当前位置: 仪器信息网 > 行业主题 > >

传感分析仪

仪器信息网传感分析仪专题为您提供2024年最新传感分析仪价格报价、厂家品牌的相关信息, 包括传感分析仪参数、型号等,不管是国产,还是进口品牌的传感分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合传感分析仪相关的耗材配件、试剂标物,还有传感分析仪相关的最新资讯、资料,以及传感分析仪相关的解决方案。

传感分析仪相关的资讯

  • 分析仪不离传感器 微电子智能化为主
    分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化的新一代分析仪器,实现更灵敏、更准确、更快速、更可靠地实时检测,以迅速改变我国分析仪器的落后状况。  传感器作为现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。  几十年来,以微电子技术为基础,促进了传感器技术的发展。多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS、MOMES、智能传感器、生物化学传感器等以及今后将大力开发的网络化传感器、纳米传感器均是多学科、多种学科技术交叉融合的新一代传感器。  微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、LIGA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。  MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化。(注:MEMS技术还完成了微电动机或执行器等产品,将另作文介绍)网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。  除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。  多传感器数据融合技术正在形成热点,不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。  多传感器数据融合的定义概括:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。  近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。
  • 智能化成分析仪器与传感器发展方向
    我国分析仪器和传感器产品,已经加大力度朝向智能化、信息化、网络化方向发展,以实现更灵敏、更准确、更快速、更可靠地实时检测。  分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化的新一代分析仪器,以迅速改变我国分析仪器的落后状况。  传感器作为现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。  几十年来,以微电子技术为基础,促进了传感器技术的发展。多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS、MOMES、智能传感器、生物化学传感器等以及今后将大力开发的网络化传感器、纳米传感器均是多学科、多种学科技术交叉融合的新一代传感器。  微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、LIGA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。  MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化。(注:MEMS技术还完成了微电动机或执行器等产品,将另作文介绍)网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。  除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。  多传感器数据融合技术正在形成热点,不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。  多传感器数据融合的定义概括:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。  近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。
  • 化学传感材料与分析仪器化集成研究获新成果
    中科院长春应化所研究员牛利课题组经过5年研究,在“基于纳米结构复合材料的化学传感器件及其分析仪器化集成设计”研究上取得了系列创新性成果,为我国科学仪器创新作出了积极贡献。   据介绍,化学传感器是集电子科学、化学科学和材料科学于一体的高技术器件,它可将物理量、化学量转变成便于利用的电信号,并提供给集成的仪器进行信息分析和处理。因此,它不仅可广泛应用于环保、医疗、公共安全、工业过程控制、临床等领域,在基础研究中也占有独特的地位。   有关专家认为,新型化学传感器及微型化、集成化方面的研究将是未来5~10年应重点关注的科学研究领域之一。特别是新型纳米复合材料及微加工、微芯片技术的使用,将对新型化学传感器的开发起主导作用。   牛利课题组于2004年开始了该项目的研究。他们以为新型化学传感器提供新材料为目标,以纳米结构复合材料为突破口,系统研究了纳米结构复合材料设计、合成、性能、微结构等特征,深入探索了基于导电聚合物、碳纳米、金属纳米、离子液体等新型纳米结构复合物材料的化学及电化学制备方法,并成功合成制备了多种新型纳米结构材料。这些新型的纳米结构复合材料显示了复杂、特殊的新性能,如高导电性、高生物兼容性、表面增强活性、荧光增强/淬灭特性、电催化活性等,从而为新型化学传感器的研发与制备提供了有力的材料支撑。以此为基础,他们通过纳米加工与组装,如分子印迹等技术手段,系统深入地研究了纳米结构复合材料及其组装后的宏观纳米复合体的化学传感特性,着力解决了高通量分析、高灵敏度、高选择性检测分析、实时在线监测分析、快速时间反应等复杂组分分析传感中的重要科学问题,成功制备出多种新型化学敏感材料,并与分析仪器化集成设计相结合,研发出了多种新型电化学检测/监测仪器设备,不仅为我国科学仪器创新作出了积极贡献,也为纳米结构复合材料的合成制备、衍生与掺杂、化学传感芯片的制备及筛选等研究工作的深入开展提供了有力支撑。
  • 用于TOC检测的传感器与分析仪:您知道两者的区别吗?
    制药公司依靠分析仪器来检测总有机碳(TOC),以确保在将水和设备用于制造药品之前符合药典要求。用于检测TOC的两种主要仪器包括传感器和分析仪。TOC传感器和分析仪之间的区别在于在仪器检测TOC的方法和过程。什么是TOC传感器?TOC传感器使用直接或非选择性电导技术来定量检测TOC。测试样品氧化前后的电导率读数生成TOC检测值,该检测值源自于以下算法:假设测得的电导率是有机碳转化为CO2的函数。由于溶液的电导率是离子浓度、离子类型和温度的函数,忽略检测离子及其浓度之间的差异会导致错误的TOC检测。最终,由于这些干扰离子对电导率检测的影响,它们将导致TOC报告值过高或过低。此外,根据美国药典USP 的要求,无法区分CO2来自无机碳(IC)还是有机碳。什么是TOC分析仪?TOC分析仪通常采用膜电导技术来定量分析TOC。将选择性气体渗透膜结合到膜电导分析仪中,以分离有机化合物氧化产生的CO2。当CO2通过膜扩散时,它会溶解在去离子水中,产生碳酸氢根、碳酸根和氢离子,这些离子可以通过电导率测量进行检测和定量分析;因此,符合美国药典USP 的要求。膜的选择性渗透特性降低了TOC传感器受到的离子干扰,提高了TOC检测的准确性和精确度。TOC传感器和分析仪的特点及应用TOC传感器与分析仪的区别特性与其各自的应用相一致。TOC传感器通常仅限于监测应用,而分析仪则用于需要过程控制和报告结果的应用。下表列出了TOC传感器和分析仪的特性及应用。在决定将哪种技术集成到制药用水检测/监测的实际应用中时,了解TOC传感器和分析仪之间的区别至关重要。虽然传感器更具成本效益、响应速度更快,但分析仪能够报告符合药典的关键质量决策,对于寻求稳健、准确和精确的仪器来检测TOC的用户来说,这可能是一种更好的解决方案。TOC分析仪还提供便携式、实验室或在线配置,让用户可以选择最适合其应用的产品配置。由用户来确定其工艺流程需求,采购合适的TOC仪器作为解决方案。◆ ◆ ◆联系我们,了解更多!
  • “雷磁”携手中仪学分析仪器分会化学传感器专家组设立“中国化学传感器成就奖奖励基金”
    p   strong  仪器信息网讯 /strong 以奖励在我国化学生物传感器科研领域取得优秀成果,并对我国化学生物传感器事业发展做出突出贡献的中国科研工作者,中国仪器仪表学会分析仪器分会化学传感器专家组(原专业委员会)将在第十四届全国化学传感器学术会议(14th SCCS)上颁发首届“中国化学传感器成就奖”学术奖项。 /p p   为了保证该学术奖项的持续性,大会组委会特设立“中国化学传感器成就奖奖励基金”。上海仪电科学仪器股份有限公司作为该基金的赞助方,携手中国仪器仪表学会分析仪器分会化学传感器专家组(原专业委员会),于2019年8月8日假上海市松江区绿地铂骊酒店举办合作签约仪式,设立“中国化学传感器成就奖奖励基金”。仪电科仪秉承“雷磁”品牌的“务实、创新、求精、致远”的发展宗旨,为中国化学传感器事业的发展贡献力量。 /p p   合作协议的签订,由化学传感器专业委员会主任委员、14th SCCS组织委员会主席、湖南大学吴海龙教授和仪电科仪董事长兼总经理汤志东签署。由化学传感器专业委员会原主任委员、湖南大学原化学计量学与化学传感技术教育部重点实验室主任、二级教授沈国励老先生、中国仪器仪表学会分析仪器分会关亚风理事长、刘长宽常务副理事长、中国仪器仪表行业协会分析仪器分会曾伟秘书长、上海市科委张露路处长、上海科学仪器产业技术创新联盟、上海市分析测试协会马兰凤秘书长等专家,以及上海仪电科学仪器股份有限公司副总经理殷传新、金建余,雷磁传感器公司总经理何海东等人共同见证。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201908/uepic/d1ed5a03-4998-4985-9797-e94353fc23da.jpg" title=" 微信图片_20190809004300_副本.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201908/uepic/0578fbe2-94b5-4f6b-8906-0108585449dd.jpg" title=" 微信图片_20190809004215_副本.jpg" / /p p style=" text-align: center " strong 吴海龙教授与汤志东董事长签署合作协议 /strong /p p   中国仪器仪表学会分析仪器分会化学传感器专家组(原专业委员会)成立于1985年,目前为第六届,由吴海龙教授为组长、俞汝勤院士为主编,分别组成新一届“化学传感器专家组”和《化学传感器》编委会。组织机构有汪尔康、俞汝勤、姚守拙、陈洪渊、张玉奎、董绍俊、马立人、程京、谭蔚弘等9位顾问,其中5位为中科院院士。由其主办的全国化学传感器学术会议(SCCS),从最初的全国离子选择性电极学术交流会到如今的全国化学传感器学术会议,SCCS学术会平均每三年一届,迄今已成功举办十三届,反映见证了我国化学传感器研究领域的发展历程。 /p p   “雷磁”是上海仪电科学仪器股份有限公司的自主品牌,创建于1940年,是中国pH计和玻璃电极的诞生地,也是国内分析仪器的发源地。长期以来专注于电化学分析仪器事业,历经七十多余年发展,雷磁逐步发展成为集研发、生产、销售、应用、集成、服务为一体的高新技术企业。以“为提高人们的生活质量,提供高科技产品和优质服务”为企业目标,创新驱动、转型发展,成为不断进步的科学仪器制造商和检测溯源系统解决方案与运行服务的提供商。 /p
  • 泉科瑞达2024新款顶空气体分析仪——带有氧化锆传感器
    在现代工业与生活中,包装顶空气体分析仪以其高精度和多功能性,在食品、药品、电子产品等多个领域发挥着重要作用。其中,氧化锆传感器作为其核心部件,更是以其卓越的性能,确保了检测的准确性和可靠性。本文将深入探讨包装顶空气体分析仪中氧化锆传感器的应用,以及它如何精准检测各类产品。一、氧化锆传感器的技术原理与优势技术原理氧化锆传感器主要由氧化锆(ZrO2)和护套组成,分为加热式和非加热式两种。加热式氧化锆传感器通过内置的加热元件,使锆管内的温度保持在约700°C,从而确保传感器的稳定工作。在这种高温下,氧化锆成为氧离子导体,通过测量氧分压差产生的电动势,可以精确计算出被测气体中的氧含量。优势特点高灵敏度:氧化锆传感器对氧气的检测极为敏感,能够在极低的浓度下准确测量。快速响应:传感器反应迅速,能够在短时间内完成检测,提高生产效率。稳定性好:长期使用下,氧化锆传感器的性能稳定,测量结果可靠。寿命长:由于结构坚固,抗氧化腐蚀能力强,氧化锆传感器的使用寿命较长。二、氧化锆传感器在食品包装中的应用即食食品包装即食食品如方便面、即食米饭等,其包装内部的氧气含量直接影响产品的保质期和口感。使用包装顶空气体分析仪配合氧化锆传感器,可以快速准确地检测包装内的氧气含量,确保产品新鲜度。奶粉包装奶粉行业的残氧分析至关重要。残氧过高会导致奶粉氧化变质,影响产品质量。氧化锆传感器能够精确测量奶粉包装内的残氧量,为生产厂家提供关键数据支持,确保产品安全。肉类包装肉类产品在包装过程中需要严格控制氧气含量,以防止细菌滋生和氧化变质。包装顶空气体分析仪通过氧化锆传感器,实时监测包装内的氧气浓度,为肉类产品的保鲜提供有力保障。气调包装气调包装通过调节包装内的气体成分来延长食品的保质期和保持其口感。在这一过程中,氧化锆传感器发挥着不可或缺的作用。它能够精确监测并调整包装内氧气、二氧化碳及氮气等气体的比例,确保食品处于最佳的储存环境中。例如,在果蔬气调包装中,通过减少氧气含量并增加二氧化碳和氮气的比例,可以抑制果蔬的呼吸作用,延缓其新陈代谢,从而有效延长保鲜期。三、氧化锆传感器在药品包装中的应用药品稳定性测试药品在储存和运输过程中,包装内的氧气含量是影响其稳定性的关键因素之一。氧化锆传感器能够精确监测药品包装内的氧气浓度,帮助制药企业评估药品在不同氧气环境下的稳定性,从而制定更为科学合理的包装方案,保障药品的有效性和安全性。无菌包装验证对于需要无菌保存的药品,如注射剂、生物制品等,包装过程中的氧气含量控制尤为重要。氧化锆传感器能够实时检测包装密封后的氧气残留情况,确保包装的无菌状态,防止药品因氧化而失效或受到微生物污染。四、氧化锆传感器的未来发展趋势随着科技的不断进步和工业生产的日益精细化,氧化锆传感器在包装顶空气体分析仪中的应用将更加广泛和深入。未来,我们可以期待以下几个方面的发展:智能化与自动化:传感器将与物联网、大数据等技术相结合,实现远程监控、智能预警和自动调节等功能,提高生产效率和产品质量。高精度与长寿命:通过材料科学和微纳技术的不断创新,氧化锆传感器的灵敏度和稳定性将得到进一步提升,同时延长其使用寿命,降低维护成本。多气体检测:未来的氧化锆传感器可能具备同时检测多种气体成分的能力,满足更复杂、更多样化的工业需求。综上所述,包装顶空气体分析仪中的氧化锆传感器以其卓越的性能和广泛的应用前景,正成为现代工业中不可或缺的检测工具。随着技术的不断进步和市场的不断拓展,我们有理由相信,氧化锆传感器将在未来发挥更加重要的作用,为各行各业带来更加精准、高效的检测解决方案。以上内容由山东泉科瑞达仪器设备有限公司发布,关注泉科瑞达公众号了解更多
  • 红外沼气分析仪应用新趋势——模块化红外气体传感器
    本文介绍了检测沼气成分的五种主要方法:奥氏气体分析法、热催化燃烧检测法、热导元件检测法、气相色谱GC检测法、红外气体分析法,分析了这五种检测方法的特点及其在我国沼气服务体系中的适应性,并总结了目前最适宜我国大中型沼气工程沼气成分监测的分析方法是红外沼气成分分析技术。1、奥氏气体分析法 奥氏气体分析法是一种经典的化学式手动分析方法,该方法是利用溶液吸收法来测定CO、CO2和O2浓度,CH4和H2浓度则在爆炸燃烧法后用吸收法测定,剩余气体为N2。目前传统的奥氏气体分析方法在沼气成分检测中应用较少。针对农村沼气服务体系的特定应用,通常采用检测管法,该方法操作更简便,常用的检测管有H2S、O2、CO2、CO等,但没有直接测量CH4浓度的检测管,CH4浓度是通过计算所得,即100%-[ CO2 ]-[空气]-[H2S]-[ CO ]等,因此存在一定误差。 奥氏气体分析仪具有结构简单、价格便宜、维修容易等优点,常用于CO2、O2、CO、H2、烃类等气体浓度的测定,在实验室里应用广泛。但该仪器长期运行成本高,仅每年购买试剂和玻璃器皿至少要1万多元,且必须对气体进行人工取样,才可在实验室内进行分析,其中分析人员的操作技能和“态度”对分析的精确度也有着较大影响。同时奥氏气体分析仪只能对单一成分逐个进行检测分析,不具备多重输入和信号处理功能,分析费时,操作繁琐,响应速度慢,效率低,难以实时在线地分析现场工况,现逐渐被全自动分析仪器替代。2、热催化燃烧检测方法 热催化燃烧检测方法是利用两只热催化(黑白)元件——补偿元件和桥臂电阻构成惠斯顿电桥加一恒定电压,将铂丝加热到500℃,当遇到空气中的可燃气体时,测量元件在催化剂的作用下,在元件表面发生催化反应,使得温度升高,阻值增大,电桥输出不平衡,以此来测定甲烷浓度。该方法是检测甲烷泄漏最简单、经济的方法,在我国煤矿安全检测领域具有广泛应用。但载体催化元件只能检测0~4%的甲烷浓度,当空气中甲烷浓度超过5%后,元件会发生“激活”现象,造成永久损坏。同时检测设备需要频繁标定,热催化元件的仪器使用寿命一般在1年内,精度较差(10%),而在高H2S条件下,易造成传感器中毒甚至报废,使用寿命大大缩短。3、热导元件检测方法 不同气体的导热系数存在差别,热导元件检测方法就是根据这一特性,来测定气体的体积浓度。沼气的主要成分是CH4和CO2 ,被测沼气的导热系数由CH4和CO2共同决定。对于彼此之间无相互作用的多组分气体,其导热系数可近似地认为是各组分导热系数浓度的加权平均值。因此,根据沼气的导热系数与各组分导热系数之间的关系,就可以实现沼气多组分气体浓度的测定。 目前该检测方法已广泛应用在煤矿瓦斯抽排领域,也可用于沼气中甲烷浓度的测量。但该类型传感器使用寿命一般在2年左右,且该传感器对于低浓度测量,具有较大局限性,如无法测量浓度低于5%的甲烷浓度,如果用于甲烷的泄露报警将会造成较大误差。4、气相色谱GC检测方法 气相色谱GC分析方法是利用气体物理吸附能力的差别,将采样的气体在色谱中分离然后,热导检测器通过热电阻与被测气体之间热交换和热平衡来实现其CH4、CO2、O2等气体浓度的检测,该检测方法分离效能高,对物理化学性能很接近的复杂混合物质都可以进行定性、定量检测,灵敏度较高。气相色谱分析原理示意图 由于柱温与载气对分离结果的具有较大影响,其中柱温对分离结果的影响比载气的大,所以在检测过程中,除了要经常更换色谱柱外,还需要对色谱柱温和载气流速进行适度的调节,以免影响分离结果造成误差。同时色谱价格相对较贵,需要采样,不能实现在线分析。5、红外气体分析方法 当对应某一气体特征吸收波长的光波通过被测气体时,其强度将明显减弱,强度衰减程度与该气体浓度有关,两者之间的关系遵守朗伯一比尔定律,也就是红外光谱检测方法的基本原理。红外气体分析技术作为一种快速、准确的气体分析技术在实际应用中十分普遍。由于该方法是采用物理原理,分析气体不与传感器发生反应,因此传感器使用寿命很长,该类型传感器不仅可以用于测量沼气泄露的低浓度报警,也可以用于高浓度的沼气成分测量。 由上表可知,红外气体分析技术相较于奥氏、热催化、热导元件、气相色谱气体分析技术,具有响应时间快、灵敏度高、使用寿命长、仪器操作方便等优势。但对国内用户而言,红外气体分析技术普遍存在NDIR传感器价格昂贵、维护困难、产品质量参差不齐等问题。针对这些问题,四方仪器对NDIR传感器进行了升级,将红外传感器进行模块化设计,一个传感器对应检测一个气体组分,拆卸维护方便,使得仪器在体积、性能、维护、价格上具有以往仪器无法比拟的优势。 如沼气分析仪(智能便携型)Gasboard-3200Plus,采用自主知识产权的模块化红外传感器,可实现CO、CO2、CH4等多组分气体浓度的快速测量。同时其H2S、O2浓度测量可拓展,流速、流量可采集,体积轻量化,APP终端智能化等创新设计,弥补了沼气成分、流量一台仪器不可同时测量,长距离、大规模沼气项目监测设备不易携带,监测数据获取流程复杂等的不足,可广泛用于生物沼气、污水处理废气和垃圾填埋气体等沼气成分的可靠准确且经济有效的监测。在满足行业标准应用的同时,仪器测量组分还可根据用户需求定制,轻巧便携,实用性大大提高。模块化红外气体传感器工作原理6、结论 在沼气技术服务体系建设中,气体分析仪发挥了十分重要的作用,在选择配置时需要考虑仪器的使用寿命、功能、质量保障体系、实用性、性价比等因素。在奥氏吸收、热导元件、热催化、气相色谱、红外光谱的气体分析仪中,从寿命、功能、实用性等方面考虑,可优先选择红外方法的仪器;如果仅测量甲烷浓度或检测泄露,可以考虑基于热导和热催化原理的仪器;如果用于实验室定性与定量的精准测量,也可以考虑色谱分析方法。 但随着沼气生产和过程控制要求的逐渐提高,不断实现技术创新升级的红外沼气分析仪将逐渐取代奥氏吸收、热导元件、热催化、气相色谱等气体成分检测技术,成为我国大中小型沼气工程沼气成分监测与工艺过程调控必不可少的气体成分监测设备。(来源:沼气圈)
  • “雷磁”携手中仪学分析仪器分会化学传感器专家组,设立“中国化学传感器成就奖奖励基金”
    为了奖励在我国化学生物传感器科研领域取得优-秀成果,并对我国化学生物传感器事业发展做出突出贡献的中国科研工作者,中国仪器仪表学会分析仪器分会化学传感器专家组(原专业委员会)将在第十四届全国化学传感器学术会议(14th sccs)上颁发首届“中国化学传感器成就奖”学术奖项。 为了保证该学术奖项的持续性,大会组委会特设立“中国化学传感器成就奖奖励基金”。上海仪电科学仪器股份有限公司作为该基金的赞助方,携手中国仪器仪表学会分析仪器分会化学传感器专家组(原专业委员会),于2019年8月8日假上海市松江区绿地铂骊酒店举办合作签约仪式,设立“中国化学传感器成就奖奖励基金”。仪电科仪秉承“雷磁”品牌的“务实、创新、求精、致远”的发展宗旨,为中国化学传感器事业的发展贡献力量。 合作协议的签订,由化学传感器专业委员会主任委员、14th sccs组织委员会主席、湖南大学吴海龙教授和仪电科仪董事长兼总经理汤志东签署。由化学传感器专业委员会原主任委员、湖南大学原化学计量学与化学传感技术教育部重点实验室主任、二级教授沈国励老先生、中国仪器仪表学会分析仪器分会关亚风理事长、刘长宽常务副理事长、中国仪器仪表行业协会分析仪器分会曾伟秘书长、上海市科委张露路处长、上海科学仪器产业技术创新联盟、上海市分析测试协会马兰凤秘书长等专家,以及上海仪电科学仪器股份有限公司副总经理殷传新、金建余,雷磁传感器公司总经理何海东等人共同见证。
  • 业界首发 – Hummingbird推出用于分析仪的 抗振性顺磁氧气传感器
    英国Crowborough,2015年10月26日 – Hummingbird Sensing Technology是医疗和工业市场中气体检测技术产品的领先制造商。近日,公司推出分析仪行业中首个Hummingbird Paracube Modus产品——全球首款具有高抗振性能的顺磁氧气传感器,专为集成到便携式分析仪中而设计。 Modus建立在Hummingbird成熟的Paracube平台基础上,将全球领先的磁动力顺磁氧气检测技术集成到了兼容RoHS标准的高度紧凑型传感器中,并且针对OEM集成进行了优化。该产品的面市具有标志性意义,率先为需要精确测量氧气的便携式分析应用开发出了可靠的非损耗性技术。 Hummingbird Sensing Technology公司市场部经理Martin Cox解释说:“我们的客户需要在运输过程或者频繁振动环境中仍能精确测量氧气的传感器。鉴于此,Hummingbird的工程师采用技术领先的创新性设计,并进行专项开发和整合以迎合具有挑战性的应用条件。大量测试结果显示,与标准顺磁测量池相比,Modus受振动影响可显著30倍。” Martin还补充道:“Hummingbird兼容RoHS标准的顺磁氧气传感器系列产品已广泛为世界一流的分析仪制造商所采用,Paracube Modus是对这一系列产品的进一步完善和扩展。” “Modus顺磁传感器性能优异且具备诸多特性,是用于替换作电化学传感器的新一代理想产品。老式的电化学传感器需要频繁进行更换,成本较高,而且不满足RoHS标准有关电子设备限制使用危险物质的要求。” “作为一种非损耗性替代产品,Hummingbird顺磁传感器具有很长的使用寿命。这样,用户就无需频繁更换测量池,也无需顾虑诸多因素而降低应用要求。这不仅保证了应用安全性,而且也大大降低了固定资产在整个寿命周期内的总持有成本。”关于Hummingbird Sensing Technology Hummingbird Sensing Technology坚信理解客户需求是开发有效气体传感器技术的唯一途径,因此25年来持续与客户保持紧密协作。这是我们始终走在世界传感器技术前列的秘笈。 我们用心倾听和了解客户需求,不断推陈出新,创新检测技术,以一贯的卓越性能、极佳可靠性和最合理的持有成本满足医疗和工业制造商的需求。 长期以来,我们不断探索以追求研发方面的极致,持续优化产品设计和制造工艺,凭借创新理念为客户提供一系列具有最佳系统集成性、灵活性、兼容性和可靠性的OEM氧气传感器。 Hummingbird在英国的生产基地经过ISO 9001认证,所有传感器均按最高质量标准制造并满足RoHS标准等各项法规要求,争做环保先锋。更多信息,请登录www.hummingbirdsensing.com
