当前位置: 仪器信息网 > 行业主题 > >

振成像分析

仪器信息网振成像分析专题为您提供2024年最新振成像分析价格报价、厂家品牌的相关信息, 包括振成像分析参数、型号等,不管是国产,还是进口品牌的振成像分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合振成像分析相关的耗材配件、试剂标物,还有振成像分析相关的最新资讯、资料,以及振成像分析相关的解决方案。

振成像分析相关的资讯

  • 考虑探测器非理想性的红外偏振成像系统作用距离分析
    在背景与目标红外辐射量差距不大或背景较为复杂等情况下,传统红外成像技术对目标进行探测与识别的难度较大。而红外偏振探测在采集目标与背景辐射强度的基础上,还获取了多一维度的偏振信息,因此在探测隐藏、伪装和暗弱目标和复杂自然环境中人造目标的探测和识别等领域,有着传统红外探测不可比拟的优势。但同时,偏振装置的加入也增加了成像系统的复杂度与制作成本,且对于远距离成像,在红外成像系统前加入偏振装置对成像系统的探测距离有多大的影响,也有待进一步的研究论证。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所、中国科学院红外探测与成像技术重点实验室和中国科学院大学的科研团队在《红外与毫米波学报》期刊上发表了以“考虑探测器非理想性的红外偏振成像系统作用距离分析”为主题的文章。该文章第一作者为谭畅,主要从事红外偏振成像仿真方面的研究工作;通讯作者为王世勇研究员,主要从事红外光电系统技术、红外图像信号处理方面的研究工作。本文将从分析成像系统最远探测距离的角度出发,对成像系统的探测能力进行评估。综合考虑影响成像系统探测能力的各个因素,参考传统红外成像系统作用距离模型,基于系统的偏振探测能力,建立了红外偏振成像系统的作用距离模型,讨论了偏振装置非理想性对系统探测能力的影响,并设计实验验证了建立模型的可靠性。红外成像系统作用距离建模目前较为公认的对扩展源目标探测距离进行估算的方法是MRTD法。该方法规定,对于空间频率为f的目标,人眼通过红外成像系统能够观察到该目标需要满足两个条件:①目标经过大气衰减到达红外成像系统时,其与背景的实际表观温差应大于或等于该频率下的成像系统最小可分辨温差MRTD(f)。②目标对系统的张角θT应大于或等于相应观察要求所需要的最小视角。只需明确红外成像系统的各项基本参数与观测需求,我们就可以计算出系统的噪声等效温差与最小可分辨温差,进而求解出它的最远探测距离。红外偏振成像系统作用距离建模偏振成像根据成像设备的结构特性可分为分振幅探测、分时探测、分焦平面探测和分孔径探测。其中分时探测具有设计简单容易计算等优点,但只适用于静态场景;分振幅探测可同时探测不同偏振方向的辐射,但存在体积庞大、结构复杂,计算偏振信息对配准要求高等问题;分孔径探测也是同时探测的一种方式,且光学系统相对稳定,但会带来空间分辨率降低的问题;分焦平面偏振探测器具有体积小、结构紧凑、系统集成度高等优势,可同时获取到不同偏振方向的偏振图像,是目前偏振成像领域的研究热点,也是本文的主要研究对象。图1为分焦平面探测系统示意图。图1 分焦平面探测器系统示意图本文仿真的分焦平面偏振探测器,是在红外焦平面上集成了一组按一定规律排列的微偏振片,一个像元对应着一个微偏振片,其角度分别为 0°、45°、90°和135°,相邻的2×2个微像元组成一个超像元,可同时获取到四种不同的偏振态。图1为分焦平面探测系统结构示意图。传统方法认为在红外成像系统前加入偏振装置后,会对系统的噪声等效温差与调制传递函数MTF(f)产生影响,改变系统的最小可分辨温差,进而改变系统的最远探测距离。本文将从偏振装置的偏振探测能力出发,分析成像系统的最小可分辨偏振度差,建立红外偏振成像系统的探测距离模型。我们首先建立一个探测器偏振响应模型,该模型将探测器视为一个光子计数器,光子被转换为电子并在电容电路中累积,综合考虑探测器井的大小、偏振片消光比、信号电子与背景电子的比率以及入射辐射的偏振特性,通过应用误差传播方法对结果进行处理。从噪声等效偏振度(NeDoLP)的定义出发,NeDoLP是衡量偏振探测器探测能力的指标,即探测器对均匀极化场景成像时产生的标准差。对其进行数学建模,进而分析得到红外偏振成像系统的最远探测距离。图2 DoLP随光学厚度变化曲线对于探测器来说,积分时间越长,累积的电荷越多,探测器的信噪比(SNR)就越高,但这种增加是有限度的。随着积分时间的增加,光生载流子有更多的时间被收集,增加信号。然而,同时,暗电流及其相关噪声也会增加。对于给定的探测器,最佳积分时间是在最大化信噪比和最小化暗电流及噪声的不利影响之间取得平衡,为方便分析,我们假设探测器工作在“半井”状态下。通过以下步骤计算红外偏振成像系统最远作用距离:a. 根据已知的目标和背景偏振特性以及环境条件,计算在给定距离下,目标与背景之间的偏振度差在传输路径上的衰减。b. 结合系统的探测器性能参数,确定目标在给定距离下是否可被观察到。如果不能则减小设定的距离。目标被观察到需同时满足衰减后的偏振度差大于或等于系统对应于该频率的最小可分辨偏振度差MRPD,目标对系统的张角θT大于或等于相应观察要求所需要的最小视场角。c. 逐步增加距离,直到目标与背景之间的偏振度差不再满足观察要求。这个距离即为成像系统最远作用距离。τp (R)为大气对目标偏振度随探测距离的衰减函数,可根据不同的天气条件,根据已有的测量数据进行插值,计算出不同探测距离下大气对目标偏振度的衰减,图4. 5给出了根据文献中测量数据得到的偏振度随光学厚度增加衰减关系图。这里给出的横坐标是光学厚度,不同天气条件下,光学厚度对应的实际传播距离与介质的散射和吸收系数有关。综上,我们建立了传统红外成像系统和考虑了偏振片非理想性的红外偏振成像系统的作用距离模型,下面我们将对模型的可靠性进行验证,分析讨论探测器各参数对成像系统探测能力的影响。验证与讨论由噪声等效偏振度的定义可知,其数值越小,代表偏振探测器的性能越优秀。下面我们对影响红外偏振成像系统探测性能的各因素进行讨论,并设计实验验证本文建立模型的正确性。偏振片消光比消光比是衡量偏振片性能的重要参数,市售的大面积偏振片的消光比可以超过200甚至更多。对其他参数按经验进行赋值,从图3可以看到,对于给定设计参数的探测器,偏振片消光比超过20后,随着偏振片消光比的增加,探测器性能上的提升微乎其微。对于分焦平面探测器,为实现更高的消光比,不可避免地要牺牲探测器整体辐射通量。由于辐射通量降低而导致的信噪比损失可能远远超过消光比增加所获得的收益。这一结果同样可以对科研人员研制偏振片提供启发,对需要追求高消光比的偏振片来说,增大透光轴方向的最大透射率要比降低最小透射率更有益于成像系统的性能。图3 偏振片消光比与探测器噪声等效偏振度关系图探测器井容量红外探测器的井容量是指探测器像素在饱和之前能够累积的电荷数量的最大值。井容量是衡量红外探测器性能的一个关键参数,井容量通常以电子数(e-)表示。较大的井容量意味着探测器可以在饱和之前存储更多的电荷,从而能够在更大的亮度范围内准确检测信号。这对于在具有广泛亮度变化的场景中捕获清晰图像至关重要。从图4可以看出,增大探测器井的容量,同样能很好的提高成像系统的偏振探测能力。图4 探测器井容量与探测器噪声等效偏振度关系图然而,井容量的增加可能会导致像素尺寸增大或探测器面积减小,这可能对系统的整体性能产生负面影响。因此,在设计红外探测器时,需要权衡井容量、像素尺寸和其他性能参数,以实现最佳性能。目标偏振度虽然推导出的噪声等效偏振度公式包含目标偏振度这一参量,但目标的偏振度本身对探测器的噪声等效偏振度没有直接影响。NeDolp 是一个衡量探测器性能的参数,它主要受探测器内部噪声、电子学和其他系统组件的影响。然而,目标的偏振度会影响探测器接收到的信号强度,从而影响信噪比(SNR)。从图5也可以看出,探测器的NeDolp受目标的偏振度影响不大。图5 目标偏振度与探测器噪声等效偏振度关系图读取噪声与产生复合噪声比值读取噪声主要来自于探测器的读出电路、放大器和其他电子元件。它通常在整个光强范围内保持相对恒定。产生复合噪声是由光子的随机到达和电荷生成引起的,与光子数成正比。在低光强下,产生复合噪声通常较小;而在高光强下,它会逐渐变大。通过计算读取噪声和产生复合噪声的比值,可以确定系统的性能瓶颈。如果读取噪声远大于产生复合噪声,这意味着系统在低光强下受到读取噪声的限制。在这种情况下,优化读出电路和放大器等元件可能会带来性能提升。如果产生复合噪声远大于读取噪声,这意味着系统在高光强下受到产生复合噪声的限制。在这种情况下,提高信号处理和光子探测效率可能有助于改善性能。从图6可以看出,降低读取噪声与产生复合噪声比值可以有效提升系统偏振探测能力。图6 δ与探测器噪声等效偏振度关系图信号电子比例综合图4~6可以看出,提升β的数值可有效提高探测器的偏振探测能力,由β的定义可知,对于确定井容量的探测器,β的取值主要取决于探测器的各种噪声与积分时间,降低探测器的工作温度、优化探测器结构、减少表面和界面缺陷等途径都可以降低探测器的噪声,调节合适的积分时间也有助于探测系统的性能提升。实验验证根据噪声等效偏振度的定义,利用面源黑体与红外可控部分偏振透射式辐射源创建一组均匀极化场景。如下图7所示,黑体发出的红外辐射,经过两块硅片,发生四次折射,产生了偏振效应,通过调节硅片的角度,即可产生不同线偏振度的红外辐射。以5°为间隔,将面源黑体平面与硅片间的夹角调为10°~40°共七组。每组将面源黑体设置为40℃和70℃两个温度,用国产自主研制的红外分焦平面偏振探测器采取不少于128帧图像并取平均,然后将每组两个温度下相同角度获得的图像作差,以减少实验装置自发辐射和反射辐射对测量结果的干扰,差值图像就是透射部分的红外偏振辐射。对差值图像进行校正和去噪后,即可按公式计算出探测器对均匀极化场景产生的偏振度图像。计算出红外辐射的线偏振度,为减小测量误差,仅取图像中心区域的像元进行分析。该区域像元的标准差就是该成像系统的噪声等效偏振度(NeDoLP)。探测器具体参数如表1所示。图7 实验示意图表1 偏振探测器参数利用本文建立的探测器仿真模型计算出硅片的线偏振度仿真值,公式19计算出硅片线偏振度的理论值,与实验的测量值进行对比,图8展示了三组数据的变化曲线,从图中可以看出,三组数据存在一定偏差,这可能与硅片调节角度误差、面源黑体稳定性、干涉效应、硅片摆放是否平行等因素有关,但在误差允许的范围内,实验验证了偏振探测系统的性能,也证明了本文建立仿真模型的可靠性。NeDoLP测量结果如表2所示。图8 线偏振度理论值、测量值与本文模型仿真值曲线图表2 实验结果从上表可以看到NeDoLP的测量值与仿真值的差值基本能控制在5%以内,实验结果再次印证了本文设计的模型的可靠性。实例计算应用建立的模型对高2.3m,宽2.7m,温度47℃,发射率为1的目标的最远探测距离进行预测,目标差分温度6℃;背景温度27℃;发射率1;目标偏振度30%,背景偏振度1%,使用3.2节中样机的探测器参数,最后,采用文献中介绍的“等效衰减系数-距离”关系的快速逼近法对红外探测系统最远作用距离R进行求解,得到表3的结果。表3 红外成像系统的最远作用距离根据红外探测系统最远探测距离,利用本文第二节提出的方法,得到不同探测概率下红外偏振成像系统最远作用距离结果如表4所示。表4 红外偏振成像系统的最远作用距离所选例子为目标与背景偏振度差异大于其温差,所以在这种探测场景下红外偏振成像系统的探测能力要优于红外成像系统。探测器的参数不同,探测场景与目标的变化都会对模型的结果产生影响,但本文提供的成像系统作用距离模型可为实际探测中不同应用场景下的成像系统选择提供参考。结论针对不同的探测场景,红外成像系统与红外偏振成像系统在最远探测距离方面哪个更有优势并没有定论,探测目标的大小,背景与目标的温差与偏振度差,大气透过率,具体探测器的参数等因素都会对成像系统的最远探测距离产生影响。经实验验证,本文所建立的非理想红外偏振成像系统的响应模型是可靠的,可以用于估算成像系统的最远作用距离,针对不同的探测场景,读者可通过实验确定探测器的具体性能参数,利用仿真软件或实验测量的方式获取探测目标的温度与偏振信息,明确探测环境的具体大气参数,利用模型对红外成像系统与偏振成像系统的最远作用距离进行预估,选择更具优势的成像系统。这项研究获得上海市现场物证重点实验室基金(No. 2017xcwzk08)和上海技术物理研究所创新基金(No. CX-267)的资助和支持。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023041
  • 生物分析研究必备神器:XelPleX全自动表面等离子体共振成像仪
