当前位置: 仪器信息网 > 行业主题 > >

川嘉粒子计

仪器信息网川嘉粒子计专题为您提供2024年最新川嘉粒子计价格报价、厂家品牌的相关信息, 包括川嘉粒子计参数、型号等,不管是国产,还是进口品牌的川嘉粒子计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合川嘉粒子计相关的耗材配件、试剂标物,还有川嘉粒子计相关的最新资讯、资料,以及川嘉粒子计相关的解决方案。

川嘉粒子计相关的资讯

  • 可穿戴的光学粒子计数器 监测身边环境数据
    身在污染区域的人们,每天要忍受空气中超标的有害颗粒物,因此能够随时了解周围环境和空气质量,显得十分必要。可穿戴的智能环境监测设备 TZOA 旨在通过提供环境数据,提高人们对环境的认识以及帮助改善健康生活习惯。   TZOA 就像一个徽章,你可以把它别在衣服、鞋子、包包上,这个光学粒子计数器会为你搜集全市的空气环境质量数据,并在配套 app 上直观地显现。无需昂贵、复杂精密的仪器,身边的辐射、空气质量以及紫外线指标等环境信息都触手可得。   TZOA 会为你标出实时的污染区域和未污染区域,用户可以根据这些信息选择散步等户外运动的目的地和路线。当身处地环境污染等级提高,空气质量低下时,TZOA 将发出警告,并建议用户更换场所。当然 TZOA 也可以监测室内的数据,帮助你控制家里的空气质量。      对于 TZOA 的理念,设计者 Afshin Mehin 表示:我们希望设计一款可穿戴设备和 app ,从而让人们以新的方式认识身边的环境,并把空气当做弥足珍贵的资源来对待。   TZOA 还在 Kickstarter 众筹,目前已经获得了许多支持,有望于 2015 年的 8 月出货。不过,当你身处一个无论走到哪里都是重度污染的城市&hellip &hellip TZOA 就也帮不了你了。
  • 大型强子对撞机CMS合作组发现新的四夸克粒子家族
    记者10日从南京师范大学获悉,在9日举行的第41届国际高能物理大会上,欧洲核子研究中心大型强子对撞机(LHC)的紧凑介子线圈(CMS)合作组报告,他们发现了一个可能由4个粲夸克组成的奇特粒子家族。  “清华—南师”CMS组负责人、南京师范大学教授易凯代表CMS合作组介绍,这些粒子内部可能由4个同一种重味夸克组成,物理图像相对简单而利于理解。“这是中国实验团队首次在LHC上主导观测到可能的全粲四夸克粒子,也是中国首次在CMS实验上主导新粒子的发现。”易凯说。  夸克是一种基本粒子,目前已知有上夸克、下夸克、奇夸克、粲夸克、顶夸克、底夸克6种类型。“粒子一般由2—3个夸克组成,例如介子由一个夸克和一个反夸克组成,而重子由3个夸克或3个反夸克组成,它们被称为传统强子;但还有一类粒子可能由4个、5个夸克或者夸克胶子混合组成,因为比较罕见,所以也被称为奇特强子。”易凯表示。  理论学家在数十年前已预测到传统的强子和奇特强子态的存在,然而直到最近20年,科学家才在实验上观察到较为明确的四夸克态或五夸克态奇特强子。  “但此前还没有发现过全部由重味夸克组成的奇特强子家族,即粲夸克或底夸克组成的奇特粒子。”易凯说。  基于2016—2018年CMS采集的所有“质子—质子”对撞数据进行分析,CMS合作组随后在两个粲夸克偶素的不变质量谱中观测到了一个新的粒子家族。“其中的每一个粒子可能由4个同味重夸克组成,该家族中的3个共振峰依据质量被暂时命名为X(6600)、X(6900)和X(7300)。X(6600)和X(7300)粒子均是在世界上首次被观测到。”易凯说。  “这是首次在实验上观测到可能由纯重味夸克组成的奇特粒子家族。”易凯强调,“虽然近20年来,科学家们发现了几十个奇特强子,但这些奇特强子究竟是怎么形成的,还是未解之谜。而此次研究发现的奇特粒子家族,夸克的组成方式相对简单,我们就可以基于这种相对简单的组合方式,继而理解这些粒子的形成模式。”  易凯表示,CMS探测器收集的数据量大,也有很好的质量分辨率,预计将会在这个方向作出更多的贡献。  CMS合作组由50多个国家、约240个单位的4000多名成员组成,其中,中国组成员来自中国科学院高能物理研究所、北京大学、中国科学技术大学、北京航空航天大学、清华大学、南京师范大学等多个单位。近年来,中国CMS组在希格斯粒子性质测量和多玻色子研究等方面成绩突出。
  • 银纳米粒子或可用于攻击肿瘤细胞
    科学日报报道,近日美国加州大学圣塔芭芭拉分校的科学家们设计了一种具有一对独特且重要特性的纳米粒子。这种球形粒子的组成成分是银,它被包裹在一个涂满缩氨酸的壳内部,后者使得它能够攻击肿瘤细胞。此外,这个壳是蚀刻的,因此那些没有攻击到目标的纳米粒子会自行分解和消除。这项研究被发表在期刊《自然材料》(Nature Materials)上。 两个单独的银纳米粒子(红色和绿色)选中前列腺癌细胞为目标   纳米粒子的核心利用了一种名为电浆子光学(plasmonics)的现象。在电浆子光学里,纳米结构的金属,例如金和银,在被光线照射时会发生共振,且集中在靠近表面的地磁场。通过这种方式,荧光染料被增强,看起来比自然状态&mdash &mdash 也即没有金属存在时&mdash &mdash 要明亮10倍。但当核心被蚀刻时,这种增强效果会消失,粒子也就变得暗淡。   加州大学圣塔芭芭拉分校鲁奥斯拉蒂研究实验室发明了一种简单的蚀刻技术,利用了生物相容的化学制品快速分解和移除活体细胞外部的银纳米粒子。这种方法只会留下完整的纳米粒子用于成像或者量化,从而揭示了那些细胞被定位攻击目标,以及每一个细胞被内在化了多少。   &ldquo 这种分解是创造针对特定刺激物做出反应的药物的一个有趣概念。&rdquo 分子,细胞和发育生物学学院(MCDB)鲁奥斯拉蒂实验室的博士后研究员、斯坦福-桑福德伯纳姆医学研究所的盖里· 博朗(Gary Braun)这样说道。&ldquo 通过分解过剩的纳米粒子并通过肾进行清理,它能最小化偏离目标的毒性。&rdquo   这种移除无法渗透目标细胞的纳米粒子的方法非常独特。&ldquo 通过关注那些真正进入细胞的纳米粒子,我们能够理解哪些细胞是目标,并从更细节的角度研究组织传输通道。&rdquo 博朗说道。   有些药物能够独自穿透细胞膜,但很多药物,尤其是RNA和DNA基因药物,是带电的分子,它们会被细胞膜所阻隔。这些药物必须通过内吞作用进入细胞,在这个过程中细胞会吞没并吸收分子。&ldquo 一般需要纳米粒子作为载体来保护药物并护送它进入细胞,&rdquo 博朗说道。&ldquo 而这正是我们所要测量的:通过内吞作用载体的内在化。&rdquo   由于纳米粒子有一个核心壳结构,研究人员可以实现不同的表面涂层并对比各自肿瘤目标选择和内在化的效率。通过使用不同的目标受体转换表面药剂从而实现不同疾病的目标选择&mdash &mdash 或者细菌的目标生物体。根据博朗表示,这一方法应该能够发展一种药物传输极大化的方法。   &ldquo 这些新的纳米粒子拥有某些了不起的特性,在朝肿瘤传输目标药物相关的研究中它已经证明是一种非常有用的工具。&rdquo 加州大学圣塔芭芭拉分校纳米医学中心和MCDB学院特聘教授埃尔基· 鲁奥斯拉蒂(Erkki Ruoslahti)这样说道。&ldquo 它们在治疗感染方面也有潜在的应用。由可抵抗所有抗生素的细菌导致的危险感染越来越常见,现在急需解决这类问题的新方法。银常被用作抗细菌药剂,而我们的目标技术或可能将利用银纳米粒子治疗体内任何地方的感染变为现实。&rdquo (
  • 科学家发明癌细胞“照妖镜”:黄金纳米粒子
    以色列物理学家研发使用黄金纳米粒子检测早期癌症的方法首次通过人体测试。以色列巴伊兰大学纳米科技及先进材料研究所的德奥尔· 菲克斯勒教授率领的团队,经过5年的研究证实了纳米技术在癌症早期诊断中的光明前景。他们研发的非侵入无辐射光学系统,被用于检测脑部、颈部及口腔癌症,也可用来检测位于舌头、咽喉部位的癌症发病情况。该方法已在动物身上测试成功,最近也通过了人类测试,被确认有效。   几分钟即可检测出癌症且成功率超过90%   这种发明是如何工作的?如果一位口腔感到疼痛并伴有其他病症的患者去看医生,有一种令人不安的可能就是,该患者正受到口腔癌、舌癌或喉癌的折磨。医生要求患者使用一种特殊的混合物漱口,几分钟后便能确认患者是否患有癌症。   这样的测试很简单,患者只要花上几分钟,用含有黄金纳米粒子的混合物漱口,这些粒子能够有效给癌细胞着色,着色部位被一个专门研发的工具扫描成图,医生便可在电脑屏幕上查看结果。当前的临床试验表明,该方法可成功检测出人类舌头及咽喉部位的癌症。舌癌的检测在特拉维夫大学牙医学院进行,咽喉癌的检测由舍巴医学中心耳鼻喉部完成。菲克斯勒说:&ldquo 我们将试验结果和病人活检结果进行对比,该试验的成功率超过90%。&rdquo   两种技术手段成就这一快速检测技术   菲克斯勒研发的检测方法包括了两种在医学领域还未充分展示其全部潜能的技术手段,&ldquo 物理扩散&rdquo 技术和&ldquo 纳米技术&rdquo 。   &ldquo 物理扩散&rdquo 技术发展于上世纪70年代末,主要的理论基础是光束在身体器官上的反射能够帮助检测肿瘤。对被器官阻碍的光线扩散的研究可以显示出器官哪一部分吸收或反射了光线,从而有助于检测癌细胞生长。菲克斯勒说:&ldquo 研究者们花费了很长时间构建模型,尝试找出光线反射原理下器官发生了什么,然而该领域的研究停滞了一段时间,因为该模型无法确切显示肿瘤是否被检测到,也无法确认扩散源是否来自身体的不同部分。