  • 锐意自控基于微流红外、紫外NOX传感器的汽车排放尾气分析仪已通过多省计量认证
    p   汽车尾气排放分析仪是在汽车发动机正常运转时,对汽车排放的尾气进行检测、分析, 从而判断汽车发动机是否工作正常、排出的有害气体是否超出标准的一种仪器。作为机动车尾气检验以及维修机构的核心设备,这种仪器的质量和性能直接影响到对汽车尾气排放超标进行检查的效率和效果。因此,获得具有法定效力的计量认证证书是产品应用于市场的重要前提条件。 /p p   随着新的汽车尾气排放检测法规《汽油车污染物排放限值及测量方法(双怠速及简易工况法)》GB18285-2018和《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》GB3847-2018的发布,汽车尾气分析检测逐渐标准化。凭借在环保领域多年的气体分析仪器仪表研发制造经验,湖北锐意自控全新推出测量精准度更高、稳定性更好的汽油车尾气排放分析仪Gasboard-5260和柴油车尾气排放分析仪Gasboard-5230。 /p p span style=" font-size: 18px color: rgb(0, 176, 80) " strong 新法规变化分析 /strong /span strong style=" font-size: 18px " /strong /p p   新法规规定,汽车尾气排放分析仪应至少能自动测量HC、CO、CO2、NO、O2五种气体浓度。在检测方法上也发生了较大的变化:一是规定原来的电化学法测量NOx的原理不再适用,必须用光学法原理测量 二是柴油车增加了NOx的检测。 /p p    span style=" color: rgb(255, 0, 0) " 如何准确测量NOx? /span /p p   新标准的出台直接影响着NOx的测量,光学检测原理有非分光红外(NDIR)、微流NDIR、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS),原理不同测量的精度和结果也不同。除了检测原理不同外,还有两种测量方式的区别:一种是直接测量,把NOx分为NO 和NO2两个组分分别测量,测量浓度相加得到NOx 另一种是间接测量,采用转化炉将NO2转化为NO,通过测量NO间接得出NO2和NOx的浓度。 /p p   此外,《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》GB 3847-2018中规定采用转化炉将NO2转化为NO时,转化效率应≥90%,对转化效率要定期检验,转化效率不合格的转化炉要及时更换。 /p p   因此,采用转化炉间接测量法的汽车尾气分析仪会遇到以下问题: /p p   1、转化效率会影响测量精度,造成测量结果不准确 /p p   2、转化炉定期进行检测会增加作业成本 /p p   3、转化炉的使用寿命一般不超过一年,需定期更换。 /p table border=" 0" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse margin-left:10px margin-right: 10px" width=" 648" tbody tr class=" firstRow" td valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" p style=" text-align:center line-height:150%" strong span style=" font-size:13px line-height:150% font-family:等线" 特性 /span /strong /p /td td valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 302" p style=" text-align:center line-height:150%" strong span style=" font-size:13px line-height:150% font-family:等线" 直接测量 span NO /span 、 /span /strong strong span style=" font-size:13px line-height:150% font-family:等线" NO sub 2 /sub /span /strong strong /strong /p /td td valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 266" p style=" text-align:center line-height:150%" strong span style=" font-size:13px line-height:150% font-family:等线" 间接测量 span NO /span 、 /span /strong strong span style=" font-size:13px line-height:150% font-family:等线" NO sub 2 /sub /span /strong strong span style=" font-size:13px line-height:150% font-family:等线" (转换炉) /span /strong /p /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" p style=" text-align:center line-height:150%" span style=" font-size:13px line-height:150% font-family:等线" 准确性 /span /p /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 302" p style=" text-align:left line-height:150%" span style=" font-size:13px line-height:150% font-family:等线" 测量精度较高, span NOx /span 测量误差低至 span style=" background:white" ± span 4% /span /span /span /p /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 266" p style=" text-align:left line-height:150%" span style=" font-size:13px line-height:150% font-family:等线" 测量精度受转化效率影响较大 /span /p /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" p style=" text-align:center line-height:150%" span style=" font-size:13px line-height:150% font-family:等线" 便利性 /span /p /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 302" p style=" text-align:left line-height:150%" span style=" font-size:13px line-height: 150% font-family:等线" 1 /span span style=" font-size: 13px line-height:150% font-family:等线" 台仪器集成 span 2 /span 个测量平台,操作方便 /span /p /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 266" p style=" text-align:left line-height:150%" span style=" font-size:13px line-height: 150% font-family:等线" 1 /span span style=" font-size: 13px line-height:150% font-family:等线" 台仪器外加 span 1 /span 台转换炉,操作繁琐 /span /p /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" p style=" text-align:center line-height:150%" span style=" font-size:13px line-height:150% font-family:等线" 成本效益 /span /p /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 302" p style=" text-align:left line-height:150%" span style=" font-size:13px line-height:150% font-family:等线" 无需更换后期耗材,后期免维护 /span /p /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 266" p style=" text-align:left line-height:150%" span style=" font-size:13px line-height:150% font-family:等线" 需定期更换转换炉,成本增加 /span /p /td /tr /tbody /table p style=" text-align: center " strong 表一、直测法VS转化炉法特性对比分析 /strong /p p style=" text-align: center " span style=" font-size: 18px " strong /strong /span /p p span style=" font-size: 18px color: rgb(0, 176, 80) " strong 锐意自控解决方案 /strong /span /p p   湖北锐意自控系统有限公司自汽车尾气排放检测新国标发布以来,在核心气体传感器的测量原理及结构上取得突破。针对标准中规定的汽车尾气排放分析仪的检测组分、量程、精度的要求,以及市场普遍面临的NOx测量受水分干扰及转化炉转化效率影响的技术难点,成功研发出满足汽油车和柴油车尾气检测用的气体传感器平台。 /p p    span style=" color: rgb(255, 0, 0) " 1、 采用微流NDIR技术直测NO /span /p p   目前国际上的微流红外气体传感器在使用过程中,测量结果随着温度变化,以及光源、探测器的老化等原因造成漂移。对此,湖北锐意自控在采用了隔半气室设计,分别设计了参考气室和测量气室,但是使用同一个光源和探测器,因此,可以通过光源通过参考气室和测量气室的信号比值来修正由于温度、光源老化、探测器老化等造成的信号漂移,从而提高微流红外气体传感器的测量精度和长期稳定性。 /p p   此外,基于非分光红外(NDIR)测量NO、NO2易受水分干扰的问题,配备水分补偿调节装置,增加传感器对被测气体的响应灵敏度 通过调节叶片及线性修正,对H2O(气)干扰信号进行调整,使传感器受H2O(气)的影响相互抵消,从而消除H2O(气)的干扰,进一步保证测量的准确性。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 234px " src=" https://img1.17img.cn/17img/images/202006/uepic/24ce5fd9-be58-465e-83c5-5411ae0dbd4f.jpg" title=" 图片.jpg" alt=" 图片.jpg" width=" 450" height=" 234" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " ①红外光源 ②切光器 ③切光电机 ④测量气室 ⑤参比气室 ⑥检测器 ⑦微流传感器⑧第2组分检测器 ⑨信号处理及输出系统 /span /p p style=" text-align: center " strong 图一 微流NDIR双气室技术原理 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 293px " src=" https://img1.17img.cn/17img/images/202006/uepic/aed0659f-3c0a-4edc-93bd-8bdffb75a6b6.jpg" title=" 22.jpg" alt=" 22.jpg" width=" 450" height=" 293" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图二 微流NDIR NO气体传感器 /strong /p p    span style=" color: rgb(255, 0, 0) " 2、 非分光紫外(NDUV)直测NO2 /span /p p   不同于红外(IR),紫外(UV)光谱吸收波段是纳米级别的,波长更短,波峰比较独立。非分光紫外(NDUV)可准确测量NO2气体浓度,不受水分干扰,精度更高,且非分光紫外(NDUV)相对于紫外差分吸收光谱(UV-DOAS)成本较低。采用非分光紫外(NDUV)直测NO2,成功打破汽车尾气检测中需配套NOx转化炉将NO2转化为NO,采用红外光学平台测量NO浓度,再通过NO浓度计算得出NO2浓度的局限性,更加节省系统集成空间及维护成本 且NO2测量更准确,不受转化效率的影响。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/202006/uepic/f6bf8cf2-ddb5-4eed-a6d8-13e96be55e38.jpg" title=" 33.jpg" alt=" 33.jpg" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 图三 紫外吸收光谱 /strong /p p   锐意自控的汽油车尾气排放分析仪Gasboard-5260和柴油车尾气排放分析仪Gasboard-5230采用微流NDIR直测NO、非分光紫外(NDUV )直测NO2,成功打破汽车尾气检测中需配套NOx转化炉将NO2转化为NO的局限性,更加节省系统集成空间及维护成本 且NO2测量更准确,不受转化效率的影响。微流NDIR、非分光紫外(NDUV)、非分光红外(NDIR)及电化学技术均为湖北锐意自控自主掌握。 /p p span style=" font-size: 18px color: rgb(0, 176, 80) " strong 新产品介绍 /strong /span /p p   基于核心汽车尾气传感器平台,湖北锐意自控针对汽油车和柴油车的检测需求,成功开发出汽油车尾气排放分析仪Gasboard-5260和柴油车尾气排放分析仪Gasboard-5230。 /p table border=" 0" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse margin-left:10px margin-right: 10px" tbody tr class=" firstRow" td width=" 300" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 湖北锐意自控汽油车尾气分析仪 /span /p p style=" text-align:center line-height:115%" span style=" font-size:13px line-height: 115% font-family:等线" Gasboard-5260 /span /p /td td width=" 283" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 湖北锐意自控柴油车尾气分析仪 /span /p p style=" text-align:center line-height:115%" span style=" font-size:13px line-height: 115% font-family:等线" Gasboard-5230 /span /p /td /tr tr style=" height:102px" td width=" 300" style=" background: rgb(242, 242, 242) border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height=" 102" p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 280px height: 210px " src=" https://img1.17img.cn/17img/images/202006/uepic/5afda047-238b-4bfb-8334-58263b308cad.jpg" title=" 尾气分析仪.jpg" alt=" 尾气分析仪.jpg" width=" 280" height=" 210" border=" 0" vspace=" 0" / /p p style=" text-align:center line-height:115%" br/ /p /td td width=" 283" style=" background: rgb(242, 242, 242) border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height=" 102" p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/bf78c478-51d3-480f-a564-e862ee53eb95.jpg" title=" 44.jpg" alt=" 44.jpg" / /p p style=" text-align:center line-height:115%" br/ /p /td /tr tr style=" height:36px" td width=" 300" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 测量气体: span HC /span 、 span CO /span 、 span CO2 /span 、 span NO /span 、 /span span style=" font-size:13px line-height:115% font-family:等线" NO sub 2 /sub /span span style=" font-size:13px line-height:115% font-family:等线" 、 span O2 /span /span /p /td td width=" 283" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 测量气体: span CO2 /span 、 span NO /span 、 /span span style=" font-size:13px line-height:115% font-family:等线" NO sub 2 /sub /span /p /td /tr tr style=" height:39px" td width=" 300" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 39" p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 测量原理: /span /p p style=" text-align:left" span style=" font-size:13px font-family:等线" HC /span span style=" font-size:13px font-family:等线" 、 span CO /span 、 span CO2 /span :非分光红外 span NDIR /span /span /p p style=" text-align:left" span style=" font-size:13px font-family:等线" NO: /span span style=" font-size:13px font-family:等线" 微流 span NDIR /span /span /p p style=" text-align:left" span style=" font-size:13px font-family:等线" NO sub 2 /sub /span span style=" font-size:13px font-family:等线" :非分光紫外 span NDUV /span /span /p p style=" text-align:left line-height:115%" span style=" font-size:13px line-height: 115% font-family:等线" O2 /span span style=" font-size: 13px line-height:115% font-family:等线" :电化学 /span /p /td td width=" 283" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 39" p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 测量原理: /span /p p style=" text-align:left" span style=" font-size:13px font-family:等线" CO2 /span span style=" font-size:13px font-family:等线" :非分光红外 span NDIR /span /span /p p style=" text-align:left" span style=" font-size:13px font-family:等线" NO /span span style=" font-size:13px font-family:等线" :微流 span NDIR /span /span /p p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" NO sub 2 /sub /span span style=" font-size:13px line-height:115% font-family:等线" : /span span style=" font-size:13px line-height:115% font-family:等线" 非分光紫外 span NDUV /span /span /p /td /tr tr style=" height:39px" td width=" 300" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 39" p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 适用标准: /span /p p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 《汽油车污染物排放限值及测量方法(双怠速及简易工况法)》 span GB18285-2018 /span /span /p /td td width=" 283" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 39" p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 适用标准: /span /p p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》 span GB3847-2018 /span /span /p /td /tr tr style=" height:34px" td width=" 300" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 检测方法: /span /p p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线 background:white" 汽车排放总量分析( /span span style=" font-size:13px line-height: 115% font-family:等线" VMAS /span span style=" font-size:13px line-height:115% font-family:等线" ) /span /p h3 style=" margin-top:0 margin-right:0 margin-bottom:3px margin-left: 0 background:white" span style=" font-size:13px font-family:等线 font-weight: normal" 简易稳态工况法( /span span style=" font-size:13px font-family: 等线 font-weight:normal" ASM /span span style=" font-size:13px font-family:等线 font-weight: normal" ) /span /h3 h3 style=" margin-top:0 margin-right:0 margin-bottom:3px margin-left: 0 background:white" span style=" font-size:13px font-family:等线 font-weight: normal" 双怠速 /span /h3 /td td width=" 283" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" p span style=" font-size:13px font-family:等线" 检测方法: /span /p h3 style=" margin-top:0 margin-right:0 margin-bottom:3px margin-left: 0 text-align:justify text-justify:inter-ideograph background:white" span style=" font-size:13px font-family:等线 font-weight: normal" 加载减速工况法( /span span style=" font-size:13px font-family: 等线 font-weight:normal" Lugdowm /span span style=" font-size:13px font-family:等线 font-weight: normal" ) /span /h3 /td /tr tr style=" height:34px" td width=" 300" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" p style=" text-align:left line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 适用车型:汽油车 /span /p /td td width=" 283" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" p style=" line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" 适用车型:柴油车 /span /p p style=" line-height:115%" span style=" font-size:13px line-height:115% font-family:等线" & nbsp /span /p /td /tr /tbody /table p   根据汽车尾气排放分析仪的计量要求,湖北锐意自控对产品进行了充分严格的测试,已一次性批量通过河南省、湖北省、广西省计量院的检定。除上述三省外,湖北锐意自控正在加快推进全国其他省市的计量校准工作,以满足更多地区检测站(I站)和维修站(M站)的使用需求。 /p
  • 化学计量学能给分析仪器带来什么?——访湖南大学化学生物传感与计量学国家重点实验室吴海龙教授
    进入20世纪之后,分析化学已经发展成为一门拥有众多仪器分支的现代分析化学学科和化学信息学科。伴随着大量现代分析仪器出现带来的“数据爆炸时代”,化学计量学得以快速发展并已成为现代分析化学中非常活跃的研究领域。   近期,仪器信息网编辑采访了化学传感器专业委员会主任委员、湖南大学化学生物传感与计量学国家重点实验室原主任吴海龙教授,希望借此机会能给大家介绍一下化学计量学的内涵,并同时探讨化学计量学在分析仪器研发方面有什么样的“指导思想”及指导作用。 湖南大学化学生物传感与计量学国家重点实验室吴海龙教授   Chemometrics(化学计量学)一词于1971年由瑞典化学家在申请一项基金项目时首次提出,类比生物计量学与经济计量学,将研究从化学实验产生的数据中提取相关化学信息的学科分支称之为化学计量学。   吴海龙教授介绍,“化学计量学其任务是研究有关化学测量的理论与方法学,它应用数学、统计学、计算机科学等理论、方法和手段,科学地设计化学实验,选择最优的测量方法,最有效地获取体系有用的特征数据,并通过解析量测数据最大限度地从中提取有关物质的定性、定量、形态、结构等信息。其主要研究内容包括面向化学研究对象的统计学与统计方法、实验设计与优化方法、信号处理、模型构建和参数估计、化学多维多元校正、化学模式识别、多维定量构效关系、人工智能与专家系统、软件以及库检索等。目前,化学计量学的研究范畴包括两方面的内容:一方面指化学量测过程的基础理论和方法学;另一方面就是化学计量学在分析化学及其它相关领域中的应用基础研究”。 化学计量学是分析化学中的“高级医生”   谈到化学计量学在分析化学领域中的“功效”,吴海龙教授幽默地说:“化学计量学是有难度、有‘水平’的,专门解决较困难的问题,形象的比喻就是化学计量学是分析化学中的‘高级医生’,专门研究解决复杂对象定性、定量、定结构问题中遇到的‘疑难杂症’”。   化学世界是一个极为复杂的多维世界,随着越来越多新型分析仪器的问世,取得大量量测数据已不是最困难的一步,最难解决的“瓶颈”问题却是这些数据的解析以及如何从中提取所需的有用信息等。例如,经典分析化学方法,往往只利用仪器光谱中最大吸收波长处对应的吸光度来作定量分析,不仅丢失很多其它有用信息,而且应用很有限,因为它只利用了单点量测数据的信息。我们应该亦必须应用各类最优化的策略、方法及技术迅速而有效地从所获得的多维响应数据中提取尽可能多的有关被测物质的化学成分、结构和生物化学活性等方面的信息。化学计量学就是基于这种使命而发展起来的一门化学分支学科。   化学计量学看似深奥,其实其涉及的很多问题都是分析化学的基础性问题,可以说是复杂体系解析的强有力和有效的工具。例如,在药物混合物的分析中,主导药物及其衍生物以及基体背景和其它干扰物都可能有较灵敏的荧光等响应,但它们相互重叠,而在常规分析过程中样品分离又比较复杂。这种情况下如果采用化学计量学中化学多维多元校正的办法就可以获得较好的分析结果,甚至可以实现性质相似干扰物共存下的感兴趣多组分的直接快速同时定性定量分析;这样可使复杂体系的分析获得“绿色”、经济、在线、近实时等优势。   随着计算机技术及其应用的发展,作为化学计量学核心策略的主成分分析(PCA)方法在实际仪器分析中的应用越来越广泛。例如,PCA 与近红外光谱相结合的应用研究较多,在不丢失主要光谱信息的前提下选择为数较少的新变量来代替原来较多的变量,解决了由于谱带的重叠而无法分析的困难。另外,在生物科学方面,蛋白质的立体结构理论预测一直是生物信息学研究的难题,近来,应用化学计量学的氨基酸主成分分析法克服了原始数据中可能的实验误差和分类上的模糊性带来的不确定因素, 从而提高了预测的准确率。   吴海龙教授还特别提到,化学计量学擅长解决分析化学中有难度的问题,从简单体系到复杂体系都有其“用武之地”:   (1)复杂体系进样之后进行全谱扫描,仪器输出的是复合信号,然后用化学计量学按规律将其分成单个组分信号,进而实现对复杂体系感兴趣组分的定性定量分析,这以化学计量学方法结合三维荧光光谱用于系列复杂体系进行直接准确定量分析最为成功;   (2)复杂体系经过色谱柱等物理或化学分离系统后,如果分离还不完全,仪器输出的信号可通过化学计量学方法作进一步的数学分离,进而进行全谱定性定量分析;   (3)如果复杂体系所有的组分都被分成单一组分了,那就是化学计量学中相对简单的问题了。当然还可作进一步的后续分析,如开展化学模式识别进行聚类、判别等或作多维定量构效关系研究以指导定向合成等。 化学计量学对分析仪器研发的启示   吴海龙教授认为:分析方法的建立和分析仪器的发展是紧密相关的,分析仪器的研发过程,不仅仅是单个方法的建立,而是一个系统分析策略的构建过程。我们希望通过化学计量学研究,创新分析化学方法学,设计出“傻瓜”式实用分析仪器,让医学、环境、食品安全等用户得到最大的便利。   化学计量学中的“数学分离”思想可在一定程度、一定范围内代替“物理或化学分离”   分析化学的发展本身就和分析仪器紧密相连,吴海龙教授介绍到,分析化学如果只是单纯发展方法的话,不会有现在这么大的影响力。一个分析方法建立之后,可以用仪器的方式将其固定下来,并且可以将方法标准中的很多步骤简略掉,最终形成一个简便、完整的解决方案。如何完成这样一个过程,这里面就存在一个发展分析战略的问题,也就是方法学。   吴海龙教授介绍说:通俗地来讲,化学计量学的“功效”就是它可以解决长期以来传统仪器及分析方法难以解决的共存物质基体干扰及“分离”问题。物质分离的过程是从复杂体系到单一组分,但是复杂体系包含的物质成分往往很多,分离体系本身的容量又很有限,所以经常有相当一部分组分分不开,最后从仪器上获得的信号是重叠的、复杂的,化学计量学在怎样分开这些组分方面就表现出了很重要的应用价值。   化学计量学的一个基本功能是“数学分离”。所谓“数学分离”,是指利用数学方法处理复杂体系的复合响应信号,可以根据物质之间的相关性、相互作用或线性加和性等,将复杂体系通过计算机快速“数学分离”成单组分,然后进一步进行各组分定性和定量分析,从而达到与先分离后分析相同的效果。这一过程,又可称作“数学分离”过程。吴海龙教授指出,分析仪器的发展需要方法学上的思路创新,“数学分离”可以成为研发分析仪器的创新点。   “数学分离”一般需要基于三维及以上数阵分析,利用“数学分离”与现代多通道测试手段相结合,可以研发系列新型分析仪器。将化学计量学中多维数阵分析方法与高维分析仪器相结合可以为环境、生命等科学中的复杂问题提供有效的解决方法。吴海龙教授谈到:最近十多年来,我们综合利用现代分离分析技术,在化学计量学前沿基础研究中已经取得了较系统、深入的创新性成果,打开了现代分析科学中三维数阵分析理论及应用研究的新局面,拓展了化学计量学的研究及应用领域,实现了以“数学分离”部分甚至全部代替“物理和化学分离”,开发了相应仪器装置及软件,可用于复杂体系中干扰物共存下多组分同时定量分析(多维校正)和化学动力学过程解析等实际复杂分析难题的解决。这也是我们现阶段的努力目标。   化学计量学注重分析策略的研究,“傻瓜”式分析量测仪器有望面市   吴海龙教授介绍说,在分析仪器的研发设计时,获得单变量响应值的仪器相对简单些,获得多维响应数阵的分析仪器或联用仪器相对复杂些。威力强大的复杂仪器一方面要根据分析方法的思路来设计,另一方面,其产生的数据相对来说信息量丰富,当然同时也是很复杂的,要用化学计量学方法将其进一步细化,然后简单化、信息化。   化学计量学的侧重点在于分析策略的研究,如果分析策略没想明白,即使其中具体的个别环节很好解决了,最后整体来看还是没什么用的。采样、样品的预处理以及之后的分析检测等整个过程就是一个系统工程,所需的全程控制就涉及系统分析策略问题。   吴海龙教授介绍到:用化学计量学的思路来研发仪器,可以省钱、省劳力、提高效益,同时可以使用户得到最大的便利。仪器公司单靠生产传统的仪器获利毕竟有限,他们必须清晰地知道分析仪器的用途,仪器之间、仪器与方法之间如何紧密结合才能达到好的分析效果,了解这些之后研发的仪器才能得到用户的“青睐”。 所以,仪器研制人员都应该来了解一下化学计量学的原理及解决问题的思路。例如,通过化学计量学可以最大限度地获取光谱数据中的有用信息。在仪器的研发过程中将化学计量学和分析仪器如三维荧光等结合在一起,就可以解决很多实际问题,同时也可以使仪器本身迅速增值很多。   分析仪器的智能化将是21世纪分析化学发展的重要趋势。化学计量学方法是新一代分析仪器智能化的关键构件,应予充分重视。吴海龙教授特别提到,这是俞汝勤院士多年来的殷切企盼。我们的设想就是能设计出“傻瓜”式分析仪器,如同“傻瓜”相机一样。只要仪器足够方便、足够智能,作为用户不一定要知道其中的原理及数学分离过程,只要按照操作步骤操作就可以实现复杂分析对象直接快速的定量分析了。   吴海龙教授自信地说:我有一个梦想,就是分析仪器能获得一个什么样的复杂信号(电磁波),我们就可以解决该体系相关的复杂分析问题。不过,要达成这样的目标,在仪器的研发方面就需要有很大的突破。首先,加快化学计量学的发展及应用可以带动分析仪器的研发。化学计量学的前沿研究需要多维响应信号,就必须改进量测仪器装置,完善仪器的配置;其次,分析仪器灵敏度是首先要解决的问题。由于灵敏度是整个仪器系统决定的,尤其是检测器。所以在仪器的研发时,对检测器灵敏度的要求是比较高的。   最后,吴海龙教授还特别强调化学计量学与分析仪器相结合在产业化方面目前也存在一定的困难:   一方面是国家标准的问题,目前,国家标准中指定的分析仪器往往很难改变;另一方面,仪器的生产厂商大都安于已有分析模式,对于新颖的分析仪器的应用前景往往“心有余悸”,所以仪器公司一般不太愿意去进行相应新颖分析仪器的研发。   “这样来说,作为开拓者,就要花很大的功夫去做,对于我自己来说,非常愿意为民族的分析仪器产业的振兴作出自己的应有贡献。所以在这些方面我们已做了很多的努力”。   采访编辑:叶 建   附录1:吴海龙教授个人简历   吴海龙,1961年生,浙江舟山定海人,理学博士、工学博士(日本)。湖南大学化学化工学院、化学生物传感与计量学国家重点实验室化学教授、博士生导师,分析化学国家重点学科建设责任人。任化学生物传感与计量学国家重点实验室(湖南大学)建设项目主要负责人、常务副主任(2001.10-2005.03, 正处级)、主任(2005.03-2009.12)、顾问(2010.01- )。兼任中国化学会有机分析专业委员会副主任委员、计算机化学专业委员会副主任委员、分析化学学科委员会委员(2006.01-2010.12);中国仪器仪表学会分析仪器分会常务理事兼化学传感器专业委员会主任委员、近红外光谱专业委员会委员;中国机械工程学会理化检验分会副主任委员兼化学专业委员会主任委员、湖南省化学化工学会理事兼分析测试专业委员会主任委员等。任《分析化学》等八种学术期刊编委,任多个国家级、部省级重点实验室学术委员会委员。多次担任中国化学会年会化学信息学与化学计量学分会共同主席。   30年来,一直从事化学计量学、化学生物传感技术等方面的教学和科研工作,先后主持完成国家自然科学基金面上项目3项、国家973预研项目、教育部优秀青年教师资助计划项目等课题。目前主持国家教育部创新团队建设项目、国家自然科学基金面上项目,并协作主持国家973课题等。此外,还参研国家自然科学基金重点项目3项。在液膜pH化学传感器研制,稳健统计学新应用,多元校正基础理论及应用,三维数阵分析(秩估计、三线性分解、分解唯一性等)、二阶校正和二阶标准加入法、化学多维校正及多维标准加入分析法的基础理论及应用,三维图像处理、高维联用仪器数据预处理等方面,取得系列创新性成果。在Journal of Chromatography A、Chemometrics and Intelligent Laboratory Systems、Journal of Chemometrics、Analytica Chimica Acta等期刊发表学术论文逾180篇,其中SCI论文逾130篇,被引用逾800篇次,正面他引逾600篇次。参编著学术书籍7本中8章节(约17万字)。指导培养博士研究生毕业11名、在学7名;指导培养硕士研究生毕业22名、在学22名。任俞汝勤院士学术小组组长逾10年。   曾应邀在清华大学、中科院长春应化所等单位作学术报告,应邀在IUPAC 2001年国际分析科学大会化学计量学分会(东京)、2004年亚洲化学计量学与生物信息学国际学术研讨会(上海)、2009 TRICAP(化学与心理学交叉领域三维数据分析方法国际前沿研讨会,西班牙)等国际会议作邀请报告。曾荣获2002年度湖南省科技进步一等奖和2003年度国家自然科学二等奖(均排名第三)、第四届湖南十大杰出青年科技创新奖(2006年)等,2007年被列入湖南省新世纪“121人才工程”第一层次人选。   附录2: 湖南大学化学生物传感与计量学国家重点实验室 http://cbsc.hnu.cn/ 全国人大常委会副委员长路甬祥院士视察湖南大学化学生物传感与计量学国家重点实验室
  • 全自动碳硫分析仪、元素分析仪的概述
    全自动碳硫分析仪、元素分析仪的概述 南京第四分析仪器有限公司成立于1976年,是国内金属分析仪器的首创厂家。专业生产高频红外碳硫分析仪红外碳硫分析仪 红外分析仪 碳硫分析仪 金属元素分析仪 金属材料分析仪 电脑多元素分析仪 钢铁分析仪 化验设备 理化分析仪 元素分析仪 多元素分析仪 材料分析仪 铝合金分析仪 铁合金分析仪 矿石分析仪 铁矿石分析仪 有色金属分析仪 合金钢分析仪 不锈钢分析仪 铜合金分析仪 铸铁分析仪 铸造分析仪 炉前快速碳硅分析仪 碳硅当量仪 铁水分析仪等,分析仪器的种类很多,欢迎来电垂询,电话:025-57332233 57330555 传真:025-57552266 QR-5型全自动电脑碳硫分析仪采用中国国标法测定(碳采用气体容量法、硫采用碘量法)原理设置而成,品牌电脑控制,配备电子天平实现了不定量称样测定,Windows界面下的全中文菜单式操作,并可贮存8条工作曲线,使用进口传感器,确保数据精密采集。检测结果可自动或手动打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标 。 QR-5型全自动电脑碳硫分析仪主要技术参数 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒 测量精度: 符合GB223.69-2008,GB223.68-1997标准 QR-5型全自动电脑碳硫分析仪主要特点 采用气体容量法定碳,碘量法定硫。碳、硫测定均为全自动; 利用微机系统进行智能程序控制,精密数据采集; Windows界面下的中文菜单操作; 碳硫元素同时可保存八条标样曲线,测试结果长时间大容量保存,并具有自动、手动两种打印方式,且可任意查询分析数据; 配套电子天平,实现不定量称样。 全自动碳硫分析仪、元素分析仪的概述 南京第四分析仪器有限公司成立于1976年,是国内金属分析仪器的首创厂家。专业生产高频红外碳硫分析仪红外碳硫分析仪 红外分析仪 碳硫分析仪 金属元素分析仪 金属材料分析仪 电脑多元素分析仪 钢铁分析仪 化验设备 理化分析仪 元素分析仪 多元素分析仪 材料分析仪 铝合金分析仪 铁合金分析仪 矿石分析仪 铁矿石分析仪 有色金属分析仪 合金钢分析仪 不锈钢分析仪 铜合金分析仪 铸铁分析仪 铸造分析仪 炉前快速碳硅分析仪 碳硅当量仪 铁水分析仪等,分析仪器的种类很多,欢迎来电垂询,电话:025-57332233 57330555 传真:025-57552266 QR-5型全自动电脑碳硫分析仪采用中国国标法测定(碳采用气体容量法、硫采用碘量法)原理设置而成,品牌电脑控制,配备电子天平实现了不定量称样测定,Windows界面下的全中文菜单式操作,并可贮存8条工作曲线,使用进口传感器,确保数据精密采集。检测结果可自动或手动打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标 。 QR-5型全自动电脑碳硫分析仪主要技术参数 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒 测量精度: 符合GB223.69-2008,GB223.68-1997标准 QR-5型全自动电脑碳硫分析仪主要特点 采用气体容量法定碳,碘量法定硫。碳、硫测定均为全自动; 利用微机系统进行智能程序控制,精密数据采集; Windows界面下的中文菜单操作; 碳硫元素同时可保存八条标样曲线,测试结果长时间大容量保存,并具有自动、手动两种打印方式,且可任意查询分析数据; 配套电子天平,实现不定量称样。
  • 水质与水质分析仪器——在线水质分析仪器篇
    p class=" F24 Fw L40 G2"    a href=" http://www.instrument.com.cn/news/20171220/236150.shtml" target=" _blank" title=" " style=" font-size: 16px text-decoration: underline " span style=" font-size: 16px " 水质与水质分析仪器之水质指标篇 /span /a /p p   上回讲到了水质指标,现在来说说获取水质指标数据的工具:水质分析仪器。 /p p   目前,有三种形式的水质分析仪器,分别是:实验室分析仪器、便携式分析仪器以及在线水质分析仪器 /p p   在线水质分析仪器,出现的时间最晚,但是成长迅速,特别是最近几年,备受关注,曝光率远超其他两种,成了炙手可热的网红-传说中的“后发优势”? /p p   一起来看看:最近,在电视、报纸、网络、微博、微信等传统和非传统媒体上,凡是涉及到环境保护和水安全的场合,“自动监测”、“在线监测”这类字眼几乎都会现身。前段时间环保部召开关于国家地表水环境质量监测的会议,也明确提出来了“要加快推进水质自动站建设。逐步建立起以自动监测为主,手动监测为辅的监测模式?”(据说,这次会议的成果之一就是在2018年,政府会投资在全国范围内建设1200个地表水水质自动监测站,惊不惊喜?) /p p   即将在2018年1月1日正式实施的“中华人民共和国环境保护税法”,在第十条的条文中更是明确规定: /p p    i “应税大气污染物、水污染物、固体废物的排放量和噪声的分贝数,按照下列方法和顺序计算: /i /p p i   (一) 纳税人安装使用符合国家规定和监测规范的污染物自动监测设备的,按照污染物自动监测数据计算 /i /p p i   (二) 纳税人未安装使用污染物自动监测设备的,按照监测机构出具的符合国家有关规定和监测规范的监测数据计算 ” /i /p p   解释一下:目前中国水污染物的自动监测设备分为流量监测设备和浓度监测设备两种(浓度与流量的乘积就是污染物总量),浓度监测设备就是通常所说的在线水质分析仪器。 /p p   更重要的是:根据这部法律,环境税应税污染物排放量数据的取得,首先采用自动监测设备的数据,其次才是“监测机构出具的数据”-目前监测机构采用的分析仪器多是实验室或者少数便携式分析仪器(针对必须在现场测试的个别指标)。 /p p   可以说,这部环境税法正式以法律条文的形式确立了在线分析仪器的地位。 /p p   那么,这么“高端大气上档次”的在线水质分析仪器到底是何方神圣?为什么这样受追捧呢? /p p   权威的定义是:按照国际标准化组织(ISO)代号为ISO15839《水质-在线传感器/分析设备的规范及性能检验》标准中的定义:在线分析传感器/设备(on-linesensor/analyzingequipment) ,是一种自动测量设备,可以连续(或以给定频率)输出与溶液中测量到的一种或多种被测物的数值成比例的信号。 /p p   听起来很高深的样子(权威总是这样的?),有没有通俗点的说法呢? /p p   有问题,找百度。 /p p   万万没想到,这一次度娘居然让我失望了,寻了半天,没找到一个比较令人信服的说法。 /p p   “求之不得,辗转反侧”。想来想去,似乎自己十年前在2007年“第二届在线分析仪器应用与发展国际论坛”大会发言时的非权威说法还比较容易理解: /p p   “在线水质分析仪器是一类专门的自动化在线分析仪表,仪器通过实时、现场操作,实现从水样采集到(水质指标)数据输出的快速分析 在线水质分析仪器一般具有自动诊断、自动校准、自动清洗、故障报警等功能,在保证分析结果准确度的同时,可以实现无人值守自动运行。” /p p   结合权威和非权威的说法,可以发现在线水质分析仪器最重要的特征有三个:自动、连续、实时 /p p   手段是为目的服务的。