样可以在光谱分析仪与样本无法直接接触时实现测量。此类采样示例包括监视工业过程、测量导管中流动的液体、分析鸡肉、牛肉和猪肉中的湿度、脂肪和蛋白质含量。这些模块极大地扩展了应用范围,并且提供更高的测量性能。Optecks具有能够实现所有这些采样方法的照明模块解决方案。  正如之前讨论过的那样,使用DMD的光谱分析器件将功能拓展至对多个物质的分析、测试和测量。它们为实现更加准确的性能、更高分辨率、更大灵活性、更好的稳健耐用性和更小外形尺寸光感侧解决方案提供一个途径。此外,使用DMD的光谱分析仪还带来了更高的测量可靠性,而这在之前使用的传统光谱分析系统中,这也许是无法实现的。不论用户是打算用它测量农田中的庄稼需要的灌溉量,或是想要预测食物中的腐败程度,光谱分析都在不断成为准确、实时分析的强大方法。  参考书目  1 Pruett, E.,“德州仪器 (TI) DLP® 近红外光谱分析仪的最新发展可实现下一代嵌入式小巧、便携式系统”SPIE 9482-13 2015年4月  作者简介  Mike Walker先生是德州仪器 (TI) DLP® 产品部的业务拓展经理,负责这个部门的光谱分析业务。在过去几年中,Walker始终致力于将这项突破性架构引入到IR感测领域。在此之前30年间,Mike领导了TI的多个技术和业务团队。  Hakki Refai博士是Optecks的首席技术官。他在针对基于DLP系统的光学、电子和软件系统的设计和开发方面拥有10几年的经验。Refai博士在先进电子设备的设计、生产和分销方面具有5年多的领导经验。
  • 西安交大:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚Dt=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066官网:https://www.bmftec.cn/links/10
  • Mirrorcle MEMS扫描镜技术概述(1)
    Mirrorcle MEMS扫描镜技术概述(1)高速的点到点以及倾斜性能 大多数的Mirrorcle MEMS Mirror设备类型都是为点对点光束扫描而设计和优化的。稳态模拟驱动电压会产生MEMS镜像的稳态模拟转角。该设备有一个一对一的对应的驱动电压和角度:它是高度可重复的,没有检测到随时间而发生变化。这在很大程度上是由于静电驱动方法和单晶硅材料的选择。镜面运行机构开环驱动的机械倾斜位置精度在每轴上至少14位(16384点)。对于大多数设备,每个轴上的机械倾斜范围为-5°到+5°,这种倾斜分辨率在0.6毫米或10微弧度内。一系列的驱动电压对应点对点扫描的一系列角度。Mirrorcle技术公司(MTI)的设备可以在非常宽的带宽内工作,从直流(它们在恒定电压下保持位置,设备功耗几乎为零)到几千赫兹。这种快速和宽带能力允许几乎任意的波形,如矢量图形,匀速线扫描,点对点步进扫描,目标跟踪等。图1 Mirrorcle专利的无框架两轴扫描驱动器的示例示意图(该驱动器基于四个静电双向旋转器,通过特殊的硅支架连接)多个授予的专利描述了专有的无平衡环设计方法和独特的专有多级光束制造方法,用于从单晶硅单片创建一个完整的驱动器。无框架设计的一个主要优点是能够在两个轴上以相同的速度控制光束或图像。一个具有0.8 mm直径镜的典型装置的倾斜角从-6°到+6°,非谐振光束转向超过1000 rad/s,在两个轴上的第yi谐振频率都在3.6 kHz以上。当开环驱动专用输入整形滤波器时,c) 第三种模式为共振模式。在这种情况下,两个轴都利用窄的高增益共振来获得大的偏转角和相对低的电压。运动被限制在窄带宽的正弦轨迹中,其相位滞后于外加电压。由于谐振模式可以在蕞高增益点的几个百分点以内获得,因此没有必要在准确的谐振峰值处驱动装置。由此产生的二维运动描述了圆、椭圆和各种高阶李萨如模式,并且可以以某种速率调制。当设计为点对点模式的器件在共振附近或共振处被驱动时,它们可能会超过安全工作角度。因此,在共振附近或共振处进行操作时,电压要明显降低,而且要格外小心。图2.使用Mirrorcle MEMS镜的三种例子((a)点对点扫描模式(准静态)两轴上激光在每个角度都停下,然后走到下一个角度,(b)共振扫描模式在x轴上(正弦运动光束)和准静态轴,(c)两轴共振扫描模式,为二维共振李萨如模式。所有的图像都是用连续波激光使用同一个Mirrorcle MEMS镜拍摄的)模块化设计MIRRORCLE驱动器有固定的模块化设计方法。每个运行机构都可以使用任意长度的静电转子、任意刚性连杆和任意位置的机械旋转变压器。此外,该装置由较多种镜面直径。无二维框架设计的概念示意图如图1所示。由于这种模块化,设备很容易根据特定的应用程序需求进行定制。根据硅模具的可用面积/尺寸(在一些应用中,如生物医学成像的尺寸受成像设备规格的限制),可以设计适当尺寸的驱动器,在允许的参数空间内获得蕞大的性能。由于这种设计的灵活性和广泛的应用需要波束转向,具有广泛不同的规格,MIRRORCLE提供多种类型的无框架两轴执行器设计。拥有超过20代主要的设计和制造产品,多个子代的设计调整为特定的客户或一套规格,完整的工作设计清单有超过100种设备类型。这些设备类型中的大多数在研发数量上都是可用的,为我们的客户提供了快速找到应用程序开发的蕞佳参数。设备运行速度与镜片大小的关系由于惯性增加,镜片直径较大的设备速度也相应较慢。圆形镜片的惯量与半径的四次方成正比,因此,随着反射镜尺寸的增加,速度会再次降低。这是一个非常粗略的估计,但许多其他参数影响实际性能,特别是模具尺寸和角度摆动。例如,将直径0.8mm的集成镜片与直径2.0mm的集成镜片进行比较,两者都具有相同的硅模具尺寸,并且都具有非常相似的机械端面/倾斜角(-5°到+5°)。