作为基础研究的极好模型,事实证明它没有多少临床价值。&rdquo 他解释道:&ldquo 被称为漫反射的理论模型自20世纪80年代就很流行,但对癌症的检测不能仅依赖于光线对器官的反射这一依据,要确认癌细胞是否生长,我们需要能够更好地描绘器官图像的物质或微粒。&rdquo   &ldquo 大约12年前,一种被称为分子药剂的新思路进入人们的视线。&rdquo 菲克斯勒说。和先前寻求大体图像的思路不同,新思路希望寻求分子层面的结论。以此思路为基础,一种被称为&ldquo 对比成像&rdquo 的方法在近十年中研发出来。运用该方法,医生将一种秘密药剂注射到患者身体中,植于医生希望探测癌细胞生长的地方,从而获得所需图像,这种秘密药剂就是纳米粒子。其中,黄金纳米粒子因其无毒且与人体具有较好的集成度而被广泛使用。   &ldquo 事实上,纳米粒子是在我们血液中运行的小型机器人。&rdquo 菲克斯勒解释说,&ldquo 当纳米粒子在癌症抗体分子中时,我们可以观察到,这些粒子能够黏着于癌细胞。因此无需核磁共振或CT检查,癌细胞便可被识别出来。因为某种量子特性,黄金纳米粒子在一定的波长下能够对光线产生很强的反射作用。&rdquo   近年来,一种使用黄金纳米粒子成像的技术被研发出来,基于这种技术的疾病探测和治疗仪器随之出现,但这种仪器有个实质问题,即如何平衡创建高清质量的图像与所需黄金数量的关系。   新算法模型还可将该技术扩展于检测其他疾病   菲克斯勒和他的同事对自己的探测方法不断改进。&ldquo 这就像在寻找隧道。&rdquo 他解释道,&ldquo 仅探测外部环境找到隧道并不容易,有时候你需要等待有人从里面出来。我们不仅依据粒子反射的光线,同时还根据人体组织上光线扩散产生的效果检测癌细胞。&rdquo   研究人员改变了黄金纳米粒子传统的球形形状,把它做成了杆形,改变了粒子反射波的长度,使粒子更深入地穿透到人体组织中。更重要是,他们研发了一种数学算法,能将粒子反映的信息转化成实际的图像。&ldquo 粒子穿透组织,我们看不到反射。&rdquo 菲克斯勒说,&ldquo 但我们可看到它们如何在人体组织内影响光扩散。基于从组织细胞反射出来的光子数量,可建立计算数学函数。&rdquo   菲克斯勒的方法不限于癌症检测,他还在开发多发性硬化症的诊断方法。他的研究引起了国际科学界的关注, 去年6月,伦敦医学院为他颁发奖学金,资助其之后一年在伦敦国王学院与其他科学家一同继续此研究。44岁的菲克斯勒出生于特拉维夫,现任巴伊兰大学先进光学显微镜实验室主任。 他在瓦伦西亚大学完成博士后工作,曾在中国华南师范大学激光研究所担任客座教授。
  • 【网络讲堂参会邀请】如何沉积纳米粒子 ——纳米粒子单层膜沉积实用指南
    如何沉积纳米粒子——纳米粒子单层膜沉积实用指南 纳米颗粒的二维致密单层膜沉积是多种技术和科学研究的基础。例如,纳米粒子单层膜可以作为传感器上的功能层,也可以用来生产用于纳米球光刻的胶体掩模。但是,怎样才能高效、可靠地得到具有三维自由度的纳米颗粒溶液,并将这些颗粒限制在横跨大基底的(二维)单层中呢?传统的纳米颗粒沉积技术纳米颗粒沉积技术种类繁多。一些相对简单和快速的方法包括溶剂蒸发、浸渍镀膜和旋涂镀膜。然而,这些技术可能会浪费大量的纳米颗粒,并且无法有效控制纳米颗粒的密度和配位结构。溶剂蒸发溶剂蒸发容易产生所谓的咖啡渍圈环效应,这种效应是由马朗戈尼流动引起的。这将导致不均匀沉积,中心的纳米粒子沉积稀疏,而边缘则形成多层纳米粒子沉积。 浸渍镀膜另一方面,如果只是用纳米粒子覆盖基底,浸渍镀膜将是一种很好的技术。然而,使用这种方法沉积纳米颗粒单分子层是非常具有挑战性的。同时,浸渍镀膜需要大量的纳米颗粒,这在处理昂贵纳米颗粒材料时将成为一个大的限制因素。 旋涂镀膜旋涂镀膜也是一种很有吸引力的方法,因为它易于规模化放大,而且在半导体工业中是一种众所周知的技术。然而,使用这种方法,薄膜的质量和多个工艺参数紧密相关,如:自旋加速度、速度、纳米颗粒的大小、基材的润湿性和所用溶剂。这使得对薄膜属性的精确控制变得非常困难。而且,一般旋涂镀膜需要大量的纳米颗粒溶液。 气液界面的单层镀膜在这里,气液界面沉积纳米颗粒单层提供了一种高度可控的沉积方法,可以将其沉积在几乎任何基底上。纳米颗粒被限制在气液界面,界面面积逐渐减小,使得纳米颗粒更加紧密地聚集在一起,从而可以实现控制沉积密度的目的,因为单位区域面积沉积的纳米颗粒的数量很容易计算,这样对纳米颗粒的需求量就会大大降低。 单层薄膜形成后,可以通过简单的上下提拉基底即可将界面上的薄膜转移到基底上。 在线网络研讨会报名如果您对如何制备纳米颗粒单分子膜感兴趣,想获取更多这方面的知识,请报名参加由伦敦大学学院的Alaric Taylor博士举办的题为“纳米颗粒单分子层薄膜沉积实用指南”的网络研讨会。报告人Alaric Taylor简介:Alaric Taylor博士是伦敦大学学院工程和物理科学研究委员会(EPSRC)研究员,他在纳米光子材料的制造,尤其是通过在气-液界面开发胶体单层自组装方面有很高的造诣。 报告内容:? 详细讲解纳米颗粒沉积的具体操作? 指出需要注意的事情? 讲述纳米颗粒沉积的技巧 报告时间:2018年9月13日下午3:00(北京时间)报名联系:如需参会,请填好下列表格中的信息发送至,邮箱:lauren.li@biolinscientific.com;姓名单位邮箱电话特别提醒:因为可能会涉及电脑、系统、耳机等调试问题,建议大家提前5-10分钟进入链接。
  • 大型强子对撞机发现新奇异五夸克粒子
    科学家们在欧洲核子研究中心的大型强子对撞机(LHC)上发现了一种新粒子,其被称为“奇异的五夸克”。研究团队表示,发现这样的奇异粒子有助他们理解夸克是如何结合形成复合粒子的。相关论文刊发于17日出版的《物理评论快报》杂志。  科学家们认为,夸克是不能再分割的基本粒子,目前已知的夸克包括上夸克、下夸克、粲夸克、奇异夸克、底夸克和顶夸克6种。夸克通常“三五成群”形成强子,比如重子(由3个夸克组成的质子和中子等)和介子。但更多夸克也能“成群结队”形成“四夸克态”和“五夸克态”。  此前,物理学家也发现了几种“四夸克态”。2022年7月,LHC上底夸克探测器(LHCb)实验合作组宣称,发现了一种“五夸克态”。  在最新研究中,科学家们通过以极高的能量让两束质子发生对撞,从而发现了这一新粒子,最新发现的五夸克粒子包含一个奇异夸克。  团队成员之一、意大利米兰大学伊莉莎贝塔斯帕达罗诺雷拉指出,质子和中子等常见的强子通常由两到三个夸克组成,他们最新发现的“五夸克态”非常奇特。  诺雷拉表示,科学家们发现了越来越多“四夸克态”和“五夸克态”,这些研究就像是粒子领域的“文艺复兴”,科学家们收集的证据越来越多,也越能研究更复杂的衰变,研究这些奇异的夸克态很重要,因为它们有助于揭示夸克在粒子内部的结合情况。
  • 美国TSI公司网上讲座:粒子图像测速仪系统
    粒子图像测速仪系统   演讲人: 许荣川博士高级应用工程师   KHOO Yong Chuan Mike PhD   Senior Applications Engineer   网上讲座: 2011年1月12日上午10点   美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案 寻求如何优化系统得到更可靠数据。   这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。   讲座将会进行40分钟及预留15分钟答疑环节。   这是TSI公司首次推出PIV系列中文网上讲座,以帮助您提高利用PIV系统测量流体速度的技术水平。 我们将于2011年1月12日上午10点开始第一个讲座,介绍PIV系统基本原理与利用Insight3G软件进行数据采集与分析的基本技巧。   具体内容:PIV原理及PIV实验基本原则 Insight3G中PIV系统软硬件设置、图像校准、图像优化、示踪粒子浓度调整与△T参数优化。   网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接www.tsi.com/FMwebinars(英文注册)或http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写表格,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。   讲师简介: 许荣川博士是TSI新加坡的高级应用工程师,他为东南亚包括澳大利亚,台湾及韩国等地的流体及粒子仪器用户提供应用解决方案和技术支持。他于1997年在英国拉夫伯勒大学获得机械工程学位并获全额奖学金完成其博士学位
  • TSI 激光粒子计数器系列全面升级