作为获取水质指标数据的工具,对照上回讲到的获取水质指标的四种目的: span style=" text-decoration: underline " 了解杂质浓度 预测水质变化 控制和优化水处理工艺 评估水质安全 以及六大类水质指标:物理指标、成分指标、评估性综合指标、水质转化潜能指标、工艺指标、替代指标 /span 我们来看看作为一种新技术出现的在线水质分析仪器,当年最先的应用突破点选择了哪里? /p p   毋容置疑, 在“控制和优化水处理工艺”方面,凭借“实时、连续”的特点,在线水质分析仪器有着不可替代的作用。首先实现在线测量的是pH、浊度、溶解氧、ORP等重要的工艺指标 遇到有些工艺指标分析方法复杂或者测量周期长,不能满足流程工业自动控制要求的挑战,就轮到了替代指标的闪亮登场。 /p p   (现在很难考证第一台在线水质分析仪器具体出现在哪个年代、哪种场合了,个人猜测,第一台很可能是在线Ph计,用于酸碱调节的工艺控制) /p p   从全球范围来看,目前在线水质分析仪器应用最多的细分领域还是水处理工艺过程控制。 /p p   在线水质分析仪器“自动、连续、实时”的特点,,除了应用于控制和优化水处理工艺过程,在了解特定污染物浓度和评估水质安全方面,相对于实验室和便携式分析仪器,也有着很大的优势。 /p p   自动化对于减少分析人员人力劳动的好处不言自明,更重要的是,由于仪器分析过程不用人工干预,人为误差也减少了。(这些年中国政府和环境管理部门一直都在努力消除各种人为因素对污染物排放数据的干扰(参见《环境监测数据弄虚作假行为判定及处理办法》等法规文件,以及环境数据造假入刑的各种新闻)。中国目前是全球采用在线水质分析仪器对污水排放进行自动监测最为普遍的市场,在线水质分析仪器又将成为环境保护税法规定的污染物(主要是氨氮、重金属、总磷/总氮等成分指标和COD等评估性综合指标)排放量计税工具之一, /p p   估计很大一个原因就有作为自动化仪表的在线水质分析仪器在分析过程中无需人工干预这个特点) /p p   同时,“连续、实时”的特点也使得在线水质分析仪器不仅可以连续提供水质指标的即时数据,还常常作为报警设备,水质指标一旦超过某个给定的安全值,仪器就会输出报警信号(在评估水质安全方面,实时报警的作用是非常重要的)。 /p p   优点还不止于此,再啰嗦两句关于操作人员健康安全的好处: /p p   有些水样,比如含有较多有毒挥发性化学物质,人工分析时可能危害到分析人员的身体健康 又有些工作场所,在生产装置运行时,分析人员无法进入现场采取水样。最极端的例子是:在核电厂的一回路,由于较强的辐射,即使是穿戴有重型防护设备的操作人员,也只能短暂停留 但是核电厂运行过程中有些重要的水质指标数据(如溶解氧、溶解氢、电导率等)又必须及时获取。 /p p   这时,作为自动化设备的在线水质分析仪器的优势就更能体现出来了。 /p p   不过,虽然有着这样多的优点,无论从技术进步还是市场发展来看,在线水质分析仪器还是和其他任何新技术的发展历程一样,并不是一帆风顺的。 /p p   在初期,受制于相对过低的水资源费、水价以及废水排放需要支付的费用,当时在线分析仪器的投资和运行成本都比较高 而且那时在线水质分析仪器的稳定性、可靠性等还不一定能完全满足实际工作的要求 可以实现在线分析的水质指标也不是很多。 /p p   这两种因素造成了当时水工业行业的运行管理者和水处理工程师对采用在线水质分析仪器持有一种谨慎的态度,从而严重制约了在线水质分析仪器的发展和应用。(1973年,在英国伦敦召开的第一届水处理行业ICA(Instrumentation(仪表)、Control(控制)、Automation(自动化))专家会议上,当时与会专家达成的第一个共识就是:仪器数量不足是自动控制的主要障碍。大家认为根据当时仪器的发展程度,仅有浊度、溶解氧和电导率三种指标的测量较为可靠)。 /p p   “天生我才必有用”。随着人们对水质安全的重视、环保法规的更加严格,水资源费的不断上升,特别是在线水质分析技术和计算机信息技术的发展,在线水质分析仪器逐渐表现出成本性能优势(举例:相对于最初的模拟电路,数字电路技术在水质分析仪器中的采用,使得仪器的可靠性有了很大的提升,仪器设计和批量生产的成本得以大幅下降),在水环境监测、水处理工艺过程过程控制、饮用水水质安全预警等诸多领域都得到越来越广泛的应用,也迅速在废水污染物排放的浓度监测与超标报警领域得到了应用。 /p p   前面谈了市场和应用,让我们回到在线水质分析仪器,扒一扒这种技术自身的发展与面临的挑战: /p p   根据前文ISO标准的定义,有两种形式的在线水质分析仪器:在线分析传感器和比较复杂的自动化分析设备或者装置。 /p p   先来说说 span style=" color: rgb(0, 112, 192) " strong 在线水质分析传感器 /strong /span : /p p   国家标准GB/T7665《传感器通用术语》对传感器的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。在线水质分析传感器通常结构比较简单,通过直接和被测水样接触获得水质指标的数据。 /p p   在线分析传感器,最初可以测量的水质指标,主要是一些简单的物理指标和成分指标,如电导率、Ph、ORP、溶解氧等 接着是浊度、悬浮物浓度等光学原理的传感器 后来,出现了UV254等替代性指标的传感器 最近几年,随着仪器计算能力的提高、新材料的应用,离子选择电极法(测量污水中的氨氮、硝氮等重要工艺指标)、紫外荧光(测量水中油等)以及全光谱扫描原理(传感器一次可间接测量COD、BOD、TOC等多种有机物指标、浊度、硝氮、亚硝氮等多种水质指标)的传感器开始大量应用。 /p p   在线水质分析传感器在实际使用中主要面临两个方面的挑战: /p p   传感器直接同水样接触,缺少了实验室人工分析时样品预处理及去除样品中干扰物质的过程,水质不同的水(含油、硫化物、重金属、悬浮物、高盐度、腐蚀性气体等各种杂质),对传感器材质和结构的要求也是千差万别的,在仪器设计制造时必须充分考虑这些因素,才能保证获取准确的测量数据和保证仪器长时间的正常工作,所有这些,都会增加仪器的成本。 /p p   其次,由于传感器长时间同各种水质情况的水接触,仪器需要一定的维护量,特别是应用于各种工业废水等水质条件恶劣的样品时,仪器需要的维护量和维护费用会比较高。 /p p   个人看法:随着新的分析原理、方法的出现和应用,以及各种新材料的采用(几年前荧光化学法在溶解氧分析仪的应用就是非常好的一个例子),传感器对复杂水质的适应性会得到提高 同时,物联网技术的应用,可以对传感器自身寿命及运行状态进行远程实时监测、管理以提高维护效率、降低维护成本。 /p p   还有,根据所检测水样的不同水质情况,进行差异化设计、制造也是一个有效的办法 比如:饮用水和海水、工业废水,即使是测量同一个水质指标,也选用不同材质、结构和制造工艺来生产传感器,以满足不同水质条件的要求。 /p p   更重要的是,和所有电子产品一样,传感器的成本必然会随着物联网时代大规模的应用出现超出想象力的下降。这时,免维护的一次性在线水质传感器将不再只是梦想。 /p p   接下来看看比较复杂的 span style=" color: rgb(0, 112, 192) " strong 水质自动化分析设备或者装置 /strong /span : /p p   许多水质指标数据的获得,都需要有一整套的装置来自动实现原来实验室人工分析的流程,比如:过滤、加热、加显色剂、混合、测量等等 另外,为了保证长时间连续运行的准确度,还需要定时对仪器进行校准(当然,也是自动的),以及定期的人工维护。当下,在中国,可能在线COD分析仪是这种仪器中名气最大的一款。 /p p   这一类在线水质分析仪器结构复杂,多用于成分指标(TOC、SiO2、总磷、总氮、重金属等)和评估性综合指标(COD、碱度、硬度、生物毒性等)。这类仪器的发展也非常迅速,最近,市场出现了三维荧光原理的仪器,可以间接测量水中油、BOD、CDOM等等一系列的水质指标 流式细胞原理的在线水质分析仪也开始被用于连续监测饮用水中的细菌总数以及水源地、海水中的藻类分类及计数 还有包括X射线荧光、激光诱导击穿光谱(LIBS)等新原理的仪器,也开始在水中重金属的在线监测方面崭露头角。 /p p   一般来说,这类仪器的成本和价格要高于在线分析传感器(还记得以前做销售,向客户推荐在线COD分析仪时,客户说的话:买你这么小一台仪器,我一辆“帕萨特”就没有了)。 /p p    strong 发展到今天,先进的在线水质分析仪器早已是“硬件+材料+软件+算法”四位一体的强大组合了。 /strong /p p   和传感器一样,这类仪器的成本问题也将会随着大规模的应用得到降低 而维护问题也可以通过设计的优化、新材料以及耐用元器件的采用得到改进,特别是,工业物联网技术的进步,可以实现这种精密设备的远程管理和诊断,通过有针对性的预维护等手段降低维护量及维护费用。 /p p   同样,再来说说面临的挑战: /p p   今天的中国市场,大量的在线水质分析仪器被用于企业废水污染物排放自动监测,明年还将成为环境税的计税工具。这类在线水质分析仪器在实际应用中面临的主要挑战是数据的可靠性和准确度问题,造成问题的主要原因是: /p p   在线水质分析仪器采用的测量原理和测量方法和实验室标准分析方法不太可能完全一致,存在方法误差 表现出来的现象是:仪器可以准确测量标准溶液(常常是单一化合物的水溶液)的浓度 但是对于实际水样,衡量是否准确的标准是和实验室人工方法的测量值比对,除了方法误差,还有可能存在人为误差的影响。 /p p   以COD(化学需氧量)为例,COD本来是一个条件参数,其定义是:在一定的条件下,水中的各种有机物质与外加的强氧化剂(如K2Cr2O7、KMnO4等)作用时所消耗的氧量 按照HJ828-2017《水质化学需氧量的测定重铬酸钾法》(标准取代了国标GB11914-1989),标准的测量条件是:“水样加入试剂后,保持微沸2小时”等等 采用在线COD分析仪器,测量条件很难完全和标准要求的条件一致,这样,就有可能影响COD这个条件参数的在线分析仪器的准确度。 /p p   其次,对样品预处理的方法与流程和实验室标准方法不一致:受仪器连续运行及安装环境等一系列条件的限制,在线分析仪器采用的样品预处理系统很可能和相应水质参数对应的标准分析方法要求的预处理条件不一致,这样,也有可能对最终的测试结果带来影响。 /p p   针对这些问题,环境管理部门的技术人员开展了大量的“在线水质分析仪器适用性”研究和比对测试工作,并根据不同水质指标,制定了有十分严格而有针对性的比对测试流程和规范,希望可以找到一个好的解决办法。 /p p   需要说明的是:不是所有的在线分析仪器都需要面临如此严格的测量准确度要求。不同的使用目的,对仪器性能的要求也不尽相同。 /p p   根据应用目的的不同,在线水质分析仪器又可以分为监测型和过程型两类,监测型分析仪器用于单纯的水质监测,以测量成分指标和评估性综合指标为主,用来判断水质是否达到法规的要求,以及环境水质(地表水,地下水)和饮用水水质的报警和预警性监测,不参与水处理工艺过程控制 这类仪器对测量数据的准确度(精度、误差)要求较高,数据可以作为有关部门进行执法管理的依据 /p p   过程型分析仪器主要用于水处理工艺过程监测,以测量工艺指标、替代指标为主,所测量的水质指标参与过程控制,以优化水处理工艺,提升水处理效率,实现水处理过程节能降耗 过程型仪器对仪器的可靠性和稳定性(具体的仪器指标是漂移和线性度、重复性)要求较高,要求仪器能够可靠地反应水质变化的趋势,以便为水处理过程控制提供依据。 /p p   除开法规执行带来的挑战,更大的挑战来自公众的需求:“人民群众日益增长的美好生活需要” /p p   一般公众的想法是:既然有了在线水质分析仪器这种先进、“高大上”的自动化设备,特别是有了生物毒性分析仪这类评价性综合指标的分析仪器,了解我们身边的水质状况,回答诸如饮用水是否安全(能直接饮用)?工厂排出的废水是否对环境无害?门外那条小河、还有游泳池是否适合孩子们去玩耍?等等,应该是分分钟的事儿,再容易不过了吧? /p p   “理想是丰满的,而现实是骨感的” /p p   能实时回答这些问题场景也许会发生在不太久的将来,但是在现实的今天,许多都还做不到。 /p p   上面这些问题通通都涉及到了人们了解水质指标的终极目标-“评估水质安全”,非常复杂,复杂问题的讨论总是需要太多时间,这次留下悬念,如果有缘,这个问题我们下次再聊。 /p p style=" text-align: right " strong (供稿:重庆昕晟环保科技有限公司& nbsp 总经理程立) /strong /p
  • 新一代在线分析仪表-在线硅酸根分析仪
    目前在线水质分析仪器的控制器普遍具有自动运算、统计、图形显示、趋势分析等数据处理功能,同时,一般具有自动诊断、故障报警功能,方便仪器运行及维护人员及时发现和解决仪器的问题。现在采用通用控制器也已经成为趋势,同一种型号的控制器可以同数十种传感器连接,由此给仪器制造厂和用户都带来了好处。仪器制造厂可以实现控制器的大批量生产,取得规模效益。通用控制器降低了仪器技术服务的复杂程度,也可以降低厂家的服务成本。带给使用者的好处也是显而易见的,在保证水处理工艺工程正常运行的同时,可以减少水质分析仪器零备件的库存压力。通用控制器也让操作者减少了学习的时间,可以更快地掌握仪器的使用及维护技能。同时,新型的“数字化”传感器可以被通用控制器自动识别,具有“即插即用”功能,极大地减轻了安装维护人员的劳动强度。 对于一些需要复杂样品处理的水质参数(如总磷、总氮、COD等),仪器都配置有成套的样品预处理系统,在内置微处理器的控制下,可以自动完成水样过滤、高温、高压消解等一系列操作,极大地加快了分析速度,降低分析人员的劳动强度。在通信及数据传输方面,RS232、RS485 以及Profibus. Modbus 等现场总线技术也在在线水质分析仪器上得到了普遍应用,为实现水质监测数据的实时传输及水处理过程的自动控制提供了支持。 最近,得利特(北京)科技有限公司在消化吸收国内外新技术、总结多年现场实践经验的基础上推出的新一代在线分析仪表-在线硅酸根分析仪。该仪器可以及时准确地对水中的硅酸根含量进行监测,保证设备的安全、经济运行。 仪器特点1、采用嵌入式单片机技术 2、精巧结构、盘式安装、全铝框箱体,美观坚固、抗干扰能力强;3、大屏幕点阵液晶,显示内容直观、丰富;4、可编程实现1~6通道切换;5、可编程修改通道测量周期,有效节省试剂;6、抛弃蠕动泵和精密计量泵,采用恒压式加药原理,结构简单、计量精度高、免维护;7、具有温度测量功能,可以根据温度进行测量数据补偿;8、采用**光源和光电池,寿命长、漂移小、稳定、可靠;9、具体黑匣子功能,可查询历史数据、运行记录、校准记录;10、宽电压(85~265VAC)、宽频率(45~65 Hz),能够适应多条件需求;技术参数测量范围:(0~100)μg/L或(0~200)μg/L或(0~2000)μg/L(定货时的指定)仪器示值误差:±2%F.S重 复 性:1%测量周期:可编程设置1-99分钟,最短10分钟稳 定 性: 基线漂移:使用空白校准,空白漂移无影响。化学漂移:±1%F.S/24h(视试剂稳定性而异)样品条件: 流量:(150~300)mL/min 温度:(5~50)℃水样允许固体成分:不大于5微米(不允许有胶状物出现)环境温度: (5~45)℃环境湿度: 不大于90%RH(无冷凝)试剂消耗: 不大于3升/30天/种(3种试剂)显 示:320×240点阵液晶,中文菜单隔离输出:(4~20)mA(隔离输出,每个通道一个)电 源:交流(85~265)V、频率(45~65)Hz功 率:60W外形尺寸:690mm×450mm×300mm开孔尺寸:645mm×410mm重 量:22kg报 警:断样报警、上限报警
  • 常见实验室分析仪器及过程分析仪器选型指南
    红外煤气成分分析仪主要应用于工业上对煤气成分进行分析,通过对测量的气体参数变化情况的分析,掌握这些成分的变化规律,从而对于实现生产全程动态控制,无论是理论计算还是现场操作,都具有十分重要的指导意义。该仪器适合氮肥厂、钢铁公司、煤气厂等行业的分析煤气、半水煤气、变换气、原料气中CO2,CnHm,O2,CO,CH4,H2及NOx等成分的分析。目前市场上主要有实验室分析仪和过程分析仪两大类分析仪器,现就适合于煤气成分分析的仪器简单介绍一下。一、常用实验室分析仪器 1.奥氏气体分析仪 作为一种经典的化学式手动分析器,奥氏气体分析仪具有价格便宜、操作方便、维修容易等优点,该仪器一直在广泛应用着,常用于煤气中CO2、O2、CO、H2等的含量测定。其原理是利用吸收法来测定酸性气体、不饱和烃、氧和一氧化碳,使氢在氧化铜上燃烧,使饱和烃铂丝上与空气中的氧燃烧,利用称重法来测定。该仪器虽然是操作简单,价格较便宜,但测定时精度不是很高,准确度取决于操作者的熟练程度,且测量数据不象LCD那么直观、清晰。 奥氏气体分析仪在应用上存在的不足主要有: 1)梳形管容积对分析结果有影响; 2)不能分析出Ar,不适宜用奥氏仪分析循环气,应逐步采用气相色谱仪; 3)奥氏仪进行动火分析测定时间长,有时存在一定误差,还必须注意化学反应的完全程度,否则读数不准误导生产。 2.微量硫分析仪 随着常温精脱硫新工艺的应用,象氮肥厂就很有必要配备微量硫分析仪,以确保联醇催化剂、氨合成催化剂的安全,为生产样气中各种微量形态硫的定性和定量检测提供了方便快捷的检测手段。 3.可燃气体测爆仪 用奥氏仪进行动火分析测定时间长,有时存在一定误差,因此建议选用可燃气体测爆仪。 4.工业气相色谱仪 工业气相色谱在煤气分析中应用最多,气体组分按H2、N2、CO和CO2的顺序依次被测定。此外该技术还可用于转炉炉气和烧结废气中此类组分的分析。近年来色谱分析仪得到推广,但是色谱分析仪需要对气体进行分离后再检测,很难实现实时在线。除了国内少数高炉仍采用该方法之外,工业气相色谱仪逐渐被质谱仪或红外分析系统代替。 5.工业气体质谱仪 质谱仪以物质离子的质荷比作为判据进行定性和定量分析。气体质谱仪通常采用电子轰击方式离子化,所有物质都有特征的解离方式。质谱仪的特点是分析速度极快、可同时分析的组分多,而且分析的精度很高。但质谱仪多成分和高速度的分析性能在高炉、烧结等工段应用的优势并不明显,也需要对气体进行分离后再检测,很难实现实时在线分析,仪器成本又很高。目前高精度的质谱仪主要还是依靠进口,其维修零备件也都要从国外进口,国内代理商响应大多缓慢,这对系统的投用率影响很大。还有,国内运行环境与国外有差异,仪器故障率也很高,维护相当频繁,维护费用也大。 6.其它 其它常用的还有电导仪、酸度计、分光光度计、含水测定仪等。二、常用过程分析仪器 1.微量气体分析仪 精炼气中微量(CO+ CO2)的测定是氮肥厂比较重要的分析项目,由于含量低(CO+CO2≤25×10-6),有些场合气体含量甚至是ppb级的低含量,用手工方法难以测出其组分。 2.热导式分析仪 热导式分析仪是出现最早、种类较多且应用较广的一类在线分析仪,常用来自动测定混合气中H2、Ar、SO2等多种气体的体积分数。 3.氧分析仪 煤气中氧含量的在线分析常采用电化学式或者热磁式氧分析仪,其灵敏度高,还可设置报警装置,维修更换方便。 4.常量红外线气体分析仪 常量红外线煤气分析仪常用来连续测定各种混合气体中的CO、CO2、NH3、CH、H2、O2等含量,是在线分析仪中比较重要的一类。非分光红外(NDIR)气体分析仪作为一种快速、准确的气体分析技术,特别在连续污染物监测系统(CEMS)以及机动车尾气检测应用中十分普遍。国内NDIR气体分析仪的主要厂家大都采用国际上八十年代初的红外气体分析方法,如采用镍锘丝作为红外光源、采用电机机械调制红外光、采用薄膜电容微音器或InSb等作为传感器等。由于采用电机机械调制,仪器功耗大,且稳定性差,仪器造价也很高。同时采用薄膜电容微音器作为传感使得仪器对震动十分敏感,因此不适合便携测量。随着红外光源、传感器及电子技术的发展,NDIR红外气体传感器在国内外得到了迅速的发展。主要表现在无机械调制装置,采用新型红外传感器及电调制光源,在仪器电路上采用了低功耗嵌入式系统,使得仪器在体积、功耗、性能、价格上具有以往仪器无法比拟的优势。 如现在市面上的煤气分析仪Gasboard-3100(在线型),采用国际领先的非分光红外气体分析技术,长寿命电化学传感技术,及基于MEMS的热导技术,可同时在线测量煤气、生物燃气的热值,以及CO、CO2、CH4、H2、O2、CnHm等气体的体积浓度。煤气分析仪Gasboard-3100(在线型) 该仪器广泛应用于煤气工业过程气体中多组分气体体积浓度的测量,如氮肥厂、钢铁公司、煤气厂等煤气、半水煤气、变换气、原料气等。通过对测量气体参数变化情况的分析,以掌握这些成分的变化规律,从而实现对生产全程动态的监测。 “分析技术仪器化,分析仪器自动化”是主导发展方向。分析方法和技术是分析仪器的导向,定型的分析测试方法都需要转化为仪器装置。随着生产的不断发展,对分析的质量和性能要求也在不断提高,实验室分析仪已经不能适应连续自动化的生产监测和控制。分析仪器自动化除了要利用当前发展的电子技术和计算技术实现以外,还会要综合地利用正在热门化的嵌入式智能化平台技术、超微精密加工技术。过程分析仪正逐渐在我国中、小型企业普及,实时为企业生产提供动态控制和监测。来源:微信公众号@工业过程气体监测技术,转载请务必注明来源
  • 分析检测与传感技术专场看点在哪里?
    分场活动 | 分析检测与传感技术专场看点在哪里?随着智能制造和智能装备的快速发展,分析检测与传感器技术备受关注。感知是智能的基础,分析检测是智能的前提,高集成度的微纳传感器、高速高精度检测、大数据分析、故障检测与隔离、智能健康管理等都有着更加紧密的联系。分析检测与传感器技术论坛旨在进一步探讨科技时代背景下的传感、检测和数据分析的理论技术进展及其未来的发展方向。本次论坛邀请了众多在分析仪器行业内的院士及专家们前来参加。他们将给大家分享关于分析检测与传感器技术发展的技术及发展方向。中国仪器仪表学会分析仪器分会秘书长吴爱华主持中国工程院院士周立伟致辞河南省市场监督管理局党组成员王建防副局长致辞中科院大连化学物理研究所研究员关亚风来自中科院大连化学物理研究所的关亚风研究员远程为大家分享《弱光探测器件及在海洋原位传感器中的应用》主题报告,详细介绍到研制出以硅基光电二极管的弱光探测器组件PDA,其光谱响应范围3001150 nm,探测下限为10-5 lx/600 nm,响应线性范围6105,耐受振动、冲击和电磁辐射,具有十年以上使用寿命。用所研制的PDA替代光电倍增管PMT,用LED替代氙灯,研制出单/双通道荧光计模块、96孔板荧光扫描仪、手持黄曲霉毒素检测仪、和液相色谱用黄曲霉毒素荧光检测器。性能指标都与进口名牌产品(用脉冲氙灯和光电倍增管检测)相同,但成本、功耗等远低于进口产品。接着将PDA用于4500米级深海荧光传感器,包括叶绿素a、可溶性水中有色有机物(CDOM)和示踪剂荧光传感器,经多次海试证明,性能指标优于美国Environ Lab、Seabird等产品指标。上述PDA组件、单通道荧光检测模块和液相色谱用黄曲霉毒素荧光检测器都已经小批量生产。武汉大学教授黄卫华来自武汉大学的黄卫华教授为大家分享《柔性可拉伸电化学生物传感》主题报告,介绍到为了实现柔软、形变细胞/组织的精准测量,发展柔性可拉伸电化学传感器,并通过多种策略提升检测灵敏度、选择性以及抗污染等性能,在此基础上了实现了多种类型细胞、组织以及器官的实时监测。四川大学机械工程学院教授段忆翔来自四川大学机械工程学院的段忆翔教授为大家分享呼出气用于癌症早筛的高精度飞行时间质谱技术与仪器的研究》主题报告,介绍到呼出气中的挥发性有机化合物与疾病密切相关,并在重大疾病的早期诊断中具有巨大潜力。实验室通过对癌症患者呼出气中的痕量组分进行精确分析,致力于开发基于呼出气的非侵入式诊断模型及飞行时间质谱分析仪器。日本理研计器商贸(上海)有限公司董事长 石原纯久&副总经理 尹文礼来自日本理研计器商贸(上海)有限公司石原纯久董事长&尹文礼副总经理为大家分享《双量程气体传感器的应用介绍》主题报告,重点介绍了由日本理研计器开发的世界首款可同时检测气体ppm以及lel%浓度的双量程传感器。有研工程技术研究院有限公司智能传感功能材料国家重点实验室,传感所所长明安杰来自有研工程技术研究院有限公司智能传感功能材料国家重点实验室,传感所的明安杰所长为大家分享《集成纳米功能材料的红外气体传感器》主题报告,提到围绕高性能0000000【】热释电红外探测器及NDIR氮氧化物气敏传感开展研究,开发了晶圆级图形化的碳基红外增强吸收纳米材料,在中红外波段吸收率达到92%以上。开发了集成降噪结构、电流型读出电路的热释电探测器,探测率优于2.5×108。开发的NDIR氮氧化物气体传感器实现了0~50ppm量程稳定输出。应用于工业、汽车尾气检测等领域具有广阔市场前景。IO-Link中国技术工作组成员,穆尔电子技术经理 朱奕来自IO-Link中国技术工作组成员,穆尔电子技术经理朱奕为大家分享《IO-Link设备集成与功能扩展》主题报告。让大家深刻认识IO-LINK,从IO-LINK可降低成本、减少调试时间、实现创新的机器概念、提升机械生产率等重要特点展开详细介绍,并分享IO-LINK涉笔在工业4.0中的样子。相信未来,在大家的努力之下,我们的分析仪器行业会蓬勃发展。通过本次活动会为大家提供更多的机会,促进政、产、学、研、用的有效结合,为推动分析仪器行业的发展做贡献!