0.8mm器件的第yi共振频率为~6kHz,而2.0mm器件的第yi共振频率为~1.3kHz。图3.两个器件的电压与角度(静态响应)和小信号(频率)响应图(上面为集成0.8mm镜的A7M8.1设备,以下为集成2.0mm镜的A7M20.1设备)蕞优的驱动器尺寸MIRRORCLE已经设计和制造了超过100种不同的设备类型。对关键性能规格有很大影响的一个非常重要的设计参数是驱动器(硅芯片)的尺寸。更大的驱动器可以提供更高的力和扭矩,以更快的速度驱动更大的镜子,但也需要更多的生产成本和更大的包装。小的驱动器适合小尺寸的镜子,因为驱动器本身也有较小的惯性。目前设计分为3种尺寸:1) 4.23mm x 4.23mm 2) 5.20mm x 5.20mm3) 7.25mm x 7.25mm重要的是查看每个特定的设计,以确定与特定应用程序的适配。一般来说,直径等于或大于3mm的镜子,应与尺寸#2或#3一起使用,以获得蕞佳性能,而直径等于或小于2.0mm的镜子应与尺寸#1或#2一起使用。关于昊量光电昊量光电 您的光电超市!昊量光电作为Mirrorcle在中国区的总代理,可给客户提供更全的产品、更低的价格、更短的货期以及优良的服务。上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 阿尔托大学孙志培教授团队最新Science:超小型光谱仪
    近日,芬兰阿尔托大学(Aalto University)孙志培院士团队和上海交通大学蔡伟伟教授团队,浙江大学杨宗银教授团队,四川大学崔汉骁教授团队,以及英国剑桥大学的Tawfique Hasan教授团队等合作开发了一种基于可调范德华异质结的高性能超微型光谱仪,尺寸仅为数微米。通过学习该异质结在不同栅极电压下的光电流响应,结合先进的重构算法,研究人员在可见光和近红外波段突破性地实现了~0.36纳米的窄带光谱准确度,以及~3纳米的宽带光谱分辨率。该新型光谱仪不仅无需传统光谱仪中的光栅,光电探测器阵列等复杂器件和结构,还具有极高的准确度和分辨率。该工作不仅为高性能光谱仪的微型化提供了全新的思路,也为大规模片上光子系统集成,芯片实验室等先进技术实现了重要基础性突破。相关研究成果于近日以题为“Miniaturized spectrometers with a tunable van der Waals junction”的研究论文形式在线发表于Science期刊。计算光谱仪的性能取决于其波长依赖性光响应度的可变性。vdW结的界面带取向的电调谐(图1A)可实现可控和独特的层间传输。这种电可控的层间传输允许在宽光谱范围上具有高灵敏度和可变性的可调谐光谱响应(图1A)。作者将电可调谐的单vdW结与各种应用的计算重建算法相结合(图1B)。为了在实验上实现光谱仪概念,作者进行了以下三个步骤(图1):(i)使用多个已知入射光谱测量门可调谐光谱响应,(ii)测量待分析的未知入射光的门可调光电流,以及(iii)根据学习和测试过程中获得的结果,使用重构算法计算未知入射光的光谱信息。图1 超小型化光谱仪概念在不同的栅极电压和入射光波长下调谐对光谱仪至关重要。作者选择MoS 2/Se 2异质结(图2A)作为例子。MoS 2/Se 2异质结被顶部和底部的六方氮化硼(h-BN)层所封装,分别用于绝缘和钝化。堆叠层下面的单层石墨烯薄膜被用作局部栅极电极,用于有效的栅极调谐。MoS 2/Se 2通道及其异质结的传输曲线是在黑暗条件下漏源电压为3V时测量的(图2B)。MoS 2/Se 2异质结的 "反双极 "行为和其他传输特性是MoS 2/Se 2异质结的典型特征,提供了明显可区分的V GS依赖性。测量的MoS 2/Se 2异质结的传输曲线表明有很强的波长依赖性(图2c)。光谱响应矩阵(图2D)从跨越可调谐的MoS 2/Se 2异质结产生的光激发电荷载流子的动力学中继承了丰富的结构,证实了在MoS 2/Se 2异质结中具有快速和稳定的光谱检测与可调谐能力。在编码这个光谱响应矩阵(图2D)后,就可以通过测量未知入射光的门控可调谐光电流,然后计算其约束最小二乘解,以使用自适应吉洪诺夫正则化方法通过最小化具有正则化因子的残余范数来重建光谱。并证明了单结光谱仪概念的可行性(图2E和F)。图2 单结光谱演示在实际应用中,波长分辨能力是衡量光谱仪的一个重要标准。为了证明此单结超微型光谱仪的高光谱分辨率能力,作者通过一个超小的学习步骤(0.1纳米)构建一个高密度的光谱响应矩阵,使用波长为675至685纳米的单色光进行学习过程(图3A)。此单结光谱仪由高密度光谱响应矩阵编码,可以高精度地分辨单色光(图3,B和C)。重建光谱和参考光谱之间的平均峰值波长差(Δλ)为∼0.36±0.06纳米,最小为∼0.04纳米(图3D)。这与0.1 nm的学习步骤相当。在给定的输入波长λ下,平均波长分辨率是∼3470(图3D)。此外,作者测量复杂的入射光谱以研究光谱分辨率。成功区分了∼679 nm处相隔∼3 nm的两个峰(图3E)。为了说明单结光谱仪的未来发展可能性,作者还证明此方法具有改进的光响应性的潜力,可实现比商用小型化光谱仪更高的分辨率(图3F)。图 3.高性能波长分辨功率和光谱分辨率此单结光谱仪可以从最近开发的大规模2D材料合成中受益,以构建用于未来光谱成像的阵列。使用此光谱仪通过空间扫描演示了由红色、蓝色和透明区域组成的彩色滤光片的概念验证光谱成像(图4A)。在每个映射位置,测得不同V GS处的光电流数据一般事务记录在空间响应数据立方体中,用于光谱重建。在不同V GS下扫描的一系列光电流映射数据被显示出来(图4B)并转换为在不同波长下重建的一系列光谱数据(图4C)。在此演示中,图像分辨率由映射步骤定义。