    AEROTRAK 手持式激光粒子计数器   型号9303 3通道基本型   TSI AeroTrak 9303 手持式激光粒子计数器给客户提供一款操作更加灵活、价格更加富有吸引力的高性能手持粒子计数器方便进行粒子污染物控制。9303采用的高耐磨注塑设计更加方便手持。仪器可同时显示3个粒径尺寸。中间通道用户可以从0.5, 1.0, 2.0或2.5mm之中选择 。   标准1年保修   型号9306 6通道标准型   9306提供6个粒径通道同时显示。3.7-inch彩色触摸屏和Mirosoft WindowsCE操作界面,使操作更方便,超大的10,000数据内存可通过USB接口或可通过USB接口或可选外置打印机直接输出,同时可连接温度/湿度探头(选件),并包含内部报警功能。   保修期延长为2年   AEROTRAK 便携式激光粒子计数器   型号9310/9510和型号9350/9550   TSI AeroTrak 9310和9510便携式激光粒子计数器给客户提供更加操作灵活功能更加强大的大流量的便携式粒子计数器方便进行粒子污染物控制。它们既可作为单机工作也可以组建厂房的监测系统。该几款仪器采用一体轻型化设计使移动和操作更加容易。直读式按键使操作更加简单。10,000个数据内存可通过屏幕显示并可通过 USB和Ethernet进行下载。   仪器可同时显示6个粒径尺寸。并支持声音报警功能。   标准的2年保修外,TSI提供全套的技术服务和支持。   AEROTRAK 典型应用:   洁净厂房内的颗粒物测试 空气粒子研究 暴露性评估 室内空气质量评估。也应用于过滤器性能测试 洁净度评价及污染物迁徙研究等。
  • 科学家最新实验或将发现暗物质粒子(图)
    科学家希望检测到暗物质粒子撞击普通物质。   凤凰科技讯 北京时间2月16日消息,英国广播公司报道,近日科学家在高山底下深处的人造洞穴里进行研究,希望能够找到宇宙中最神秘的物质之一:暗物质。深埋在意大利格兰萨索山脉顶峰的格兰萨索国家实验室看起来更像007电影里反派的巢穴:入口隐蔽在一个巨大的钢门之后,钢门位于切断山脉的一个隧道中央。建立这样隐秘的通道不是没有原因的。上方1400米厚的岩石意味着它能很好的躲避持续到达地球表面的宇宙射线。它为科学家们提供了一个安静的场所,用于思考物理学里已知最奇怪的现象。   内部三个广阔的大厅里正在进行大量实验——但最新开始的阴暗面50(DarkSide50)项目旨在研究暗物质。   我们所看到的宇宙物质其实只组成了整个宇宙的4%,科学家认为剩下的96%来自两种神秘的形式。他们预测宇宙73%的部分是由暗能量组成——一种无处不在的能量场,它作为某种反引力能够阻止宇宙自我收缩。   剩余的23%则来自暗物质。现在面临的挑战便是,没有任何人亲眼看到过暗物质的存在。伦敦大学学院粒子物理学家ChamkaurGhag博士解释道:“我们认为它极可能是一种粒子形式。”   “我们发现了光子、中子和电子以及所有能够建造物质的基本粒子。我们认为暗物质也是一种粒子,只不过以非常奇特的形式存在,因此我们可能还没有感知到它。这主要是因为它不会感受到电磁力——光不会反射它,因此我们和它的接触并不多。”   物理学家也将暗物质粒子称为大质量弱相互作用粒子(WIMPs)。他们认为每秒大约有几百万颗暗物质粒子经过我们身边,而我们浑然不知。但很可能偶尔的机会它们会与正常的物质碰撞,这就是我们希望借助阴暗面50探测的现象。   实验位于地下的一个人造洞穴里。   在房子大小的水槽里,一个巨大的金属球里盛装了一个名为闪烁基数器的粒子探测器。这个容器里装满了50千克的液氩以及氩元素气体形式组成的厚厚一层。“如果暗物质粒子出现并撞击氩,那么反冲原子将获得能量,并迅速的试图摆脱这种能量。”Ghag博士说道。“氩元素摆脱能量的方式便是释放出光,它会投射光子。”   “但它也同时会放电:相互作用过程中会释放某些电子。这些电子将会漂移至气体层,当它们撞击气体,就会发出闪光。”   直到现在搜寻暗物质的行动一直一无所获。有的实验声称在年度调制时目击到暗物质发出的信号。这是基于暗物质粒子的数量会随着季节变化而发生改变的观点。随着地球环绕太阳运动,它将进入一个暗物质的固定场——其中半年它将随着暗物质的潮汐力而移动——就像行驶在雨中一样。但另一半时间里它将与这种潮汐力背道而驰,因此撞击到的暗物质也更少。然而,其它研究人员却对这种用于检测暗物质的季节性变量表示质疑。   其它实验进行了相当长的时间,但仍没有什么特别的收获。其中一个名为XENON100的实验也在格兰萨索实验室进行,它已经持续了1年之久,却只发现了两次“事件”——这还无法排除可能存在某些残余背景辐射。但是利用DarkSide50项目,我们可能能够找到一些答案。   除了这个实验,另一个巨大探测器、位于美国南达科塔金矿的LUX也将很快投入使用。在未来几年,科学家计划利用更强大的探测器,例如XENON1T和LUX-Zeplin,希望能够找到这些粒子存在的第一批实验证据。   DarkSide50项目小组的奥尔多伊阿尼(Aldo Ianni)说道:“暗物质是目前主要的科研目标。它将帮助我们理解宇宙中的一个我们尚未了解的重大部分。我们知道存在暗物质,只是不确定它究竟是由什么组成的。”   徒劳的搜寻?   格兰萨索国家实验室的总监斯特凡诺莱格兹(Stefano Ragazzi)教授希望在他的实验设备里能够首次观测到暗物质。“这是不同实验之间的竞争——你想要成为第一个发现的人,而非第二个或者第三个。大家都预感暗物质的发现指日可待,因此每人都迫切希望自己能够成为第一个发现者。”   但莱格兹教授也承认,他们可能一无所获——暗物质可能并不是以WIMPs的形式存在。“到头来我们可能发现最初提出的假设其实是错误的…(暗物质)可能是完全不同的东西。但没有找到暗物质可能收获会更大。”   未来几周DarkSide50项目将全面启动,周围的水箱将充满纯净水,科学家只需要耐心的观察和等待。Ghag博士表示,虽然存在不确定性,但找到暗物质的潜在回报将难以估量。“这将成为革命性的发现——它会改变我们对宇宙以及它的形成和进化方式的理解。”
  • 医用纳米粒子可为农作物输送营养
    p style=" text-indent: 2em " 根据英国《自然》杂志旗下《科学报告》近日发表的一项纳米科学研究,除了人体外,用于递送药物的医用纳米粒子也可以帮助治疗农作物的营养缺乏症,其将在农业生产领域帮助大幅提高作物产量。 /p p style=" text-indent: 2em " 在过去几十年中,脂质体作为一种先进的纳米药物传递系统,其优势已经被越来越多的人所承认。实际上,脂质体是指将药物包封于类脂质双分子层内而形成的微型泡囊体,这种纳米粒子可以穿过生物屏障,将填充在其内部的药物或其他物质递送至目标组织。它们已被证明可以有效地递送用来治疗癌症等疾病的药物。 /p p style=" text-indent: 2em " 由于这种纳米粒子的生物相容性良好,甚至可以被正常代谢,因此其作为载体的开发潜力巨大。此次,以色列理工学院研究人员艾维· 施罗德及其同事,测试了纳米粒子向幼苗和完全长成的樱桃番茄植株递送营养素的能力。研究团队分别采用两种方式对缺镁和缺铁的植株进行处理,一种是载有镁铁元素的纳米粒子,一种是不包含在纳米粒子内的工业镁和工业铁。 /p p style=" text-indent: 2em " 实验表明,经纳米粒子处理的植株克服了无法通过标准农业营养素治疗的急性营养缺乏症;施用14天后,经纳米粒子处理的营养缺乏植株恢复了健康,而用标准农业营养素处理的植株则没有。 /p p style=" text-indent: 2em " 研究人员表示,纳米粒子会遍布植株的叶子和根部,之后被植株细胞摄取,并在那里释放出营养物质。该研究结果表明,纳米粒子不但改变了许多疾病诊断、治疗和预防方法,将纳米技术应用于农业生产,同样有望提高作物产量。 /p p style=" text-indent: 2em " 编辑圈点 /p p style=" text-indent: 2em " 据估计,到2050年全球人口将达到98亿。人口在增长,耕地在减少,未来的地球如何养活如此多的人口令人担忧。对越来越多的人而言,饥饿的阴影正在远去,但它也很可能卷土重来。科学家们提出了多种多样的应对方案,比如学会食用蛋白含量丰富的昆虫或者在实验室培养人造肉。不过,这样的食物恐怕会让不少人反胃。依靠科技手段提高农作物产量,大概是最靠谱也最容易被接受的途径。 /p
  • 表面活性剂:从分子到纳米粒子
    p   韩国科学技术信息通信部发布消息称,韩国先进软性物质研究团组利用纳米粒子研制出表面活性剂。该研究结果刊登在国际学术杂志《自然》上。 /p p   表面活性剂是广泛用于肥皂、洗涤剂、洗发水等生活用品的化学物质。在一个分子中存在易粘附于水和易粘附于油两个部分,使用表面活性剂可将水、油分离,呈现水滴形态。因此,利用表面活性剂传送特定物质(药物等)可作为新一代医学材料,特别是作为调节液体水滴的技术可广泛应用于制药、疾病诊断、新药开发等领域。 /p p   现有调节液体水滴的技术多采用“分子表面活性剂”,是使表面活性剂包裹的液体水滴受到外部刺激的分子结构设计方式,但想实现两种以上刺激反应难度较大。此次研究组利用纳米粒子具有杀死细菌以及运送酵素等多种功能的特点,研制出可在多种刺激下控制液体水滴的“纳米粒子表面活性剂”,比现有分子表面活性剂具有更多样的功能。通过纳米表面活性剂可对电、光、磁场全部反应,磁场和光可以调节液体水滴的位置以及移动、旋转速度,并可以与电场结合。例如,使用操纵液体水滴移动或组合的工具可将活体细胞植入液体水滴里培养或将利用液体水滴还原细胞内的酵素反应等需要特殊环境的制药、生物医学领域。 /p p br/ /p
  • 大连理工大学295.00万元采购粒子图像测速