  • 产品升级 | HT8700大气氨激光开路分析仪降雨传感&镜片加热功能
    降雨传感如遇降雨天气,系统收集的数据为无效数据。HT8700增设降雨识别芯片,通过传感装置实时反馈至系统,并将降雨期间收集的数据特殊标注,便于使用者筛选有效数据。镜片加热在野外工作过程中会遇到低温条件,普通镜片易积水雾,影响镜片反射效率。开发加热系统,增设加热组件,可将镜片温度提至高于环境温度10℃。确保红外线反射能力不受低温影响,使仪器分析结果更精准、更可靠。点击查看新功能说明【点击查看】中国农业大学:华北农区开展秋冬季地气氨交换通量高频观测【点击查看】中科院大气所:亚热带稻田施肥期间氨排放通量【点击查看】湖北农科院:国家农业环境潜江观测实验站建设
  • 智能碳硫分析仪
    智能碳硫分析仪 什么是智能碳硫分析仪? 智能碳硫分析仪采用中国国标测定(碳采用气体容量法、硫采用碘量法)原理设置而成,配备了电子天平实现了不定量称样测定,触摸式薄膜按键全中文菜单式操作,并可贮存四条工作曲线,检测结果大屏幕液晶显示并直接打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标。 智能碳硫分析仪能快速、准确地检测钢铁、其它金属以及非金属材料中碳硫两元素的质量分数。适用于钢铁、冶金、机械制造加工、铸造有色金属等行业化验室进行碳、硫质量分数检测的主要手段。是分析工作者检测碳硫的理想设备。智能碳硫分析仪广泛应用于冶金铸造、采矿、建筑、机械、电子、环保、卫生、化工、电力、技术监督等部门、可检测钢、铁、及铁合金、铝合金、铜合金、锌合金、钢铁氧化液及磷化液等材料中各种化学成份的含量。 智能碳硫分析仪主要技术参数: 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒(包含称样时间) 测量精度:符合GB223.69-2008,GB223.68-1997标准 智能碳硫分析仪主要特点: 采用单片机控制,全自动操作,零点自动调整彻底消除人为误差,性能可靠,抗干扰强; 配备电子天平实现不定量称样,提高了检测速度和精度; 采用国际先进的传感技术,使用进口传感器,测量结果可数字显示并自动打印测试结果; 高碳、低碳均可直接显示,不需换算; 采用气体容量法定碳、碘量法定硫。
  • 第三届在线分析仪器发展论坛:在线水质分析仪、在线气体监测仪的研发与应用现状
    仪器信息网讯 2010年11月1日,由中国仪器仪表学会分析仪器分会与北京雄鹰国际展览有限公司联合主办的“第三届中国在线分析仪器应用及发展国际论坛暨展览会”在北京国际会议中心隆重召开。来自中石油、中石化、中海油、煤化工、中化集团等下属企业及市政环保等用户及厂商代表400余人参加了本次论坛。仪器信息网作为特约媒体应邀参加了本次会议。   除大会报告外,会议同期举办了在线分析仪器展览会等活动,并设立A、B两个分会场对在线分析仪器技术分别进行探讨。其中,B分会场由中国化工装备仪表公司乐嘉谦高工、上海舜宇恒平科学仪器有限公司黄晓晶女士联合主持,多位在线分析领域的专家学者、厂商代表就“在线水质分析仪”、“在线气体监测仪”、“在线分析技术的工业应用”等方面作了精彩的报告。 在线水质分析仪:   近年来,面对日益严重的水资源短缺、水环境污染等问题,以及全球对节能降耗、环境保护的日益重视,在线水质分析仪及其应用技术得到了飞速发展,尤其是针对目标对象的快速、灵敏、稳定、低成本、少(免)维护,以及多参数在线检测技术等新方法逐渐成为研究热点与发展重点。 美国哈希公司程立先生   程立先生在题为《在线水质分析仪器应用技术的发展》谈到:监测型和过程型在线水质分析仪器具有不同的技术特点和应用要求,对应的应用技术也有着不同发展方向。同时,具有自学习功能和专家型的在线水质分析仪器系统及应用技术开始得到市场的重视。另外,程立先生还重点分析了美国哈希“蓝色卫士”多维矢量水质监测与预警系统、WTOSTM污水厂运行优化系统两款产品的优点。 上海海争电子科技有限公司贾福禄先生   贾福禄先生在题为《多参数在线水质分析仪的设计》概述了多参数在线水质检测仪的测量原理,新器件的使用。贾福禄先生说到:多参数在线水质分析仪选用成品的变送器作为检测部分,采用原装进口的传感器,可测四个参数:余氯、二氧化氯、臭氧和次氯酸,结果显示此仪器性能稳定,零点漂移很小,斜率变化也不大,适合需要长期稳定工作的环境。 广州市怡文环境科技股份有限公司王珂征先生   王珂征先生在题为《电化学生物传感器在水质安全监测中的应用》表示:电化学生物传感器对饮用水安全监测上有深远的意义和应用价值。近十年来,对于电化学生物传感器的性能和检测方法的优化研究也越来越多,电化学生物传感器的性能和种类也得到了很大的发展。另外,王珂征先生还主要介绍电化学生物传感器的原理、类型及在水质监测领域的应用。 天津大学精密仪器与光电子工程赵友权先生   赵友权先生在题为《基于光谱法的紫外吸收COD的监测系统》说到:目前化学需氧量(COD)的监测方法存在需要化学试剂,测定时间长,操作复杂等问题。而基于紫外可见光谱测定COD的检测系统可以通过计算水样紫外吸光度从而测定水中的COD浓度。仪器具备无线数据通讯功能,无需工作人员值守,无需任何试剂,自动清洗,可满足实时在线原位的绿色检测与监测的要求。   在线气体监测仪:   进入21世纪以来,随着工业技术的不断发展、人口膨胀以及机动车数量的急剧增长,大气环境污染日益严重。其中,大气细颗粒物是形成大气污染的重要污染物之一,在许多城市已成为首要的污染物。同时,工业废气的污染也越来越引起环保人士的重视,烟气排放监测技术随之迅速发展。 戴安中国有限公司刘肖先生   刘肖先生在题为《大气/气溶胶中阴阳离子在线监测技术》首先介绍到:URG公司是一家专门制作大气采样装置的专业性公司,其与美国EPA大气监测机构具有非常好的合作关系。美国戴安公司将该仪器结合离子色谱技术,使之成功应用于大气环境监测。URG公司与美国戴安公司的合作达10年之久。随后,刘肖先生从URG-9000D整套设备的技术细节上为大家进行了详细介绍。   在线分析技术的工业应用: 中国石油化工股份有限公司广州分公司符青灵先生 报告题目:在线分析仪表在国产催化重整装置的应用   符青灵先生在报告中主要介绍了广州石化100 万吨/年催化重整联合装置是首套采用国产超低压连续重整工艺成套技术的装置,配置了色谱分析仪、氢烃分析仪等14 套在线分析仪表。催化重整装置是炼油企业非常重要的二次加工装置, 对首套使用国产技术的装置使用的在线分析仪表配置与应用情况进行总结很有意义。 聚光科技(杭州)股份有限公司王森先生 报告题目:合成氨、甲醇装置在线分析仪器配置和应用技术   王森先生首先陈述了自己在新建大型合成氨、甲醇装置采用的在线分析技术研发应用的感想与建议,随后,针对近期新建大型合成氨、甲醇装置采用的在线分析技术,王森先生详细讨论了这些装置工艺操作和控制对在线分析的要求,在线分析仪器的配置方案和选型要点,取样、样品处理系统的设计及在线分析应用技术。
  • 热重分析仪原理简介
    p   热重分析是在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。使用这种技术测量的仪器就是热重分析仪(Thermogravimetric analyzer-TGA),热重分析仪也被称为热天平。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪基本结构 /strong /span /p p   热重分析仪的主要部件有热天平、加热炉、程序控温系统、气氛控制系统。 /p p strong 热天平 /strong /p p   热天平的主要工作原理是把电路和天平结合起来。通过程序控温仪使加热电炉按一定的升温速率升温(或恒温),当被测试样发生质量变化,光电传感器能将质量变化转化为直流电信号。此信号经测重电子放大器放大并反馈至天平动圈,产生反向电磁力矩,驱使天平梁复位。反馈形成的电位差与质量变化成正比(即可转变为样品的质量变化)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d515a402-1f0a-4ba4-a12b-725e7f252d60.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   热天平结构图如图所示。电压式微量热天平采用的是差动变压器法,即零位法。用光学方法测定天平梁的倾斜度,以此信号调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。另一解释为:当被测物发生质量变化时,光传感器能将质量变化转化为直流电信号,此信号经测重放大器放大后反馈至天平动圈,产生反向电磁力矩,驱使天平复位。反馈形成的电位差与质量变化成正比,即样品的质量变化可转变电压信号。 /p p   TGA有三种热天平结构设计:上置式(上皿式)设计—天平置于测试炉体下方,试样支架垂直托起试样坩埚 悬挂式(下皿式)设计—天平位于测试炉体上方,坩埚置于下垂支架上 水平式设计—天平与测试炉体处于同一水平面,坩埚支架水平插入炉体。 /p p   天平与炉体间须采取结构性措施防止天平受到来自炉体热辐射和腐蚀性物质的影响。 /p p   天平的主要性能指标有分辨率和量程。根据分辨率不同可分为半微量天平(10μg)、微量天平(1μg)和超微量天平(0.1μg)。 /p p   物体的质量是物体中物质量的量度,而物体的重量是质量乘以重力加速度所得的力,TGA测量的是转换成质量的力。由于气体的密度会随炉体温度的变化而变化,需要对测试过程中试样、坩埚及支架受到的浮力进行修正。可采用相同的测试程序进行空白样测试以得到空白曲线,再由试样测试曲线减去空白曲线即可进行浮力修正。 /p p strong 加热炉 /strong /p p   炉体包括炉管、炉盖、炉体加热器和隔离护套。炉体加热器位于炉管表面的凹槽中。炉管的内径根据炉子的类型而有所不同。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08fe3180-30d2-44d5-9bb8-da75c8e8d5a6.jpg" title=" 炉体结构图.png" / /p p style=" text-align: center " strong 炉体结构图 /strong /p p   1-气体出口活塞,石英玻璃 2-前部护套,氧化铝 3-压缩弹簧,不锈钢 4-后部护套,氧化铝 5-炉盖,氧化铝 6-样品盘,铂/铑 7-炉温传感器,R型热电偶 8-样品温度传感器,R型热电偶 9-冷却循环连接夹套,镀镍黄铜 10-炉体法兰冷却连接,镀镍黄铜 11-炉休法兰,加工过的铝 12-转向齿条,不锈钢 13-收集盘,加工过的铝 14-开启样品室的炉子马达 15-真空和吹扫气体入口,不锈钢 16.保护性气体入口,不锈钢 17-用螺丝调节的夹子,铝 18-冷却夹套,加工过的铝 19-反射管,镍 20-隔离护套,氧化铝 21-炉子加热器,坎萨尔斯铬铝电热丝Al通路 22-炉管,氧化铝 23-反应性气体导管,氧化铝 24-样品支架,氧化铝 25-炉体天平室垫圈,氟橡胶 26-隔板、挡板,不锈钢 27-炉子与天平室间的垫圈,硅橡胶 28-反应性气体入口,不锈钢 29-天平室,加工过的铝 /p p strong 程序控温系统 /strong /p p   加热炉温度增加的速率受温度程序的控制,其程序控制器能够在不同的温度范围内进行线性温度控制,如果升温速率是非线性的将会影响到TGA曲线。程序控制器的另一特点是,对于线性输送电压和周围温度变化必须是稳定的,并能够与不同类型的热电偶相匹配。 /p p   当输入测试条件之后(温度起止范围和升温速率),温度控制系统会按照所设置的条件程序升温,准确执行发出的指令。所有这些控温程序均由热电偶传感器(简称热电偶)执行,热电偶分为样品温度热电偶和加热炉温度热电偶。样品温度热电偶位于样品盘下方,保证样品离样品温度测量点较近,温度误差小 加热炉温度热电偶测量炉温并控制加热炉电源,其位于炉管的表面。 /p p strong 气氛控制系统 /strong /p p   气氛控制系统分为两路,一路是反应气体,经由反应性气体毛细管导入到样品池附近,并随样品一起进入炉腔,使样品的整个测试过程一直处于某种气氛的保护中。通入的气体由样品而定,有的样品需要通入参与反应的气体,而有的则需要不参加反应的惰性气体 另一路是对天平的保护气体,通入并对天平室内进行吹扫,防止样品加热时发生化学反应而放出的腐蚀性气体进入天平室,这样既可以使天平得到很高的精度,也可以延长热天平的使用寿命。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪测量曲线 /strong /span /p p   热重分析仪测量得到的曲线有TGA曲线与DTG曲线。TGA曲线是质量对温度或时间绘制的曲线,DTG曲线是TGA曲线对温度或时间的一阶微商曲线,体现了质量随温度或时间的变化速率。 /p p   当试样随温度变化失去所含物质或与一定气氛中气体进行反应时,质量发生变化,反应在TGA曲线上可观察到台阶,在DTG曲线上可观察到峰。 /p p   引起试样质量变化的效应有:挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的吸附与解吸,结晶水的失去 在空气或氧气中的氧化反应 在惰性气氛中发生热分解,并伴随有气体产生 试样与气氛的非均相反应。 /p p   同步热分析仪STA将热重分析仪TGA与差示扫描量热仪DSC或差热分析仪DTA整合在一起。可在热重分析的同时进行DSC或DTA信号的测量,但灵敏度往往不及单独的DSC,限制了其应用。 /p
  • 快速高效精确 | 你要的TOC分析仪都在这里:TOC分析仪选型指南
    为了尽可能降低工艺和法规风险,选择最适合的总有机碳TOC分析仪至关重要。了解Sievers全系列TOC分析仪,寻找适合您的型号,立刻收藏以下谱图吧!如您需要更清晰的pdf版Sievers全系列TOC分析仪谱图,请点击以下链接下载!https://www.instrument.com.cn/netshow/SH102481/down_208631.htm自1997年为美国国家航空航天署(NASA)的太空计划开发出第一款总有机碳(TOC)分析仪之后,Sievers分析仪根据市场需求,又取得了许多技术突破,推出了灵敏度高、选择性好、操作简便的TOC分析仪。Sievers TOC分析仪涵盖了从0.03 ppb到50000 ppm的动态分析范围,能够提供跨越不同行业和应用的解决方案,广泛应用于制药/生物医药、电子半导体、电力、化工、石化、环保、食品饮料、科研院校等众多领域。除了您可信赖的仪器外,我们的Sievers认证服务、标准品和样品瓶以及应用专业知识也是无与伦比的。Sievers TOC分析仪用于超纯水和纯水M9实验室/在线/便携TOC分析仪和M500/M500e在线TOC分析仪,这些仪器结合了紫外线/过硫酸盐氧化法和专利的Sievers薄膜电导检测技术,能够对超纯水进行最为精准的TOC测量。此项技术最初是根据美国宇航局(NASA)的合同为监测空间站饮用水的质量而开发的,采用此技术生产的Sievers 800型TOC分析仪代表了TOC分析技术领域的真正突破。如今新一代的Sievers超纯水TOC分析仪具有无与伦比的分析性能、可靠性、易用性,能够全面满足您在超纯水/纯水监测方面的应用要求,以及当今最严格的质量标准。CheckPoint/CheckPointe在线/便携TOC传感器,是第一款可用电池供电的TOC检测仪。它能够进行快达15秒钟的水系统诊断和故障排除。CheckPoint的重量只有3.6公斤(7.9磅,含电池),非常易于操作和维护。用于自来水M5310 C实验室/在线/便携TOC分析仪,专为市政用水所开发的使用Sievers薄膜电导检测技术的TOC分析仪。M5310 C实验室型和便携式都可以搭配Sievers自动进样器使用。便携式可吸样检测也可在线监测。所有型号的M5310 C都有TOC去除率计算功能。用于工艺过程用水及污水InnovOx实验室/在线TOC分析仪,用于监测工业过程、环境、废水样品,具有0.05至50,000 ppm的动态检测范围。两种型号的仪器都采用创新的超临界水氧化(SCWO)技术,具有极佳的氧化稳定性和超长的仪器有效运行时间。◆ ◆ ◆联系我们,了解更多!
  • 在线水质分析仪器—技术、应用与市场(一)
    p    span style=" color: rgb(0, 176, 240) " strong 1、前言 /strong /span /p p   在线水质分析仪器是一类专门的自动化在线分析仪表,仪器通过实时、现场操作,可在无需人工操作的情况下实现从水样采集到数据输出的快速分析 许多结构复杂的在线水质分析仪器已经具有了自动诊断、自动校准、自动清洗、故障报警等功能,以保证分析结果可靠性和仪器的长时间无故障运行。 /p p   目前有两种不同结构和形式的在线水质分析仪器:“在线分析传感器和比较复杂的自动化分析设备或者装置”。按照国际标准化组织(ISO)代号ISO15839《水质-在线传感器/分析设备的规范及性能检验》标准的定义:“在线分析传感器/设备(on-line sensor/analyzing equipment) ,是一种自动测量设备,可以连续(或以给定频率)输出与溶液中测量到的一种或多种被测物的数值成比例的信号。” /p p   随着全球范围内对环境保护、水资源可持续利用以及水安全的日益重视,为满足世界各国日趋严格的环保法规要求和不断发展的水处理工业市场的需求,作为获取水质信息的源头技术,在线水质分析仪器及其应用技术得到了巨大的发展机会。同时,计算机科学、分析化学、材料科学等相关科学技术的进步,也为在线水质分析仪器技术的发展提供了可靠的技术支撑。国际水协会(IWA)的前身国际水污染研究协会(IAWPR)自1973年就开始了组织主题为ICA(Instrumentation-仪表,Control-控制and Automation-自动化)的专题会议,专门推广和研究水处理领域的在线水质分析仪器及过程控制的应用。近来,世界卫生组织(WHO)也在其发布的《再生水饮用回用:安全饮用水生产指南》中指出需要在再生水饮用回用系统全流程的关键控制点实施运行监测,并建议尽量采用在线监测仪器进行数据实时监测和记录。在技术进步和法规的推动下,越来越多的在线水质分析仪器被应用到环境监测、废水排放监测,以及各种水处理工艺的过程控制系统中了。 /p p   在中国,伴随着改革开放40年经济高速发展的城镇化与工业化进程,无论是在城镇化过程中大量的自来水水厂和污水处理厂建设,还是工业化进程中各种火力发电厂、石油化工厂、大型冶金企业、食品酿造厂等高耗水工业企业的兴建,都给予了在线水质分析仪器巨大的市场空间,在此基础上,中国的在线水质分析仪器行业获得了空前的成长机会,中国的在线水质分析仪器技术有了显著的发展和长足的进步,在线水质分析仪器的可靠性得到了市场和权威机构的广泛认可。 /p p   随着政府和公众对水环境保护和饮用水安全的高度重视,以及政府逐年增加的巨额环保资金,特别是在具有中国特色的“自动监测为主,手动监测为辅的监测模式”的环境监测技术路线的框架下,中国已经逐渐发展成为了在线水质分析仪器全球最大的地表水水质自动监测和废水污染源排放自动监测领域的单一市场。 /p p   中国环境保护部门于2001年6月4号发布并同日实施了HBC 6-2001《环保产品认定技术要求 化学需氧量(CODCr)水质在线自动监测仪》行业标准,这是中国第一部用于废水污染源排放自动监测的在线水质分析仪器标准,在接下来的几年中,各个相关政府部门还陆续发布了多部在线水质分析仪器的国家和行业标准。标准的发布实施,加上在线水质分析仪器在实际水质监测中的成功应用,有力地推动了中国水质在线分析仪器市场的发展和技术的进步。 /p p   随着中国环境保护事业和环保市场的持续发展,国务院办公厅于2015年7月印发了《生态环境监测网络建设方案》,提出例如“到2020年,全国生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹、天地一体、上下协同、信息共享的生态环境监测网络,使生态环境监测能力与生态文明建设要求相适应。”的目标,方案还要求“完善重点排污单位污染排放自动监测与异常报警机制,提高污染物超标排放、在线监测设备运行和重要核设施流出物异常等信息追踪、捕获与报警能力以及企业排污状况智能化监控水平”。在2018年1月1日正式实施的“中华人民共和国环境保护税法”第十条中还明确规定了应税污染物的计算方法,“纳税人安装使用符合国家规定和监测规范的污染物自动监测设备的,按照污染物自动监测数据计算”,通过法律条文的形式进一步确定了在线分析仪器的地位。 /p p    span style=" color: rgb(0, 176, 240) " strong 2、在线水质分析仪器的检测技术简介 /strong /span /p p    strong 2.1在线水质分析仪器的技术发展 /strong /p p   一直以来,在线水质分析仪器技术都是沿着在线分析仪器研发制造技术和在线水质分析仪器应用技术两个方面同时发展的。 /p p   根据ISO标准的定义,有两种形式的在线水质分析仪器:在线分析传感器和比较复杂的自动化分析设备或者装置。 /p p   第一代的在线水质分析仪器常常是以在线分析传感器+显示控制器的形式出现的,仪器通常结构都比较简单,通过传感器直接和被测水样接触获得水质指标的数据。最初可以测量的水质指标,主要是一些简单的物理指标和成分指标,如水温、电导率、PH、ORP、溶解氧等 接着是浊度、悬浮物浓度等光学原理的传感器 随着电化学分析技术的发展,氟离子、铵离子、硝酸盐等多种离子选择电极法原理的在线水质分析传感器也开始进入市场。由于传感器和水样直接接触,无法像实验室人工分析时进行样品预处理及去除样品中干扰物质,在面对水质复杂的水样(高温、高压、含油、硫化物、重金属、悬浮物、高盐度、腐蚀性气体等各种杂质)时的适用性受到很大局限,最初的测量对象主要是地表水、饮用水、市政污水以及工业纯水等水质情况较为简单的水体。 /p p   为了解决传感器测量复杂水样的适用性问题,也为了实现一些实验室人工分析方法步骤比较繁琐或者测试条件要求较高的水质参数的自动分析,随着自动控制技术的采用,结构比较复杂的在线水质分析仪器-水质自动化分析设备或装置开始出现:仪器通过控制一整套的设备或装置的自动运行来完成以前实验室人工分析的步骤,比如:过滤、加热、加显色剂、混合、测量等等 另外,为了保证长时间连续运行的准确度,还需要定时对仪器进行自动校准,以及定期的人工维护。这一类在线水质分析仪器结构复杂,多用于水质成分指标(TOC、SiO2、总磷、总氮、重金属等)和评估性水质综合指标(COD、碱度、硬度、生物毒性等)。 /p p   随着现代科学技术的发展,特别是分析化学、材料科学、电子科学以及包括计算机技术和通讯技术、自动控制技术在内的系统工程成套自动化技术的发展, 再加上水质科学自身的发展与进步,从以下介绍的多个维度共同推动了在线水质分析仪器技术的发展。 /p p   首先,在测量原理方面,除了传统的电化学、光学、光电比色法原理,激光诱导击穿光谱、混合多光谱分析、X射线荧光分析、三维荧光光谱、生物技术等各种新的测量原理被应用到了在线水质分析仪器 同时,流动注射分析技术的发展和应用,使得仪器分析时间大大缩短,增强了在线分析技术实时性的优点。 /p p   其次,水质科学的发展,提出了“替代参数”的概念,为在线水质分析仪器的开发和应用开拓了新的空间。水质替代参数是指一类特定的水质参数,可以综合反映水体的某一类别的水污染情况或水处理过程中某些不能实现在线监测而且实验室分析也非常繁琐水质参数的变化。目前,对饮用水水质安全来讲,反应有机物总量及某些特定成分变化的综合性指标UV254是目前非常重要的水质替代参数,可以通过UV254的实时测量,获得和水中有机物污染相关的其他参数(如,COD、BOD、TOC等)的信息。由于能实时反映水质的变化,测量“替代参数”的在线水质分析仪器在水处理工艺过程控制中有着非常重要的价值。目前其他重要的在线水质替代参数分析仪器还有:浊度、颗粒物、SDI(污染指数)等。 /p p   第三,随着材料科学的发展,在线水质分析仪器传感器的环境适应性也得到了很大提高,表现为:高温材料的采用,使得传感器的最高工作温度范围不断提高 传感器材质采用惰性的材料,可以耐受水中硫化氢、硫化物、高盐、重金属、油污染的探头,可以耐受高强度核辐射的溶解氧和溶解氢探头应用于核电厂 采用钛合金材料,可长时间应用于海洋监测的传感器等等。 /p p   另外,和所有仪器产品一样,在线水质分析仪器中执行数据处理与通讯功能的硬件与软件都采用了电子工业的最新技术。相对于最初的模拟电路,由于数字电路设计要比模拟电路相对简单、自动化程度高,对设计人员的经验水平要求也稍低,数字电路技术的采用和普及,使得仪器设计和批量生产的成本得以大幅下降,仪器的可靠性有了很大的提升。 /p p   目前的在线水质分析仪器的控制器普遍具有了自动运算、统计、图形显示、趋势分析等数据处理功能 同时,仪器一般具有自动诊断、故障报警功能,方便仪器运行及维护人员及时发现和解决仪器的问题 仪器生产商采用通用控制器也已经成为共识,同一种型号的控制器可以同数十种传感器连接,由此给仪器生产企业和使用者两方面都带来了好处:仪器制造厂家可以实现控制器的大批量生产,取得规模效益 同时通用控制器降低了仪器技术服务的复杂程度,也降低了仪器生产厂家的服务成本 带给在线分析仪器使用者的好处也是显而易见的:在保证水处理生产正常运行的同时,可以减少水质分析仪器零备件的库存压力 通用控制器也让操作者减少了学习的时间,可以更快更熟练的掌握仪器的使用及维护,提高生产效率 同时,新型的数字化传感器可以被通用控制器自动识别,具有“即插即用”功能,极大的减轻了安装维护人员的劳动强度。在通讯及数据传输方面,RS232、RS485以及Profibus、Modbus等现场总线技术和TCP/IP等网络协议得到了普遍应用,为实现水质监测数据的实时传输及水处理过程的自动控制提供了支持。 /p p   最后,标准化进一步支持了在线水质分析仪器技术和行业的发展。国际标准化组织(ISO)在2003年制定的代号为ISO15839-2003的标准《水质在线传感器/分析设备-水质规范和性能测试》,定义了在线水质分析仪器的性能特征,建立了评估及测定性能特征参数的测试程序,这个通用性标准给在线水质分析仪器的研发、生产及验收提供了依据。进入21世纪以来的十多年中, 中国也发布了大量有关在线水质分析仪器的国家标准和一系列的行业标准。这些标准的发布与实施,为在线水质分析仪器的应用与发展提供了技术上的可靠保证。 /p p    strong 2.2 水质在线分析仪器的主要检测技术 /strong /p p   作为一种专用于水质分析的特定仪器分析技术,和其他仪器分析技术一样,水质在线分析仪器检测技术的理论基础也是根据水中待测物质的物理化学或者生物化学性质来测定物质的组成及相对含量。根据测定的方法原理不同,主要可以分为电化学分析、光学分析、色谱分析、其他分析方法等4大类。 /p p   电化学分析法(electroanalytical chemistry,也称电分析化学法),是建立在物质在溶液中电化学性质基础上的一类分析方法,它是仪器分析方法中的一个重要分支。电化学分析测量系统是一个由电解质溶液和电极构成的化学电池,通过测量电池的电位、电流、电导等物理量,实现对待测物质的分析。根据测定电化学参数的不同,电化学分析法又分为电位分析法、库仑分析法、伏安分析法(包括极谱分析法)、电导分析法等。 /p p   电化学分析法原理的在线水质分析仪器,是出现最早和应用最普遍的一类在线水质分析仪器。其中,既有较为简单的传感器形式的各种Ph/ORP(氧化还原电位)分析仪、电导率分析仪(目前在工业过程分析中应用十分普遍的酸碱盐浓度计,也都大多是采用电导检测原理的在线分析仪器)、极谱法溶解氧分析仪、基于离子选择电极法的氨氮、氯离子、硝酸盐氮、亚硝酸盐氮分析仪 也有结构比较复杂的自动化分析设备,如基于伏安分析法的各种重金属分析仪,采用电位滴定原理的COD分析仪,高锰酸盐指数分析仪,采用电导分析法的纯水TOC(总有机碳)分析仪等。 /p p   光学分析法(optical analysis),是以物质发射或吸收电磁辐射以及物质与电磁辐射相互作用(发光、吸收、散射、光电子发射等)来对待测样品进行分析的方法。可以分为光谱法和非光谱法两大类。非光谱分析法,是基于物质引起辐射的方向或物理性质的改变,检测被测物质的某种物理光学性质,进行定量、定性分析的方法,非光谱分析法不考虑物质内部能量的变化,包括了折射法、散射光法等。光谱分析法,是以光辐射能与物质组成和结构之间的内在联系或者以光谱或波谱的测量为基础,利用物质的光谱特征,进行定性、定量及结构分析的方法。按物质能级跃迁的方式,光谱分析法又分为三种基本类型:发光光谱法(包括分子荧光分析法、X射线荧光分析法等)、吸收光谱法(包括紫外可见分光光度法、红外分光光度法等)以及散射光谱法(如最近比较热门的拉曼散射光谱法)。 /p p   在线浊度分析仪是目前非光谱分析法在水质在线分析技术最有价值的应用。浊度是水质净化处理最重要的关键性工艺参数,它既可反应水中悬浮物的浓度,同时又是人的感官对水质最直接的评价,全球各国包括世界卫生组织的饮用水标准都把浊度作为了一个必测的指标。浊度的测量原理是利用光的散射原理,当光束接触到水中的悬浮物颗粒表面时,将会散射和吸收通过水样的光线,散射光与入射光成90度直角时,散射光强度与浊度的大小成线性关系,通过检测器测量散射光强度,同标准比较,就能获得水样的浊度值。目前市场上已经有了数十种不同结构、不同量程、不同测试精度、不同安装方式的在线浊度分析仪器产品,可以满足从洁净度极高的膜过滤水到高污染、高悬浮物水样浊度的实时监测。 /p p   目前,采用光谱分析法原理的水质在线分析仪器是能够测量水质参数最多的一类仪器,这其中,既有采用经典比色法原理的总磷分析仪、总氮分析仪、氨氮分析仪、SO2分析仪、六价铬、铜等重金属分析仪 也有X射线荧光分析法原理的铅、砷分析仪 还有紫外荧光原理的水中油(多环芳烃)分析仪等。最近,随着化学计量学和光谱学的发展,采用全光谱扫描方法,可一次分析十多种水质参数的多参数在线水质分析仪也得到越来越多的应用。 /p p   另外,随着流动注射分析技术的出现和大量应用,也为提高“结构比较复杂的自动化分析设备或者装置”这类在线水质分析仪器的分析速度,实现仪器快速自动完成水样采集、处理,试剂混合,乃至最终检测提供了支撑。流动注射分析(Flow Injection Analysis,缩写FIA),是一种“非平衡态”化学分析技术,1974年由丹麦化学家鲁齐卡(Ruzicka J)和汉森(Hansen E H)提出的一种创新的连续流动分析技术。这种技术是把一定体积的试样溶液注入到一个连续流动的、无空气间隔的试剂溶液(或水)载流中,被注入的试样溶液在反应管中形成一个反应单元,并与载流中的试剂混合、反应后,再进入到流通检测器进行测定分析及记录。整个分析过程中试样溶液都在严格控制的条件下在试剂载流中分散,因此,只要待测水样的注射方法,在管道中存留时间、温度和分散过程等条件相同,不要求反应达到平衡状态就可以按照比较的方法,通过标准溶液所绘制的工作曲线测出试样溶液中被测物质的浓度。 /p p   流动注射分析技术的应用,极大的提高了水样分析速度。特别是随着由具有良好耐腐蚀性能的聚乙烯、聚四氟乙烯等材料制成的微型管道系统的出现,仪器对样品以及分析试剂的耐受性大大提高,扩展了仪器对分析方法的适应性,增加了可实现自动分析的水质参数,采用流动注射技术的仪器小型化也成为现实。由于流动注射分析技术具有可以把吸光分析法、荧光分析法、比浊法和离子选择电极分析法等诸多分析方法的流程实现在管道中完成、需要的试剂量小、易于自动连续分析的优点,在水质在线分析仪器领域得到了非常普遍的应用,几乎被所有非传感器形式的在线水质分析仪器所采用。 /p p   最近以来,为满足对水中多种微量成分的实时监测,色谱原理的在线水质分析仪器开始出现,在线离子色谱监测系统监测水中高氯酸盐和氯酸盐、在线气相色谱仪监测水中VOCs(挥发性有机物)的都取得了成功的应用。 /p p   其他原理的在线水质分析仪器中,生物技术原理的产品占据了很大的份额,其中,发光细菌法生物毒性监测仪、微生物燃料电池监测生化需氧量和毒性,核酸酶重金属特异性反应监测重金属,酶底物法监测大肠杆菌、ALP(碱性磷酸酶)法监测细菌总数等原理和方法的在线水质分析仪器最近几年都开始得到市场的认可。 /p p    strong 2.3 国内外水质在线检测的技术差距 /strong /p p   在中国,由于水质在线分析仪器的主要市场,包括工业水处理过程监测与控制、市政自来水与污水处理、环境自动监测等同欧美和日本等主要发达国家相比,起步都较晚,同时也因为支撑水质在线分析仪器研发制造的电子技术、自动控制、软件等基础技术和精密制造产业在中国也主要是改革开放以后的短短几十年里才开始发展起来的,两方面的原因造成了中国水质在线分析仪器以及检测技术发展的差距。 /p p   和其他分析仪器产品一样,可靠性是国内外在线水质分析仪器最大的差距,专门人才的缺乏造成的设计理念和流程的落后、关键元器件的稳定性和供应不足以及在线水质分析仪器行业的制造水平、质量管理水平的差异都是造成可靠性差距的原因。 /p p   水质在线检测技术同国内外差距的另外一点是分析原理创新,同发达国家同行不断应用的新分析原理、新材料、新算法等新技术相比,目前中国水质在线检测仪器主要原理还是以传统的电化学、比色法为主,仪器对水质变化的适应性还不能完全满足目前水处理工业过程控制的要求。 /p p   在绿色分析的认知和应用上,国内外水质在线分析技术也存在一定的差距,绿色分析要求是在分析过程减少多环境的影响,避免(或大幅度减少)使用化学试剂,减少气体、液体和固体废物的产生,避免使用剧毒(包括生态毒性)的试剂 减少样品分析的所需的人力和能耗。目前国内在线水质分析仪器,特别是结构比较复杂的监测型在线水质分析仪器,在试剂使用量、废液产生量以及有毒试剂的使用和能耗方面,同国外先进仪器还有一定的差距。 /p p   最近十多年以来,在“自动监测为主,手动监测为辅的监测模式”的环境监测技术路线的大力推动下,中国监测型水质在线分析仪器技术有了长足的进步和发展。从2002年至今,几乎每年都有上万台/套的在线水质分析仪器及系统实现了安装调试和实际运行。仪器大量的研发制造和实际应用,为行业技术进步提供和积累了宝贵的经验。与此同时,中国发布了数十项在线水质分析仪器及系统的国家标准、行业标准,这些标准的发布和实施,对在线水质分析仪器在中国市场的应用和发展起到了极大的推动作用,有力的支持了中国监测型在线水质分析仪器研发制造技术的发展,多种适应不同水质条件水样的应用技术也得以开发。中国监测型在线水质分析仪器已经有了巨大的进步。总体来看,水污染源排放和水环境自动监测的常规在线水质分析仪器及其应用技术达到了国际领先的水平。 /p p    a href=" https://www.instrument.com.cn/news/20190701/488018.shtml" target=" _blank" strong 在线水质分析仪器—技术、应用与市场(二) /strong /a /p p style=" text-align: right " strong (供稿:重庆昕晟环保科技有限公司& nbsp 总经理程立) /strong /p
  • 第九届中国分析仪器学术大会(ACAIC 2024):聚焦下一代分析仪器
    第九届中国分析仪器学术大会(ACAIC 2024)第二轮通知科学仪器的发展是一场马拉松。随着我国在科学仪器设备自主研发方面的持续发力,我国分析仪器正在从“人有我有”向“人优我优”乃至“人无我有”的方向发展。从未来发展趋势看,随着科学研究、技术开发向物质极端尺度推进,分析仪器发挥的作用将更为关键。面对即将到来的下一个“五年计划”,如何以世界一流水平为目标,精准布局下一代分析仪器开发,打好高端分析仪器的国产化攻坚战,显著提升分析仪器国产化替代水平和应用规模,已成为备受各界关注的重要议题。为研究和探讨未来几年分析仪器发展方向及布局建议,集中宣传最新分析仪器及其关键部件高水平研发成果,进一步提升用户对国产仪器和国产关键部件的信心,中国仪器仪表学会分析仪器分会将于2024年11月14-16日在广东省深圳市组织召开第九届中国分析仪器学术大会(ACAIC 2024),热忱欢迎关心我国分析仪器创新进展的科技工作者、科技型企业、科技管理人员、科技投资人等参会,也热烈欢迎分析仪器产业链上下游相关企业或单位参展宣传。一、会议时间2024年11月14-16日二、会议地点深圳登喜路国际大酒店(广东省深圳市宝安区宝田一路12号)三、会议主题“下一代分析仪器”四、会议日程2024年11月14日, 参会代表注册报到、参展企业布展2024年11月15日,大会开幕式及大会报告2024年11月16日,大会专题论坛2024年11月15-16日,仪器及部件展览;壁报展(含论文/成果/专利等)五、会议规模预计约500-700人,包括科技及工业部门管理人员、高校或科研院所仪器/零部件/关键技术开发人员、仪器及零部件企业代表、资深仪器用户、科技投资人、产业园区负责人、学会/协会专家、专业媒体等。六、注册缴费1、收费标准:会员1800元/人(含中国仪器仪表学会会员库个人会员/团体会员参会代表);非会员2800元/人;学生1000元/人。食宿及交通费用自理。2、提前扫码,注册成为学会会员(注册时,请选择分析仪器分会)。3、缴费方式(1)会议注册费缴纳,可提前线上汇款或现场缴费。(2)汇款账号如下:户 名: 中国仪器仪表学会账 号: 0200 0043 0901 4464 348开户行: 中国工商银行北京北新桥支行汇款时务必备注:ACAIC2024+汇款单位名称+参会人姓名。若多人一起汇款,请注明全部姓名及人数,如ACAIC2024+XXXX单位+张XX、李XX、王XX(3人)。(3) 开具发票:发票内容统一为“会议费”,发票为“增值税普通发票”。七、住宿预订ACAIC 2024大会住宿酒店:深圳登喜路国际大酒店。协议酒店预留房间数量有限,请尽早与酒店直接联系预定。联系人及手机:刘娟经理 18128818180(微信同号)预定房间时说明:第九届中国分析仪器学术大会,即可享受会议优惠价:500元/间/晚(含早),大床房/双人房同价。八、联系方式1、参会报名注册及赞助:杨老师 18610289871(微信同号);ygx@fxxh.org.cn2、报告组织及媒体合作:刘老师13401022872(微信同号);lyl@fxxh.org.cn3、会员注册及“会员之家”:李老师18611920516(微信同号);lyc@fxxh.org.cn4、会议宣传:秦老师13699208639(微信同号);qlj@fxxh.org.cn附件1:组织架构附件2:日程安排附件3:论文及壁报征集须知中国仪器仪表学会分析仪器分会2024年8月26日点击下载附件:附件1:组织架构.docx附件2:日程安排.docx附件3:论文及壁报征集须知.docx附件1:组织架构主办单位承办单位大会主席方向理事长 郑海荣院士大会副主席关亚风、刘长宽、曹以刚、丁传凡、付世江、郜 武、胡家祥、鞠熀先、刘成雁、陆 峰、马兰凤、王 静、张新荣、周骏贵、边宝丽、陈彦长、段忆翔、韩 立、韩双来、韩 莹、何世伟、黄云彪、李 红、李 钧、刘虎威、刘召贵、牛 利、石平静、王文青、肖立志、赵 燕、张振方、周 振组委会主任吴爱华组委会副主任罗 茜、程 贺、丁 炯、龚湘君、何世伟、李 磊、李晓天、李 雪、林庆宇、刘轻舟、彭广敦、汪 正、张丽娜、贾 琼组委会委员刘玉兰、李玉琛、秦丽娟、杨冠星、梁侃慧、吴亚慧、朱芷欣、郑传涛、吕金光、高 勋、宋 薇、王嘉宁、黄臻臻、毛 竹、朴明旭、张尹馨、刘 全、刘丽娴、宦惠庭(正在增补中)合作媒体仪器信息网、分析测试百科、化工仪器网、仪器学习网合作杂志《分析测试技术与仪器》附件2:日程安排2024年11月15日全天ACAIC 2024大会开幕式及大会报告时间报告人报告主题08:30-09:30大会开幕式09:30-17:30哈尔滨工业大学谭久彬院士仪器产业体系与国家测量体系中国21世纪议程管理中心 裴志永处长“基础科研条件与重大科学仪器设备研发”重点专项“十四五”实施进展及展望中国仪器仪表学会分析仪器分会 方向理事长分析仪器技术发展趋势及发展建议中国科学技术信息研究所 董诚研究员从专利、文献及情报视角看全球质谱仪技术布局及建议更多精彩大会报告正在积极邀请中,敬请期待!报告主题包括:&bull 解读分析仪器国家政策和行业发展&bull 宣传分析仪器及其关键部件新成果、新产品&bull 宣传分析仪器应用创新&bull 宣传分析仪器及其关键部件创制人才&bull 宣传促进分析仪器创新的新做法2024年11月16日9:00-12:00分析仪器重大研发成果进展交流及展望论坛组织机构:中国21世纪议程管理中心中国仪器仪表学会分析仪器分会论坛主席:中国21世纪议程管理中心 裴志永处长论坛召集人:中国仪器仪表学会分析仪器分会 吴爱华秘书长时间报告人报告主题09:00-12:00西安交通大学 李志明研究员高分辨辉光放电质谱仪器研制与应用进展宁波永新光学股份有限公司董事长兼总经理兼技术总监 毛磊超高分辨活细胞成像显微镜研究及应用中国科学院精密测量研究院刘朝阳研究员核磁共振仪器系统的研制与工程化开发中国科学院苏州生物医学工程技术研究所 马玉婷研究员高性能流式细胞分选仪研制进展及应用中国地质科学院地质研究所龙涛研究员高分辨率二次离子质谱仪研制进展中国科学院苏州生物医学工程技术研究所 何益研究员高精度哈特曼-夏克波前传感器研制与推广西北工业大学深圳研究院查钢强教授半导体核辐射探测材料与器件中国工程物理研究院机械制造工艺研究所 李建高级工程师抗振动分子泵关键技术研发及应用北京航空航天大学自动化科学与电气工程学院 石岩教授气动关键基础件与技术在高端仪器设备中的应用2024年11月16日上午9:00-12:00生命科学创新与下一代分析仪器论坛组织机构:中国科学院深圳先进技术研究院论坛主席:中国科学院深圳先进技术研究院 郑海荣院士论坛召集人:中国科学院深圳先进技术研究院 罗茜研究员论坛背景:生命科学的重大创新常以科学仪器和技术方法的突破为先导,这些创新以分子可视化、生物成像,变革性材料、AI智能数据应用和解析为核心,致力于发展在分子、细胞、组织和器官水平,对基因、蛋白质、代谢物、肿瘤异质性、细胞微环境和神经物理场检测、成像与分析的科学仪器。本论坛由中国科学院深圳先进技术研究院组织,将聚焦生命科学研究领域的前沿问题,基于声、光、电、磁的新原理与新方法,深入探讨科学仪器的技术创新与应用革新,特别是下一代生命科学仪器的研发蓝图,拟邀报告主题包括不限于核酸分析、外泌体检测、MRI成像、超声技术、生物传感、显微成像、质谱分析、纳米传感、微纳流控,尤其关注单细胞、单颗粒和单分子分析,活体与原位分析,免疫检测,智能感知和空间多组学的新方法等新技术、部件和仪器。论坛日程正在积极落实中,敬请期待!2024年11月16日上午9:00-12:00探索未来:下一代质谱技术创新与突破论坛组织机构:广东省麦思科学仪器创新研究院宁波大学材料科学与化学工程学院暨南大学环境与气候学院论坛主席:宁波大学材料科学与化学工程学院 丁传凡教授论坛召集人:广东省麦思科学仪器创新研究院 李磊副研究员暨南大学环境与气候学院 李雪副研究员时间报告人报告主题09:00-12:00中国科学院地质与地球物理研究所 李献华院士质谱与空间科学广东省麦思科学仪器创新研究院 李磊副研究员超高分辨质量分析器的现状与发展暨南大学环境与气候学院李雪副研究员待定上海交通大学机械与动力工程学院 齐飞教授质谱技术与燃烧过程研究复旦大学现代物理研究所屠秉晟研究员基于超低温强磁场的超高质量精度离子阱技术中国科学院化学研究所何圣贵研究员化学反应质谱复旦大学人类表型组研究院丁琛教授蛋白质组/蛋白绝对定量质谱技术2024年11月16日09:00-17:30光谱仪及核心元器件技术创新论坛组织机构:中国科学院长春光学精密机械与物理研究所四川大学分析仪器研究中心吉林省分析测试技术学会论坛主席:中国科学院长春光学精密机械与物理研究所 王立军院士上海理工大学光电信息与计算机工程学院 庄松林院士中国科学院长春光学精密机械与物理研究所 梁静秋研究员论坛召集人:中国科学院长春光学精密机械与物理研究所 李晓天研究员四川大学机械工程学院 林庆宇副教授时间报告人报告主题09:00-17:30上海理工大学庄松林院士致辞吉林大学 赵冰教授半导体SERS基底的研制及应用中国科学院上海技术物理研究所 何志平教授红外显微光谱分析仪器研发及应用探讨西安交通大学 张淳民教授新型成像光谱偏振技术上海理工大学 张大伟教授光谱仪器分光元件及应用的创新研究 香港理工大学 靳伟教授待定中国科学院烟台海岸带研究所 陈令新研究员基于纸芯片的海洋生态环境快速分析监测技术吉林大学 郑传涛教授待定香港中文大学 任伟教授高灵敏红外激光气体分析仪上海交通大学 陈昌教授微型化拉曼光谱仪的机遇与挑战中国科学院长春精密机械与物理研究所 吉日嘎兰图研究员高性能光栅制造技术及产业化中国科学院西安光学精密机械研究所 冯玉涛研究员高灵敏度拉曼光谱仪及其定量技术研究中国科学院长春精密机械与物理研究所 李博研究员小型光谱仪光学系统设计河北大学质量技术监督学院 李红莲教授基于微流控-LIBS水体在线检测系统及应用研究中国科学院长春精密机械与物理研究所 吕金光研究员基于静态干涉系统的傅里叶变换光谱成像技术研究天津大学 张尹馨副教授结构光照明超分辨显微高光谱成像技术研究西安电子科技大学 刘丽娴副教授谐振型光声光谱气体传感器苏州大学 刘全副研究员高性能闪耀光栅及棱栅设计及研究进展西北大学 张天龙副教授激光诱导击穿光谱结合机器学习的金属材料智能分析及应用江苏海洋大学 黄保坤高级工程师拉曼积分球光谱仪设计及其在ppm量级气液固原位检测中的应用 中国工程物理研究院材料研究所 李海波副研究员面向工况和植入式检测场景的拉曼光谱仪技术浙江工业大学 潘再法副教授纳米荧光探针及单分子免疫检测中国科学院长春精密机械与物理研究所 陶琛助理研究员空间用紫外单光子成像探测器及其在光谱仪研制中的应用西安电子科技大学 宦惠庭副教授 基于光热光谱的非接触式应力强度检测研究中国科学院长春精密机械与物理研究所 王嘉宁副研究员基于腔增强吸收光谱技术的气体传感器2024年11月16日09:00-12:00下一代热分析与量热仪器创新与应用论坛组织机构:中国计量大学计量测试与仪器学院论坛主席:清华大学化学系 尉志武教授论坛召集人:中国计量大学计量测试与仪器学院 丁炯副教授时间报告人报告主题09:00-12:00西北工业大学Pavel Neuzil 教授Advanced Microcalorimetric Analysis using Stationary Droplets and Flow-through Systems中国科学院大连化学物理研究所史全研究员液氦温区绝热量热仪器研制中国科学技术大学 丁延伟教授级高工新形势下我国热分析与量热仪器的发展机遇与挑战厦门海恩迈科技有限公司 于海涛研究员基于变温谐振集成微悬臂梁的热分析仪器技术中国计量大学计量测试与仪器学院 丁炯副教授锂离子电池热安全热管理中的热分析与量热技术中国工程物理研究院化工材料研究所 待定补偿测压多通道等温热分解测试系统北京科技大学能源与环境工程学院 邱琳教授谐波法热物性测量技术2024年11月16日14:00-17:00智能生物传感技术创新论坛组织机构:深圳大学医学部生物医学工程学院论坛主席:深圳大学 张学记院士论坛召集人:深圳大学 刘轻舟副高智能生物传感技术,作为传感技术的尖端形态,借助人工智能、大数据与5G技术的赋能,实现了从被动监测到主动感知的跨越式发展。其从可穿戴设备向可植入技术的演进,不仅展现了技术的柔性化、轻薄化、智能化趋势,更深刻揭示了生物传感与人工智能(AI)融合的强大潜力。本论坛将聚焦于生物传感与人工智能这一交叉领域的最新进展,邀请清华大学李景虹院士、南京大学鞠熀先教授、中山大学牛利教授、南方科学技术大学蒋兴宇教授、北京科技大学李正平教授、中国科学技术大学潘挺睿教授、浙江大学刘清军教授、深圳大学许太林教授等生物、医学、人工智能领域的权威专家参会作报告。报告主题将从临床需求的迫切性、科研探索的新方向及产业应用的广泛性3个维度,深入剖析智能生物传感器的技术革新与未来趋势,旨在搭建跨学科交流平台,促进生物传感、人工智能与纳米生物技术的深度融合。论坛日程正在积极落实中,敬请期待!2024年11月16日14:00-17:00下一代空间多组学检测技术论坛组织机构:中国科学院广州生物医药与健康院论坛主席:中国科学院广州生物医药与健康研究院副院长 孙飞研究员论坛召集人:中国科学院广州生物医药与健康研究院 彭广敦研究员空间多组学检测技术,是继单细胞测序技术之后的又一个生物技术研究热点,2022年国际顶级学术期刊 Nature 将其评为年度七大颠覆性技术。空间多组学技术通过整合多种组学数据于组织空间分布之中,不仅保留了细胞与组织的精细形态学特征,还实现了前所未有的高通量、高分辨率及多模态信息获取能力。然而,尽管取得显著进展,当前空间多组学技术仍面临诸多挑战,包括技术兼容性、捕获效率、原位综合分析能力的不足,以及高效数据融合分析算法的缺乏。在此背景下,本论坛将汇聚国内外顶尖学者,旨在深入探讨如何通过多学科交叉融合,推动预处理及检测设备的创新发展,同时探索新型数据融合分析策略,以加速空间多组学技术的临床转化进程,共同开启生命科学研究与医疗健康领域的新篇章。目前已邀请的报告专家包括上海交通大学医学院杨朝勇教授、北京大学黄岩谊教授、中国科技大学唐爱辉教授、中科院广州健康院孙飞研究员、深圳理工大学曹罡教授、广州实验室田鲁亦研究员等知名专家学者。论坛日程正在积极落实中,敬请期待!2024年11月16日14:00-17:00半导体材料/器件高质量发展与下一代分析仪器论坛组织机构:中国科学院上海硅酸盐研究所论坛主席:待定论坛召集人:中国科学院上海硅酸盐研究所研究员 汪正研究员时间报告人报告主题14:00-17:00中国科学院半导体研究所赵德刚主任氮化镓半导体激光器材料行业现状及趋势中国科学院上海硅酸盐研究所汪正研究员等离子体质谱应用于高纯半导体材料分析中国科学院上海有机化所王昊阳高级工程师有机半导体材料的体系化质谱分析方法上海集成电路材料研究院性能实验室 王轶滢总监集成电路材料国产化面临的性能检测需求北方工业大学高精尖创新研究院 闫江院长集成电路制造工艺与第三代半导体关键技术上海市计量测试技术研究院集成电路产业中心 李春华主任ICP-MS技术在湿电子化学品检测领域的应用中山大学电子与信息工程学院刘川教授薄膜晶体管测量中的问题与方法初探中国科学院上海硅酸盐研究所李青副研究员离子色谱在电子化学品行业的应用2024年11月16日14:00-17:00下一代材料结构与界面分析技术论坛组织机构:华南理工大学材料科学与工程学院散裂中子源科学中心(高能所东莞研究部)广州市仪器行业协会论坛主席:华南理工大学材料科学与工程学院 张广照教授论坛召集人:华南理工大学材料科学与工程学院 龚湘君副教授散裂中子源科学中心(高能所东莞研究部) 程贺研究员时间报告人中国科学院上海高等研究院李娜研究员同步辐射溶液散射装置在生物制药领域的应用案例Section 2:材料表面分析表征技术东华大学陈前进研究员基于扫描电化学成像的单颗粒分析