此概念在未来的阵列设备进行大规模光谱成像方面具有巨大的潜力,可以在微米或纳米尺度的结中提供高空间分辨率。图 4. 光谱成像的概念验证演示在此光谱仪中,无需光电探测器阵列、滤光片阵列或其他笨重的色散元件即可实现高分辨率、亚纳米级精度和宽工作带宽。作者的单结光谱仪占地面积小,可提供与当前光子集成电路和CMOS兼容工艺的可扩展性和兼容性,从而直接集成到现代智能手机、芯片实验室系统以及从生物植入物到无人机和卫星等其他定制设备中。本文所报道的范德华异质结光谱仪,简化了传统光谱仪中为实现高性能所采用的复杂光电探测器阵列,滤波器阵列,以及其他复杂的分光、色散结构和元件,使光谱仪尺寸缩小到微米量级;利用异质结栅压可调光谱响应的特性及计算重构算法,实现了极高的光谱准确度和分辨率。该工作是一项重要的基础性突破,将为大规模片上光子系统集成,芯片实验室等先进技术的小型化提供高性能解决方案。
  • 近红外光谱的柔性生命力——Norris导数滤波浅说
    p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   导读:近红外(NIR)光谱分析是融合样本、变量和模型三个多维空间的建模体系。它具有直接快速的分析优势,同时,也对方法学提出了挑战。光谱预处理是一项基本技能,在信息提取、去噪,模型维护及传递中扮演重要角色。由于对象、条件和测量方式的多样化,预处理模式通常需要个性化优选。Norris导数滤波(NDF)包含导数阶数、平滑点数和差分间隔三个可变参数,是多模式的算法群。功能各异的参数融合,可提升近红外光谱的柔性生命力,满足多样性光谱预处理的个性化需求。本文以近红外玉米粗蛋白分析为例,分享对Norris导数滤波的理解。在材料制作前期,惊闻Karl H. Norris博士病逝!谨以此文悼念Dr. Karl H. Norris! /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 319px " src=" https://img1.17img.cn/17img/images/201908/uepic/dd11b712-09f6-4b18-87b6-a00f0bd3234f.jpg" title=" 微信图片_20190819100830.jpg" alt=" 微信图片_20190819100830.jpg" width=" 300" height=" 319" border=" 0" vspace=" 0" / /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span br/ /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 暨南大学光电工程系 潘涛教授 /strong /span /p p span style=" color: rgb(0, 176, 80) " strong   引 言 /strong /span /p p   众所周知,近红外(NIR)光谱是典型的多维信息数据。近红外光谱分析是融合样本、变量和模型三个多维空间的建模体系,化学计量学是核心技术。相对于其他分析手段,近红外光谱具有快速简便的优势,它可以不进行化学或物理的前处理,直接进行测量。例如,采用漫反射法直接测量固体样品(如粉末,颗粒,纤维等)、透射法直接测量多种组分的复杂液体样品(如血液,牛奶,酒类等)。同时,它也对方法学提出了挑战。例如,需要处理光谱基线漂移和倾斜等光谱扰动。光谱预处理是非常必要的,但由于样品和测量方法的多样性,预处理模式通常需要个性化优选。 /p p span style=" color: rgb(0, 176, 80) " strong   1. 几类常见光谱预处理方法 /strong /span /p p    span style=" color: rgb(0, 176, 80) " strong 标准正态变量变换 /strong /span (standard normal variate transformation, SNV)是常用的光谱预处理方法。它在每一条光谱内进行横向标准化处理,提升光谱之间的差异度,提高模型稳健性和预测能力 sup [1, 2] /sup 。用于消除固体颗粒大小、表面散射以及光程变化对NIR漫反射光谱的影响 sup [3] /sup 。最近,我们将SNV方法应用于水稻种子鉴别、种子纯度定量的近红外分析 sup [4, 5] /sup 。 /p p    span style=" color: rgb(0, 176, 80) " strong 多元散射校正 /strong /span (multiplicative scatter correction, MSC)是另一种常用的光谱预处理方法 sup [6~9] /sup 。它与SNV基本相同,主要是消除颗粒分布不均匀及颗粒大小产生的散射影响,在固体漫反射和浆状物透(反)射光谱中应用较为广泛 sup [3] /sup 。MSC假设样品光谱与平均光谱整体线性相关,并以全谱区为窗口来校正所有波长的吸光度。然而,在宽谱段的情形,难以对局部相关性差的波长实现满意的校正效果,这会影响光谱的整体预测能力。 /p p   文献[10]提出的 span style=" color: rgb(0, 176, 80) " strong 分段多元散射校正 /strong /span (piecewise multiplicative scatter correction, PMSC)是一种分段线性校正方法。PMSC方法允许可变的校正窗口(p+1+q),从算法上覆盖MSC。