    从事生物研究的科研工作者们,你们在实验中是否遇到过类似的疑惑?用于分析研究的工具还是一台陈旧的已然跟不上时代发展的“老人机”。实验中,检测筛选、出结果时间长不说,还提高了试剂成本;只能检测小范围的样品溶液不说,每年维护还需要不少费用;手动不环保不说,还不稳定......horiba 科学仪器事业部近来推出新品:xelplex全自动表面等离子体共振成像仪(生物大分子相互作用仪)是一款免标记、多通道生物分析和研究的理想工具。它与传统的spri表面等离子体共振成像仪相比,该系统自动化程度高,设计精巧,可实时监测数百个相互作用并获得动力学参数;适用于实时物理化学相互作用研究和动力学研究;高度自动化的表面等离子体共振成像系统,适用于多种应用要求。另外,高精度温度控制系统和自动脱气装置确保低背景噪音和低信号漂移,可便捷地获取在不同温度下的分子相互作用及反应的亲和力和动力学数据。 如此多的优点,作为生物学科研者,你们还用为实验效率不高,实验结果受外界影响严重,而担忧吗?不仅如此,下面还有更多优异的功能,可以直接秒杀实验过程中遇到的种种难题~1阵列式检测,同一芯片可同时获得多达400种相互作用创新的阵列式芯片设计,同一芯片可同时分析超过400组相互作用,与传统的通道-技术相比,所需时间缩短百倍,并节约试剂和人力成本,特别适用于快速筛选。2无标记,实时生物分子相互作用分析与成像基于spr技术、新型的生物传感技术,实时跟踪分子间结合和解离的过程,每秒可采集芯片表面5幅图像,提供完整动力学信息。成像技术,提供时空分布信息,直观判断相互作用是否发生;辅助解释动力学数据。3适应复杂样品优流体系统设计,全芯片表面检测,可直接注入复杂样品,不易堵塞,并耐受有机溶剂,拓展传统spr应用范围,适用蛋白质、dna、多糖、细胞、血清和培养基等多种粘稠样品以及纳米材料溶液。每年节约数万维护费用。 4智能全自动,48h无人看守实验全新超级软件,可以同时监测几百对相互作用,定量及统计分析,便于筛选和排序。5原位质谱联用,无需洗脱和浓缩独特芯片设计-质谱直接联用,无需洗脱和浓缩,同一芯片即可实现spr分析和质谱检测。进而实现动力学分析和物质鉴别。 6引导式软件设计,易于统计分析多功能软件包,全程引导式操作,批量处理数据及快速分类,方便调用实验模板及数据处理模板。7自动化样品回收与循环,环保节能自动化样品回收技术,节约珍贵样品,回收样品可用于交叉验证等实验。独特的样品循环技术,可检测低样品浓度,并维持动态平衡。 以下是xelplex全自动表面等离子体共振成像仪的主要技术参数,可以帮助大家更详尽的了解这款产品。技术参数 检测技术:耦合棱镜的表面等离子体共振成像 通道数:可以同时监测400组相互作用过程 样品体积:120μl-820μl 流速控制范围:1-3000μl/min 流通池温控范围:10-50°c 检测下限:3pg/mm2另外,附上与xelplex相匹配的核心附件,让xelplex展现出优的性能,发挥出大作用。可选附件 spri-cfm连续流动微量点样仪 spri-array快速台式点样仪 spri-biochips™ 生物芯片(cs/co/cse/coe/ctg/ch功能化)
  • 大连理工大学单一来源采购纽迈核磁共振成像分析仪
    p   7月19日,中国政府采购网发布大连理工大学核磁共振成像分析仪单一来源公告,公告内容显示,大连理工大学拟采购一套核磁共振成像分析仪,包括五部分:磁体系统,温控系统,射频系统,梯度系统,谱仪系统,预算115万元。 /p p   值得一提的是,本次采购将采取单一来源采购的方式,对于原因公告中介绍到: /p p   大连理工大学拟开展生物材料活体实验方面的相关研究,核磁动物临床前实验是对药物的治疗效果和载药生物材料的缓释和靶向作用进行评价的最佳途径,同时也有助于推动实验室在荧光探针、肿瘤的光动治疗方面的研究进展早日走向应用,多模态的研究手段已成为一种趋势。 /p p   基于该项目研究内容,核磁共振成像分析仪购置需求如下: /p p   1. 70 mm动物线圈,以适用于不同类型和体重的实验鼠。 /p p   2. 具备成像和体成分分析双功能。 /p p   3. 可对生物材料的颗粒表面特性进行分析。 /p p   上海纽迈电子科技有限公司核磁共振成像分析仪拥有70 mm大鼠专用线圈适用于300 g以内的实验鼠,订制开发清醒小动物体成分分析模块,配套60 mm口径鼠笼和专用软件,适用于0-50 g的实验鼠,配套颗粒表面特性分析专用15 mm线圈,最低检出限100 μL,最快检出时间60 s。而国内宁波穿山甲机电有限公司的设备无70 mm探头线圈和体成分分析模块功能,上海凡轩电子有限公司的设备无70 mm探头线圈和颗粒表面特性分析专用15 mm探头。 /p p   因此,国内其他供应商的产品无法满足使用需求,只有上海纽迈电子科技有限公司的核磁共振成像分析仪能够满足本项目的技术要求,故只能从唯一供应商处采购。 /p p & nbsp /p
  • 170万!东北师范大学环境学院中尺寸核磁共振成像分析仪采购项目
    1.项目编号:ZZ23441HW04310087;2.项目名称:东北师范大学环境学院中尺寸核磁共振成像分析仪采购;3.采购方式:竞争性磋商;4.预算金额:人民币170万元;5.采购需求:中尺寸核磁共振成像分析仪采购(详见第三章“磋商项目需求表”);6.合同履行期限(供货期):合同签订之日起90日内完成交付、安装及调试;7.本项目不接受联合体。竞争性磋商文件(货物)-东北师范大学环境学院中尺寸核磁共振成像分析仪采购定稿(1).pdf
  • 一杯咖啡的时间,完成小动物核磁共振成像分析?
    p style=" text-indent: 2em line-height: 1.5em text-align: left " span style=" font-family: 微软雅黑 " 肿瘤生长?肿瘤转移?糖尿病与肥胖?如此多的问题亟待解决!您需要一款经济,高效的核磁共振成像系统。 /span /p p style=" text-indent: 2em line-height: 1.5em text-align: left " span style=" font-family: 微软雅黑 " 以色列Aspect M3& #8482 小动物核磁共振成像系统,专为小鼠表型成像而设计: /span strong span style=" font-family: 微软雅黑 line-height: 1.5em text-indent: 2em color: rgb(79, 129, 189) " 紧凑型 /span /strong span style=" font-family: 微软雅黑 line-height: 1.5em text-indent: 2em " 永磁体;无边缘磁场, strong span style=" font-family: 微软雅黑 line-height: 1.5em text-indent: 2em color: rgb(79, 129, 189) " 无需防护 /span /strong ;免冷却处理, strong span style=" font-family: 微软雅黑 line-height: 1.5em text-indent: 2em color: rgb(79, 129, 189) " 无需维护 /span /strong ; /span span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 " 简单易学, strong span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(79, 129, 189) " 简单操作 /span /strong span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(0, 0, 0) " 。让小动物核磁共振成像分析只需一杯咖啡的时间! /span /span /p p style=" text-indent: 2em line-height: 1.5em text-align: left " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(0, 0, 0) " 点击视频查看详情: /span /span /p p style=" line-height: 1.5em text-align: left text-indent: 0em " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(0, 0, 0) " br/ /span /span script src=" https://p.bokecc.com/player?vid=94F5951A091FBE909C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=2BE2CA2D6C183770& playertype=1" type=" text/javascript" /script /p p style=" text-indent: 2em line-height: 1.5em text-align: left " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(0, 0, 0) " 更多视频资讯,请关注 a href=" https://www.instrument.com.cn/news/videolist.html" target=" _self" strong span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(79, 129, 189) " 仪器信息网视频栏目 /span /strong /a 。 /span /span /p
  • 243万!纽迈中标东南大学分析测试中心大口径核磁共振分析与成像系统采购项目
    一、项目编号:JC066022092023(招标文件编号:JC066022092023)  二、项目名称:东南大学分析测试中心大口径核磁共振分析与成像系统采购项目  三、中标(成交)信息  供应商名称:江苏昊升抗体生物医药科技研究院有限公司  供应商地址:南京市江宁区天元东路1009号创业大厦3层(江宁高新园)  中标(成交)金额:243.000000(万元)  四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 江苏昊升抗体生物医药科技研究院有限公司 大口径核磁共振分析与成像系统 纽迈 MacroMR12-150V-I 1套 2430000
  • 纽迈低场核磁共振成像分析仪中标上海海洋大学采购项目
    上海海洋大学食品学院食品品质与安全无损分析实验平台建设项目中标公告  项目名称:上海海洋大学食品学院食品品质与安全无损分析实验平台建设项目  采购人名称:上海海洋大学  采购人地址:上海市浦东新区沪城环路999号  采购人联系方式:021-61900020  采购代理机构名称:上海中招招标有限公司  采购代理机构地址:上海市共和新路1301号C座110室  招标公告日期:2015年11月20日  定标日期:2015年12月10日  招标编号:STC15A370  中标人名称: 苏州纽迈分析仪器股份有限公司  设备名称:低场核磁共振成像分析仪 1套  中标金额: 人民币122万元  评委委员会成员名单: 许学书、徐隽、肖石林、赵波、张红敏  招标代理机构联系人和联系方式:姚庆忠  联系电话:021—26065272  如对本次结果有异议,请于评标结果公布之日起7个工作日内以书面形式向上海中招招标有限公司(上海市共和新路1301号C座110室,电话:021-26065272)提出质疑。  在此,上海海洋大学和上海中招招标有限公司谨对积极参与本项目投标的供应商表示衷心的感谢!  上海中招招标有限公司  2015年12月10日
  • 重磅新品Unity BEX成像探测器震撼来袭!2023牛津仪器材料分析论坛在丽江顺利举办
    随着显微分析技术的发展,采用多技术联用对材料进行全方位的表征及分析越来越受到研究人员的重视。2023年7月8日,牛津仪器在丽江成功举办“心有所望 进无止境”主题牛津仪器材料分析论坛。本届论坛不仅有牛津仪器应用科学家分享材料分析先进解决方案,更邀请到上海交通大学教授李林森、太钢集团高级工程师张寿禄以及中国地震局地质研究所副研究员马玺分享了各自利用材料分析以及联用技术在电池、合金、地质等领域取得的最新成果。此外,牛津仪器还在本次论坛上重磅发布了Unity新品——BEX(Backscattered Electron X-ray)成像探测器,其采用了一种基于扫描电镜的革命性全新成像技术。活动现场签到墙现场观众牛津仪器MAG中国区销售总监 李霄飞牛津仪器MAG中国区销售总监李霄飞表示,很高兴在丽江再次和牛津仪器的新老朋友们相聚,并介绍了整合后的牛津仪器MAG集团和管理团队成员。牛津仪器为了进一步为客户打造优质的服务,进一步深化服务团队的国内布局,通过现场支持、远程在线支持、客户支持中心、常驻工程师以及应用支持团队为国内客户提供快速的问题响应和周到的服务。最后,李霄飞介绍了牛津仪器最新推出的重磅产品Unity——BEX图像探测器,以及Symmetry S3、高温原位分析EDS&EBSD、AZtecWave等新产品。牛津仪器应用科学家 陈帅牛津仪器应用科学家陈帅详细介绍了本次推出的重磅新品Unity BEX探测器。BEX成像技术是一项基于扫描电子显微镜(SEM)的全新成像技术,将背散射散射电子成像和X射线成像集于一体,能够在常规SEM工作条件下实现对样品形貌、晶体取向和化学成分进行同步、快速、高分辨的成像。在检索样品时BEX信号可流畅地提供包含元素信息的彩色图像,相比于传统成像技术,BEX能够提高样品检测的效率并提供更为可靠和完整的信息。基于BEX成像技术,牛津仪器推出了集背散射电子和X射线探测器于一体的Unity系统。Unity的BSE传感器与常规BSE探测器相似,成像区域中更亮的部分意味着密度或平均原子序数更高;X-ray传感器则与传统成像探头不同,通过采集来自样品的特征X射线并转化为成分信息,使得Unity系统可快速生成彩色图片。来自这两个传感器的信号可智能叠加,获得易于解释的样品形貌图。通过瞬时获得样品图像,消除了样品分析过程中的主观臆断和不确定性,使操作人员更有信心地进行样品检索,极大提高分析效率。上海交通大学教授 李林森上海交通大学教授李林森介绍了SEM-Raman以及SEM-EBSD等联用技术在电池领域的应用,通过SEM技术和Raman技术的联用揭示了电极材料“多颗粒”性能衰减规律以及钠离子电池正极的空气稳定性;通过SEM-EBSD联用辨识一次颗粒的微结构并进行了定量化分析。WITec Managing Director Joachim KoenenWITec Managing Director Joachim Koenen介绍了基于WITec SEM-Raman 分析系统的材料分析解决方案,通过EDS+ Raman的组合可以对许多重要材料进行完整的表征,在电池、二维材料、先进制造、空气和海洋污染、生命科学、地质学等领域均有广泛的应用。