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 辽宁省-大连市-甘井子区 状态:公告 更新时间: 2022-12-25 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 2022年12月25日 12:18 公告信息: 采购项目名称 大连理工大学随车水下三维粒子图像测速系统采购项目 品目 货物/通用设备/仪器仪表/光学仪器/光学测试仪器 采购单位 大连理工大学 行政区域 大连市 公告时间 2022年12月25日 12:18 获取招标文件时间 2022年12月26日至2022年12月30日每日上午:8:00 至 11:30 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 开标时间 2023年01月17日 09:00 开标地点 大连市甘井子区软件园路80号科技园大厦B座609室 预算金额 ¥295.000000万元(人民币) 联系人及联系方式: 项目联系人 李楠 项目联系电话 0411-39700100 采购单位 大连理工大学 采购单位地址 大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 采购单位联系方式 李老师;0411-84709969 代理机构名称 大连理工招标代理有限公司 代理机构地址 大连市甘井子区软件园路80号科技园大厦B座601室 代理机构联系方式 李楠;0411-39700100 项目概况 大连理工大学随车水下三维粒子图像测速系统采购项目 招标项目的潜在投标人应在大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱)获取招标文件,并于2023年01月17日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:DUTASZ-2022861 项目名称:大连理工大学随车水下三维粒子图像测速系统采购项目 预算金额:295.0000000 万元(人民币) 最高限价(如有):295.0000000 万元(人民币) 采购需求: 采购随车水下三维粒子图像测速系统1套,用于水下航行器、水面船舶等的流场测量,测量系统整体跟随拖车一起前进,测量结果更接近于船舶真实航行状态下船体的流场,从而可以研究船体周围流场运动特征、涡流作用机理以及船体与自由面的相互作用等科学问题,同时也是开展水下航行体伴流场特征及流噪声机理研究的重要试验手段,具体要求详见招标文件。 本项目 随车水下三维粒子图像测速系统 可提供进口产品。进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品。 合同履行期限:自签订合同之日起,接到采购人供货通知后8个月内货到采购人指定地点安装调试验收合格。 本项目(不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 1)非专门面向中小企业采购项目;2)中小微企业、监狱企业、残疾人福利性单位、节能、环保产品优先采购等;3)截至开标时间,经 信用中国 网站(www.creditchina.gov.cn)、 中国政府采购网 网站(www.ccgp.gov.cn)查询,被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的不得参加本采购项目,查询结果以资格审查过程中现场网络截图为准;4)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本采购项目的采购活动。 3.本项目的特定资格要求:代理商须具有制造商合法有效授权(国产设备除外)。 三、获取招标文件 时间:2022年12月26日 至 2022年12月30日,每天上午8:00至11:30,下午13:00至17:00。(北京时间,法定节假日除外) 地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 方式:通过电子邮箱提交报名材料扫描件进行报名。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年01月17日 09点00分(北京时间) 开标时间:2023年01月17日 09点00分(北京时间) 地点:大连市甘井子区软件园路80号科技园大厦B座609室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.获取招标文件时间:2022年12月26日8:00-2022年12月30日17:00(双休日及法定节假日除外)。 2.获取文件方式:通过电子邮箱提交报名材料扫描件进行报名。 3.获取文件地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 4.通过电子邮箱提交报名材料扫描件进行报名:在招标文件发售期内,申请报名和购买招标文件的投标人请将营业执照(或事业单位法人证书)副本复印件、法定代表人身份证明(法定代表人报名提供)或法定代表人授权委托书(授权委托人报名提供,应附法人代表和被授权人的身份证明复印件)、《报名及购买文件登记表》(格式自拟,须含法定代表人或授权委托人的电子邮箱、联系电话、办公电话等)、招标文件费汇款凭证(招标文件费须以公司电汇方式至采购代理人公司银行账户,须备注项目名称及投标人名称)、上述材料加盖公章、扫描后发至电子邮箱710578087@qq.com,经采购代理人确认报名后,发售招标文件。 5.投标保证金:4万元,保证金形式及缴纳方式见招标文件。 6.公司名称:大连理工招标代理有限公司; 开户行:农行高新技术产业园支行; 账号:34263001040002404; 行号:103222006805。 注:1.如投标人为 通过电子邮箱提交报名材料扫描件进行报名 ,招标文件费以实际到账时间为准,报名截止时间后收到的材料及费用不予认可。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:大连理工大学 地址:大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 联系方式:李老师;0411-84709969 2.采购代理机构信息 名 称:大连理工招标代理有限公司 地 址:大连市甘井子区软件园路80号科技园大厦B座601室 联系方式:李楠;0411-39700100 3.项目联系方式 项目联系人:李楠电 话: 0411-39700100 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息关键内容:粒子图像测速 开标时间:2023-01-17 09:00 预算金额:295.00万元 采购单位:大连理工大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:大连理工招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 辽宁省-大连市-甘井子区 状态:公告 更新时间:2022-12-25 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 2022年12月25日 12:18 公告信息: 采购项目名称 大连理工大学随车水下三维粒子图像测速系统采购项目 品目 货物/通用设备/仪器仪表/光学仪器/光学测试仪器 采购单位 大连理工大学 行政区域 大连市 公告时间 2022年12月25日 12:18 获取招标文件时间 2022年12月26日至2022年12月30日每日上午:8:00 至 11:30 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 开标时间 2023年01月17日 09:00 开标地点 大连市甘井子区软件园路80号科技园大厦B座609室 预算金额 ¥295.000000万元(人民币) 联系人及联系方式: 项目联系人 李楠项目联系电话 0411-39700100 采购单位 大连理工大学 采购单位地址 大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 采购单位联系方式 李老师;0411-84709969 代理机构名称 大连理工招标代理有限公司 代理机构地址 大连市甘井子区软件园路80号科技园大厦B座601室 代理机构联系方式 李楠;0411-39700100 项目概况 大连理工大学随车水下三维粒子图像测速系统采购项目 招标项目的潜在投标人应在大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱)获取招标文件,并于2023年01月17日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:DUTASZ-2022861 项目名称:大连理工大学随车水下三维粒子图像测速系统采购项目 预算金额:295.0000000 万元(人民币) 最高限价(如有):295.0000000 万元(人民币) 采购需求: 采购随车水下三维粒子图像测速系统1套,用于水下航行器、水面船舶等的流场测量,测量系统整体跟随拖车一起前进,测量结果更接近于船舶真实航行状态下船体的流场,从而可以研究船体周围流场运动特征、涡流作用机理以及船体与自由面的相互作用等科学问题,同时也是开展水下航行体伴流场特征及流噪声机理研究的重要试验手段,具体要求详见招标文件。 本项目 随车水下三维粒子图像测速系统 可提供进口产品。进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品。 