校正窗口参数的优化是必须的 sup [11] /sup ,然而,受限于当时的计算机水平,相应的参数优化平台尚未建立,影响了PMSC方法的应用。最近,本团队提出移动窗口相关系数谱,用于描述光谱之间的局部相关性,构建了基于PLS回归的PMSC参数优化平台,取得了显著优于MSC的预测效果,应用于水稻种子纯度、土壤有机质的近红外分析 sup [12] /sup 。 /p p   上述基础性的光谱预处理方法,通常需要和平滑、求导法进行联用。平滑用于消除弱噪声而保留光谱轮廓,一阶导数用于校正光谱的基线漂移(additive baseline),二阶导数用于校正光谱的线性基线漂移(linear baseline)等噪声 sup [11] /sup 。 /p p    span style=" color: rgb(0, 176, 80) " strong Savitzky-Golay平滑 /strong /span (SG smoothing)是一种十分优雅的产生导数光谱的预处理方法 sup [13] /sup 。它采用平滑窗口波长数(2m + 1)、多项式次数(n)和导数阶数(s)作为参数。在平滑窗口内,对中心波长的光谱数据进行多项式校正,再通过移动窗口方式实现全谱的校正。不同的参数组合对应不同的平滑模式,计算公式也各不相同。功能各异的参数的融合,提升了近红外光谱的柔性生命力,可满足多样性光谱预处理的个性化需求。本团队构建了三维参数(m,n,s)遍历的偏最小二乘(PLS)算法平台,实现了SG平滑模式的大范围参数优化,应用于近红外光谱的血糖分析 sup [14] /sup 、土壤检测 sup [15,16] /sup 、转基因甘蔗育种筛查 sup [17] /sup 、糖化血红蛋白分析 sup [18] /sup 、地中海贫血筛查 sup [19,20] /sup 、血粘度测定 sup [21,22] /sup 等方面。 /p p    span style=" color: rgb(0, 112, 192) " Norris导数滤波(Norris derivative filter, NDF)是另一个著名的光谱预处理方法。它由被誉为“近红外光谱之父”的Karl H. Norris博士等人提出 sup [23, 24] /sup 。但是,Norris当时只简单的描述了算法的框架,后面的应用文献中也未看到详细描述。我们在褚小立的专著 sup [3] /sup 中找到了稍微具体的公式,但是严格的方法体系,特别是多参数融合方法仍需完善。在从事近红外光谱的长期工作中,我们深感到Norris导数滤波的柔性生命力。 /span /p p span style=" color: rgb(0, 112, 192) "   最近,仪器信息网和中国仪器仪表学会近红外光谱分会计划开设的《近红外光谱新技术/应用进展》网络专题,并向我约稿。由此,萌发了写一篇小文介绍Norris导数滤波的想法。 /span /p p span style=" color: rgb(0, 176, 80) " strong   2. Norris导数滤波(NDF) /strong /span /p p   NDF是一个基于多个可变参数的多模式光谱预处理算法群,在近红外分析中有广泛应用。它包括移动平均平滑和差分求导两个环节,使用三个参数:平滑点数(s),导数阶数(d)和差分间隔(g)。功能各异的参数组合,提供了多样性的光谱预处理方式,可以满足不同对象的近红外分析的个性化需求。 /p p   最近,我们构建了三维NDF参数(d,s,g)遍历的PLS算法平台,实现了NDF模式的大范围参数优化,应用于玉米粗蛋白分析和血清尿素氮分析 sup [25, 26] /sup 。 /p p span style=" color: rgb(0, 176, 80) " strong   【移动平均平滑】 /strong /span /p p   移动平均平滑法选择一个具有奇数个波长的平滑窗口(s),用窗口内的全体测量值的平均值代替中心波长的测量值,自左至右移动窗口,完成对所有点的平滑(左右半宽带的波长除外)。设全谱段的波长总数为N sub 0 /sub ,s是一个可变的奇数,s = 1, 3, & #8230 ,S。理论上,S可以取不超过N sub 0 /sub 的最大奇数。由于关联性低,采用太宽的平滑窗口是不合理的,本文设平滑点数上限S=99。特别地,s=1代表不进行移动平均平滑,即,原光谱。 /p p   设光谱的第k个波长的吸光度为x sub k /sub ,在以k为中心,宽度为s的对称波长窗口内,对中心波长吸光度进行平滑,如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 124px " src=" https://img1.17img.cn/17img/images/201908/uepic/60849de6-dced-4490-8f63-649d3cee9496.jpg" title=" 01.png" alt=" 01.png" width=" 600" height=" 124" border=" 0" vspace=" 0" / /p p   值得注意的是,对于最左边或最右边的 img src=" https://img1.17img.cn/17img/images/201908/uepic/b8cea792-9064-4cd0-862c-f9fafaf26e44.jpg" title=" 微信图片_20190826114304.png" alt=" 微信图片_20190826114304.png" style=" text-align: center max-width: 100% max-height: 100% " / 个波长,由于该点左边或者右边的点数小于& nbsp img src=" https://img1.17img.cn/17img/images/201908/uepic/d295318f-2ca9-492e-859f-c3beef9935bd.jpg" title=" 微信图片_20190826114304.png" alt=" 微信图片_20190826114304.png" style=" text-align: center max-width: 100% max-height: 100% " / ,不能进行对称平滑。