牛津仪器应用经理 胡海龙牛津仪器高级应用科学家胡海龙介绍了WITec显微系列产品以及WITec拉曼光谱及成像解决方案,涵盖高灵敏度拉曼光谱、快速高分辨拉曼成像以及多功能联用技术等,随后介绍了WITec共聚焦拉曼成像技术在无机半导体材料与能源催化、高分子薄膜材料、生物与地质、金属腐蚀与环境等领域的应用。牛津仪器高级应用科学家 刘志文牛津仪器高级应用科学家刘志文表示,当前原子力显微镜(AFM)的发展趋向于高分辨、高速度、简单化以及多场耦合,对相应数据质量的要求具备一致性、准确性、重复性等,随后介绍了牛津仪器原子力显微镜的应用实例——超高分辨原子力显微镜在表征材料高分辨结构与电学性质、表面粗糙度和缺陷以及表界面研究方面的应用、高通量(原位)原子力显微镜在表征半导体衬底和薄膜方面的应用以及微波扫描电容显微镜在电学性能分析中的应用。太钢集团高级工程师 张寿禄太钢集团高级工程师张寿禄在报告中介绍了使用EBSD分析在铁铬铝电热合金(板材)轧制退火过程的结构演变,采用牛津仪器AZtec®软件系统的大面积拼接功能,可以对试样全厚度截面进行EBSD分析测试,比较直观地分析整个板厚范围内的组织变化情况,包括再结晶程度、晶粒尺寸变化、晶粒取向分布、织构梯度等组织信息。牛津仪器高级应用科学家 杨小鹏牛津仪器高级应用科学家杨小鹏以稀土钢中夹杂物综合分析、单晶硅纳米压痕应变分析、磁畴观察等为例介绍了牛津仪器EBSD等多技术联用在材料分析中的应用,此外还介绍了牛津仪器近期发布的新探测器 Symmetry S3、高温原位 EBSD 和 EDS技术、花样匹配标定技术 MapSweeper等。牛津仪器纳米分析部应用经理 徐宁安牛津仪器纳米分析部应用经理徐宁安介绍了如何利用牛津仪器AZtecWave一体化系统对材料进行准确高效地元素定性和定量分析,并详细全面地介绍了多种EDS定量分析方法。AZtecWave系统结合了波谱仪和能谱仪准确及快速等优点,可进行一体化检测,实现高能量分辨率的分析X射线,获得微量及痕量元素准确的定量结果,同时分析效率高,由于波谱能量分辨率更高,可以确保解析更多的重叠峰,进一步降低元素的检出限。中国地震局地质研究所副研究员 马玺中国地震局地质研究所副研究员马玺介绍了地质样品的预处理方法,阐述了如何利用EDS技术对细小、珍贵、复杂的矿物进行精准识别及定量分析,以及EBSD技术在岩石变形、变质过程、矿物晶内应变、矿物鉴定等方面的应用。通过本次论坛,观众们不仅了解到牛津仪器材料分析集团(MAG)材料表征最新的技术进展以及多技术联用解决方案,还欣赏到了当地颇具特色的民俗表演,2023牛津仪器材料分析论坛取得圆满成功。会议同期,仪器信息网对牛津仪器MAG中国区销售总监李霄飞、WITec Managing Director Joachim Koenen、Oxford instruments Services, Business and Product Manager Jackson Edward等人进行了专访,后续敬请期待。精彩瞬间
  • 红外热成像技术的市场分析
    根据某知名安防市场调研报告,至2019年全球红外热成像市场将达到8亿美元,在此之前,该市场的复合增长率将达到惊人的14%,远高于视频监控的复合增长率预期,尤以亚太地区的增长势头最猛。毫无疑问,红外热成像技术蕴藏了巨大的市场需求,但是根据调研报告,全球视频监控市场在2014年即达到约140亿美元,同期红外热成像市场还不足其市场的2%,从数据分析可以看到,红外热成像技术还远未得到安防市场的充分认可,市场应用前景可期。在中国乃至全球,红外热成像产业面临的挑战都很相似,这需要相关企业共同解决。首先,如何建立并加深客户对红外热成像技术的认知度,如何让客户真正了解其相较于普通视频监控技术的优势。对此,很多厂商已经在产品推广、客户培训方面加大投入。其次,原有红外厂商仅销售红外热成像摄像机并不能让客户满意,必须推出基于红外热成像技术的整体解决方案,在红外热成像摄像机中增加智能分析和功能,提高红外热成像的系统效率,扩大应用范围,真正解决客户的痛点。 红外热成像技术未来的发展随着MEMS技术的不断突破,红外探测器必然向着更小尺寸、更大分辨率、更低功耗的趋势发展,热成像探测器成本的降低,使得红外热成像技术在安防行业的广泛应用成为可能。而采用非制冷焦平面阵列探测器的红外热成像摄像机未来必将大量应用于智能安防监控中,并将在智能分析、多光谱图像融合等技术方面取得较大进展。未来5~10年间,红外热成像技术将成为与可见光摄像技术相匹敌的热门产业,二者优势互补,真正实现多光谱全天候视频监控,将安防视频监控行业推向新的高度。 本文来自仪器仪表商情网
  • 岛津成像质谱显微镜应用专题丨多模式成像分析小鼠心肌梗塞
    简介作为一种成像技术,磁共振成像(MRI)广泛应用于日常临床诊疗中。为了在检查过程中增强对比度,可以使用几种不同的造影剂。由于五个或七个不成对电子具有出色的顺磁性,因此最常使用Fe3+、Mn2+或Gd3+。因游离形态的Gd3+具有毒性,此探针与氨基羧酸一起作为复合物给药。大多数钆造影剂(GBCA)是全身分布的,一些靶向特异性GBCA也正在研究中。图1 Gadofluorine P的结构Gadofluorine P是一种靶向造影剂,对富含胶原蛋白的细胞外基质(ECM)具有高亲和性,ECM在发生心肌梗塞(MI)时分泌。多模式生物成像技术能够可视化靶向造影剂的分布。使用激光剥蚀与电感耦合等离子体质谱(LA-ICP-MS)以高空间分辨率在元素水平上生成定量图像,而基质辅助激光解吸电离质谱(MALDI-MS)用于在分子水平上验证研究结果,提供更多分布信息,例如磷脂或血红素b的分布。材料和方法动物实验此项动物实验在明斯特大学医院临床放射学研究所Moritz Wildgruber教授的研究小组进行。使用诱导心肌梗塞六周的小鼠,注射照影剂Gadofluorine P后进行MRI检查。小鼠被处死后,取出心脏并快速冷冻。用冷冻切片机制备厚度为10μm的切片。标准品制备对于LA-ICP-MS分析,用明胶制备基体匹配标准品,用于外标 校正。明胶(10%w/w)添加9种不同浓度,范围为0至5000 μg/g Gd。另制备了厚度为10μm的标准品切片。样品制备对于MALDI-MS成像分析,将切片放置于氧化铟锡(ITO)涂层的载玻片上。先用升华法涂敷α-氰基-4-羟基肉桂酸(CHCA)至组织表面,然后用500μl水和50μl甲醇混合溶液喷雾于组织表面2.5分钟进行再结晶。分析条件对于LA-ICP-MS分析,使用Tygon管,将ICPMS-2030与激光剥蚀系统LSX-213 G2+(Teledyne CETAC)连接,此系统配有HelEX II池和波长为213nm的Nd-YAG激光。氦气用于剥蚀池的冲洗和传输。ICP-MS 2030配有镍采样锥和截取锥。在碰撞模式下,31P、57Fe、66Zn、158Gd和160Gd的积分时间为100ms条件下进行测量。每种标准品的标准曲线使用了10个浓度水平进行分析,并且同样的条件下分析了样品(表1)。表1 LA-ICP-MS的实验条件MALDI-MS分析使用了配有离子阱-飞行时间(IT-TOF)质谱分析仪iMScope TRIO。选择正离子模式,质量范围为m/z 700到1200。其他实验条件列于表2中。基质使用iMLayer升华20分钟。表2 MALDI-MS的实验条件结果LA-ICP-MS用基体匹配标准品进行的外标法定量分析结果显示,在高达5000μg/g的浓度范围内存在良好的线性关系,相关系数R2为0.997。采用15μm光斑尺寸时,基于158Gd的检测限(LOD)为43ng/g Gd,定量限(LOQ)为140ng/g Gd(根据Boumans[1]算出)。图2 小鼠心脏组织切片的H&E染色图2所示为连续切片的苏木精伊红染色结果,检测出心肌梗塞的区域(以黑线标出)。图3 两个连续切片的显微图像(a.和b.);经LA-ICP-MS测定的Gd定量分布(c.);Gadofluorine P的配体分布(d.);配体结构及理论峰值(青色条)、MALDI-MS测定峰值(黑线)(e.)图3所示为两个连续切片的显微图像(a.和b.)。使用LA-ICP-MS(c.),检测到健康心肌中Gd的均匀分布,平均浓度约为50μg/g。梗塞区的Gd浓度高两倍,约为110μg/g,最高值可达370μg/g。由于静脉注射造影剂的作用,心室中也存在较高浓度的Gd。这些分布可以通过MALDI-MS成像进行验证(d.)。该实验中,只能检测到Gadofluorine P的质子化配体,而不是完整的复合物(e.)。结果显示,主峰m/z 1168.39的质谱成像图与LA-ICP-MS检测的Gd分布具有良好的相关性。在心机梗塞和心室区发现了分子探针的最高强度,而健康心肌则显示出低而均匀的强度。结论 该应用表明,元素选择性(LA-ICP-MS)和分子选择性(MALDI-MS)成像技术的组合是可视化心机梗塞后小鼠心脏组织中靶向钆造影剂分布的有力工具。通过LA-ICP-MS技术实现了高空间分辨率和定量,并通过MALDI-MS在分子水平上验证了其分布。参考文献[1] P.W.J.M.Boumans, Spectrochimica Acta 1991, 46 B, 641-665.文献题目《Gadofluorine P多模式生物成像分析用于小鼠心肌梗塞研究》使用仪器岛津iMScope TRIO作者Rebecca Buchholz1、Fabian Lohofer2、Michael Sperling1,3、Moritz Wildgruber4、Uwe Karst11 明斯特大学无机和分析化学研究所 2 慕尼黑工业大学放射学研究所3 明斯特欧洲物种分析虚拟研究所(EVISA) 4 明斯特大学医院临床放射学研究所声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。本文内容非商业广告,仅供专业人士参考。
  • 摘要速览|iCCA2023之细胞成像分析技术专场
    全日程更新|8月30日开播!31位嘉宾云聚第六届细胞分析网络会议iCCA2023(点击查看)仪器信息网将于2023年08月30日-09月01日举办第六届细胞分析网络会议(iConference on Cell Analysis,iCCA 2023)。在线免费向听众开放报名,欢迎报名参会!报名链接: https://www.instrument.com.cn/webinar/meetings/icca2023  (点击报名) 分会场设置 日期上午下午08月30日类器官与器官芯片08月31日单细胞分析技术(上):微流控/质谱单细胞分析技术(下):测序/代谢组学09月01日细胞治疗产品的CMC质量控制分析细胞成像分析技术 iCCA 2023 交流群 精彩报告速览 蛋白响应型荧光探针用于超分辨荧光成像和生物传感研究王璐 复旦大学 研究员【摘要】活细胞中实时观测蛋白、代谢物等生物分子是研究生物功能的重要手段。然而,可用于活细胞特异性成像的荧光探针非常稀缺。我们基于罗丹明“开-闭”环独特性质,提出罗丹明染料进化新方法,通过引入磺酰胺结构,成功开发了可快速透膜、蛋白响应型荧光探针,实现活细胞免洗、多色STED超分辨荧光成像;而通过引入烷基胺则可将罗丹明染料进化为自闪烁探针,以实现单分子定位超分辨荧光成像(SMLM)。而通过结合识别蛋白,可构建新一代化学-遗传编码荧光探针,实现活细胞中NADPH等关键代谢分子的实时检测。基于目标锁定机制的三维单分子示踪光学显微成像侯尚国 深圳湾实验室 特聘研究员【摘要】实时三维单颗粒示踪已成为研究动态生物相互作用的强大工具,而单分子示踪由于其高空间和时间分辨率以及高灵敏度,有可能革新生物学动态过程研究方式。我们开发了一系列的实时三维单颗粒、单分子示踪成像方法,其具有高时空分辨率、高成像深度和高灵敏度的优点,为在单分子水平上研究生物分子之间的三维相互作用动态提供了一个有力的工具。结构光照明超分辨荧光显微镜的开发和生物学应用李迪 中国科学院生物物理研究所 正高级工程师【摘要】 针对生物学领域的超微动态观测需求和传统结构光照明超分辨显微镜(SIM)的局限。我们使用掠入射照明取代传统的全内反射照明,成像深度提升10倍达1微米,成像速度近20倍达到684幅/秒;引入深度学习技术改进SIM重建算法,成像时程提升30倍达6万幅。应用上述技术,我们发现了十余种细胞器互作新现象,助力生物学领域发展。细胞膜信号转导的单分子追踪陈忠文 中国科学院生物与化学交叉研究中心 研究员【摘要】 细胞感知外界环境的刺激并做出反应,通过一系列细胞膜受体信号转导过程调节细胞功能。我们通过单细胞和单分子荧光成像,结合人工脂质双层膜技术操纵和观测相关细胞膜受体,研究解释了细胞膜受体的空间分布和团簇态对于信号转导的调控作用。这些工作为细胞受体信号转导的基础研究提供了新的手段,并推动建立了新的生物学模型。温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • 国家重点研发计划“大视场生物成像分析仪”项目启动