合同履行期限:自签订合同之日起,接到采购人供货通知后8个月内货到采购人指定地点安装调试验收合格。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 1)非专门面向中小企业采购项目;2)中小微企业、监狱企业、残疾人福利性单位、节能、环保产品优先采购等;3)截至开标时间,经 信用中国 网站(www.creditchina.gov.cn)、 中国政府采购网 网站(www.ccgp.gov.cn)查询,被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的不得参加本采购项目,查询结果以资格审查过程中现场网络截图为准;4)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本采购项目的采购活动。 3.本项目的特定资格要求:代理商须具有制造商合法有效授权(国产设备除外)。 三、获取招标文件 时间:2022年12月26日至 2022年12月30日,每天上午8:00至11:30,下午13:00至17:00。(北京时间,法定节假日除外) 地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 方式:通过电子邮箱提交报名材料扫描件进行报名。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年01月17日 09点00分(北京时间) 开标时间:2023年01月17日 09点00分(北京时间) 地点:大连市甘井子区软件园路80号科技园大厦B座609室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.获取招标文件时间:2022年12月26日8:00-2022年12月30日17:00(双休日及法定节假日除外)。 2.获取文件方式:通过电子邮箱提交报名材料扫描件进行报名。 3.获取文件地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 4.通过电子邮箱提交报名材料扫描件进行报名:在招标文件发售期内,申请报名和购买招标文件的投标人请将营业执照(或事业单位法人证书)副本复印件、法定代表人身份证明(法定代表人报名提供)或法定代表人授权委托书(授权委托人报名提供,应附法人代表和被授权人的身份证明复印件)、《报名及购买文件登记表》(格式自拟,须含法定代表人或授权委托人的电子邮箱、联系电话、办公电话等)、招标文件费汇款凭证(招标文件费须以公司电汇方式至采购代理人公司银行账户,须备注项目名称及投标人名称)、上述材料加盖公章、扫描后发至电子邮箱710578087@qq.com,经采购代理人确认报名后,发售招标文件。 5.投标保证金:4万元,保证金形式及缴纳方式见招标文件。 6.公司名称:大连理工招标代理有限公司; 开户行:农行高新技术产业园支行; 账号:34263001040002404; 行号:103222006805。 注:1.如投标人为 通过电子邮箱提交报名材料扫描件进行报名 ,招标文件费以实际到账时间为准,报名截止时间后收到的材料及费用不予认可。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:大连理工大学 地址:大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 联系方式:李老师;0411-84709969 2.采购代理机构信息 名 称:大连理工招标代理有限公司 地 址:大连市甘井子区软件园路80号科技园大厦B座601室 联系方式:李楠;0411-39700100 3.项目联系方式 项目联系人:李楠 电 话: 0411-39700100
  • 飞行时间质谱探测到高空冰云内生物粒子
    据物理学家组织网报道,一支由美国加利福尼亚州大学圣地亚哥分校挂帅的大气化学研究员小组向被视为的气候变化学的“圣杯”又迈进了一步:在研究过程中,他们首次直接探测到了冰云内部的生物粒子。   研究小组由大气化学教授金姆普拉瑟(Kim Prather)的博士生克里普拉特(Kerri Pratt)领导,普拉瑟任职于斯克里普斯海洋学研究所以及加州大学圣地亚哥分校的化学与生物化学系。2007年秋季,研究小组搭乘一架飞机穿过怀俄明州上空的云层,在高速飞行的情况下,提取了水滴和冰晶残余样本。   对冰晶进行的分析显示,它们几乎完全由尘埃或包括细菌、真菌孢子和植物材料在内的生物粒子构成。长久以来科学家便知道,微生物或微生物的某些部分可进入空中并借助空气传播这种方式进行长途旅行。但在直接获得有关其参与云冰形成过程的现场数据方面,这项研究还是第一次。   普拉特领导的研究小组进行的层状云内冰实验(以下简称ICE-L)获得美国国家科学基金会以及国家大气研究中心的资助。实验结果刊登在5月17日的在线版《自然地球科学》杂志上。普拉特说:“如果我们了解使云集结的粒子来源及其丰富程度,我们便能确定不同来源对气候的影响。”   当时,研究人员搭乘由国家大气研究中心操作的一架装有特殊仪器的C-130飞机飞越怀俄明州上空,并在飞行过程中对研究对象进行观测。借助这架飞机,斯克里普斯海洋学研究所领导的研究人员第一次直接探测到了云中靠空气传播的细菌,探测结果同样刊登在5月17日的在线版《自然地球科学》杂志上。   靠空气传播的微小粒子——浮质对云形成的影响是有关天气和气候问题中科学家最难理解的部分。在气候变化学领域,很多预测均来源于有关气候现象的电脑模拟,而在通过建模对未来气候进行预测时,浮质对云形成的影响则是科学家眼中最不确定的因素。   国家科学基金会大气学分部的安妮-玛丽娜斯库莫尔特纳(Anne-Marine Schmoltner)表示:“通过从飞机上对云进行实时取样,这些研究人员能够获得有关云中冰粒子细节空前的信息。通过确定单个冰粒子核心的化学成分,他们得出惊人发现——矿物质尘埃和生物粒子在云形成过程中扮演了重要角色。”   浮质包括尘埃、烟灰、海盐以及有机材料,其中一些的传播距离可达到数千英里。浮质形成了云的“骨架”。在这些凝结核周围,大气中的水和冰不断液化和成长,最后形成降水。科学家一直试图了解这一过程,原因很简单:云在冷却空气和影响地区性降水过程中扮演了至关重要的因素。   ICE-L第一次利用飞机部署飞行器浮质飞行时间质谱仪(A-ATOFMS),这个昵称“雪莉”的仪器是最近由加州大学圣地亚哥分校研制的,研制过程获得国家科学基金会资助。ICE-L小组将“雪莉”以及一个由科罗拉多州大学研究员保罗德莫特(Paul DeMott)负责的冰库安装在C-130上,而后进行了一系列穿越波状云的飞行。在此过程中,研究人员对云冰晶残余进行了现场测量,结果发现一半由矿物质尘埃构成,大约三分之一含有氮、磷以及碳——构成生物物质的主要元素。   以秒计算的分析速度允许研究人员实时区分水滴与冰核残余之间的差异。冰核较水滴核相比更为罕见,同时更有可能形成降水。“雪莉”则允许研究人员对云冰内的生物粒子进行准确测量。此前,科学家曾根据在实验室进行的模拟以及对降水的测量得出结论——生物粒子扮演了冰核的角色。根据模型以及经过测量的尘埃化学成分,ICE-L小组得以确定尘埃来自亚洲还是非洲。   普拉瑟说:“对于我们来说,能够进行这种测量如同找到了基督教的‘圣杯’。了解哪些粒子形成冰核,哪些粒子在浓度极低时出现同时又极难进行测量,意味着我们可以进一步了解导致降水的过程。我们获取的任何新信息都具有非常重要的意义。”   研究发现显示,在尘暴中被卷走的生物粒子可帮助促进云冰的形成。普拉瑟表示,初步证据显示来自亚洲的尘埃可以影响北美的降水。研究人员希望利用ICE-L获取的数据设计未来的研究。在以后的日子里,类似这样的粒子可能在引起降雨或降雪中扮演越来越重要的角色。
  • 光伏纳米粒子可用作量子光源
    研究人员发现新型光伏纳米粒子可以发射相同的光子流。图片来源:美国《每日科学》网站据最新一期《自然光子学》杂志报道,美国麻省理工学院研究人员证明,新型光伏纳米粒子可发出单一的、相同的光子流,这可能为研发新的量子计算技术和量子隐形传态设备铺平道路。量子计算的大多数路线使用超冷原子或单个电子的自旋作为量子比特,以构成此类设备的基础。大约20年前,一些研究人员提出使用光作为基本量子比特单位的想法。这样做的好处在于无需再使用控制量子比特的昂贵而复杂的设备,只需要普通的镜子和光学探测器。研究人员表示,有了这些类似量子比特的光子,就可用家用线性光学系统建造一台量子计算机。因此,这些光子的准备是关键,他们最终选择了铅-盐类钙钛矿纳米颗粒。纳米颗粒形式的卤化铅钙钛矿有着极快的低温辐射速率,光发射得越快,输出就越有可能具有定义明确的波函数,因此,快速的辐射速率使卤化铅钙钛矿纳米颗粒能够发射量子光。为了测试它们产生的光子是否真的具有这种特性,研究人员采用了标准测试,即检测两个光子之间的洪-欧-曼德尔干涉。在没有任何辐射增强或光子结构的情况下,结果显示出高达0.56±0.12的校正可见度。这些结果证明了钙钛矿纳米晶体作为不可区分的单光子的可扩展胶体源的独特潜力。
  • 大型强子对撞机团队确定“穿越万里”反原子核