考虑到数据的连续性,对于最左边的 img src=" https://img1.17img.cn/17img/images/201908/uepic/fe38ef55-a973-4f74-93fc-0302a031f2e2.jpg" title=" 微信图片_20190826114304.png" alt=" 微信图片_20190826114304.png" style=" text-align: center max-width: 100% max-height: 100% " / span style=" text-align: center " 个波长,我们提出近似平滑,如下: /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 122px " src=" https://img1.17img.cn/17img/images/201908/uepic/0fc41379-50ef-4a45-bdb2-ab12d1f348c4.jpg" title=" 02.png" alt=" 02.png" width=" 600" height=" 122" border=" 0" vspace=" 0" / /p p   对于最右边的波长,吸光度的平滑方法类似于公式(2),如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/98199654-339d-4808-ac8b-b9678b723566.jpg" title=" 03.png" alt=" 03.png" / /p p   上述处理,使得光谱边界数据自然过渡,更为合理。 /p p span style=" color: rgb(0, 176, 80) " strong   【差分求导】 /strong /span /p p   为了避免差分求导产生传递误差,通常需要经过移动平均平滑光谱后,再进行中心差分法求导。由于近红外光谱比较平坦,不同对象的光谱分辨率不尽相同。光谱采集的数据间隔不一定适用于差分间隔。Norris导数采用一个可变的波长间隔数作为导数的差分间隔(g),g = 1, 2, & #8230 ,G。由于关联性低,太大的差分间隔是不合理的,本文设差分间隔的上限G=50。 /p p   对于第k个波长的吸光度x sub k /sub ,采用基于差分间隔g的中心差分,计算吸光度的一阶导数,自左至右移动,得到所有点的导数值(左右半宽带的波长除外)。如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/f4858970-26bd-4911-84b4-a7eec9998e8d.jpg" title=" 04.png" alt=" 04.png" / /p p   值得注意的是,对于最左边或最右边的g个波长,由于该点左边或者右边的点数小于g,不能执行中心差分法求导。考虑到数据的连续性,对于最左边的g个波长,我们提出前向差分法计算一阶导数,如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/88f4e45a-9f52-40cb-889c-3b57efab9059.jpg" title=" 05.png" alt=" 05.png" / /p p   对于最右边的g波长,则可通过后向差分法计算一阶导数,如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/01dbdd54-82d4-49fc-bafa-7dc511a8f3bd.jpg" title=" 06.png" alt=" 06.png" / /p p   二阶导数,可由上面的一阶导数再求导获得,编程实现简单,不再赘述。 strong 考虑到3阶以上的高阶导数的绝对量值小,光谱信息含量低,一般不建议采用3阶以上的导数。 /strong 本文设导数阶数为d = 0, 1, 2。特别地,d=0代表不进行差分求导,即,只进行移动平均平滑。 /p p span style=" color: rgb(0, 176, 80) " strong   【参数联合优化】 /strong /span /p p   对于任意一个参数组合(d, s, g),都对应一个Norris导数模式。对于d = 0, 1, 2;s = 1, 3, & #8230 , 99;g = 1, 2, & #8230 , 50,共有50+2× 50× 50=5050个模式。三个功能各异的参数的变化,使得Norris导数谱比原谱更为灵活、柔性、多样化,适用性宽。下面,提出一种基于PLS的Norris参数的联合优选方法。为提高参数选择合理性,采用基于随机性、相似性、稳定性的定标-预测-检验的多划分建模设计 sup [27, 28] /sup 。 /p p   建立所有Norris导数谱的PLS模型,称为Norris-PLS模型。计算每一组样品划分的预测均方根误差(SEP)和预测相关系数(R sub P /sub )。