    p   近日,国家重点研发计划“重大科学仪器设备开发”重点专项“大视场生物成像分析仪”项目启动会在中科院南京天文仪器有限公司举行,项目专家组成员、主管部门负责人、项目骨干等20余家单位的近50余人出席了本次会议。 /p p   项目责任专家、中科院沈阳科学仪器研制中心有限公司董事长雷震霖代表科技部高技术研究发展中心介绍了国家重点研发计划“重大科学仪器设备开发”重点专项基本情况、项目部署情况,对项目过程管理、组织管理等重要节点进行了解读。他希望项目牵头单位和课题承担单位履行责任、加强管理、把项目各项工作做细做实。 /p p   据项目负责人、中科院苏州医工所研究员董文飞介绍,稀有细胞和痕量病原微生物对疾病检测、生殖健康、环境卫生和国家安全等方面有十分重要的影响,“大视场生物成像分析仪”项目基于对稀有细胞快速检测的需求,通过攻克大视场高分辨离轴反射式光学系统设计技术、大面阵高分辨探测器和大面积单层细胞推片技术等三个关键技术,开发新型大视场高分辨生物成像分析仪。 /p p   该项目仪器研制技术路线采用模块式结构,包括大视场高分辨光学成像系统、大面阵高分辨探测器、大面积单层细胞推片机、自动识别快速软件、样品前处理、大面阵多光谱光源和运动控制模块等模块,同时开展在稀有细胞快速检测方面的应用示范,为仪器的工程化产业化及大规模应用奠定基础。 /p p   中科院南京天文仪器有限公司董事长严庆伟表示,此项目研制的大视场生物成像分析仪将填补国内市场空白,验收三年内预期年产值可达3000万元,极大带动科学仪器系统集成创新,有效提升我国高端生物成像仪器设备行业整体创新水平与自我装备能力。 /p p   会上,严庆伟宣布了项目总体组、技术专家组、用户委员会名单,并颁发聘书,表示将做好项目管理和协调工作,确保项目顺利开展并按期完成。 /p p   据悉,该项目由中科院南京天文仪器有限公司牵头,联合中科院苏州生物医学工程技术研究所、苏州国科医疗科技发展有限公司、中国人民解放军军事医学科学院微生物流行病研究所、中检国研(北京)科技有限公司、武汉大学、吉林师范大学、广东科鉴检测工程技术有限公司等8家单位共同承担。 /p p /p
  • ​科研用小动物活体成像系统全国共享资源调查分析
    动物模型对医学的发展意义重大,通过对动物本身的生命现象研究进而推进到人类,探索人类生命的奥秘,更是生命科学研究的支撑条件之一。1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念—应用影像学方法,它使活体动物体内成像成为可能。近年来,随着活体成像技术广泛应用于研究观测特异性细胞、追踪靶细胞、药物和基因治疗最优化等,各类小动物活体成像系统不断涌现,为生命科学研究提供了有力保障。根据技术不同系统主要分为光学成像、 核素成像(PET、SPECT)磁共振成像 (MRI)、CT成像、超声成像、磁粒子成像(MPI),在一定程度上,这些技术大多不存在竞争取代,而是互补共存的关系。其中,光学成像技术在小动物活体成像系统中应用最为广泛。基于此,本文聚焦国内高校和科研院所共享的小动物活体成像系统,对科研用光学成像技术为核心的系统进行统计分析,在一定程度上或可得出国内科研用小动物活体成像系统的使用情况。(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,不完全统计分析仅供读者参考)光学成像技术光学成像主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。小动物活体成像系统通过非常灵敏的光学检测仪器,让研究人员能够直接监控活体生物体内的细胞活动和基因行为,观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。共享小动物活体成像系统集中教育强省统计高校和科研院所在全国仪器共享平台上传的数据,截止2021年6月15日,平台上小动物活体成像系统(光学成像)的总数量为119台,涉及24个省份、直辖市、自治区。其中,北京、江苏、浙江、广东的小动物活体成像系统(光学成像)数量大于10台,仪器资源依然集中分布在高等教育强省,存在资源分布不均的问题。珀金埃尔默最受高校欢迎 从全国共享小动物活体成像系统(光学成像)品牌分布来看,高校和科研院所更青睐进口。珀金埃尔默独占近二分之一的市场,Caliper、carestream healthy、Berthold、Bruker、KODAK占比41.53%,CRI等品牌瓜分剩余八分之一的市场。据悉,2011年,珀金埃尔默收购了专注于生命科学研究、成像和检测服务的Caliper Life Sciences公司,在动物成像领域更进一步。所以,珀金埃尔默相当于占比66.1%,在高校和科研院所更受欢迎。省份品牌分布零散从全国共享小动物活体成像系统(光学成像)数量top7省份的仪器品牌分布来看,珀金埃尔默在北京、江苏、浙江、广东、上海、湖南的高校和科研院所中均有很强的竞争力,在福建的品牌覆盖度低,可能与宣传力度和高校科研方向等因素有关。从北京品牌分布来看,大趋势与全国共享小动物活体成像系统(光学成像)品牌分布相同,珀金埃尔默以绝对优势占据60%,carestream healthy、Bruker、Visualsonics、GE、Princeton Instruments等品牌分布零散,但在高校和科研院所的仪器采购中也存在一定的竞争力。
  • 赛默飞新型显微拉曼成像技术引领材料的高分辨快速分析
    ——拉曼显微成像光谱仪快速提供分子结构的研究级图像 2014年2月19日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)于北京时间2月26日在上海发布新品新型显微拉曼成像光谱仪DXRxi。使用这款产品,将帮助科学家、工程师以及科研工作者加速在材料领域的相关应用研究,其覆盖范围涉及药物科学、生命科学、半导体制造以及地质学等。该新型显微拉曼成像光谱仪易于操作,任何人利用它都能获取出色的化学成像结果,而无需重新学习一门新的技术。 赛默飞DXRxi显微拉曼成像光谱仪的新型设计致力于快速准确显示分子结构、化学组份以及样品形貌等信息,为研究开发、材料缺陷和产品质控等应用带来高可信度。通过操作便捷的、以图像为中心的软件界面,用户可以快速采集丰富的光谱信息并创建某一特征分布的化学成像。 与其他拉曼成像技术不同,赛默飞DXRxi显微拉曼成像光谱仪采用实时图像反馈和以图像为中心的驱动方式,能够实现大面积区域的快速扫描,在数秒钟内就能提供详细的光谱信息。对于跨学科的研究团队来说,DXRxi显微拉曼成像光谱仪更能发挥其设计简便、易于操作的特点,有利于科研成果的快速产生。 赛默飞拉曼光谱产品经理Ryan Kershner说:“DXRxi显微拉曼成像光谱仪是一款能让科学家从一堆干草中找到一根针的仪器。该仪器功能强大、操作方便,所以不管是学生还是专业技术人员都能够轻松操作仪器,快速地采集数据。为不同领域的复杂问题寻找答案,覆盖从生物组织到碳纳米管的研究范围。” DXRxi显微拉曼成像光谱仪具有以下特点:采用新型以图象为中心的赛默飞OMNICxi 软件,实现可视化快速采集、直观精准的样品定位以及直观参数优化界面自动准直与校标功能将为用户节省大量的时间与精力快速实现样品化学信息的可视化成像,无需专业光谱专家解析超强的大面积区域快速扫描功能欲了解更多信息,请点击链接 www.thermoscientific.com/DXRxi 或 www.thermoscientific.com 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录 www.thermofisher.cn
  • 中国科学院徐明:基于光谱和质谱成像的纳米单颗粒原位分析研究
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。徐明 研究员中科院生态环境研究中心人物简介:徐明,中国科学院生态环境研究中心,研究员,博士生导师。主要从事重金属(离子态、颗粒态)的健康效应、分子靶点及分析方法研究。获国家基金委优秀青年科学基金、入选中国科学院青年创新促进会。主持并参与国家自然科学基金、科技部973、科技部重点研发计划、中国科学院战略性先导科技专项B等9项。发表论文72篇,申请和授权国家发明专利3项。本次会议中,中科院生态环境研究中心徐明研究员分享了《贵金属纳米颗粒的体内示踪与原位成像谱学方法研究进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请徐明研究员分享其团队在纳米颗粒原位分析的系列研究成果。1、成果简介纳米材料已被广泛应用于工业、农业、食品、医药等领域。例如,银纳米颗粒作为抗菌剂被用于病原微生物的消杀,金纳米颗粒因其优良的光学性能和生物相容性被用于疾病诊断与治疗等等。一旦进入生物体内,纳米颗粒会经历复杂的转化过程,包括溶解、聚集、解聚等。纳米颗粒的体内转化会改变其物理化学特性,进而对纳米颗粒的功能产生影响。然而,目前针对纳米颗粒体内转化、分布的原位分析表征极具挑战。通常使用电子显微镜对组织或细胞内的纳米颗粒进行检测,该种方式成本高,操作难,不易于推广。其它成像技术,如质谱、红外光谱、拉曼光谱、荧光光谱等,成像分辨率难以达到纳米级别,无法实现单颗粒分析。针对上述难题,为实现生物组织和细胞中纳米颗粒转化与分布的精确分析,徐明研究员研究团队近期开展了基于光谱成像和质谱成像的纳米单颗粒原位分析研究。成果一:细胞内金纳米颗粒聚集行为的单颗粒成像分析为观测金纳米颗粒(AuNPs)的细胞内聚集行为,我们基于高光谱暗场显微镜(EHDFM)开发了一种单颗粒成像分析新方法。利用局域表面等离子共振现象(LSPR)产生的散射光谱信号,可对AuNPs的聚集程度进行定性和定量分析,实现生物介质中和细胞内AuNPs的原位单颗粒分析(图一)。该方法具有很好的特异性与灵敏度,相关研究成果近期已发表于Journal of Physical Chemistry B(https://doi.org/10.1021/acs.jpcb.2c08289)。图一成果二:利用间充质干细胞进行肿瘤靶向递送金纳米颗粒的原位成像分析为观测金纳米颗粒(AuNPs)的体内行为与分布特征,其团队整合了激光溅射电感耦合等离子体质谱(LA-ICP-MS)和高光谱暗场显微镜(EHDFM)技术,可实现生物组织中AuNPs的定性与定量成像分析(图二)。针对纳米颗粒肿瘤靶向效率低的问题,我们比较了间充质干细胞(MSC)介导的AuNPs肿瘤靶向与增强渗透滞留效应(EPR)间的递送效率差异,证实MSC介导的肿瘤靶向递送效率比EPR效应提高了2.4~9.3倍,可将更多AuNPs递送至肿瘤坏死核心。相关研究成果近期已发表于ACS Nano(https://doi.org/10.1021/acsnano.2c07295)。图二成果三:新型核壳结构纳米探针成像分析银纳米颗粒的胃肠道转化为观测纳米颗粒的体内转化过程,我们开发了一种以星形金纳米颗粒为内核,外层包覆银壳的球形核壳结构纳米探针(Au@AgNPs)。在体内,一旦该探针的银壳发生溶解等转化,就伴随着元素和光谱信号的变化,进而可通过LA-ICP-MS和EHDFM进行成像分析(图三)。利用该纳米探针,其团队成功示踪了颗粒银在小鼠胃肠道中的转化与吸收过程,揭示了颗粒银和离子银的体内行为与分布特征的差异。相关研究成果近期已发表于Advanced Functional Materials(https://doi.org/10.1002/adfm.202302366)。图三2、产业化意向上述相关的成果正在申请国家专利,后续将发展更多面向应用的技术方法和成像探针,欢迎相关的科研与产业合作。3、课题组未来研究计划后续研究中,徐明研究员研究团队将重点开发针对生物分子和纳米材料的质谱、光谱成像技术。
  • 科研干货 | 3D类器官深层智能成像分析加速精准用药流程
    如今研究人员正越来越多的应用3D 细胞培养、微组织和类器官技术来填补2D 细胞培养与体内动物模型之间的差距。这是因为3D 模型能够更好地模拟微环境、细胞间相互作用和体内生物过程,因此相较于生化检测和2D 模型,3D 模型可提供更具生理相关性的条件。此外,其形态学和功能分化程度更高,这也赋予了它们更接近体内细胞的特征,并且从比体内动物模型具有更高的稳定性和可操作性,易于自动化,提高评估效率和准确性。然而,3D 类器官模型面临着诸多挑战,您需要合适的工具才能克服它们。比如在细胞显微成像分析环节,大而厚的细胞样品成像难度极高;同时处理3D 细胞实验产生的海量数据则是最为严峻的挑战——而3D 类器官深层智能高内涵成像分析系统结合近红外荧光探针整合方案,助您看的更深、更准、更快。国内外一线科学家团队典型案例多伦多大学David Andrews 教授团队利用患者活检肿瘤样本,建立PDC 模型,并通过高内涵Opera Phenix 对进行高通量图像采集。除分析常见的细胞活力指标,如细胞核形态、线粒体膜电位和凋亡之外,David Andrews 团队进一步利用机器自学习的优势来深度挖掘药物处理后的表型变化,利用对照药物,研究通过多指标分析定义多种表型,并以此为基础进行临床抗肿瘤药物的药效预测。通过分析药物处理后的PDC 细胞表型,不仅能预测针对特定病人的药物治疗有效性,还能挖掘药物对应的细胞表型,做到了细胞表型-药物相互作用的深度分析。图源:多伦多大学David Andrew 教授中国军事科学院王韫芳课题组,建立微肝球模型 (Liver biomatrices scaffolds, LBSs),结合高内涵筛选系统Operetta CLS 和多功能酶标仪Ensight,从细胞活力、分化、代谢功能、环境相互作用和药效预测等多个指标上预测药物肝毒性机及其毒理机制研究。图源:中国军事科学院王韫芳教授高分辨率成像设计,助您看清三维每一处细节高内涵成像分析系统专为3D 类器官模型研究而设计,可协助您快速方便地从3D 样品中获取信息量丰富、更具生理相关性的数据:转盘共聚焦成像可快速采集光学切片图像,而且具有优异的信噪比和X-Y-Z 高分辨率。共聚焦转盘上的针孔只允许来自焦平面的光通过,而非焦平面的光信号被阻挡在针孔外,大大提升了获取图像的信噪比。在最小激发光强度下,以极高的帧速进行图像采集,因此转盘共聚焦成像是3D 球状细胞团和活样品成像的理想之选,不仅采集速度快,且光漂白效应极低。水浸式物镜的数值孔径比空气物镜更高,可捕捉到比空气物镜多高4 倍的光信号,因此可在X-Y-Z 方向都提供更高的分辨率。这意味着可以更快地捕捉到更多细节,并能对3D 深层结构进行成像,此外,对脆弱的活细胞样品进行成像时,可将光损伤将至最低。人肝脏微组织图像,类器官以 Hoechst(核,蓝色)和 CellMask™ Deep Red 质膜染料(红,细胞膜)3D 检测方法比传统的2D 检测方法更具挑战性,但这也正是研发过程中至关重要的一部分。其中一个挑战是如何从3D 细胞模型获取高质量图像。因为,诸如细胞核这类对象通常会沿着Z 轴变形,无法被正确分割。