  • 新品 | 日立分析仪器推出新款DSC系列热分析仪,用于高级材料开发和质量控制
    英国牛津[2021年1月19日]:日立分析仪器公司(Hitachi High-Tech Analytical Science)是日立高新技术公司旗下的全资子公司,主要从事分析和测量仪器的制造与销售,现已推出全新DSC系列(一种用于高级材料开发和产品质量控制的差示扫描量热仪)。作为日立分析仪器高规格热分析系列的最*新产品,新款DSC可为实验室和制造商提供一个进行详尽和彻底DSC分析的新选择。RealView® 尖*端技术实现分析可视化RealView(选购件)样品装置可在DSC测量期间获取样品视觉信息,实时捕获与DSC直接相关的样品图像。这可帮助识别物理性质变化,而DSC输出中添加的视觉信息使结果解读变得更加容易,尤其是在进行失效分析、异物分析和调查异常结果时亦如此。RealView系统核心的高分辨率摄像机允许在-50ºC极端低温条件下观察样品。RealView系统包括颜色分析(RGB、CMYK和LAB)并可记录样品图片和视频,是使用新款DSC进行研究、教学、故障排除以及受影响区尺寸测量的理想之选。将储存相关结果(注明DSC输出时间和温度),以供日后分析与研究。检测最小热事件在复杂复合材料的开发和制造中,微量添加剂可对性能产生巨大影响,由此对热分析仪识别越来越细微的热事件的能力提出更高要求。新款DSC系列旨在提供当今高级材料热表征所需的最*高性能。新款DSC系列的两种型号均得益于独特的炉膛设计和新开发的传感器,可提供世界一*流的灵敏度和无与伦比的基线重复性。此类新技术可帮助检测和隔离最小热事件(即使是复杂材料中的微量热事件)。用于深度可靠分析的新开发的传感器新款DSC600采用新开发的热电堆型DSC传感器,可为更高级材料开发和失效分析提供最*高的灵敏度和分辨率。此外,新款DSC200型号也针对传感器进行重新设计,在提供高灵敏度和稳定性的同时具有低成本封装。两种型号均采用新型炉膛配置,可提供+/- 5 µW基线重复性。这可确保对痕量材料的可靠和精确检测,提供各种应用领域(包括研发和进出库成品的质量控制)所需的性能。内置安全装置的大容量样品分析除注重性能以外,新款DSC系列还具有许多其他功能,可支持高容量和深入的热分析。自动进样器选购件包括一个独特的四叉样品架,在同时分析多达50件样品时能具有出色的可靠性。此外,还增加创新的安全功能, 用户可以选配具有防夹功能的电动盖,其在加热炉未回落到安全温度前会保持锁定,以防烫伤用户。双重冷却系统可节省时间和成本新款DSC系列所含的双重冷却系统能简化-80ºC温度以下的分析,无需在需要液氮冷却时手动断开电气冷却系统,从而节省用户的时间。内置混合系统允许同时连接两个冷却系统。有三种冷却系统可供选择:空气冷却、电气冷却或液氮冷却。对于那些注重在室温和室温以上温度的条件下进行测量的用户而言,空气冷却系统是理想之选。大多数测量均使用电气冷却系统,这有助于降低成本,同时实现低于室温这一条件。只有在特定测量需要时,例如分析某些橡胶或弹性体的转变,才能选择液氮冷却系统。日立分析仪器产品经理Ashley-Kate McCann表示:“日立设计的新型新款DSC系列可满足研发实验室和质量控制部门在开发新材料方面的需求,并确保聚合物、化学品、陶瓷、金属、石化产品和食品在内的众多材料质量。除全新的传感器和炉膛设计以外,公司还改进了尖*端的RealView样品观察装置。此外,公司还纳入了能直接响应客户要求的新安全功能。这便是为什么我们可以说,在谈及热分析时,日立明显与众不同。”新款DSC600和新款DSC200正在热销中,有需求请联系日立分析仪器。
  • 现代露点分析仪发展简介
    肇始:1954年,随着马歇尔计划的顺利结束,二战期间饱受重创的欧洲的各个行当开始迎来复兴。像作为英国传统的羊毛生意也再度兴旺起来。但马上,羊毛商人们发现因为二战中壮年劳动力的损失造成了人力成本上涨,在挑选羊毛时不得不引入更先进的检测手段。在影响羊毛质量的各个环境参数中,湿度是一个比较关键的指标,直接关系到羊毛的细度、初始模量、断裂伸长率、弹性回复率和压缩回弹性能等等,所以羊毛商们开始寻找一个能够测量湿度的仪器。一个英国皇家空军退伍的前无线电工程师接下了羊毛商的这一任务,莱纳德肖恩(LEONARD SHAW)先生是个类似于发明电灯的爱迪生那样的,集理论和动手能力于一身的通才,与其他着迷于光学魔术和电磁感应的同行的不同,他的目光落到了最基本的电容上,简单的说,每种材料引起电容改变的介电常数不同,他所需要的就是找出一个最合适的材料,最终选定的是氧化铝,作为湿敏元件,氧化铝的反应非常迅速,当水蒸气浓度从10000微克/升降至10微克/升时,t63(量程的百分之63)?小于5秒钟。剩下就是并且解决设备体积的问题。电容类传感器的传统制作方法是是将铝等金属箔当成电极和塑料薄膜重叠后卷绕在一起,体积不会小,还沉。在花了几年功夫,肖恩先生依靠英国当时世界前茅的材料和理论指导,在氧化铝上面蒸镀上了一层很薄的金属以做为电极,省去了电极箔的厚度,缩小电容器单位容量的体积,不但实现了良好的测量性能还获得了小型化的传感器。 肖恩先生在反复试验后他弄出了一款能够稳定测量-60度以上湿度,重量轻,反应速度快的的分析仪,于是大名鼎鼎的肖氏分析仪在1960年开业了。羊毛商一用起来,发现肖氏的露点分析仪不单反应快,还皮实,马上大范围应用起来,为肖氏赢得了最初的用户和良好的口碑。同时随着苏格兰北海油田的开发,石化等其他行业也纷纷用起肖氏的露点仪,发现这款仪表的便携表尽管扔有些笨重(毛重7.5公交,中国女性长时间拎着够呛),受材料限制,肖氏氧化铝传感器的也有些缺陷,比如测-60°以下很吃力,但抛开这些缺点,肖恩先生发明的这款仪表无疑是划时代的作品,里面一些如干燥腔这样实用设计一直应用到了现在。 典型的肖氏分析仪,1960年到现在没怎么变过 干燥腔,可以提高便携露点分析仪的反应速度,合格便携露点的标配在肖氏崛起的同时,一直在英国剑桥大学的卡文迪许实验室工作的湿度的安德鲁密析尔(Andrew Michell)另辟蹊径,绕开了氧化铝电容法传感器的专利屏障,通过烧制等工艺,研究出了厚薄膜法的陶瓷电容法露点分析仪。 这家伙一下子能够测量到+20到-100度的露点了,而且由于是陶瓷材质,相对来说耐高温性能更好,缺点是比起氧化铝来反应速度是龟速… … 密析尔公司从这个技术起家,后来推出了各种工业露点产品,后来更是被跨国巨头PST收购,和掌握高湿度测量的罗卓尼克等公司成为队友,组成了分析仪表行业的一大阵营。除了这俩英国露点分析的两个代表企业,像希仕代(Systech)、阿尔法(ALPHA)等等一大波公司也都在以氧化铝传感器为主,也有做硅传感器的马纳里可(Manalytical)等以小众传感器为核心的公司。除了英国之外,美国是当时露点分析仪发展蕞快的国家,其中冷镜法露点分析仪是他们的强项。在1965年的时候,有一家EG&E(现在是世界五百强珀金埃尔默PERKINELMER)旗下的小公司,美国的爱迪泰克公司发明了冷镜式露点仪,比起靠间接转换得到数据量的电容法,直接测量得出读数的冷镜法无疑更受欢迎。原理很简单啦,大家见过镜子上的露珠吧,冷镜法就是测镜子上露珠的一种方法。一个镜面,配上使用冷凝器(发明的时候和老式冰箱的压缩机差不多)后,被冷却至被测气体的露点温度。当温度降低到样气露点时,镜面会形成冷凝。一个由光电探测器组成的电光回路检测冷凝的形成。镜面反射光强度减少量,作为仪表控制电路的冷却功率的反馈输入,这样镜面就被控制在平衡状态中。蒸发速度与冷凝速度以相同的速率发生。此时温度计测量的镜面温度就等于被测气体的露点温度。 除了爱迪泰克,美国仪表圈里几个巨头比如热电(Thermo Fisher Scientific赛默飞世尔)、阿美泰克、GE(通用电气)、cosaxentaur也都相继开发了冷镜、电容法的相关产品,并且依托美国的整体工业体系实现了对其他国家的碾压,但是大公司有大公司的问题,下面讲几个例子。以cosaxentaur举例,这家以热值仪为主打产品(客户遍及美国各大天然气和石油公司),在1996年的时候,一批出身NASA、格鲁曼等知名科研单位的工程师(很多都是双硕士学位的人才)带动下,开发了自己的深特(xentaur)牌子的氧化铝露点传感器,比起肖氏来涂层更薄,反应更快。 深特搭配了cosaxentau强大的营销体系,和GE所属的巴纳(panametrics)在20世纪末成为美国市场蕞大的两家露点分析仪表公司。但是正如老对手panametrics被GE收购后就沦为三线品牌,后来更转入GE合并后的贝克休斯(Baker Hughes)之下一样,丧失了自主能力。在21世纪初,风光一时的 cosaxentau也被PSI集团收购,成为这个分析行业巨头底下的子公司,而深特作为一个小众品牌在整个集团体系内相当于囊尾的角色,多一个不多少一个不少,自然就造成包括全球售后资源的分配等等问题,进而导致了公司内部人才的流失。这些从深特出来人才,属于冷战末期美国培育出来的科技精英的一份子(打了这么多年怪怎么说也是一身金装了),手底下自然是有两把刷子的,他们成立的菲美特(phymetrix)公司反而摆脱了之前的限制,在原有传感器基础上推陈出新,造出了目前工业领域实用化阶段能够做到的蕞高精度的氧化铝传感器。他们的秘诀就是四个字,更薄,更密。 传感器优化后,分析仪本身的重量也就下来了,菲美特便携表的重量只有肖氏的三分之一左右(2.85KG),比较适合逐渐老龄化且有大量女性职工的中国工业。 所以说大公司有大公司的好,小公司有小公司的优势,特别是科技主导型企业,小公司往往更有冲劲,像专精冷镜露点的瑞士MBW,还有芬兰的维萨拉都可以说是分析仪器厂家里面的小巨人。冷镜讲过了,就不多讲MBW了,给大家说说芬兰,大家知道芬兰靠近北极芬兰人对温度这些攸关小命的指标可是异常关注,随着二战的结束,维萨拉从无线电探空仪做起,很快就点满了大气温度、湿度测量的科技点,发明创造了很多独门武器,在高湿领域吊打无数巨头,像在湿度分析方面,他们在1973就开发出了世界上第一个高分子聚脂薄膜Humicap。采用高分子薄膜被放置于两个导电电极之中的结构。传感器表面被多孔隙的上电极覆盖以防止被污染,且能暴露在冷凝状态中。下电极典型材料为玻璃和陶瓷。 这种传感器好处是测量-60度以上的露点温度快而且准,也比较皮实,在各行各业都有应用。缺点是-60度以下没法用。至于石英晶体震荡,光腔衰荡,五氧化二磷,光纤等等测量原理相对来说用量和适用性限制比较大,就不专门介绍了,毕竟本篇是简史,大家有个这几样蕞大的毛病是“贵”这个概念就行。 博泰克HYGROPHIL HCDT水烃露点分析仪 总之,到了20世纪头十年,国外工业的露点分析仪最能打大概是以下这几家:冷镜式露点仪:爱迪泰克、MBW、密析尔氧化铝电容法:肖氏、深特、菲美特、巴纳陶瓷电容法:密析尔硅电容法:马纳里可光腔衰荡:泰格(TIGER)、米寇(MECCO)、光能高分子薄膜:维萨拉光纤:博泰克五氧化二磷:DUMAT、CMC激光法:DF 国内露点分析仪发展及问题 上世纪五十年代的“156项重点工矿业基本建设项目”是现代中国工业体的骨架,为了配套这些大项目,国内建立了北分、南分、川仪、成都厂等国企分析仪器厂,并完成了一些简单的露点分析仪器的研制。而随着上世纪70年代,合成氨和大量石化、天然气项目的建成,湿度、露点分析仪器的重要性就逼着国内仪表人寻求国外的资源。 早在1974年。由第一机械工业部技术情报所出版,北京分析仪器研究所等单位牵头的《分析仪表》一文中,对欧美日苏等国的分析行业及顶尖分析仪器公司做了分析,并在文章末尾,用一页篇幅提到了湿度计及水份计。 当时国企能够自产热磁氧、热导分析仪等仪表(现在还靠这些产品吃饭… … ),但一些高精尖的仪表如不分光红外分析仪和激光分析仪等,自产缺乏时间、金钱和人才,只能走进口全套技术的路线(日本在1970年代也是这么做的,日本吸收后二次开发很强,像横河和岛津就是青出于蓝了。),并随之建立了北分-麦哈克等合资企业。 相比其他分析仪器,湿度和露点上的分析仪,国内和其他国家在1970/1980年代差别还不是很大。 1979年出版的《痕量水分仪》上提到的国内电解法水分测定仪:我国生产的电解法水分测定仪型号生产厂家USI-21USI-1WS-1WS-2HS74-1北京分析仪器厂成都分析仪器厂兰州化学工业自动化研究所旅顺元件厂沈阳热工仪表厂在1982年,由兵器工业部和中国计量科学研究院研发的数字型冷镜露点仪SH-81就定型了。指标还挺不错:测量范围:+20°C~-80°C露点温度; 精度:≤±1°C;准确度:±1°C(-30°C~-70°C露点温度);使用环境:0°C~+40°C、相对湿度≤30%;样气流量:400毫升/分(蕞大值不宜超过500毫升/分) 电源:交流220V±20V、50HZ;功耗小孩:WS-1型0WS-1型1露点仪高纯氢-分子筛-液氮冷冻-106.5-104.7——-103.0高纯瓶,氮-62.6-60.7——-63.7高纯瓶,氢-50.8-49.5——-49.0普通瓶,氮-28.2-29.8-29.3液氮冷冻纯氢与普氢混合气-74.4-72.3——-71.5高纯瓶,氢-50.8-49.3——高纯瓶,氩(68大气压)————-64.0——高纯瓶,氩(50大气压)————-68.0-69.2——普通瓶,氢——-36.7——-37.0但正如后来国产分析仪表都面临的问题一样,国内的露点分析仪器厂家面对的不仅仅是国外分析仪表厂家的竞争,而是一个工业体系的全方位碾压。 在低端市场,如-60°C以上领域,中国白城兵器实验中心人员写的《湿度测量体制历史和现状分析及建议》一文中就写到:“实验证明,氯化锂湿度传感器完全可以在低温条件下使用,以替代毛发湿度表。这就形成了新的湿度测量体制,0℃以上用电测通风干湿表,0℃以下用氯化锂湿度传感器。在总参气象局的支持下,长春仪器研究所利用这些电测温湿传感器研制成功了温湿遥测仪和机场自动观测系统并进行了设计定型试验,这2种自动观测的研究成功,使军队首先实现了地面气象观测的自动化和遥测化。后来的发展出人意料,芬兰的湿敏电容传感器逐步进入了中国气象局和军队的自动气象观测系统,原来形成的湿度测量体制被打破。” 国产直接出局,这就是维萨拉进入中国市场后迅速占领市场,80年代仪表市场进口品牌攻城略地的一个缩影。 像在天然气领域,华北石油管理局勘测设计院1986年时发表的文章,就指出:“… … 为确保上述要求,我们除在输气首站的轻油回收装置中严格控制脱水温度外,还在首都与门站设置了天然气水露点分析仪,在线连续检测外输天然气的露点。当天然气露点高于规定值时,仪器可自动报警,提醒操作人员及时调节有关参数。电容式水露点分析仪从英国肖氏公司引进… … ”。 可见1986年北京天然气管道就用肖氏了,从那时起国内能源行业进口仪表就占比巨大、上世纪80年代到90年代,大量的外资气体厂如AP、林德,石化如壳牌、美孚等进入国内,它们的工厂往往都是在国外选型,带来的仪表全部是进口品牌,根本没有国产仪表的空间。 利润丰厚的气体和石化领域做不了,国产做做低端也遇到了问题,问题,蕞突出的有四个:没人才,配不起鞍,良品率过低,简配过度。 很多厂子认为露点传感器没啥难度,道理书上都有,但是后来发现不行。首先国内仪表研发人员从根上就少,其次一个仪表研发人员起码要在行业里待十年左右才能独当一面,放到分析行业要求就更多了,流体、电路、机加、编程、工艺流程都要懂,要求极高。 剩下的少部分继续玩仪表的,也在21世纪中国的环保监测行业崛起后,转向红外分析和激光分析等赚钱的领域,只有屈指可数的院校、军工相关研究所和单位还有露点传感器的研发人才。 而添置设备的巨额资金,也是仪表厂商无法承受的,很少有厂商会购买冷镜露点仪、湿度发生器等设备。核心传感器需要的大量试错实验也打消了很多厂商的自研勇气。 同时自产传感器的良品率比较低,相比之下,国外品牌通过巨大的销售量(维萨拉的传感器是以万计的)抹平了制造中成本,而国内企业最大的几家湿度传感器制造商能有上千个销量已经不容易了。同时国外企业的积累经验多,品控比起国内好很多,起码很少发生货到现场一上电不能用的,售后成本比国内好很多。国内很多湿度传感器生产测试过了,现场一用就出问题,很容易导致口碑崩盘。 最后一个简配问题,实际上是国产仪表技术上落后,导致只有靠降低商业费用和产品质量、人工待遇和进口仪表竞争的通病,只不过露点分析仪器行业特别突出,加上很多用户不想掏钱,造成一直用低配仪表,没有各种补偿,更显得国内仪表不如进口的好了。 这四个问题直接导致了国产露点分析仪无法和进口同类产品竞争,尤其是像维萨拉、密析尔、GE等都在国内设立了露点传感器校准中心,缩短售后流程后就更是严重了。 当然,其实国产的露点分析仪事业也没到满盘皆输的地步。 首先,虽然自我造血能力差,但国内有着巨大市场(像国内气体行业大概是世界气体行业的百分之十几,要配很多很多露点分析仪),自然有懂行的介入,像光腔衰荡分析仪的领军人物,国家千人计划的特聘专家阎文斌博士就回国成立了内蒙古光能科技仪器有限公司,一下子让国内像光腔衰荡分析仪从无到有,直接进入世界*流水平。 第二,国内分析仪表毕竟有不弱的底子,除了欧美日外,基本处于第二梯度,靠必须用国产仪表的军工和航天等产业支持,这些年还是制造出了性能虽然和国外还是有差距,但相当一批可靠的仪表,(主要是冷镜分析仪,比如海军航空工程学院的YH98和约克仪器的DPT-8000)。随着市场的扩大和自身技术的进步,相信原本只见于军工科研单位的这些仪表会进入一般工业市场。 第三,借着国内大力发展环保监测行业的东风,聚光、雪迪龙、先河等公司崛起带动了整个分析仪器行业的人才流动、技术革新和资金积累(。直观体现在湿度和露点分析仪上,就是终于有企业肯砸真金白银弄个CNAS实验室(南京埃森、约克仪器成都分公司)了,起码能够保证自己校准自己的传感器,不像其他国内同行要是传感器坏了一般只能靠经验判断,弄不好就只能弄不明白了。 南京埃森实验室图,转载于南京埃森官网
  • 【案例分享】湖南省某县自来水厂水质在线分析仪应用| Flumsys 10SC 流动电流分析仪
    案例分享湖南省某自来水厂应用展示本次安装调试位于湖南省,地处洞庭湖腹地,区域周边覆盖约20万人饮水需求,城乡供水一体化不断完善,项目产品选择为Flumsys 10SC在线流动电流分析仪,在自来水处理中选择合适的絮凝剂,掌握其投加量是确保出水质量的关键一环。传统手动投加方法依赖人工经验判断,存在投加量不均、浪费成本等问题,越来越多供水单位及企业选择采用自动化投加系统进行控制。 Flumsys 10SC作为一种水处理厂操作人员的有效工具,以准确性及可靠性自动化投加控制设备,优化和控制絮凝剂和聚合物用量,受到用户长期信赖选择,不仅用于自来水厂、也用于污水处理等场景。通过实时监测流经管道中液体的游动电流值来确定投加絮凝剂的量,从而达到更加精准的投加控制效果!助力企业为居民提供优质安全的放心水!安装现场流动电流分析仪安装调试现场清流汇民生,水是生命之源,人们的生产、生活用水,都离不开合格的水质。当下智慧水厂在保证水水质综合格稳定的情况,更重视与时俱进完善供水管网建设、迭代升级水质监测设备、持续改进工艺流程,供水企业的生命线更是民生用水的生命源!自来水行业监参数包括浊度、pH,余氯为自来水的基本监测指标,及其他参数包括溶解氧、大肠杆菌、重金属含量等反映水质基本情况和卫生状况。自来水厂中在线水质监测中监测参数、频率、点位、设备、数据、分析都是保障饮用水安全的重要环节。杰普仪器水质在线分析仪器设身处地为从企业用户出发,产品以行业深入不断创新,我们可为用户提供饮用水在线测量解决方案,及供管网监测或二次供水监测解决方案(pH/余氯/浊度)等,在保证水质前提下为用户节省资金和提高效率,JENSPRIMA公司可根据客户需求扩展其他水质测量参数,用于自来水处理流程!案例选型产品共享项目信息:湖南省某县自来水厂应用展示安装地点:益阳市仪器设备:Flumsys 10SC在线流动电流分析仪测量参数:流动电流(Streaming Current)测量范围:-1000~1000SC精准性:±0.1%重复性:±0.1%响应时间:1s操作温度:0-50℃供电电源:220VAC, 50/60Hz显示:7寸触摸屏显示输出:2路4-20mA(测量值及PID),最大负载500Ω通讯:RS485 Modbus RTU报警:2路高/低继电器,可设定报警值自动清洗:清洗间隔:0-9999min, 清洗时间:0-999s数据存储:实时数据记录,支持U盘导出(Excel)取样要求:絮凝剂投加点至传感器时间约3 ~ 5min流速要求:1~4L/min防护等级:控制器:IP65,传感器:IP54尺寸:控制器:300×350×200mm 传感器:250×350×150mm重量:控制器:10Kg、传感器:10Kg
  • 聚焦分析仪器创新进展、挑战及对策,第八届中国分析仪器学术大会召开