    轻反原子核由反质子和反中子组成。根据《自然物理》杂志发表的一篇论文,大型强子对撞机(LHC)团队研究认为,轻反原子核或能在银河系中穿越很长的距离。这项研究结果表明,这些反原子核或能用于寻找暗物质。反原子以及反原子构成的反分子等,统称为反物质,反物质与我们周围世界中的常规“正”物质相遇,则发生湮灭,释放大量能量。也正因如此,地球上没有反原子核的天然来源,但它们会在银河系的其他地方产生。有观点提出,反原子核可能是源于太阳系外的高能宇宙辐射与星际介质(星系中恒星之间空间)中的原子相互作用的结果。另一种观点认为,反原子核是尚未发现的暗物质粒子湮灭所形成的。为探索反原子核与物质的相互作用,欧洲核子研究中心的LHC所属ALICE合作组,日前分析了氦-3(氦的一种稳定同位素)原子核的反粒子。研究人员利用LHC的粒子对撞产生反氦-3原子核,再让这些反原子核与ALICE探测器中的物质相互作用,让它们消失。通过研究,团队科学家们确定了反氦-3原子核的消失概率,以及这种概率在这些反原子核穿越银河系过程中所产生的影响。
  • “大气细粒子和超细粒子的快速在线监测技术”通过验收
    12月1日,由中科院合肥物质科学研究院安徽光机所承担、北京大学等单位参加的国家863重大项目课题“大气细粒子和超细粒子的快速在线监测技术”在广东鹤山通过了863资源环境技术领域办公室组织的专家验收。   验收会上,来自中科院生态环境研究中心、北京大学、北京市环境保护监测中心、广东省环境监测中心站、中科院大连化物所、上海大学和华东理工大学等单位的专家听取了课题组长刘建国研究员关于课题工作总结及技术研制报告,并在位于鹤山市桃源镇的珠江三角洲大气超级监测站进行了实地考察,查看了课题组研制的双波长三通道气溶胶探测拉曼激光雷达、细粒子谱分析仪、大气OC/EC测定仪、以及振荡天平颗粒物质量浓度监测仪(PM10/PM2.5)等系列大气细粒子监测设备的运行情况。   验收专家组认为,“该课题在宽范围粒径谱的快速分析技术、稳定的场致电离电荷源技术、超高灵敏大气分子拉曼散射信号探测技术、以及OC/EC临界温度的精确选取等关键技术方面取得了突破,关键技术指标达到国外同类产品的先进水平。课题所取得的成果在珠江三角洲大气复合污染立体监测网络构建中发挥了重要作用,并参与了北京奥运会、上海世博会和广州亚运会的空气质量保障,具有显著的社会和环境效益”。   该课题是863重大项目“重点城市群大气复合污染综合防治技术与集成示范”中第一个通过验收的课题,已通过领域办中期检查和专家评审得到滚动支持,滚动课题“重要大气复合污染物快速在线和时空分布监测技术系统开发”已于年初通过实施方案论证,目前处于实施阶段。
  • 下一代激光器可让“幽灵粒子”显形
    据英国《新科学家》杂志网站8月18日(北京时间)报道,俄罗斯国立核研究大学的亚历山大费德罗夫及其同事在即将发表于最新一期《物理评论快报》上的研究论文中说,根据他们的计算,一个强大的激光器可将制造出的首个正负电子对加速到很高的速度,从而让它们发光,这道光再与激光“合力”,产生更多的电子对。而这正是量子力学在20世纪30年代的一种预言。   量子力学的不确定性原理意味着,宇宙空间并不是真的空无一物。相反,宇宙的随机波动使之变成了“一锅热腾腾的粒子汤”,电子以及其对应的反物质正电子就在其中。通常情况下,这些粒子一碰到其反物质,彼此都会瞬间湮灭于无形,我们根本来不及一睹其真容。不过,物理学家在20世纪30年代曾经预言,一个非常强大的电场可以让这些“幽灵粒子”显露形迹。由于这些粒子带有相反的电荷,电场可以将它们推往相反的方向,使它们分开而不至于同归于尽。   而能够产生强大电场的激光器就是完成这项任务的理想“人选”。1997年,美国斯坦福直线加速器中心的物理学家们利用激光成功制造出了正负电子对,不过当时一次只能产生一个正负电子对。现在,科学家通过计算表明,下一代功能更强大的激光器可以通过启动连锁反应,捕捉到数以百万计的正负电子对。   俄研究小组的计算表明,对于一台可将大约1026瓦的能量聚焦于一平方厘米范围的激光器而言,这样的连锁反应能够有效地将其激光转变成数百万个正负电子对。   该研究论文的合作者、德国马普量子光学研究所的乔治科恩称,第一个拥有如此强大功能的激光器或许于2015年由欧洲超强激光设施项目建成,不过之后还需几年时间完成必要的升级才能达到每平方厘米聚焦1026瓦的能量。   美国普林斯顿大学的柯克麦克唐纳表示,能够产生大量正电子的能力对于粒子加速器非常有用,比如提议新建的国际直线对撞器,其能够以极高的能量使电子和正电子一起粉碎,模拟宇宙诞生瞬间的高能量场景。   目前用于大批量制造正电子的标准方法是将一块金属片上的高能电子束点火,以产生正负电子对。有专家认为,与之相比,超强激光器利用连锁反应来制造正电子的成本过于高昂。
  • 加野Kanomax重磅推出大流量粒子计数器3910
    在医药、医疗仪器制造业及电子等因生产环境的需要建立的无尘生产车间&mdash 洁净室中,我们经常会看到这样的场景:工作人员&ldquo 全副武装&rdquo 身着洁净服紧张而忙碌的工作着。这是因为这些行业都对生产车间的空气洁净度有着严格的要求,准确测量并控制空气中的尘埃颗粒数直接关系到最终的产品质量。 随着中国新版GMP的出台,药厂颗粒计数的测量和监测工作尤为重要。寻找并利用最佳的检测手段成为所有药厂的当务之急,相信加野Kanomax公司的3910会辅助药厂交出一份满意的答卷。其优势在于: 功能强大:同时测试六通道粒径(0.3 、0.5、 1.0、 3.0、 5.0、10.0&mu m);还可配备风速、温湿度及压差传感器。 高效快捷:50L/min(1.77cfm)采样量,迅捷完成A级洁净区测试;同时配备扫描探头即可实现高效过滤器的完整性检测。 精准可靠:符合ISO21501-4标准,计数报告符合ISO14644-1、EU GMP及中国新版GMP。 人性化设计:6.4inch彩色触摸显示屏;多种标准模式测试(特设符合ISO14644-1及中国新版GMP标准的测试模式);中、英、日三种语言切换。 至小至轻至精:全球最精致最轻便的大流量粒子计数器。 大流量尘埃粒子计数器3910的问世是加野Kanoamx公司提升环境测试仪品质、立足于技术创新的成果,让我们共同见证3910这颗新星的冉冉升起!
  • 二氧化硅纳米粒子可将近红外光转为紫外可见光
    据物理学家组织网近日报道,新加坡国立大学工程学院生物工程系的研究人员研制出一种新技术,能够通过纳米粒子将红外光转化为紫外光和可见光,为深层肿瘤的非侵入性疗法铺平了道路。据称,该技术能够抑制肿瘤生长,控制其基因表达,是世界上首个使用纳米粒子治疗深层肿瘤的非侵入性光动力疗法。相关论文发表在近日出版的《自然医学》杂志上。   领导该项研究的新加坡国立大学副教授张勇(音译)说,人体内的基因会释放出一些特定的蛋白,从而保证机体的健康。但有些时候这个过程也会出现差错,导致包括癌症在内的一些疾病的产生。此前人们已经发现非侵入性光疗法能够控制基因的表达,纠正这一过程。但使用紫外光有一定副作用,有时甚至得不偿失 而可见光穿透力较弱,无法照射到组织深处的肿瘤。为此,他和他的团队开发出一种外面包裹着一层介孔(处于宏观和微观之间的尺度)二氧化硅的纳米粒子。他们发现,这种纳米粒子在被引入患者病灶区域后,可将近红外光转化为可见光或紫外光。通过这种方法就能有效激活基因,控制蛋白质的表达,从而达到治疗癌变细胞的目的。   研究人员称,与紫外光和可见光相比,近红外光安全且具有更强的穿透力,它能达到更深层的目标肿瘤组织而不会对健康细胞造成伤害,他们正计划将其扩展到其他以光为基础的疗法当中。该技术具有极为广泛的应用前景,除光疗法外,还可以被用于生物成像和临床诊断,借助这些纳米粒子可以获得更清晰精确的癌细胞图像。目前该项目已经获得了来自新加坡A*STAR研究所和新加坡国家研究基金的资助,下一步该团队还将借此技术开发出用于快速诊断的试剂盒。
  • TSI 8220型手持式激光粒子计数器8月在中国上市
    美国TSI公司经过多年精心研制,推出当今性能最为优良的手持式激光粒子计数器,使这一类的仪器性能 俄功能有了一个巨大的突破。 AEROTRAK粒子计数器是TSI公司新开发的用于粒子计数测量的产品。它是全面的仪器,包括光度测量质量浓度,浓缩粒子计数,仪器表面浓度测量,TSI公司已准备了40年。典型应用于清洁房间检测,室内环境研究,人体暴露照射,室内空气质量,过滤测试,清除测试,品质确保和污染物研究。 AEROTRAK Model 8220粒子计数器是重2.2磅(1公斤)的手持式仪器,并可使用AC电源或锂离子电池。8220有一个0.1立方英尺/分(2.83行/毫米)的流速和6个可调整的范围。仪器可连接一个热敏打印机。大于100000个数据被储存并可通过TRAKPRO™ Data数据分析软件下载到PC机进行数据分析。 这个粒子计数器还可加载温度和湿度传感器,从而可以在一台仪器上同时获得多个参数
  • TSI新型凝聚核粒子计数器(CPC)重新定义纳米粒子计数
    40多年来,TSI生产的 凝聚核粒子计数器(CPC) 为研究人员在纳米粒子计数领域提供了重要的支持。TSI第4代新型CPC整体改进了软件功能和性能,将继续成为气溶胶研究领域的基准。 TSI 新一代CPC 在可靠性和适用性上正建立起无与伦比的标准。现在,CPC数据可存储于CPC中,存储数据可随时本地访问,甚至远程访问。此外,新型CPC的所有型号和平台均使用相同的架构进行构建,操作直观,使用简单。 无论您需要校准和验证其它仪器,还是需要比较不同仪器间的性能,TSI生产的CPC都将是您参考计数器的最值得依赖的选择。长期环境监测用户可尽情享受新软件所带来的便利,新软件改善了筛选和输出大型数据集的方式。 新一代CPC能够减少停机时间和降低维修成本,不仅为您提高可靠的粒子数据,还能够优化您的研究。和研究行业的领导者携手合作,使用TSI新一代CPC,彻底变革您的粒子数据。 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 中国新版GMP实施要点暨在线尘埃粒子和浮游菌监控的应用讲座(石家庄)