如本技术说明所述,当使用相同对象进行测试时,水浸式物镜能够显著改善3D 图像质量并检测到两倍于空气物镜的细胞核。红外荧光试剂,实时监测3D 肿瘤微环境红外 (NIR) 荧光试剂专为体内临床前成像设计。NIR 解决方案对于肿瘤学研究极有应用价值,同一肿瘤模型既可进行体外研究,也可通过异种移植物进行体内研究。靶向和可活化的NIR 试剂,最大激发波长低于700 nm,适用于多种基于高内涵类器官成像为基础的体外肿瘤模型。 为分析肿瘤相关生物标志物组织蛋白酶和基质金属蛋白酶的活性并使低氧区可视化 ,分别使用 100 μM NIR 试剂ProSense® 680 (NEV10003)、MMPSense® 680 (NEV10126)和HypoxiSense® 680 (NEV11070) 对3D 肿瘤组织染色。ProSense 680 试剂(左)显示出对整个微组织的均匀染色。MMPSense 680 试剂(中)在单独的细胞中被强烈活化,并在3D 组织内显示出微弱的荧光信号。HypoxiSense 680 试剂(右)对微组织染色后,核心区域显示出最强荧光,指示肿瘤组织的缺氧状态。NIR探针染色人肿瘤类器官的明场和荧光图像叠加,生成特征性染色图样低氧在恶性肿瘤以及快速发展的肿瘤中是一种普遍的现象,肿瘤内部血液供应不足产生的低氧环境与肿瘤的生理过程息息相关,包括基因调控、血管形成、信号通路的转导等。对于低氧相关通路的研究也是肿瘤治疗的新方向。为了研究低氧条件,在球体形成过程中接种不同数量的细胞,从而产生不同大小的微组织,HypoxiSense 680 荧光探针可指示肿瘤微环境内的低氧状态。扫描下方二维码,即可购买珀金埃尔默荧光探针智能化图像分析,从3D到切片一网打尽Harmony 软件已开发出针对大型3D 高内涵数据集的3D 可视化和分析工具,能够对诸如囊肿、微组织或球状细胞团块等3D 对象进行容量分析。除了此处所示的形态和位置属性, Harmony 还可以计算其他的3D 形态、3D 强度和3D 纹理属性,以对3D 细胞模型进行详细的表型鉴定。此外,为了避免空图像等无用数据,Harmony 的 PreciScan 提供了低倍率的预扫描和高倍率的再扫描自动化工作流程,用于球状细胞团块的目标成像或其他小概率事件。配置Harmony 高内涵软件以及Preci-scan 智能目标扫描模块,该系统可以轻松获取低倍镜扫描结果,自动化智能识别微组织所在位置, 进行居中位置优化后,在高倍镜进行高分辨率X-Y-Z 成像数据采集。智能排除空白区域或不符合采集条件的破损组织区域。这一功极大的节约了采集和分析的效率,让您在单次扫描就可以自由获取不同倍数的多倍率数据信息,是类器官成像分析,稀有细胞事件采集分析的理想解决方案。到目前为止,由于仍无适用于3D 高内涵数据分析的软件,即使是高质量的3D 图像也很难从中提取信息。由于3D 图像分析软件包是为在传统显微镜上采集单个样品而开发,因此通常以单个分析包的形式提供。用这样的软件包处理这种基于微孔板的高内涵数据费时费力,需要大量的用户交互和额外的数据转换步骤。Harmony 软件是一款集3D 图像采集、3D 可视化和3D 分析为一体的单一软件包,省去了采集和分析之间的数据转换。总而言之,配备了水浸式物镜和Harmony 软件的Operetta CLS 高内涵分析系统能够克服3D 分析中最关键的挑战,并为更多生理相关细胞培养模型的3D 成像和3D 表型鉴定提供了理想的一体化软件包。另外高内涵都成像分析系统可兼容组织切片,获得多色全视野组织切片影像数据。凭借其强大的自动化成像光路设计和智能化的Harmony 分析软件,能在快速准确评估多色标记的免疫荧光组织切片,不仅提高了成像效率,同时也可对批量图像数据进行全自动智能化定量分析。图源:多伦多大学David Andrew 教授以上案例进一步证明,无论是针对患者来源的细胞、微器官和组织切片模型,高内涵成像分析系统都凭借其强大的人工智能分析能力,可更快速适应用户自定义的自动化智能化细胞/微器官/组织成像及全方位分析需求,以加速临床前基础研究,促进科研转化和精准用药指导。
  • 人和科仪年终庆——SIM凝胶成像分析系统优惠啦
    新年将至,上海人和科学仪器有限公司开展SIM凝胶成像分析系统年终优惠活动。 西盟国际公司,是全球首屈一指的专业生物技术公司,以经营实验室设备和基础医学设备为主。凭借突出的技术优势使其产品广泛应用于全球科研和工业的实验室。同时,西盟国际通过自己专业的培训和国际科学交流,建立了完善的国际经销网络和服务体系。 SIM 凝胶成像分析系统能够观察分析各种透明或不透明的电泳图像,如EB染色胶,蛋白胶,放射自显影、斑点印迹等,满足定性,定量分析的迫切需要,为凝胶图像分析提供了先进简便的解决方法。现人和科仪SIM 凝胶成像分析系统BIO-PRO 200E现货促销,超高性价比!震撼价查询 SIM凝胶成像分析系统介绍 凝胶成像原理及操作 实验员将EB等染色剂染色过的凝胶放暗室中的紫外透射工作台上,打开紫外灯EB染色过的凝胶经过紫外面线照射后在暗室中会发出荧光,我们称之为&ldquo 凝胶图像&rdquo 。调节相关的光圈、焦距,将图像调节清楚,发出荧光的凝胶图像被高像素的科研级专业摄像机捕捉,Bio-capt采集卡及采集软件将图像输入计算机,在计算机为我们通过Bio-1D分析软件进行分子量、RF值微量滴定等数据分析。 应用范围 凝胶成像系统的应用范围实际上非常广,能对各种透明或不透明的成像都能提供方便、迅速、准确的处理,包括蛋白质条带、斑点密度、蛋白质或DNA/RNA分子定量、电泳迁移率、PCR、自动菌落计数、酶标板测定、物距测量、遗传关系等 凝胶成像系统的组成 ◆第一部分:控制系统 控制系统有两种规格:B型控制器系统和T型控制器系统。控制系统的主要作用是控制凝胶图像系统的工作和运行。 ◆第二部分:光源系统 光源系统有三种规格:1)312nm紫外透射工作台;2)254nm紫外反射灯;3)365nm紫外反射灯。左右侧灯每个灯上分别装有一只254nm、365nm的紫外灯管,这样光从左右两侧发出,紫外光源的作用是:紫外光照射经EB染色的凝胶会发出明亮的荧光。不同波长的紫外光对不同染色的凝胶激发作用也不尽相同。 ◆第三部分:暗室 暗室的主要作用是:经紫外光激发的EB胶发出的荧光在暗室中更加明亮,便于摄像机抓拍。 ◆第四部分:图像采集系统 图像采集主要由摄像机镜头及Bio-capt图像采集软件组成。摄像机的主要作用是抓拍发出荧光的凝胶图像。摄像机必须由高像素对弱光拍摄能力强的科研级相机。监控用的民用级及工业级摄像机用来对凝胶图像的抓拍均不清晰。Bio-capt图像采集系统的作用是将摄像机抓拍下来的凝胶图像传输入计算机。 ◆第五部分:Bio-1D分析软件 Bio-1D分析软件的主要作用是在计算机内对凝胶图像进行分子量、RF值等数据的分析。 特点 ◇高像素科研级专业摄像机,分为140万、200万、300万像素CCD,采集暗室弱光能力更强。 ◇T型控制器,四种模式,方便用于不同实验。 ◇紫外灯光强度75-100%无极可调,保护蛋白样品不变性,保护胶不弥散。 ◇灯定时功能,定时关灯,保护紫外灯,延长紫外灯寿命。 ◇推拉式工作台,人性化设计,方便室外操作及清洁。 ◇独特的风扇及密闭风道设计,保护蛋白样品不变性,保护胶不弥散。 ◇多种标配光源,侧灯可90度弯曲旋转,选择最清晰图像(其他品牌侧灯为非标配) ◇门双层胶条,避免伤害实验人员,还可加强暗室环境,加强采集效果。 BIO-CAPT专用于图像采集软件 功能: 摄取图像,在不同格式下(TIFF、BitMap、JPEG、PICT、PCX、GIF、Targa)捕捉图像。 存诸图像,在目录菜单中显示图像并做表面标记 处理图像,旋转,镜像,倒置,亮度,对比 BIO-1D分析软件 图像前处理功能 1、Word操作功能 2、泳道精确度设置 3、手动自动检测条带 计算分析系统 4、分子量MW 5、迁移率RF 6、遗传树分析 7、浓度值OD 8、微量滴定板分析 9、菌落计数 图像增强功能 文件处理功能 11、打印设计 12、报告设计 13、输出格式多样化 14、结果总汇 15、其他功能:软件可自由安装于多台电脑,同时分析;多种预设染料颜色标记显示;多幅图像合并显示并分析功能;软件免费升级 注:专利密闭风道设计和电脑(见上图)需另行收费 人和科仪将陆续有优惠活动推出,敬请期待! 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息。 上海人和科仪欢迎经销商合作洽谈! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号怡虹科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司十数年一直致力于提升中国实验室生产力水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现&ldquo 为客户创造更多价值&rdquo 的承诺。主要代理品牌:IKA、BROOKFIELD、GRABNER、ILMVAC、MIELE、MEMMERT 、KOEHLER、SIEMENS、EXAKT、COLE-PARMER、ATAGO、YAMATO、ESPEC等。】
  • 新技术:NHQ无标记高内涵成像技术,为细胞分析解锁全新物理参数
    高内涵细胞成像分析系统是一种利用高倍镜成像技术对细胞进行图像采集和分析的仪器设备。得益于显微成像、自动化和计算机等技术的迅猛发展,使其能够对大量细胞进行高分辨率成像和数据分析,实时提供海量多维生物学信息,广泛应用于生物医学、药物筛选等领域。为帮助大家及时了解高内涵成像分析前沿技术、创新产品与解决方案,仪器信息网特别组织策划《窥微探秘,高内涵细胞成像前沿技术与进展》专题(点击查看),本期,特别邀请到深圳倍捷锐医学科技公司联合创始人兼CEO孙瑞谈一谈倍捷锐高内涵成像分析系统发展历程、创新技术以及对未来市场的看法。仪器信息网:请介绍一下高内涵成像技术的发展历史。孙瑞:高内涵成像(High Content Imaging, HCI)技术起源于上世纪90年代初期,基于高通量筛选(High Throughput Screening, HTS)技术衍生而来。HCI技术融合了细胞生物学、光子学、实验室自动化和图像分析等不同学科的技术,能够大规模地采集和分析来自不同生物样本类型的显微图像。简而言之,高内涵成像是指自动化获取和分析生物样本显微图像的过程,其三大核心技术分别是光学显微技术、自动化和分析算法。1997年,美国Cellomics公司开发了首个完全集成的高内涵成像平台Array Scan,通过一站式的解决方案,实现了自动化采集以及图像处理、分析、归档和可视化等功能。随着技术发展,2000年左右出现了更为复杂的高内涵成像仪器,比如配备尼普科夫盘激光共聚焦、激光扫描细胞计数仪等。2000年代末期,灵活的台式高内涵成像仪器开始普及。2010年代,高内涵成像仪器性能得到显著提高,开始应用于高通量生物分析。近年来,随着AI算法和大数据等新技术不断发展,高内涵成像图像分析软件变得更加先进,不仅能够处理更大规模的数据集,还能从多个维度捕捉和解析信息。例如,深度学习已被用于自动量化单个细胞中的结构和动态变化。这些方法不仅提高了分析速度和准确性,还能够揭示以前难以察觉的细胞特征和模式。目前,高内涵成像技术已经能够实现3D成像。高内涵成像硬件及配套软件的发展现有的高内涵成像系统主要分为宽场荧光显微镜型、共聚焦荧光显微镜型以及激光扫描型等,大多数基于荧光标记成像的方法,通过标记细胞不同成分来获取细胞图像并进行分析,但荧光标记存在光漂白、光毒性、速度慢以及标记过程对细胞造成活性影响等问题。无标记成像技术的出现突破了这些限制,通过利用细胞自身的光学特性,如折射率的变化或散射光的特性,实现了无需任何标记的细胞成像,能够更加真实、自然地观察细胞状态。然而传统无标记技术如相差成像、微分干涉成像等存在信息量不足的缺陷,虽已有结合AI的案例实现丰富的细胞分析功能,但仍然无法满足无标记高内涵分析的需求。定量相位成像技术(Quantitative Phase Imaging, QPI)是一种无标记的显微成像技术,基于干涉仪与全息投影的光路设计,能够定量提供纳米级精度的表面形态信息,且无需扫描,更加节约时间与算力。因此,QPI技术适用于快速大规模的细胞分析。在QPI技术前沿应用探索中,已经成功实现对细胞形态、物质分布、机械特性、折光率分布、三维偏振张量等多个参数的定量成像,进而能够精细区分细胞类别。借助QPI技术带来的全新物理参数,不仅解决了传统无标记成像信息量不足的问题,同时扩展了高内涵成像的应用范围,也为生命科学研究与产业发展带来了新的希望和可能性。高内涵成像技术演化历程仪器信息网:贵司高内涵细胞成像分析系统的发展历程是怎样的?有哪些里程碑事件?孙瑞:深圳倍捷锐医学科技公司(以下简称:倍捷锐)的核心科技是基于QPI成像方法实现的无标记高内涵成像技术(NHQ)。NHQ技术最早成型于2018年,在香港中文大学生物医学工程系周仁杰教授LAMB实验室完成概念验证。2019年,倍捷锐成立于香港科学园,获得了香港科技署的种子轮支持,同时完成了第一代原理机核心光学组件的开发。翌年,公司成功交付了首台产品于中科院沈阳自动化所(沈自所),并在同年荣获了《麻省理工科技评论》中国生命科学创业大赛“年度新锐” 、“2020粤港澳大湾区最具创新力公司50”等多项大奖。2020年至2022年期间,倍捷锐先后加入Merck创新训练营、NVIDIA Inception Program计划进行应用场景拓展和新功能开发,并与蔡司达成合作,成功开发出蔡司模组NHQ-Zeiss。此外,倍捷锐于2022年成功加入了深圳脑科学技术产业创新中心,并在2023年获得了脑科学企业认定以及千万级天使轮融资。倍捷锐始终致力于为生命科学工作者提供更高效便捷的科研工具,历经5年打磨,最终在2024年7月发布重磅产品——NHQLiveTM无标记高内涵活细胞成像分析仪。倍捷锐NHQLiveTM无标记高内涵活细胞成像分析仪仪器信息网:目前贵司主推的高内涵细胞成像分析系统产品有哪些?