进一步,计算所有划分的平均值(SEP sub Ave /sub ,R sub P,Ave /sub )和标准偏差(SEP sub SD /sub ,R sub P,SD /sub )。并基于综合预测效果: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 41px " src=" https://img1.17img.cn/17img/images/201908/uepic/10c59c4b-f073-4ce9-a25a-09c90ec33c1a.jpg" title=" 7.png" alt=" 7.png" width=" 600" height=" 41" border=" 0" vspace=" 0" / /p p   优选具有稳定性的全局最优Norris参数,如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 62px " src=" https://img1.17img.cn/17img/images/201908/uepic/4e15c028-35d0-4198-b122-f5bc4e751221.jpg" title=" 8.png" alt=" 8.png" width=" 600" height=" 62" border=" 0" vspace=" 0" / /p p   此外,对应导数阶数d=0, 1, 2,可以计算两类单参数局部最优解,如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 95px " src=" https://img1.17img.cn/17img/images/201908/uepic/fb7412b2-80aa-4b3b-871d-21148c32e7e3.jpg" title=" 9.png" alt=" 9.png" width=" 600" height=" 95" border=" 0" vspace=" 0" / /p p   可得到,关于平滑点数s的三条建模效果曲线SEP sup + /sup (0, s),SEP sup + /sup (1, s),SEP sup + /sup (2, s)和关于差分间隔数g的两条建模效果曲线SEP sup + /sup (1, g),SEP sup + /sup (2, g)。通过它们可以分析Norris参数的适应性。 /p p span style=" color: rgb(0, 176, 80) " strong   3. 实例—近红外玉米粗蛋白分析 /strong /span /p p span style=" color: rgb(0, 176, 80) " strong   【材料】 /strong /span /p p   玉米颗粒样品156份,研磨并过筛(1.0mm)为粉末样品(未干燥),采用凯氏定氮法测量样品粗蛋白。最小值、最大值、平均值、标准差分别为7.31、12.1、9.46、0.92(%)。 /p p span style=" color: rgb(0, 176, 80) "   strong  【近红外光谱仪器】 /strong /span /p p   Nexus sup TM /sup 870 FT-NIR光谱仪(Thermo Nicolet Corporation,MA,USA);漫反射附件;波数范围:9997~3996 cm sup -1 /sup ;分辨率:32 cm sup -1 /sup 。 /p p    strong span style=" color: rgb(0, 176, 80) " 【定标-预测-检验的多划分建模】 /span /strong /p p   从156个样品随机选取56个为检验集,余下100个为建模集;进一步将建模集随机划分为定标集(50个)和预测集(50个),共10次。对所有划分建立PLS模型,确定平均预测效果(SEP sub Ave /sub ,R sub P,Ave /sub ,SEP sub SD /sub ,R sub P,SD /sub ,SEP sup + /sup )。 /p p span style=" color: rgb(0, 176, 80) "    strong 【分析】 /strong /span /p p    strong 先来观察玉米粉末样品的近红外光谱及其Norris导数谱的特征。 /strong /p p   以一个玉米粉末样品为例,采用不同平滑点数(s = 1~49,奇数),首先计算移动平均平滑谱,如图1所示。其中,s = 1为原光谱。观察到:随着平滑点数增大,主吸收峰右移,且渐趋平坦。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/1dd5ef51-7b05-4b16-be80-4c924cd44302.jpg" title=" 图1.png" alt=" 图1.png" / /p p style=" text-align: center " strong 图1 玉米粉末样品的移动平均平滑谱随平滑点数的演变图 /strong /p p   在移动平均平滑谱(s = 13)的基础上,采用不同差分间隔数(g = 1~30),进一步计算Norris导数谱(一、二阶导数),如图2所示。观察到:主吸收峰翻转为波谷,同时出现新的特征峰。随着差分间隔增大,波谱幅度逐渐减小。