    国际标准 安装实例 认证典范 完美方案 欧洲和北美的医药和生物企业在线尘埃粒子和浮游菌监控系统解析 稳定的软件系统对于数据的收集的重要性 GAMP 5 认证文件的特点 本次研讨会根据中国新版(2010年修订) GMP的实施细则,重点阐述在线尘埃粒子和浮游菌监控系统的实际安装准则,旨在协助中国的医药和生物企业通过中国新版GMP,EUGMP和FDA的认证。 演讲专家介绍 Tim Russell先生在生命科学领域25年的工作生涯中,共设计,安装,认证和维护了近100套在线尘埃粒子监控系统,其中包括大量无菌生产线粒子监控系统。所有这些系统均通过了美国FDA,cGMP和EUGMP的验证。 Russell先生曾参与编写了EUGMP标准。Russell先生曾成功主持了多次生命科学软件的审查。 Russell先生多次受邀在ISPE,BSI,UK PHSS上演讲EUGMP之粒子及环境监控系统议题题。 日程安排 8:30-9:00 前台签到 9:00-10:30 专家演讲 10:30-10:45 茶歇 10:45-12:00 专家演讲 12:00-13:30 中餐 13:30- 14:30 互动 14:30- 14:45 茶歇 14:45-16:30 专家演讲 时间与地点 时间:2011年6月13日(周一) 地点:石家庄国际大厦 河北省石家庄市中山东路301号 我们诚挚地邀请您拨冗莅临 美国TSI公司和金牌分销商 北京耀泰科技有限公司联合举办
  • “悟空”号暗物质粒子探测卫星伽马光子科学数据发布
    空间伽马射线观测作为人类认识宇宙的重要手段之一,在宇宙起源、暗物质探测等科学前沿问题的研究中发挥着积极作用。9月7日,中国科学院国家空间科学中心国家空间科学数据中心与中科院紫金山天文台联合发布“悟空”号暗物质粒子探测卫星首批伽马光子科学数据。此次公开发布的为2016年1月1日至2018年12月31日的伽马光子科学数据(共计99864个事例),以及与其相关的卫星状态文件(共计1096条记录)。暗物质粒子探测卫星(又名“悟空”号)作为空间科学先导专项(一期)首发星,于2015年12月17日在酒泉卫星发射中心成功发射。其主要科学目标通过在空间观测高能电子(包括正电子)和伽马射线能谱,寻找暗物质粒子的存在证据,并开展宇宙射线起源及伽马射线天文方面的相关研究。经过五年半的平稳运行,目前“悟空”号卫星平台、有效载荷均工作正常,已经完成全天区扫描超过11次,获取了约107亿高能宇宙射线事例,已先后获得了宇宙线电子、质子、氦核等TeV以上能区最精确的测量结果。暗物质粒子探测卫星有效载荷由4个子探测器(塑闪阵列探测器PSD、硅阵列探测器STK、BGO量能器、中子探测器NUD)构成。其中塑闪阵列探测器主要用于测量入射粒子的电荷,并用于伽马射线的反符合探测;硅阵列探测器主要用于测量入射粒子的方向,内部装有钨板将伽马射线转换为正负电子从而实现对其方向的精确测量,同时也可以对入射粒子的电荷进行测量;BGO量能器主要用于测量宇宙线粒子尤其是高能电子和伽马射线的能量,同时进行粒子鉴别,剔除高能核素(包括质子和重核)本底;中子探测器用于测量宇宙线中的强子与中子探测器上层的物质发生作用产生的次级中子,进一步剔除高能核素本底。暗物质粒子间接探测、宇宙线物理和伽马射线天文是“悟空”号卫星的三大科学目标,而对伽马射线的观测是实现其科学目标的重要手段之一。由于伽马光子不带电荷,在传播的过程中不会被磁场偏转,可以更好地携带暗物质空间分布的信息,故而在暗物质间接探测研究中伽马射线数据具有特殊价值。暗物质粒子探测卫星的伽马射线观测具有极高的能量分辨率,有望更好地研究暗物质的性质。国家空间科学数据中心与紫金山天文台将持续发布伽马光子科学数据,开展数据分析与应用技术及工具的研发,为公众提供数据共享与应用服务。“悟空”号伽马射线曝光图
  • 科学家在银河深处发现暗物质粒子证据
    北京时间10月28日消息,据国外媒体报道,宇宙学家表示,他们已经在银河核心深处发现与暗物质粒子有关的最令人信服的证据。该地的这种神秘物质相撞在一起产生伽马射线的次数,比天空中的其他临近区域更频繁。   最近几年,科学杂志上不断出现类似研究,不过要证实信息来源一直非常困难。然而费米实验室和芝加哥大学的宇宙学家、最新研究的第一论文作者丹霍普表示,10月13日出现在arXiv.org网站上的这项最新研究与此不同。他说:“除了暗物质以外,我们考虑每一个天文学来源,然而我们了解的知识无法解释这些观测资料。也没有与之密切相关的解释。”这一断言还没得到其他科学家的严格审查,不过看过这篇论文的人表示,他们还需要对该成果进行更多讨论。   费米实验室的天体物理学家克雷格霍甘并没参与这项研究,他说:“这是我所知道的第一项通过一个简单粒子模型,把少量与暗物质的证据有关的线索拼接在一起的研究。虽然它还没有充足证据,但它令人兴奋,值得我们去追根究底。”暗物质从137亿年前开始在庞大的能量膨胀——宇宙大爆炸过程中形成。能量冷却后形成普通物质、暗物质和暗能量,目前它们在宇宙中的比例分别是4%、23%和73%。   跟普通物质一样,暗物质具有引力,几十亿颗恒星正是在它们的帮助下聚集到星系里。但是这种物质很难与普通物质发生互动,人们看不到它。微中子是唯一一种曾在实验室里发现的暗物质粒子,但是它们几乎是零质量,而且在暗物质的宇宙能量部分里仅占很小比例。天体物理学家认为,剩下的很大一部分是由弱相互作用大质量粒子(WIMP)构成,这种粒子的能量大约比质子多10到1000倍。如果两个暗物质粒子撞在一起,它们就会彼此摧毁对方,产生伽马射线。   霍普和他的科研组通过对费米伽马射线太空望远镜在两年多时间里传回地球的数据进行分析,发现这种高能死亡信号。费米太空望远镜是美国宇航局的伽马射线望远镜,主要用来扫描银河的高能活跃区。他们发现,发出信号的相撞在一起的暗物质粒子,比质子大约重8到9倍。霍普说:“它比我们大部分人猜测的结果可能更轻一些。迄今为止我们很擅长这方面。不过人们猜测的暗物质粒子的重量范围不会一成不变。”   该科研组在银河核心处一个直径100光年的区域收集到的数据里发现这些信号。霍普解释说,他们之所以会关注这个区域,是因为它是暗物质最喜欢的聚集地,银河这个区域的暗物质密度,是银河边缘的10万倍。简而言之,银河核心就是一个暗物质大量聚集在一起,经常相撞的地方。   然而,其他科学家希望看到卡尔萨根的名言“不同凡响的发现需要不同凡响的证据”能变成现实。也就是说,他们希望看到从自然界和实验室两方面获得的证据。芝加哥大学的宇宙学家迈克尔特纳没参与这项研究,他说:“没人提供像萨根提到的那种证据。接受这一观点最困难的部分是,你必须拒绝接受天体物理学解释。大自然非常非常聪明,这可能是我们至今从没思考过的事情。”   特纳表示,好消息是几项有希望的暗物质探测试验目前正在进行。相干锗中微子技术(CoGeNT)等深埋地下的探测器可助霍普一臂之力。该探测器近几年可能已经发现弱相互作用大质量粒子的迹象。特纳说:“这十年是暗物质的十年。这个问题即将解决。现在所有这些探测器都在观测正确方位。”霍普同意两人的观点,不过他表示,与他交谈过的天体物理学家,没人能解释清楚这一现象。他认为,在他的发现得到支持或痛批前,也许只要数周时间就能在实验室里验证暗物质是否存在。他说:“我从没像现在一样为自己是一名宇宙学家而感到激动不已。”
  • 粒子对撞机内首次探测到中微子
    据美国加州大学欧文分校官网20日报道称,该校物理学家主导的“前向搜索实验”(FASER)首次探测到粒子对撞机产生的中微子,此前该团队曾观察到6个中微子之间的相互作用,此次新发现有望加深科学家对中微子的理解,还有助揭示行进较长距离与地球发生碰撞的宇宙中微子,为管窥遥远宇宙打开一扇窗。中微子无处不在,非常神奇,被称为宇宙的“隐形人”,是宇宙中数量最丰富的粒子。1956年,科学家首次探测到反应堆发出的中微子,确认了其存在。中微子在恒星燃烧过程中也发挥着关键作用。FASER联合发言人、欧洲核子研究中心(CERN)粒子物理学家杰米博伊德解释道,中微子对建立粒子物理学标准模型非常重要,但科学家们此前从未探测到对撞机产生的中微子。FASER位于CERN内,旨在探测CERN著名的大型强子对撞机(LHC)产生的粒子。研究人员指出,他们从一个全新的来源,也就是粒子对撞机那里发现了中微子。目前物理学家研究的大多数中微子都是低能中微子,但FASER探测到的中微子是迄今实验室制造出的最高能量的中微子,与深空粒子在地球大气层中引发剧烈粒子簇射时发现的中微子相似。博伊德称,新发现的高能中微子能向人们揭示宇宙深空的奥秘,这是用其他方法无法获得的,LHC中发现的这些高能中微子对于理解粒子天体物理学中真正令人兴奋的观测结果至关重要。除探测中微子外,FASER的另一个主要目标是识别出构成暗物质的粒子。物理学家认为,暗物质构成了宇宙中的大部分物质,但从未被直接观测到。FASER尚未发现暗物质的“蛛丝马迹”,不过,随着LHC将在几个月后开始新一轮粒子对撞,科学家们期待看到一些令人兴奋的信号。
  • 中国科学巨大跨越——超大型对撞机建成将改变粒子物理学