并谈谈该产品的核心竞争力(包括成像、数据处理、算法分析和自动化等方面)孙瑞:目前倍捷锐主推的产品是NHQLiveTM无标记高内涵活细胞成像分析仪,其核心竞争力在于成像、自动化和智能化分析三大方面。在成像方面,NHQLiveTM无标记高内涵活细胞成像分析仪具有6个成像通道,多种成像模态。首先是倍捷锐所专注的定量相位显微技术(QPI技术),就像前面所述,它是一种无标记、快速、无损、高分辨率的新兴显微成像技术,能够定量表示细胞产生的形貌和动态变化,可在不对样品进行任何预处理的情况下,测量微观物体透射光(或反射光)的相位延迟,生成反映物体形态学和动力学的图片,再通过分析相位分布图获取细胞的干重、力学特性、密度分布等全新信息。如果把基因组测序比喻为“指纹识别”系统,那么 QPI 技术则是“人脸识别”系统。另外,NHQLiveTM无标记高内涵活细胞成像分析仪还兼备新一代明场技术与四通道荧光成像方案,不仅提升了成像的清晰度,还能捕捉到更为丰富的细胞细节,再搭配多通道影像融合的功能,进一步提升了观察分析的深度与精度,达到了更高维度。从左到右依次为:明场,QPI,四个荧光通道,荧光融合图像在自动化方面,用户可以一键控制仪器电动门开关,通过自动定位聚焦提升操作效率与成像质量,一键启动自动图像拼接,将高速孔板扫描的微观数据汇成一幅超大视野总览图。对于有活细胞长时间多形态成像需求的用户,设备还能结合微流控、孵育器等装置实现流式成像及自动控制延时成像,减少人工操作,极大提高分析效率。 人关节软骨细胞(40×),LFAITM软件大视场图像拼接在软件系统方面,综合运用人工智能和大数据分析等技术,倍捷锐开发出独特的LFAITM智能分析系统。不仅可以进行细胞分类、精准计数、活性分析、行为分析等复杂任务,还结合QPI技术推出了细胞力学分析、干重分析等创新功能。LFAITM 软件细胞分类工作原理仪器信息网:贵司高内涵细胞成像分析系统主要应用哪些领域的哪些实验环节?有哪些代表性用户单位?孙瑞:NHQLiveTM无标记高内涵活细胞成像分析仪凭借其多样化的成像模式、自动化操作以及智能AI分析展现出广阔的应用前景,目前主要应用领域包括药物作用机理分析、组织病理研究、细菌活性检测、细胞周期观察分析、血液分析、植物学研究、神经细胞动作电位分析、生殖细胞活性分析等。具体而言,可用于单细胞计数与分析、细胞分类、形态分析、药物-细胞影响分析、细胞追踪、行为分析、力学分析等实验环节。现阶段,倍捷锐团队已与香港中文大学、麻省理工学院、斯坦福大学、康乃狄格大学、厦门大学、沈阳自动化所、清华大学、上海药物所、默克、蔡司等单位建立友好合作关系。仪器信息网:请点评荧光成像系统、透射光成像系统和共聚焦成像系统等不同成像方式的优劣势?孙瑞:荧光成像系统通过使用特定波长的光照射样品,使样品中的荧光分子被激发而发射出荧光,随后被检测器捕捉并转化为图像。其优势包括:高度特异性,针对特定的分子或结构实现高特异性成像;灵敏度突出,即使样品中的目标分子含量较低也能通过荧光信号检测出来;多色成像,能够同时使用多种荧光染料实现多通道成像,便于同一时间观察多种细胞组分。然而,荧光成像系统也存在一定局限性,如细胞活性差、光漂白、光毒性、成像速度慢等问题。透射光成像系统基于透射光原理,光线穿过样品后被显微镜的物镜收集并成像,适用于观察透明或半透明的样品。其优点主要是样本无需进行化学标记,避免了标记过程带来的影响,且操作也相对简单。但相比于荧光成像,透射光成像的对比度较低,难以区分细微的细胞结构,而且因其采用可见光波段,其分辨率也会受限于光的衍射极限。共聚焦成像系统采用激光扫描和针孔过滤技术,能够提供基于荧光成像的超分辨率成像,显著提高横向和轴向分辨率,同时还能捕捉细胞的三维结构信息。除了荧光成像所面临的问题之外,其设备成本相对较高,逐点扫描的方式也导致了成像速度相对较慢。仪器信息网:未来高内涵细胞成像分析系统技术发展趋势如何?最看好哪些应用细分?孙瑞: 首先,无标记成像技术的兴起将减少对荧光标记的依赖,降低对细胞的潜在影响。例如,基于定量相位显微技术的无标记高内涵活细胞分析仪,能够实现对细胞的实时、无标记监测;其次,随着3D细胞培养技术的应用日益广泛,高内涵成像系统需能够支持三维成像,以更准确地模拟并反映细胞在体内的真实生长环境;人工智能和机器学习等前沿技术不断成熟融合,将被更深入地整合到高内涵细胞成像分析系统中,大幅提升数据分析的效率与精确度。自动化的特征识别和分类将变得日益普遍,从而降低对人工操作的依赖;高通量筛选与高内涵成像更加协同,进一步推动药物发现及疾病模型的研究进程;最后,为了提高科研人员的工作效率,成像分析系统的用户界面将设计得更加直观易用,减少学习成本。此外,标准化的工作流程和数据格式将促进不同实验室间的数据共享与结果对比。得益于技术不断创新突破,高内涵细胞成像分析系统的应用场景正不断扩大。目前,它在药物发现与筛选、类器官研究、干细胞研究、免疫学以及神经科学等关键领域展现出巨大的潜力和前景。例如,类器官作为一种新兴的细胞培养模型,能够更真实地反映人体组织的结构和功能,高内涵成像分析系统可以监测类器官发育过程中细胞的变化,为疾病建模和药物测试提供支持。干细胞在再生医学和疾病模型建立中扮演着重要角色,高内涵成像系统可以帮助研究人员更好地了解干细胞的分化过程和功能特性。总之,高内涵细胞成像分析系统的未来发展趋势将更加注重技术创新和应用扩展,特别是在药物发现、类器官研究、干细胞研究、免疫学和神经科学等领域的研究应用。随着技术的进步,这些系统将会更加高效、智能,并且更容易被科研人员所接受和使用。孙瑞 倍捷锐联合创始人兼CEO孙瑞,倍捷锐联合创始人、CEO,厦门大学生科院大湾区院友会副秘书长。毕业于波士顿大学生物医学工程专业, 拥有多年科技型技术转化的经验。从2015年起,分别创始并主导了波士顿大学生物医学工程系脑血管造影术实时监控跟踪技术、哈佛大学与美国东北大学联合主导的肝脏体外器官芯片筛药技术的产业化。在2016年主导创建了服务于年轻华人科学家的产业化协会‘波士顿破蛋计划协会’。19年起作为联合创始人全职加入倍捷锐,推动无标记高内涵成像技术产业化,并构建倍捷锐与默克、蔡司、英伟达、以及国内多所高校的深度合作。关于倍捷锐倍捷锐(BayJayRay)由来自香港中文大学的团队联合MIT、波士顿大学等高校成员共同创立。公司致力于开发创新性先进光学成像技术,以无标记显微技术——定量相位成像技术作为核心,拓展其在生物医学的产业方向的应用,并矢志于借助中国制造优势赋能生物医学产业,推动国产制造新高度。欢迎投稿!投稿文章将在《高内涵成像技术》专题展示并在仪器信息网相关渠道推广。投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • 我司承担中国医学科学院《定量质谱成像分析系统》开发
    近日,受中国医学科学院/北京协和医学院药物研究所国家药物及代谢产物分析研究中心(简称研究中心)委托,科迈恩(北京)科技有限公司(简称科迈恩)承担了《定量质谱成像分析系统》软件的研制开发任务。在此之前,双方已合作完成了《质谱成像及代谢组学数据处理软件系统》研发工作,建立的先进质谱成像系统工作站广受好评。  质谱成像技术是质谱领域的前沿技术,因其巨大的应用潜力,受到了众多仪器生产商和科研院所的关注。作为我国质谱成像及代谢组学研究领域的领军人物,再帕尔阿不力孜教授及其课题组从2006年起深入开展了质谱成像相关技术的研究和开发,并取得如成像原位代谢组学、定量质谱成像技术与方法、创新药物研发和肿瘤分子病理诊断应用等引领国际的原创性成果。  此次双方旨在前期合作基础之上,开发一套定量质谱成像分析系统,以实现对生物组织中的药物或生物标志物的定量可视化功能。该系统拟采用创新性的校正方法,以使定量质谱成像分析操作过程更简单,定量结果更准确,在新药研发、重大疾病早期诊断和精准医学等领域具有很好的应用前景。  合作协议签订期间,科迈恩(北京)科技有限公司技术团队前往研究中心进行了业务交流。质谱成像技术负责人贺玖明副研究员向科迈恩一行介绍了软件开发具体内容和技术要求,并就开发关键点进行了深入交流与讨论,科迈恩技术负责人表示将不负重托,尽快推出高质量的软件产品。
  • 岛津在日推出全新分析装置—成像质量显微镜iMScope
    对以光学显微镜观察到的样品可以直接实施质谱分析 - 应用于疾患相关物质发现与生物体机能阐明 - 成像质量显微镜 iMScope 岛津制作所现已推出融合了光学显微镜与质谱分析仪技术的全新分析检测装置&mdash 成像质量显微镜『iMScope』。『iMScope』采用本公司独有的高聚焦激光光学系统与高精度样品移动系统,能够以5微米以下的领先世界水平的高分辨率下,取得生物体样品的质谱分析图像,观察分子的分布状态。实现了大气压下的质谱分析,可以分析更接近与活体状态的组织。通过重合、解析从光学图像获得的形态信息与从质谱分析图像获得的分子分布状态,期待应用于疾患相关标记物发现、药物动力学观察等领域。 *作为应用基质辅助激光解吸电离(MALDI)法的市售成像质谱分析装置,具有领先世界的高分辨率(据2013年4月本公司调查) 本产品将与自动前处理装置iMLayer共同出展5月14日在韩国举办的生物化学分子生物学会(KSBMB)以及6月10日在北美举办的美国质谱分析学会(ASMS)。 【开发背景】 传统的质谱分析法是将生物体组织样品破碎等后、提取物质得到的混合液体,然后使用液相色谱仪等进行分离,测定目的分子。因此,无法得知某一分子在样品的什么部位高浓度存在或在样品中感兴趣的部位有什么样的分子高浓度存在。研究人员渴望有一种分析装置可以对见到的物质、见到的部位中所含的分子直接实施质谱分析,实现研究人员愿望的装置便是成像质量显微镜『iMScope』。 举例来说,『iMScope』对诸如生物体组织切片这样的平板状样品照射激光,电离所含分子并检测。并且按规定的间隔移动激光,连续检测样品上的离子。通过将激光照射位置信息与其位置上含有的离子量进行二维图像化,可以获知特定分子的分布状态。比如,即使在组织上极小的局部存在作为疾病指标的分子时,也可以将其分布以图像方式检出。并且,通过比较多个样品的结果,诸如组织差异所造成的含有分子或医药品和其代谢物的分布差异等,也可以以图像方式进行测定、比较。 具有光学显微镜并可以在大气压下实施成像质谱分析的全新分析装置iMScope是可以应用于广泛领域的划时代的新解析工具,引起研究人员的高度期待,可以在各个领域最为尖端的研究开发中发挥威力,比如,特定癌干细胞中高浓度存在的分子,并将此分子作为标记物的癌早期诊断法的开发;阐明医药品代谢、聚集过程的药物动力学观察;解明食品中有助于增进健康的有效成分的分布;以增加有效成分量为目的的农作物品种改良;电路板、化成品材料的缺陷解析等,不胜枚举。 『iMScope』是将科学技术振兴机构(JST)尖端计测分析技术?仪器开发计划所获成果实施产品化的产物。以浜松医科大学为中心开发了样机后,以岛津制作所为中心开发出来了实用装置。在实用化的过程中,庆应义塾大学也参与了开发工作。基于上述机构的高见充实了必要的功能,使之成为方便使用的产品,最终开发成功了『iMScope』。 【本产品的特长】 1. 高分辨率:实现领先世界水平的5微米高分辨率采用本公司独有技术高聚焦激光光学系统与实现高精度样品位置移动的三维样品台驱动系统,作为成像质谱分析装置,成功获得了5微米以下的领先世界水平的高分辨率的质谱分析图像。即使诸如视网膜等具有10微米左右大小的微细结构的组织,也可以观察其内部的分子分布状态。另外,利用同时推出的自动前处理装置iMLayer,能够以简便的操作准备适于高分辨率成像质谱分析的样品。 2. 采用大气压MALDI,可以直接分析光学显微镜观察到的样品 离子源采用可以在大气压下进行离子化的大气压MALDI,可以直接对观察到的样品进行质谱分析。与真空MALDI法相比,不仅装置是启动时间短、测定时间快,更可以分析挥发性分子或接近活体状态的组织。 使用iMScope专用软件Imaging MS Solution,可以在光学显微镜图像上设置成像质谱分析条件,并且还备有若干已预先设置分析条件的文件,无需进行繁琐的条件设置,能够以观测光学显微镜的感觉进行成像质谱分析。 3. 高速分析:高于传统分析100倍以上的高速成像 iMScope的独有技术,以质谱分析仪保持使用1kHz的高速Nd:YAG激光进行多次激光照射而离子化的离子,一同进行质谱分析,与传统的质谱分析装置相比,实现了100倍以上(本公司内部比较)的高速成像。 例如,对2.5mm见方的样品以10微米分辨率进行成像质谱分析时,使用传统装置约花费10天的时间,但使用iMScope分析,则约3小时便可完成分析。将正常细胞与癌细胞进行比较等时,需要获取2张质谱分析图像,即便如此,iMScope只需约6小时即可完成,即如果在白天调制样品,夜晚进行分析,第二天一早便可获得检测结果,大幅加快了研究开发速度。 ※『iMScope』源自Imaging Mass Scope的新词。 鼠视网膜脂质的分布。仅在10&mu m分辨率的图像上可以识别脂质多重层,也可观察视网膜色素上皮层(10&mu m)。 *分辨率20&mu m、50&mu m、100&mu m的图像是根据分辨率10&mu m的质谱分析图像使用软件模拟制作而成 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 岛津成像质谱显微镜应用专题丨小鼠大脑成像分析