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 232px " src=" https://img1.17img.cn/17img/images/201908/uepic/edc64a8e-9c8f-4b57-b4f2-d76bbd2da356.jpg" title=" 图2.png" alt=" 图2.png" width=" 600" height=" 232" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图2 玉米粉末样品的Norris导数谱随差分间隔的演变图: (a)一阶导数 (b)二阶导数 /strong /p p   strong  再展示相关的建模效果。 /strong /p p   首先,未经预处理的直接PLS模型的平均建模效果,汇总在表1中。 /p p   在所有5050个Norris-PLS模型中,全局最优模型的参数(NDF模式)为d =2,g =3和s=13,相应的建模效果,也汇总在表1中。观察到:所有预测效果的指标均有显著的改善。 /p p style=" text-align: center " strong 表1 玉米粗蛋白分析的建模预测效果(%) /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 104px " src=" https://img1.17img.cn/17img/images/201908/uepic/9539dcc6-2f95-46ae-8caa-c25937062f19.jpg" title=" 表1.png" alt=" 表1.png" width=" 600" height=" 104" border=" 0" vspace=" 0" / /p p    strong 进一步观察Norris参数的适应性。 /strong 采用单参数局部最优解,分析建模效果曲线。其中,SEP sup + /sup (2, s)、SEP sup + /sup (2, g),参见图3。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 208px " src=" https://img1.17img.cn/17img/images/201908/uepic/26a55fc2-210b-4561-8367-75081383a9db.jpg" title=" 图3.png" alt=" 图3.png" width=" 600" height=" 208" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 单参数局部最优Norris-PLS模型的建模效果:(a)平滑点数,(b)差分间隔数 /strong /p p   在所有二阶的Norris导数谱中(d=2),不同平滑点数对应于局部最优模型的SEP sup + /sup ,如图4(a)所示;不同差分间隔数对应于局部最优模型的SEP sup + /sup ,如图4(b)所示。观察到:不同参数的建模效果差异颇大。 /p p   结果表明:(1)不同的Norris参数,建模预测效果明显不同;(2)参数的设置,不能凭经验设定,针对具体情况进行全局优化是必要的。 /p p strong   后 语 /strong /p p   Norris导数滤波是一种执行良好的光谱预处理算法群。功能各异的参数融合,可提升近红外光谱的柔性生命力,满足多样性光谱预处理的个性化需求。Norris模式的优化选择是必要的。 /p p span style=" color: rgb(0, 112, 192) "   这里分享的,可能是近红外的一个小话题。但,近红外光谱分析就是由多个这样的小话题组成的。从2006年第一届全国近红外光谱会议召开,到近红外分会成立十周年的现在,我们见证了我国近红外事业的发展壮大。祝福它!这里的内容可能有点艰涩,但我们相信它是有趣的。谢谢大家的阅读,恳请提出宝贵意见! /span /p p span style=" font-family: " times=" " new=" " strong   参考文献 /strong /span /p p   [1] R.J. Barnes, M.S. Dhanoa, Susan J. Lister., Appl Spectrosc, 1989, 43(5): 772–777 /p p   [2] M.S. Dhanoa, S.J. Lister, R. Sanderson, R.J. Barnes, J Near Infrared Spec, 1994, 2(1): 43-47. /p p   [3] 褚小立,化学计量学方法与分子光谱分析技术,北京:化学工业出版社,2011 /p p   [4] J.M. Chen, M.L. Li, T. Pan, L.W. Pang, L.J. Yao, J. Zhang, Spectrochim Acta A, 2019, 219: 179-185 /p p   [5] J. Zhang, M.L. Li, T. Pan, L.J. Yao, J.M. Chen, Comput Electron Agr, 2019, 164: 104882 /p p   [6] P. Geladi, D. MacDougall, H. Martens, Appl Spectrosc, 1985, 39:491-500. /p p   [7] T. Isaksson, T. Næ s, Appl Spectrosc, 1988, 42:1273-1284 /p p   [8] K.E. Kramer, R.E. Morris, S.L. Rose-Pehrsson, Chemometr Intell Lab, 2008, 92:33-43. /p