    p   中国国家主席习近平访美是全世界认识中国科研贡献的绝佳时机,这将进一步促进中美在科研领域,尤其是粒子物理学研究的深入合作。 /p p   2012年,欧洲大型强子对撞机上发现了希格斯粒子,开启了高能物理研究的新纪元。它验证了40多年前粒子物理标准模型中关于希格斯玻色子的预言,希格斯玻色子是标准模型的关键。然而,这一发现依然留下许多悬而未决的问题。其中包括希格斯玻色子的质量和亚原子间相互作用力的统一,以及量子引力的相关问题,科学家们只有解决这些问题才能真正了解宇宙起源。 /p p   大型强子对撞机(LHC)由欧洲核子研究中心(CERN)建造并运行,它将对探索这些科学未解之谜提供一些重要的线索。但是,要想解决一些更深层次的问题仍需依赖更强大的科学装置。下一个科学发现会在哪里发生?美国、欧洲和日本是传统的粒子物理研究中心,那里的科学家们在此从事着激动人心的研究项目并提出新的研究计划。不过,如今,一位新人加入了竞技,它就是——中国。 /p p   1976年,邓小平推行改革开放,从此,中国步入了经济快速发展的轨道中。对此,大家并不陌生。但很多人也许并不知道,邓小平还极大地推动并支持中国粒子物理事业的发展,促使北京正负电子对撞机在1983年获批,并于1988年竣工投入运行。 /p p   在过去的将近三十年里,粒子物理研究在中国有条不紊地发展着。而在近几年,中国的粒子物理研究大踏步前进。2012年3月,大亚湾中微子实验首次测量到中微子振荡几率,引起了全球科学界的强烈反响和广泛关注。大亚湾中微子核反应堆实验地址位于中国南部,是中美合作的科研项目。 /p p   如今,在大亚湾实验项目的首席科学家王贻芳领导下,提出了雄心勃勃的中国下一步粒子物理研究的长远规划。规划中,包含了被称之为“超大型对撞机”的建设。这个加速器将于本世纪二十年代进行极高能量的正负电子对撞,从而能远比CERN的大型强子对撞机更细致地揭示希格斯粒子的性质。在本世纪三十年代,其目标是再次实现高能质子对撞,其能量远远高于LHC的最高能量,用以挑战人们现有的认知和探索未知。 /p p   中国会建设该项目吗?我们无从知晓。在不久的将来会有初步的重要决定。 /p p   这项为期三十年的项目预算为几十亿美元,但与此同时,收益也是巨大的。中国将可能因此项目一跃成为世界重要前沿基础学科的领头羊。更为实际的好处是,通过建造如此庞大的对撞机,中国将在尖端科技中取得长足进步和发展,从超导磁体到高速电子学读出的探测器,从而吸引世界顶尖级科学家和技术人员来到中国。 /p p   对美国来说,参与这一项目也是极为有益的。目前,美国高能物理项目的研究重心集中在探索难以捉摸的中微子的性质,并没有建造大型对撞机的计划。但是,许多美国的高能物理领域的实验物理学家们目前正在CERN工作。大量的美国加速器物理方面的优秀人才能够参与这一项目并从中受益。 /p p   中国超大型对撞机的建设吸引着美国和世界其他国家的科学家们通力合作,这又带来了另一个好处——增进理解,建立信任。中美之间寻找合作和协作之路至关重要,国际大型装置无疑是这类合作的绝佳之选。 /p p   CERN成立于1954年,吸引着全世界的科学家们到此工作。二战后,CERN在促进欧洲社会和谐发展方面发挥着重要作用。美国与前苏联的物理学家在科研领域的交流与联络缓和了两个超级大国之间的紧张关系。随着中国的崛起,中美在超大型对撞机上的科研合作也会发挥类似的作用,从而避免引起商业或者军事的摩擦。 /p p   我们希望看到中国能进一步推动该项目,同时,为了科学和全人类的共同利益,我们呼吁美国参与这一项目并做出贡献。 /p p   编者注 戴维· 格罗斯是美国加利福尼亚大学圣巴巴拉分校物理学教授、2004年诺贝尔物理学奖获得者。爱德华· 威滕是普林斯顿高等研究院教授、美国国家科学奖章获得者。本文译者为中国科学院高能物理研究所江亚欧。 /p
  • 禾信质谱助力第七届大气细与超细粒子研讨会
    2013年10月10日由中国颗粒学会气溶胶专业委员会、中国科学院地球环境研究所和宁波诺丁汉大学共同主办的大气科学及污染控制技术国际会议暨第七届大气细与超细粒子研讨会在宁波诺丁汉大学顺利召开。来自中国大陆、香港、台湾与新加坡的众多国内外专家学者汇聚一堂,共同探讨大气细与超细粒子的新方向与新方法,灰霾的形成机理、细粒子的流行病学研究等方向已经成为该领域的研究热点。会议现场 禾信公司宣传片亮相大会现场   禾信公司作为该会议赞助商,并特邀做了《在线单颗粒气溶胶质谱仪在大气污染源解析中的应用》的专题报告。在线单颗粒气溶胶质谱仪首先获得每一个颗粒物的正负离子成分信息和粒径大小。在线软件ART-2a根据颗粒物质谱特征对颗粒物进行分类。然后将时间、粒径、成分等信息进行合并,通过每一类的因子,调取源谱库进行源对比。最后获得源分配饼图等信息,可达1小时的高时间分辨率。利用在线源解析(质谱直接测量法)技术开展快速精准的在线源解析工作,能为政府及时了解污染现状及来源提供技术支撑 为重点城市、重点行业、重点企业的污染状况监测提供技术支撑 在AQI接近临界点时,为政府及时采取有效控制措施提供科学依据 为产业结构调整等治理措施提供科学依据 为环境管理部门检验治理成效提供技术支撑 为环保精细化管理提供科学依据 在环境应急、污染投诉排查时快速找到污染源。  关于广州禾信分析仪器有限公司   禾信公司成立于2004年,是集质谱仪器研发、制造、销售及技术服务为一体的国家级火炬计划重点高新技术企业。注册资金4000万元,场地6000平方米。   通过多年努力,掌握高分辨垂直引入式飞行时间质谱分析器、电喷雾离子源、电子轰击离子源、真空紫外光电离源、大气压基质辅助激光解析离子源、大气压差分真空接口、膜进样以及质谱专用高速数据采集卡等,具有自主知识产权的质谱核心技术和飞行时间质谱仪器全套装配工艺 通过ISO9001:2008质量管理体系认证。在国内率先实现质谱仪器产品自主正向开发。产品研发得到国家“863”计划、国家重大科学仪器设备开发专项、国家火炬计划以及多项省市级科技攻关重点项目的支持。   禾信公司向环境监测、气象、工业生产、医药等领域提供商品化质谱仪器以及技术服务。近年来,质谱仪器销售额连创新高实现数量级增长,入选2012年中国优秀创业投资项目。2012年实现首台质谱仪器出口美国。
  • 塑料粒子及PVC粉末黑点外观检测仪一体机面世
    近日,卡尔帕斯(塑料黑点缺陷扫描仪厂家)总部传来消息,用于检测塑料树脂黑点和PVC黑点杂质的产品在一台机上自由切换的技术完美解决。 塑料树脂粒子表面外观上会出现黑点、黑斑点,甚至整颗都是色粒,将粒子快速挑选出来并进行分析是几乎每个工厂质检部门都希望的事情,用人眼按照现行国标1公斤的方法,量太大,重复性差,颗粒外观仪器法国家标准在2016韵鼎公司承办至今仍在推荐,黑点缺陷扫描仪检测技术也越来越好,快速、重复性高。 PVC粉末中也经常存在黑点或杂质,很多生产厂在经过对比后,选择卡尔帕斯黑点缺陷扫描仪的产品。 有些客户两种产品都有,虽然原来的技术也是一台主机就可以测量塑料粒子和PVC粉末的黑点外观,但需要更换备件,现在两者的一体化设计让这类客户非常方便测试。 到目前为止,卡尔帕斯黑点缺陷扫描仪产品多模块化的设计可以自由组合完成客户任意对颗粒或粉末样品中黑点、黑斑点、色粒、纤维、拖尾、连粒及塑料膜上鱼眼的快速测量、评估。
  • 美专家用金纳米粒子制成药物递送装置
    美国麻省理工学院的一个科研小组利用金纳米粒子以及红外线,研制出了一个递送数种药物的可控装置。   科研小组在最新一期《美国化学学会-纳米》杂志上报告说,其设计所依据的原理是当金纳米粒子暴露在红外线之下时,它们就会融化,释放出其表面所携带的药物。不同形状的金纳米粒子会对不同波长的红外线发生反应,因此只要控制红外线的波长,就能控制金纳米粒子所携每种药物的释放时间。   癌症、艾滋病等很多疾病的治疗都涉及多种药物治疗方案。目前已有的药物递送装置最多只能释放两种药物,而且释放时间必须提前设定。而这种新型药物递送装置可以从患者体外进行控制,且理论上最多可以递送4种药物。
  • 中国新版GMP实施要点暨在线尘埃粒子和浮游菌监控应用讲座(重庆)
    国际标准 安装实例 认证典范 完美方案 欧洲和北美的医药和生物企业在线尘埃粒子和浮游菌监控系统解析 稳定的软件系统对于数据的收集的重要性 GAMP 5 认证文件的特点 本次研讨会根据中国新版(2010年修订) GMP的实施细则,重点阐述在线尘埃粒子和浮游菌监控系统的实际安装准则,旨在协助中国的医药和生物企业通过中国新版GMP,EUGMP和FDA的认证。 演讲专家介绍 Tim Russell先生在生命科学领域25年的工作生涯中,共设计,安装,认证和维护了近100套在线尘埃粒子监控系统,其中包括大量无菌生产线粒子监控系统。所有这些系统均通过了美国FDA,cGMP和EUGMP的验证。 Russell先生曾参与编写了EUGMP标准。Russell先生曾成功主持了多次生命科学软件的审查。 Russell先生多次受邀在ISPE,BSI,UK PHSS上演讲EUGMP之粒子及环境监控系统议题题。 日程安排 8:30-9:00 前台签到 9:00-10:30 专家演讲 10:30-10:45 茶歇 10:45-12:00 专家演讲 12:00-13:30 中餐 13:30- 14:30 互动 14:30- 14:45 茶歇 14:45-16:30 专家演讲 时间与地点 时间:2011年6月15日(周三) 地点:重庆欧瑞锦江大酒店 重庆市渝北区西湖路6号 我们诚挚地邀请您拨冗莅临 美国TSI公司和金牌分销商 北京耀泰科技有限公司联合举办
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制