    优势● iMScope QT可测量的最大范围超过100万像素,能够进行大面积样本分析,例如在一次检测中对小鼠大脑全切片进行分析。● iMScope QT的分析速度比前一代产品快8倍以上,能够进行快速分析。● iMScope QT具有高质量准确度、分辨率及高空间分辨率,能够进行精确质谱成像分析。 概述质谱成像技术可以通过质谱仪直接检测生物分子和代谢物,同时保留其在样本组织上的位置信息,因此,可以生成不同生物分子基于特定离子信号强度和位置信息的二维质谱图像。iMScope成像质谱显微镜是用于质谱成像分析的整合型仪器,结合了光学显微镜和质谱仪,能够分析物质的结构和分布特征,拓展了药物研发和代谢物研究等领域的范围。通过将MALDI转换成LC和ESI系统,iMScope还可用于LC-MS定性及定量分析。本文将介绍配备Q-TOF质谱仪的新型iMScope QT(图1),并与前一代iMScope TRIO设备进行比较。图1 iMScope QT 小鼠全脑切片分析前一代iMScope TRIO设备的最大可测量范围是250 × 250像素。在iMScope QT中,可测量范围已扩展至1024 × 1024像素,能够以15 μm的空间分辨率分析小鼠全脑切片(约17mm × 9.4 mm)。根据表1条件进行检测,可在m/z 885.557处获得磷脂酰肌醇PI (38:4),并在m/z 888.631处获得硫苷脂(C24:1)的清晰质谱图像(图2)。 此外,由于iMScope QT的最大激光频率为20 kHz,分析速度比iMScope TRIO快8倍以上。结果显示完成图2所示的小鼠全脑切片(702624 pix)质谱成像分析仅需6小时。 表1 分析条件图2 小鼠全脑切片的质谱成像结果(空间分辨率:15 μm) 小鼠小脑的高空间分辨率分析对小鼠小脑附近的区域进行高空间分辨率质谱成像分析,如图2(a)中红色部分所示。根据表1中的分析条件,空间分辨率为5 μm。如图所示,可在m/z 885.557处获得 PI (38:4)、在m/z 888.631处获得硫苷脂(C24:1),检测到更清晰更详细的质谱图像(图3(b)和(d))。 此外,由于iMScope QT的质量准确度和分辨率较高,能够分离和检测PI (38:4)的同位素(m/z 888.573)和硫苷脂(C24 :1)(m/z 888.631),并能提取每种同位素的质谱图像(图3(c)和3(d))。而iMScope TRIO则无法获得以上结果。 图3 小鼠小脑的光学图像和质谱图像(空间分辨率:5 μm) (a) 光学图像(b) PI (38:4)的质谱图像,m/z 885.557(c) PI (38:4)同位素的质谱图像,m/z 888.573(d) 硫苷脂(C24:1)的质谱图像,m/z 888.631 结论与iMScope TRIO相比,iMScope QT的分析范围更广,分析速度更快,可实现更广泛的快速成像分析。此外,随着检测准确度和分辨率的提高,能够对各种目标化合物进行高精确度、高特异性的质谱成像分析。 iMScope QT不仅整合了质谱和形态学分析,而且能够在更广泛的领域实现更快速、更灵敏以及更高的空间分辨率的检测。 本文内容非商业广告,仅供专业人士参考。
  • 速来!活体成像小动物模型开发+数据分析干货分享,锁定iSAI2024
    动物模型在临床前抗肿瘤药物评价体系中发挥着重要的作用。肿瘤动物模型的建立为研究肿瘤发生与转移的机制、筛选和评价抗肿瘤药物的药效提供了有力的工具。一般啮齿类动物小鼠,因为其具有繁育速度快,成本低,可进行基因修饰等诸多优点,基于其构建的各类肿瘤模型构成了临床前治疗性药物筛选的主要工具,而小动物活体成像数据分析被称为连接医学影像与生物医学的重要桥梁。仪器信息网将于2024年6月6日举办“第一届小动物活体成像技术与前沿应用”主题网络研讨会(iSAI2024),全日程现已公布(点击查看)。精彩报告提前知晓!本文为【动物模型开发/数据分析篇】,大会当天将由上海南方模式生物科技股份有限公司经理/副研究员慈磊博士与中国科学院高能物理研究所高级工程师聂彬彬博士两位嘉宾分别就活体成像小动物模型的开发、动物脑成像数据分析及应用展开报告,欢迎踊跃报名参加在线直播!参会报名链接二维码:https://www.instrument.com.cn/webinar/meetings/sai240606.html ——03 动物模型开发/数据分析篇——关键词:基因工程小鼠、脑影像数据分析慈磊 经理/副研究员上海南方模式生物科技股份有限公司个人简介:南模生物工业客户部经理,副研究员,同济大学生物学博士,已授权发明专利5项,发表SCI论文10余篇。主要从事小鼠疾病模型构建以及药效评价研究,具有多年肿瘤以及自免类药效模型构建及CRO服务经验,目前负责主持南模生物各类抗肿瘤以及炎症类药物临床前研究项目。大会报告:活体成像小动物模型的开发与应用通过构建报告基因小鼠模型,利用小鼠特异性启动子调控荧光素酶报告基因的表达,结合光学成像系统实时采集小鼠发出的荧光信号,进而追踪活体小鼠中该内源基因的表达。该基因工程小鼠不仅有助于建立针对治疗药物的临床前筛选平台,还可以明确这些基因表达的细胞类型,具有基础科研和临床应用的双重价值。聂彬彬 高级工程师中国科学院高能物理研究所个人简介:中国科学院高能物理研究所,高级工程师,课题组长。中国图学会医学图像与设备专业委员会秘书长;中华医学会核医学分会神经学组委员;中国生物医学工程学会放射学会青年委员会委员。多年来主要从事医学影像数据分析方法的研究及应用工作,作为课题负责人承担了国家自然科学基金四项,中国科学院青年项目一项;作为主要参与人参与了中国科学院先导专项一项,973课题两项,发表SCI论文百余篇。其建立的动物脑成像数据分析平台能够对多种成像模态的猕猴,树鼩,大鼠,小鼠的脑成像数据进行不同的数据处理,该软件平台于2014年起通过邮件注册的方式对外发布,截至目前,已经有150余家国内外单位注册使用。大会报告:动物脑成像数据分析及应用磁共振成像技术和正电子发射断层成像技术能够对动物进行在体成像,能够在正常的生理状态下观察动物的脑结构形态、脑功能活动、脑白质纤维束形态及走向等等,在重大脑疾病的发病机理、药物评估中具有不可替代的作用。脑影像的数据分析是连接医学影像与生物医学的重要桥梁,该报告主要介绍了动物脑成像研究中常用的数据分析方法及应用示例。点击获取稿件提纲为帮助广大实验室用户及时了解小动物活体成像前沿技术、创新产品与解决方案,增强业内专家与仪器企业之间的交流学习,仪器信息网特别组织策划“小动物活体成像技术” 主题约稿活动。欢迎投稿,投稿文章一经采纳,将收录至【小动物成像技术】专题并在仪器信息网相关渠道推广。投稿邮箱:刘编辑liuld@instrument.com.cn电话联系:13683372576(同微信)。
  • 10月21日网络讲座:原子力显微镜高次谐波信号分析、提取及成像
    摘要:原子力显微镜(AFM)轻敲模式(TM)成像过程中,针尖与样品间的非线性相互作用会导致探针检测信号的频谱中出现各种倍频分量,即高次谐波信号。利用高次谐波信号的幅度/相位信息进行成像,可以表征样品表面精细结构和分析研究样品表面纳米力学性质。报告介绍了利用小波变换对高次谐波信号特性开展的分析研究,以及几种常用的对微弱高次谐波信号增强放大、提取的方法。最后,展示了研制的高次谐波成像系统及其在样品表征中的应用。报告人:北京航空航天大学物理学院钱建强教授钱建强,北京航空航天大学物理学院教授,博士生导师。中国仪器仪表学会显微仪器分会理事,中国宇航学会空间遥感专业委员会委员,全国高等学校光学教学研究会理事,主要从事纳米测量方法与显微仪器技术研究。上世纪90年代初师从姚骏恩院士,研制成功国内首批激光检测原子力显微镜。近年来承担并完成国家科技支撑计划重大课题子课题、国家863、国家自然科学基金、北京市自然科学基金等项目20余项。先后研制成功基于自激励和自感知的石英音叉探针频率调制原子力显微镜,原子力显微镜液相环境频率调制成像系统,原子力显微镜高次谐波/多频激励成像系统。率先开展了基于压缩感知的原子力显微镜成像方法研究,基于小波变换的原子力显微镜高次谐波信号分析。在Nanotechnology、 Ultramicroscopy、Review of Scientific Instruments等国内外学术期刊发表论文100余篇,获授权国家发明专利15项,主编并出版工信部“十二五”规划教材1部。网络讲座时间:北京时间 2021年10月21日 上午10:00-上午11:00申请方法:关注“Park原子力显微镜”公众号查看首页文章进行注册即可参加。届时直播间会抽送十位赠送精美礼物。
  • 显微 CT 成像在药物制剂结构分析中的应用
    显微 CT 成像在药物制剂结构分析中的应用引言药物是用于预防、治疗、诊断疾病的活性物质,需制成一定的剂型才能作用于人体。药物攸关人民生命安全,因此对药物制剂的质量进行控制和评价至关重要。制剂的结构影响药物的疗效发挥,同时也影响制剂的释药行为,因此制剂的结构在制剂设计和评价方面发挥着重要的作用。药物制剂结构表征常用的技术有光学显微镜、电子显微镜等技术工具,但这些技术手段仅能给出制剂的表面特征,无法有效地表征其内部特征。X 射线具有波长短、分辨率高和穿透力强等特点,能够实现对样品内部结构进行成像,曝光时间短、效率高,可用于观察分析多种微观物理、化学变化以及微纳米结构,在生物医学、材料科学上有着广泛的应用。利用显微 CT 成像研究药物制剂结构的应用包括:&bull 药物制剂的晶型研究&bull 制剂内部结构的表征研究&bull 制剂涂层结构的无损表征&bull 药物释放机制研究图注:NEOSCAN 台式显微 CT 扫描抗过敏药盐酸西替利嗪片本文通过文献资料摘录 3 个实际应用案例介绍显微 CT 技术在固体制剂药品领域的应用和功能。Part 01 利用显微CT对仿制药开展一致性评价昝孟晴等利用显微 CT 技术对盐酸特拉唑嗪片的内部微观结构进行观察分析,发现溶出度测定结果不满足标准限度要求的样品与参比制剂相比具有更大的孔隙率。将溶出度不合格样品和参比制剂的结构进行对比分析,二者局部孔径大小分布见下图。由图可知,二者的局部孔径尺寸大多数都分布在 10~20 μm,平均孔径大小分布没有较大差别。图注:参比制剂样品(蓝色)和溶出度不合格样品(橘色)的局部孔径大小分布但通过分析制剂的孔隙率(片剂表观体积中,除原辅料外,内部的孔隙占总体积的比例),发现溶出不合格样品的孔隙率远大于参比制剂,分别为 32.851%(仿制制剂)和 6.545%(参比制剂),见下图(图中白色部分代表主药和辅料, 红色部分代表孔隙)。从结构对比结果推测,溶出度不合格样品可能是由于孔隙率偏大,因而能迅速吸收大量水分,由于重力作用而沉积在普通溶出杯底部。显微 CT 技术能够提供药品固体制剂的高分辨率三维内部结构图像,包括活性成分的分布、空隙、颗粒大小和分布等,这有助于了解药品的均匀性和质量分布。图注:参比制剂(左图)和溶出度不合格样品(右图)的三维结构图Part 02 显微CT 中药制剂结构研究中药制剂重视药辅合一, 其剂型和辅料的运用蕴含着丰富的药方配比智慧。中药活性成分从剂型里溶出、释放受制于制剂的结构, 并影响其疗效的发挥。制剂结构的创新是中药制剂的发展趋势, 在以缓控释制剂和靶向给药系统等为代表的新剂型发展过程中, 制剂结构发挥着重要作用。微丸压制片是由可持续释药微丸与适宜辅料混合后压制成的制剂, 压片后具有体积小、可刻痕和可分剂量使用等优点。使用显微 CT 无损成像技术对微丸压制片的三维微结构与药物、辅料的空间分布的研究, 有助于进行深度的质量评价与控制。茶碱微丸片 (THEODUR) 为 24h 骨架型缓释制剂, 微丸在片剂径向上的分布均匀, 但在轴向上存在明显的微丸富集区。片剂内部呈现 3 种不同的区域: 基质层、保护缓冲层与载药微丸, 基质层和保护缓冲层并无特定的结构, 两层依次包裹在微丸周围。基质层主要分布有茶碱、蔗糖、乳糖和十二烷基硫酸钠, 而单硬脂酸甘油酯主要存在于缓冲层 (图 A)。琥珀酸美托洛尔微丸片 (倍他乐克) 遇介质快速崩解成单个微丸, 持续释放药物 24h。其中, 微丸在片剂内均匀分布, 且呈光滑球形, 具三层球形结构。此外, 片剂中基质并非十分紧实, 基质中以及基质和微丸之间均有一些空隙, 这不仅有利于片剂在介质中快速崩解, 也保证微丸在压片过程中结构的完整性 (图 B)。另外, 肠溶型微丸压制片的结构研究也有报道, 如埃思奥美拉唑微丸片 (耐信)。图注:显微 CT 分析茶碱微丸片Part 03 显微 CT 对原辅料粉体结构中药物晶型的辨别制剂是由药物活性成分和辅料组成, 原辅料粉体中的药物晶型、粉体粒径及其分布、 配比与规格直接影响药物制剂的质量。显微 CT 成像可以避免剂型中辅料的干扰, 准确识别药物的晶型, 且能无损伤、原位检测制剂内药物微粒的粒径及其分布。该方法解决了固体制剂内药物晶体的识别和药物粒径及其分布的测定难题, 具有重要应用价值, 为仿制药一致性评价中原辅料粉体结构的研究提供了新的视角和思路。例如,Yin 等采用 SR-μCT 研究多晶型混合物中硫酸氢氯吡格雷的晶型, 基于两种晶型颗粒表面的粗糙度差异, 有效地识别硫酸氢氯吡格雷的不同晶型。关于台式显微 CT可在不破坏样品的同时,得到样品的结构信息(空腔孔隙)、密度信息(组分差异),同时可以输出三维模型,进行仿真分析。 参考文献《采用高分辨显微成像技术从药物制剂结构角度分析盐酸特拉唑嗪片溶出度测定结果》昝孟晴,黄韩韩,张广超,马玲云,许鸣镝,牛剑钊*,刘倩*(中国食品药品检定研究院,国家药品监督管理局化学药品质量研究与评价重点实验室)《结构药剂学与中药制剂结构研究进展》杨 婷, 李 哲, 冯道明等(1. 中国科学院上海药物研究所;2. 江西中医药大学)《从结构出发的制剂一致性研究策略》张继稳, 孟凡月, 肖体乔(1. 安徽中医药大学药学院 2. 中国科学院上海药物研究所 3. 中国科学院上海应用物理研究所)《高分辨三维 X 射线显微成像在药物制剂结构分析中的应用》昝孟晴,黄韩韩,南楠等(中国食品药品检定研究院,国家药品监督管理局化学药品质量研究与评价重点实验室)
  • 新品发布|国产无标记高内涵细胞成像,开启全新细胞分析模式