    仪器信息网讯 2023年11月29日,第八届中国分析仪器学术大会(ACAIC 2023)在浙江杭州召开。本次大会由中国仪器仪表学会分析仪器分会主办,浙江大学生物医学工程与仪器科学学院和中国计量大学计量测试工程学院承办。大会主题是“分析仪器创新进展、挑战及对策”,吸引了全国500余位科技管理人员、专家学者和和仪器企业相关人员齐聚杭州,积极为我国分析仪器的未来发展建言献策,凝聚共识。仪器信息网作为战略合作媒体对本次大会进行报道。 会议现场会议伊始,由中国仪器仪表学会分析仪器分会名誉副理事长刘长宽主持开幕式,中国仪器仪表学会副理事长/中国仪器仪表学会分析仪器分会理事长/中国计量科学研究院院长方向、中国仪器仪表学会副秘书长张莉、中国科学院院士/浙江大学校长杜江峰院士、中国计量大学副校长王新庆分别致辞。中国仪器仪表学会分析仪器分会名誉副理事长 刘长宽 主持开幕式中国仪器仪表学会分析仪器分会 理事长/中国计量科学研究院院长 方向 致辞中国仪器仪表学会副秘书长 张莉 致辞浙江大学校长 杜江峰院士 致辞中国计量大学副校长 王新庆 致辞开幕式后,本次大会进入到了大会报告环节。会议设置了15个大会报告,分享了多个领域的前沿研究进展,同时也对国产科学仪器高质量发展模式等发表了有建设性的观点和建议,为加快推进我国科学仪器设备的高质量发展献计献策。报告人:浙江大学校长 杜江峰院士报告题目:教育科技人才与科学仪器高质量发展科学仪器对科技发展具有重要战略意义。习总书记在中共中央政治局第三次集体学习时的重要讲话中强调,“要打好科技仪器设备、操作系统和基础软件国产化攻坚战,鼓励科研机构、高校同企业开展联合攻关,提升国产化替代水平和应用规模,争取早日实现用我国自主的研究平台、仪器设备来解决重大基础研究问题。”杜江峰院士从概念、重要性、发展等方面出发,阐述了科学仪器的发展现状和趋势。对于我国科学仪器的教育科技人才问题,杜江峰院士认为,在学科专业建设方面有待强化;在人才方面,培养集聚能力有待增强。杜江峰院士提出一体统筹推进科学仪器发展的建议,要完善顶层设计,加强政策供给;强化学科建设,培养高端人才;优化管理体系,推动科技创新;做好引育留用,激发人才活力;坚持市场导向,健全服务支撑。报告人:工信部装备工业一司通用机械处副处长 徐雪峰报告题目:仪器仪表产业政策报告报告人:深圳大学副校长 张学记教授报告题目:From WISE (Wearable intelligent Sensors and Electronic) to the BEST -Roadmap to Eternal Life---Fact or Fiction2021年,深圳市智能传感器产业集群的增加值规模仅40亿元,是市二十大产业集群中体量最小的集群。但传感器产业是未来万物互联的基础,是未来整个IOT产业增长的核心所在,更是让下游万亿级的终端产业有了新的活力,形成了产业发展的闭环。张学记谈到,要像重视集成电路产业一样重视智能传感器产业发展。基于此,张学记团队瞄准了核酸分析和诊疗体系、便携式分析检测方法、荧光金簇传感检测、智能微纳米马达、仿生智能界面传感、智能传感器等研究方向,并表示,掌握了传感就控制了世界;堂握了生物传感,就知道了生命的密码。报告人:中国科学院精密测量科学与技术创新研究院 陈世桢研究员(代周欣院长作报告)报告题目:核磁共振波谱与成像技术的自主创新之路临床MRl是无侵入、无辐射、高清晰获取生命信息的最重要疾病诊断工具之一。磁共振的检测范围跨越微观、介观、宏观,涵盖分子、细胞、组织、个体,其相关研究五次获诺贝尔奖。如今,磁共振已从物理、化学领域跨入生物医学领域。对此,陈世桢研究员在报告中介绍了从核磁共振波谱(NMR)到磁共振成像(MRI)的发展历史,精密测量院NMR仪器研制历史,以及现代磁共振成像设备(MRI)发展,并表示灵敏度是MRI设备永恒的追求。精密测量院研究团队围绕解决肺部医学影像中“看得见、看得快、看得全、看得准”的科学难题,“点亮”了肺部磁共振盲区,攻克了肺部结构和功能的无创、定量、可视化检测的瓶颈技术。实现了多种原子核(简称“多核”)磁共振信号增强原理与关键技术的突破,研制成功多核磁共振成像 (MRI) 装备,获该领域全球首个医疗器械注册证并率先进入临床。陈世桢表示,中国临床MRI设备产业起步较晚,但近几年正迅速崛起,MRI设备汇聚尖端精密技术,是高端医疗器械“皇冠上的明珠”,中国MRI市场容量大,国产替代空间广阔,需要立足国产设备,实现MRI设备的自主创新。报告人:浙江大学生物医学工程与仪器科学学院院长 张宏教授报告题目:放射性分子影像探针合成系统研发分子影像是重大疾病防治重要途径,正电子发射断层(PET)分子影像是新一代医学影像技术,可以从分子水平、无创、准确可视化病灶,实现精准诊断。当前影像医学面临如何突破传统解剖形态影像方式的局限,实现无创、在体的疾病代谢和分子可视化的重大挑战,解决途径在于采用核素示踪影像方法无创在体可视化细胞、分子水平的生化事件。PET分子影像是最先进医学影像,其探测器通过捕获γ光子,实现人体影像可视化,可以定量刻画生命代谢活动,实现重大疾病诊断。分子影像探针是影像诊断的关键,而PET分子影像探针是诊断核心环节。针对我国核医学PET分子影像探针制备系统依赖进口的现状及仪器自身局限,张宏团队创新提出“微流控放射性合成”理念,充分发挥微流控芯片高传质、传热等优势,突破微尺度下快速蒸发、主动混合等关键问题,通过原始创新与技术迭代,成功研制了两代具有自主知识产权的“PET分子影像探针微流控模块化集成合成系统”,实现了同一台仪器上快速合成不同种类的超微量分子影像探针,推动我国PET分子影像探针原创研发,支撑重大疾病精准诊治发展。报告人:中国科学院电工研究所 韩立研究员报告题目:科学仪器中的核心关键部件发展的重要性和问题十四五“基础科研条件与重大科学仪器设备开发”重点专项紧紧围绕国家基础科学研究和国家科技创新的重大战略需求,重点支持核心关键科学仪器和核心关键部件国产化研制,丰富和完善科学仪器与核心关键部件型谱体系,解决核心关键科学仪器“卡脖子”问题。重点专项重点聚焦科学仪器的“卡点”和“堵点”,构筑安全底线,按照高端通用科学仪器和核心关键部件两大整体任务进行布局,其中高端通用科学仪器任务主要包括分析仪器、光电测量仪器、物理性能测量仪器、电子测量仪器等高端通用科学仪器整机的集成研制。重点专项核心关键部件任务主要包括源部件、探测器与检测器、分离与控制部件、软件平台与数据库等科学仪器核心关键部件研制,主要疏通科学仪器的“堵点”,核心关键部件实现国产化替代。韩立在报告中介绍了科技部重大科学仪器专项中核心关键部件的定义和分类、存在问题、未来发展解决方案等内容,及其关于核心关键部件、真空电子学仪器等的思考。报告人:中国计量科学研究院院长 方向研究员报告题目:科学仪器自立自强发展思考前沿探索对科学仪器提出重大需求,突破极限科学仪器是前沿探索的关键,而计量变革奠定了突破测量极限的物理基础。而质谱在全球测量活动中拥有无法替代的测量基准地位。基于此,方向特别介绍了其团队的最新研究成果——四极杆-线形离子阱 (Q-LIT) 串联技术。该技术能很好的克服“空间电荷效应”对离子阱实现准确定量分析的负面作用,充分挖掘离子阱优势,有效提升了复杂基质中目标物的测量准确性。工程化的Q-LIT结合液相色谱,通过了医疗质谱仪检验测试相关标准,获得了注册许可,鉴于其兼具小型化、高灵敏和高准确特点,是临床诊断以及其它需要定量检测工作的一种新选择。报告人:国仪量子技术 (合肥) 股份有限公司董事长 贺羽报告题目:科学仪器的国产化之路的思考科学仪器,尤其是应用于半导体领域的科学仪器,是我国被“卡脖子”的代表性行业,制约了我国很多科学研究和先进科技产业的发展。振兴科学仪器产业是我国实现科技自立自强的关键。在科学仪器的国产化探索过程中有很多困难和痛点,贺羽在报告中结合国仪量子创业发展过程,分享了其对于国产仪器如何突破重围观点。贺羽强调,国产仪器企业突围之路在于:找对人就能做对事;质量好、响应快、价格优是客户最朴素的追求;要坚持以客户为中心的持续创新。报告人:广州国家实验室 曹小宝研究员(代徐涛院士讲报告)报告题目:高端科学仪器自主创新挑战及建议科学仪器是开展科学研究、取得前沿成果的必备工具,2021年全球实验室分析仪器市场规模约730亿美元,2026年全球实验室分析仪器市场规模可达1020亿美元。据研究统计,分析仪器应用最多的是生命科学领域,制药领域占据分析仪器市场需求的14%,医院/临床占比11%,生物技术占比10%,CRO 占比6%。伴随全球生命科学领域研究资金的持续投入、生物医药企业研发投入的不断增加,以及全球医疗健康领域投融资额的快速增长,将进一步推动全球科学仪器行业市场规模的扩容。针对于此,曹小宝介绍了国家重大科研仪器研制项目、拟定攻关重点任务布局等内容,探讨了制约我国高端科学仪器创新的主要因素、破局之策、产业链条、国内外差距等问题,提出了搭建高端科学仪器创新联合体的发展思路。报告人:聚光科技总经理、谱育科技董事长 韩双来报告题目:科学仪器的国产替代思考韩双来在报告首先介绍了中国科学仪器产业现状,并以聚光/谱育为代表分享了高端科学仪器国产替代经验和进程。据介绍,2006年聚光科技实验室研发团队组建布局科学仪器相关技术,2011年开始承接系列化国家任务;2015年谱育科技成立、专注成果产业化,2019年谱育科技入驻青山湖创新基地,2022年谱育+聚光集中力量发展科学仪器。对于实现高端科学仪器国产替代,韩双来建议要在前沿技术平台上持续投入,不断面向细分市场聚焦突破,支持重点大型仪器一站式科研。报告人:南开大学 张新星教授报告题目:我的质谱技术研究成长之路无论是环境中占地球表面70%的海洋表面和云彩表面,还是人体中肺部、眼睛和各种粘膜的表面,均为气液界面。因此气液界面化学的研究对理解气候和污染的生成以及生命体内的关键生化过程都极为重要。然而,气液界面仅有数十到数百纳米厚,因此在技术上如何仅采样此极薄的界面层而不受到体相的干扰成为了十分关键的科学和技术问题。针对上述问题,张新星实验室通过对质谱电离进样过程的物理原理上的创新,自主研发了一系列场致液滴电离-质谱技术,攻克了上述技术难题,并以此为基础解决了一系列气液界面化学测量学的具体科学问题。报告人:上海磐九岭科学仪器有限公司产品经理 高启凡 报告题目:洞见真实——全二维气相色谱GC1212全二维气相色谱是分析复杂样品的利器。2023 年磐诺推出了一体式的全二维气相色谱仪 GC1212,通过降低系统复杂度、简化操作、开发定制化解决方案、实现数据自动处理等,降低用户使用门槛。目前已有较多的石油化工、煤化工等领域的应用案例,有望解决基层实验室对相关复杂样品的分析问题。报告人:赛默飞世尔科技(中国)有限公司应用工程师 樊朝阳报告题目:突破组学极限:全新一代OrbitrapAstral质谱仪基于质谱的代谢组学和蛋白组学是质谱的主要应用方向之一,色谱质谱技术和生物信息学的不断突破为组学这一领域带来的蓬勃的发展机遇。赛默飞作为质谱行业的领军者一直致力于技术的创新,为组学领域的前沿发展提供助力。2023年全新发布的Orbitrap Astral质谱仪将组学的发展又推上一个新的台阶。本次报告围绕Orbitrap Astral在组学方面的更高通量,更高灵敏度,更高覆盖深度,准确且精确定量等方面进行展开介绍。报告人:中国仪器仪表学会科学仪器设备验证评价中心(生命科学站)主任/正高级工程师 张丽娜报告题目:助力科学仪器国产化替代水平提升之经验分享2021年6月,中国仪器仪表学会在中国农科院作物科学研究所挂牌成立“科学仪器设备验证评价中心(生命科学站)”。该中心紧紧围绕国产仪器的创新发展这一核心目标,团结有志于推动国产仪器发展的单位和个人,开展国产仪器应用示范、验证评价、宣传推广等工作,有效促进国产仪器质量提升和推广应用。张丽娜表示,验评中心以国产仪器可靠性、稳定性和应用场景验证评价为核心,努力探索国产仪器验证评价理论基础和实践方法,积极发挥“政产学研用”自主创新发展体系中应用推广的作用,搭建高校科研院所实验室和国产仪器企业的桥梁,促进国产仪器高质量创新发展。报告人:科技部科技评估中心副部长 武思宏报告题目:中国仪器仪表领域科技成果转化年度报告2023 (高等院校与科研院所篇)中国科技评估与成果管理研究会、科技部科技评估中心综合采用数据调查、案卷研究、专家咨询等方法,对3808家高等院校和科研院所的仪器仪表领域科技成果转化情况进行分析研究,组织编写仪器仪表领域科技成果转化年度报告。报告分为仪器仪表总体情况、传感器领域、雷达领域、谱系仪器领域共4篇,旨在为各部门、地方、高校院所、企业和科研人员等提供参考,进一步激发和释放仪器仪表领域科技成果转化的热情与活力,推动仪器仪表领域科技成果真正落地生根。会议同期还设置了分析仪器、关键部件等展览,近40家相关仪器设备企业展出了最新产品和解决方案。会议期间,与会的高校科研院所的实验室主任们参观了参展商展台,针对展示的新产品新技术展开了交流。本次大会还设置了11个分论坛,聚焦分析仪器、生命科学仪器、电镜、半导体,以及核心零部件、临床诊断等主题,11月30日会议第二天将展开精彩的专题报告与讨论。中国分析仪器学术大会(ACAIC)已成功举办七届,累计吸引数千人次专业人士积极参会与广泛关注,已成为推动我国分析仪器技术与产业发展的重要交流平台,将助力学科发展、探索最新前沿应用,激发创新思维,促进合作共赢,为分析仪器的行业发展注入新的动力。
  • 热机械分析仪原理简介
    p   热机械分析是在程序控温非振动负载下(形变模式有膨胀、压缩、针入、拉伸或弯曲等不同形式),测量试样形变与温度关系的技术,使用这种技术测量的仪器就是热机械分析仪(Thermomechanical analyzer-TMA)。 /p p   热机械分析仪的结构如图所示。试样探头上下垂直移动,探头上的负载由力发生器产生,探头由固定在其上面的悬臂梁和螺旋弹簧支撑,通过加马力马达对试样施加载荷,位移传感器测量探头的位置。探头直接放置于试样上,或者放置于试样上的石英圆片上 测量试样温度的热电偶置于试样下。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b6873b57-b49c-48ca-813d-250f596f2cd4.jpg" title=" 热机械分析仪结构示意图.jpg" width=" 400" height=" 339" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 339px " / /p p style=" text-align: center " strong 热机械分析仪结构示意图 /strong /p p style=" text-align: center " 1.气体出口旋塞 2.螺纹夹 3.炉体加热块 4.水冷炉体加套 5.试样支架 6.炉温传感器 7.试样温度传感器 8.反应气体毛细管 9.测量探头 10.垫圈 11.恒温测量池 12.力发生器 13.位移传感器(LVDT) 14.弯曲轴承 15.校正砝码 16.保护气进口 17.反应气进口 18.真空连接与吹扫气入口 19.冷却水 20.试样 /p p   TMA的核心部件是LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/633cd90b-c338-4e46-9cce-ad33b88907d8.jpg" title=" TMA常用测量模式示意图.jpg" width=" 400" height=" 134" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 134px " / /p p style=" text-align: center " strong TMA常用测量模式示意图 /strong /p p strong 压缩或膨胀 /strong /p p   两面平行的试样上覆盖一片石英玻璃圆片,以使压缩应力均匀分布。膨胀测试时,作用在圆柱体试样上力仅产生很小的压缩应力。 /p p strong 针入模式 /strong /p p   这种模式通常用来测定试样在负载下软化或形变开始的温度。通常用球点探头作针入测试,开始时球点探头仅与试样上的很小面积接触,加热时如果试样软化,则探头逐渐深入试样,接触面积增大,形成球星凹痕,导致测试过程中压缩应力下降。 /p p strong 三点弯曲 /strong /p p   这种模式非常适合在压缩模式中不会呈现可测量形变的硬材料如纤维增强塑料或金属。 /p p strong 拉伸模式 /strong /p p   适合薄膜或纤维。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 典型的TMA测量曲线 /span /strong /p p strong 热膨胀系数测量曲线 /strong /p p   热膨胀系数(coefficient of thermal expansion,CTE)也简称为膨胀系数。 /p p   大多数材料在加热时膨胀。线膨胀系数α定义如下: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/774dbd00-e900-436f-b22e-2a114baf6286.jpg" title=" TMA-1.jpg" / /p p 式中,dL为由温度变化dT引起的长度变化 L sub 0 /sub 为温度T sub 0 /sub (通常为室温25℃)时的原始长度 α单位为10 sup -6 /sup K sup -1 /sup 。 /p p strong 玻璃化转变的TMA测量曲线 /strong /p p   测定玻璃化转变温度是TMA最常进行的测试之一。在玻璃化转变处,由于热膨胀系数增大,导致膨胀测量曲线斜率明显增大。通过外推两段具有不同斜率热膨胀系数曲线所得到的焦点,即为玻璃化转变温度。 /p p strong 测量杨氏模量的DLTMA曲线 /strong /p p   如果采用振动负载,即负载呈周期性变化,则称为动态负载热机械分析(dynamic load thermomechanical analysis-DLTMA),该模式为TMA的扩展功能,可测量试样的杨氏模量。如果能确保在测试过程中施加在整个试样上的机械应力相同,就可由DLTMA曲线测定杨氏模量(弹性模量)。 /p p   从原理上来说,DLTMA曲线类似于DMA曲线,傅里叶分析可得到应力应变之间的关系,可将复合模量分成储能模量和损耗模量。然而由于若干原因,这些计算并不准确,特别是用弯曲模式。因此,若想测定储能模量和损耗模量,最好用动态热机械分析DMA。 /p
  • 你知道烟气分析仪的特点吗?该如何选购?
    烟气分析仪可测定烟道气中各燃烧参数的手持式烟道气体分析仪,具有时尚的外观和先进的检测技术,且操作简单。可测量空气和烟气温度、动压、静压、压差,监测 O 2 和 CO 、 NO ,可选配 CO 高浓度, SO 2 、 NO x 测量通道。此外还可以计算出 CO 2 ,燃烧效率,烟气损失和空气过剩系数。可监测周围空气中的 CO 浓度,相当于集成了一台个人 CO 检测报警仪,保护使用者的人身安全。 配有一个有自动过载保护的清洗泵,有防震功能的气体预处理器。内置红外传输器和数据储存器,可存储 40 个外整的测量值(也可选配高容量内存,能储存几千个完整测量值)。通过通讯接口可轻易的将测量值传输到计算机内。目前越来越多的实验室和研究单位,需要采购烟气分析仪。但是鉴于烟气分析仪的品牌较多,性能各异,大家往往无从选择,*后往往只看重价格,结果不能买到*合适自己使用的烟气分析仪。下面小编教你如何选购烟气分析仪!烟气分析仪是利用电化学传感器连续分析测量CO2、CO、NOx、SO2等烟气含量的设备,具有功能全M、性能稳定、适用范围广、使用安全可靠等特点,主要用于小型燃油、燃气锅炉污染排放或污染源附近的环境监测手持使用。烟气分析仪的工作原理常用两种,一种是电化学工作原理,另一种是红外工作原理。电化学气体传感器工作原理:将待测气体经过除尘、去湿后进入传感器室,经由渗透膜进入电解槽,使在电解液中被扩散吸收的气体在规定的氧化电位下进行电位电解,根据耗用的电解电流求出其气体的浓度。红外传感器工作原理:利用不同气体对红外波长的电磁波能量具有特殊吸收特性的原理而进**体成分和含量分析。烟气分析在化肥,冶金,石油化工,水泥生产,火力发电行业占有重要地位,不同行业烟气成分不同,但主要是含SO2,NOX,CO,O2等的气体。烟气分析仪已成为这些行业用来保证安全,稳定,高效生产的有力装置。
  • 热分析仪器的基本结构单元
    p   热分析技术根据被测物理量的物理性质来分共有九大类、17种方法。所组成的热分析仪器就更多了。通常热分析仪器由程序温度控制器、炉体、物理量检测放大单元、微分器、气氛控制器、显示和打印以及计算机数据处理系统7部分组成。其框图如图所示。 /p p /p p style=" text-align: center " img width=" 400" height=" 370" title=" 热分析仪器框图.jpg" alt=" 热分析仪器框图.jpg" src=" https://img1.17img.cn/17img/images/201808/uepic/50c889b4-1faf-48a2-a5d8-4f834ac222d1.jpg" / /p p style=" text-align: center " strong 热分析仪器框图 /strong /p p strong 一、程序温度控制器 /strong /p p   它是使试样在一定温度范围内进行等速升温、降温和恒温。通常使用的升温速率为10℃/min或20℃/min。而程序温度速率可为0.01~999℃/min。近代程序温控仪大多由微机完成程序温度的编制、热电偶的线性化、PID调节以及超温报警等功能。 /p p strong 二、炉体部分 /strong /p p   它是使试样在加热或冷却时得到支撑。炉体部分包括加热元件、耐热瓷管、试样支架、热电偶以及炉体可移动的机械部分等。炉体的温度范围最低为-269℃(液氦制冷),最高可达2800℃(在高真空下用石墨管或钨管加热,用光学高温计测温)。炉体内的均温区要大,试样放在均温区中。因为试样各部分的温度是否均匀对热分析的结果有一定的影响。 /p p strong 三、物理量检测放大单元 /strong /p p   热分析仪器必须能随试样温度的变化及时而准确地检测试样的某些物理性质。 span style=" color: rgb(255, 0, 0) " 由于绝大多数被测物理量是非电量,它们的变化往往又是很微小的,为了及时而准确地检测它们,需要把这些非电量转换成电量,加以放大,再通过定标计算出被测参数。 /span 差示测量方法可以提高测量的 span style=" color: rgb(0, 176, 240) " 灵敏度 /span 和 span style=" color: rgb(0, 176, 240) " 准确度 /span ,因此应用得很普遍。 span style=" color: rgb(255, 0, 0) " 非电量转变为电量可以通过各种传感器来完成。 /span 例如 span style=" color: rgb(0, 176, 240) " 称重传感器、位移传感器、光电传感器、热电偶传感器、声电传感器 /span 等。物理量的检测系统是各种热分析仪器的 span style=" color: rgb(255, 0, 0) " 核心 /span ,也是区分各种热分析仪器的本质部分,它的性能是衡量热分析仪器水平的一个重要标志。 /p p strong 四、微分器 /strong /p p   它是把非电量传感器的放大信号经过一次微分(导数),从微分(对时间)曲线中可以更明显地看出放大信号的拐点、最大斜率等。 /p p strong 五、气氛控制器 /strong /p p   热分析仪器对试样所处的气氛条件有各种要求,因此,大多热分析仪器备有气氛控制系统。热分析对气氛条件的要求有如下原因。 /p p   高温下试样可能在空气中被氧化而完全改变原来的特性,故要求在真空或惰性气氛下升温,或在某种反应气氛下升温。 /p p   热分析与其他分析技术联用时,要求把热分析过程中所产生的气相产物利用流动载气送出。 /p p   要求有适当的气路把热分析过程中所产生的腐蚀性气体或有毒气体排出。 /p p   相当的热分析课题是研究气氛的种类、压力、流动速率以及活性程度等对热分析结果的影响。热分析仪器按气氛条件可分为高真空型、低真空型、常压型、高压型、静态型和流动型等。 /p p strong 六、计算机数据处理系统 /strong /p p   近年来,由于计算机的快速发展、软件的不断完善,大大推动了数据处理系统。首先把采集来的数据进行各种方法的滤波平滑 然后,应用软件对标准物质进行温度校正和焓变校正、长度校正、质量校正以及基线背景线的扣除等。应用软件求取试样的焓变值、熔点、晶相转变温度、玻璃化转变温度、试样成分的组成、膨胀系数等。还有一些软件需要对数学公式进行分析、简化,适合于热分析应用。例如动力学参数的求取、药品纯度的求取。 /p p strong 七、显示和打印 /strong /p p   它是把热分析曲线及其处理结果在显示屏上显示出来,并用彩色喷墨机或激光打印机打印出来。同时在显示屏上用鼠标进行各种操作。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制