p   [9]& nbsp A Rinnan, F. van den Berg, S.B. Engelsen, Trends Anal Chem, 2009, 28:1201-1222. /p p   [10] T. Isaksson, B. Kowalski, Appl Spectrosc, 1993, 47:702-709. /p p   [11] T. Næ s, T. Isaksson, T. Feaern, T. Davies, A User Friendly Guide to Multivariate Calibration and Classification, Chichester, UK: NIR Publications, 2002 /p p   [12] F.F. Lei, Y.H. Yang, J. Zhang, J. Zhong, L.J. Yao, J.M. Chen, T. Pan, Chemometr Intell Lab, 2019, 191(15):158-167 /p p   [13] A. Savitzky, M.J.E. Golay, Anal Chem, 1964, 36(8): 1627-1639 /p p   [14] 谢军,潘涛,陈洁梅,陈华舟,任小焕,分析化学,2010,38(3): 342-346 /p p   [15] H.Z. Chen, T. Pan, J.M. Chen, Q.P. Lu, Chemometr Intell Lab, 2011, 107: 139-146 /p p   [16] 潘涛,吴振涛,陈华舟,分析化学,2012,40(6): 920-924 /p p   [17] H.S. Guo, J.M. Chen, T. Pan, J.H. Wang, G. Cao, Anal Methods, 2014, 6: 8810-8816 /p p   [18] Y. Han, J.M. Chen, T. Pan, G.S. Liu, Chemometr Intell Lab, 2015, 145: 84-92 /p p   [19] J.M. Chen, L.J. Peng, Y. Han, L.J. Yao, J. Zhang, T. Pan, Spectrochim Acta A, 2018, 193: 499-506 /p p   [20] L.J. Yao, W.Q. Xu, T. Pan, J.M. Chen, J Innov Opt Heal Sci, 2018, 11(2): 1850005 /p p   [21] J.M. Chen, Z.W. Yin, Y. Tang, T. Pan, Anal Bioanal Chem, 2017, 409(10): 2737-2745 /p p   [22] J. Zhang, F.F. Lei, M.L. Li, T. Pan, L.J. Yao, J.M. Chen, Spectrochim Acta A, 2019, 219:427–435 /p p   [23] K.H. Norris, P.C. Williams, Cereal Chem, 1984, 61(2): 158-165 /p p   [24] P.C. Williams, K.H. Norris, Near-infrared Technology in the Agricultural and Food Industries, American Association of Cereal Chemists, Inc., St. Paul, Minnesota, USA, 1987 /p p   [25] J. Zhang, L.J. Yao, Y.H. Yang, J.M. Chen, Tao Pan, 19th International Council for NIR Spectroscopy Meting (NIR2019), 2019, Gold Coast, Australia /p p   [26] Y.H. Yang, F.F. Lei, J. Zhang, L.J. Yao, J.M. Chen, T. Pan, J Innov Opt Heal Sci, 2019, 1950018 /p p   [27] T. Pan, J.M. Liu, J.M. Chen, G.P. Zhang, Y. Zhao, Anal Methods, 2013, 5: 4355-4362 /p p   [28] T. Pan, M.M. Li, J.M. Chen, Appl Spectrosc, 2014, 68(3): 263-271 /p p style=" text-align: right "   strong span style=" font-family: 楷体, 楷体_GB2312, SimKai "  (暨南大学光电工程系 潘涛,张静,施小文 供稿) /span /strong /p
  • 放大光谱信号实现超极限大气二氧化氮探测
    通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。周家成中国科学院合肥物质科学研究院安徽光机所博士近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士告诉科技日报记者,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成告诉记者,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制