    6月6日,深圳市倍捷锐生物医学科技有限公司(以下简称:倍捷锐)在厦门成功举办 “光学无标记高内涵定量相位成像产品发布会”, 正式发布两款基于自主研发的定量相位成像技术的生物成像产品系列:Basic系列与Pro系列。Basic 系列(来源:倍捷锐)Basic系列产品可实现高速、动态的活细胞分析,支持微流控分析、AI细胞识别等功能,可用于活细胞的高通量筛选等应用,同时兼容荧光成像系统。Pro系列(来源:倍捷锐)Pro系列产品具备更高精度与更强功能定制能力,可实现细胞精细结构的定量分析、活性与产量分析、细菌种类分析等,支持深度定制及荧光成像功能,服务于科研及合成生物等方向。无标记高内涵成像成像对比(来源:倍捷锐)倍捷锐致力于开创新性先进光学成像技术,并以无标记高内涵显微术-定量相位成像技术(QPI)作为核心,拓展其在生物医学的产业方向的应用。QPI技术能够定量表示细胞产生的形貌和动态变化,无需标记染色,只需通过测量被测微观物体透射光(或反射光)的相位延迟,即可生成反映物体形态学和动力学的图片。因此,QPI技术能够实现对细胞无损、长时间成像分析,降低对荧光等耗材的依赖。倍捷锐科技有限公司成立于2018年,坐落在香港科学园内。创始人来自麻省理工学院、香港中文大学、波士顿大学等高校。公司致力于开发国产创新先进光学成像产品,并以定量相位成像技术作为核心,拓展其在生物医学、微纳加工、材料等产业方向的应用。团队历经三年多时间,借助香港中文大学的科研实力,构建了完善的产学研转化模式,实现了细胞特性、血液分析多维度的检测技术积累。目前,倍捷锐团队拥有包括美国地区在内多项自主核心知识产权,完成3代原型机开发,与斯坦福、清华大学、浙江大学等国内外多所高校合作,原型产品已进入科研、工业领域实际应用。
  • “高精度光梳相干成像分析仪的应用与工程化开发”项目在宝钢启动
    2月25日,由国家出资、科技部批准,国家重点科学仪器设备开发专项“高精度光梳相干成像分析仪的应用与工程化开发”项目在宝钢正式启动。   该项目由宝钢中央研究院牵头,华东师范大学、上海理工大学、深圳大学、上海朗研科技公司等10多家企业和科研院校参与,针对钢铁检测、精细加工监控等进行研发。钢铁方面,将促进一系列急需的高新技术产业应用,如高精度表面形貌测量、微纳精细加工检测、集成电路制造、太阳能电池精加工等,并开展工程化和产业化示范,实现小批量生产。   启动会上,与会专家们认为,该项目对解决我国科技领域和经济发展、民生改善具有明显支撑和带动作用,仪器将达到钢铁制造行业的质保和质控、生命医学领域的应用要求。仪器开发将摆脱国外对中国高端技术研究的垄断,对钢铁、生物、医学、航天技术开发等具有重大意义。项目有望形成20多项专利,仪器有望于2017年批量生产,实现产业化应用。   新闻链接   “高精度光梳相干成像分析仪的应用与工程化开发”项目是“十二五”国家科技重点项目。该项目主要由高功率光纤飞秒光梳光源和超分辨相干成像分析仪两部分组成。传统光学成像受限于光波衍射极限,空间分辨率只能达到波长量级。基于光纤飞秒光梳,发展高精度相干成像检测和高灵敏度痕量分析新方法,研制高精度光梳相干成像分析仪,旨在充分发挥飞秒光梳优势,提升仪器时间-空间-频谱的分辨本能,在测控精度和灵敏度等方面凸显其明显优势 较常规成像分析仪器具有明显优势,可为突破光学衍射极限超分辨成像研究带来重要技术创新,引领成像分析技术与器件跨越式发展。
  • 更清晰的化学成像和更快的分析速度,尽在安捷伦
    p   ----突破系统限制,带来全新方法 br/ /p p   2018年10月11日,北京——安捷伦科技公司(纽约证交所:A)日前推出一种新的化学成像方法,可为制药、生物医学、食品和材料科学领域带来更高的清晰度和更快的分析速度。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/743ebe64-e3fb-4813-a740-517636724f16.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong Agilent 8700 激光直接红外化学成像系统 /strong /p p   Agilent 8700 激光直接红外 (LDIR) 化学成像系统是化学成像和光谱分析领域的一项突破。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/b0bfd7ce-7c8e-4cb1-ab08-71e92a96e228.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " strong Agilent 8700 激光直接红外化学成像系统, 简单易用的Clarity 软件及标配切样器 /strong /p p   安捷伦副总裁兼光谱事业部总经理 Phil Binns 谈道:“这一‘无人值守’的解决方案可使高分辨率化学成像更快速、更准确,有助于分析片剂、层压材料、生物组织、聚合物和纤维中的成分。根据这些信息,科学家可以在几分钟之内更详细地分析更多样品,以往这个过程需要几个小时。” /p p   Binns 指出,新系统将对制药实验室产生重大影响,“科学家们可在更短时间内,在产品配方开发和故障排除方面做出更明智的决策”。 /p p   科学家利用 8700 LDIR,可获得有关活性药物成分、赋形剂、多晶型、盐类和缺陷的有用信息,使用户能够快速找出并解决药物开发过程中遇到的问题。简而言之,8700 有潜力帮助实验室加速药品上市并对配方更具信心。 /p p   8700 LDIR 将独特的量子级联激光器 (QCL) 技术与快速扫描光学元件和直观的 Agilent Clarity 软件相结合。重要的是,系统的成像无激光相干伪影,可提供大面积的高分辨率图像。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/77e0d826-b9cf-4805-8659-dc4505a1b1f2.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " strong 系统操作极其简单 ,“上样即可测试” /strong /p p   8700 LDIR 系统结构紧凑、无需液氮、可自动化操作,使各种水平的操作人员均可轻松获得高分辨率的化学成像。现在,用户大大缩短样品分析和数据审查花费的时间,从而提高分析效率。加载即可用的简单方法还可节省时间,是商业和学术环境下无人值守应用的理想选择。 /p
  • 磁共振成像系统获批上市
    近日,国家药品监督管理局经审查,批准了上海联影医疗科技股份有限公司生产的“磁共振成像系统”创新产品注册申请。该产品由超导磁体(5.0T)、梯度功率放大器、梯度线圈、射频功率放大器、射频线圈、检查床、谱仪、配电系统、对讲系统和生理信号门控单元组成。适用于体重大于20kg患者的临床MRI诊断。该产品采用全身临床5.0T超导磁体,首次在超高场磁共振系统中将全身体激发线圈应用于临床扫描,从而实现全身成像,可以提升图像信噪比和图像空间分辨率,并实现超高场体部成像。该产品核心技术为全身临床5.0T超导磁体、多通道射频并行发射控制和超高场磁共振系统射频安全成像,均拥有自主知识产权,关键性能指标已达到国际领先水平。药品监督管理部门将加强该产品上市后监管,保护患者用械安全。附件:国家药监局已批准的创新医疗器械序号产品名称生产企业注册证号1基因测序仪深圳华因康基因科技有限公司国械注准201434021712恒温扩增微流控芯片核酸分析仪博奥生物集团有限公司国械注准201534005803双通道植入式脑深部电刺激脉冲发生器套件苏州景昱医疗器械有限公司国械注准201532109704植入式脑深部电刺激电极导线套件苏州景昱医疗器械有限公司国械注准201532109715植入式脑深部电刺激延伸导线套件苏州景昱医疗器械有限公司国械注准201532109726MTHFR C677T 基因检测试剂盒(PCR-金磁微粒层析法)西安金磁纳米生物技术有限公司国械注准201534011487脱细胞角膜基质深圳艾尼尔角膜工程有限公司国械注准201534605818Septin9基因甲基化检测试剂盒(PCR荧光探针法)博尔诚(北京)科技有限公司国械注准201534014819乳腺X射线数字化体层摄影设备科宁(天津)医疗设备有限公司国械注准2015330205210运动神经元存活基因1(SMN1)外显子缺失检测试剂盒(荧光定量PCR法)上海五色石医学研究有限公司国械注准2015340229311三维心脏电生理标测系统上海微创电生理医疗科技有限公司国械注准2016377038712呼吸道病原菌核酸检测试剂盒(恒温扩增芯片法)博奥生物集团有限公司国械注准2016340032713脱细胞角膜植片广州优得清生物科技有限公司国械注准2016346057314植入式迷走神经刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准2016321098915植入式迷走神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2016321099016药物洗脱外周球囊扩张导管北京先瑞达医疗科技有限公司国械注准2016377102017冷盐水灌注射频消融导管上海微创电生理医疗科技有限公司国械注准2016377104018胸骨板常州华森医疗器械有限公司国械注准2016346158219正电子发射及X射线计算机断层成像装置明峰医疗系统股份有限公司国械注准2016333215620人工晶状体爱博诺德(北京)医疗科技有限公司国械注准2016322174721骨科手术导航定位系统北京天智航医疗科技股份有限公司国械注准2016354228022低温冷冻消融手术系统海杰亚(北京)医疗器械有限公司国械注准2017358308823一次性使用无菌冷冻消融针海杰亚(北京)医疗器械有限公司国械注准2017358308924可变角双探头单光子发射计算机断层成像设备北京永新医疗设备有限公司国械注准2017333068125全降解鼻窦药物支架系统浦易(上海)生物科技有限公司国械注准2017346067926经皮介入人工心脏瓣膜系统杭州启明医疗器械有限公司
  • 安捷伦推出用于微塑料分析的增强型激光红外成像系统
    安捷伦科技公司(纽约证交所:A)近日宣布,公司推出增强型 8700 LDIR 激光红外成像系统。该系统针对环境样品中的微塑料分析实施了进一步优化。这一新改进的系统方案包还包含了 Clarity 1.5 软件,这一重大升级可加快分析速度,增强光谱采集、转换和谱库匹配,并提供自动化工作流程,可直接分析滤膜上的微塑料。重新设计的创新样品支架能够更轻松地将滤膜上的样品递送至仪器,并且操作更加一致。   环境中广泛存在的微塑料成为全球日益关注的问题,这也促使政府更加重视微塑料污染,与此同时,环境机构也加强了对河流和海洋的监测。想要充分评估环境中的微塑料污染情况,研究人员就需要确定样品中塑料颗粒的粒径、形状和化学特性,但由于更小的颗粒往往具有更强的生物学相关性,因此该分析必须扩展到微米级的颗粒。   微塑料分析面临的主要挑战是分析周期长且操作复杂,阻碍了对现实系统的研究。此外,方法的差异性也限制了研究之间的可比性,因此难以评估微塑料污染趋势。FTIR 和显微拉曼成像技术等振动光谱提供了一种有用的替代方案,但由于分析时间长且方法过于复杂,这些方法都存在局限性。   VAgilent 8700 LDIR 使红外光谱分析兼具快速分析和易用性,并迅速成为微塑料颗粒分析的基准技术。该平台能够直接对滤膜上的颗粒进行分析,标志着速度和通量的又一次飞跃。测试量显著增加将使研究人员能够更好地了解环境中微塑料的污染程度,并有助于制定合理的标准和法规。   安捷伦副总裁兼分子光谱事业部总经理 Geoff Winkett表示:“当我与微塑料研究人员交谈时,一个反复提及的问题是如何使检测更快速、更简便。如果实际处理的样品数量有限,这可能会掩盖问题的真实本质。目前,其他可用的技术分析周期太长,并且无法捕获饮用水和环境水中大量的微塑料。一些快速且简便易用的分析方法,如 8700 LDIR,提供了一种重要且急需的替代方案,使研究人员能够在一定的区域或时间内采集更多样品,从而应对这些局限。”   作为食品与环境分析解决方案的优质供应商,安捷伦致力于为学术研究领域和商业检测公司提供能够改善用户结果的出色技术。增强型 8700 LDIR 的推出有望加强安捷伦在这一不断发展的市场中的前沿地位。   关于安捷伦科技公司   安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领军者,致力于提供敏锐洞察与创新,帮助提高生活质量。安捷伦提供涵盖仪器、软件、服务及专业技能的全方位解决方案,能够为客户挑战性的难题提供更可靠的答案。在 2021 财年,安捷伦的营业收入为 63.2 亿美元,全球员工数为 17000 人。
  • 环亚生物为您力推德国Innome公司新品 --zenCell owl活细胞动态成像及分析系统
    Innome是一家位于德国慕尼黑的新型高科技公司,创立于2015年,源于全球顶级原材料供应商Erwin Quarder Group。Innome公司专注于高精密仪器的定制和生产,业务涉及生命科学、临床诊断和药物研发,具备8级洁净度的高精密生产工艺车间该公司的zenCell owl活细胞动态成像及分析系统可置于细胞培养箱中,对细胞进行连续长时间的监测,并通过联网的电脑进行远程控制、数据读取与分析。该系统具备24个基于CMOS的成像模块,可同时对24个视野进行快速成像。设备优点:1. 体积小:可置于任何细胞培养箱内工作2. 通量高:内置24个显微镜头独立观测和记录,明场/暗场相差成像3. 成本低:无需额外耗材,兼容各种培养皿/板/瓶主要功能: 细胞迁移检测:划痕、侵袭、趋药性等实验 细胞培养监测:胚胎干细胞或间充质干细胞重编程如iPSC,细胞追踪形态记录 细胞培养记录:可实时监测各种条件(低氧条件/GMP等)下细胞培养情况 细胞培养标准化:记录细胞生长曲线 、增殖曲线、汇合度等 软件界面提前看: 图示:24个孔独立选择观察并记录相关图片和数据 更多功能持续更新中,敬请期待。。。更多信息了解或获取相关资料请联系我们。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制