有机钠

仪器信息网有机钠专题为您提供2024年最新有机钠价格报价、厂家品牌的相关信息, 包括有机钠参数、型号等,不管是国产,还是进口品牌的有机钠您都可以在这里找到。 除此之外,仪器信息网还免费为您整合有机钠相关的耗材配件、试剂标物,还有有机钠相关的最新资讯、资料,以及有机钠相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

有机钠相关的厂商

  • 东莞市美平有机硅材料有限公司是一家专注于研发、制造有机硅材料及相关产品的生产厂家,公司拥有自己的研发团队,品质稳定可靠,公司以创新为根本,以质量求生存,以管理创效益,竭诚为客户提供最优质的产品和服务。公司自主研发和生产硅胶环保原材料,产品涵盖20~80度沉淀硅橡胶、气相胶、挤出硅胶、阻燃防静电等特种硅胶材料,根据客户产品性能需求,调整合适的使用配方,为客户提供更好的产品解决方案。 公司目前主要针对的客户领域有:硅胶电线类、潜水泳帽泳镜类、硅胶套子类、厨具类、医疗类等等以硅胶为基材的产品,包括沉淀法硅橡胶、气相法硅橡胶,产品通过SGS的环保标准和食品级标准。公司产品质量和服务长期以来深受国内外用户的信赖和好评。 欢迎新老用户来电来函洽谈业务,与我们携手,紧密合作,共同在有机硅产品的开发,利用上创造一个新的领域。
    留言咨询
  • 西安立友机械有限公司是国内知名的专业研究、设计、制造超细粉体加工设备的科技形企业。我公司技术力量雄厚,生产设施先进,质量检验严格,研制生产的部分产品经厂家使用及专家评定技术性能已达到国际先进水平。本公司的各种超细粉体加工设备可广泛用于电子材料、磁性材料、稀土材料、矿产、陶瓷、磨料、化工、耐火材料、医药等行业。
    留言咨询
  • 上海贝纳化工有限公司是一家专业从事环境治理的公司。经过近些年的快速发展,上海贝纳化工有限公司已经成长为一个无论是在科学研究、产品开发、市场营销、技术服务、还是在生产能力方面都居于中国领先水平的特种化学品和技术服务公司,足以满足各种工业领域客户多样化环境治理的需求。为客户提供在线VOC监测、冷却水处理、锅炉水处理、工艺过程水处理、废水处理、中水回用、粉尘控制、异味控制、节水技术等的整体解决方案。   上海贝纳化工有限公司的专业技术、实践经验、热忱服务、信息资源和卓越员工为客户提供   ◆最佳的技术革新及突破   ◆最满意的客户服务   ◆最有效地协助客户达成环保目标   ◆最正确地协助客户解决问题   ◆最大程度帮助客户降低成本   上海贝纳化工公司以其先进的技术和控制系统,在VOC在线监测、水处理及工艺过程处理上,为客户提供全面的服务。上海贝纳化工有限公司的处理方案,应用在纸浆及造纸业、炼油业、石油化工业、钢铁业、电力行业、金属及塑胶业、制糖及酒业、食品加工业、汽车及矿业等,尽己所能为客户提供价值。主营产品:挥发性有机气体VOC在线分析仪(火焰离子化检测仪) 全球重工业的迅猛发展导致最近几年许多地区大气中的烃含量急剧增长。火焰离子化检测仪可以对烃含量进行检测,在空气分离厂、产品管线和气缸充装站等可能出现THC污染的过程中,都可以使用火焰离子化检测仪对低至ppb级的易燃总烃 (THC) 含量进行检测。火焰离子化检测仪 (FID) 的工作原理是对样气中有机化合物燃烧时形成的离子进行检测,所产生的带电分子会让两个电极之间导电。离子都被吸收到一个集电片上,在离子撞击集电片时就会产生电流。FID能对电导率进行测量,并产生一个与样气中总烃 (HC) 浓度成正比的输出。在仕富梅FID中,会通过一个运算放大器对该信号进行增强,从而减小漂移和热噪声,提供精确的非消耗型测量结果(100ppb分辨率)。采用仕富梅FID技术的产品:http://ww3.servomex.com/FID微量烃分析仪,是ASU安全性和质量控制应用的理想之选
    留言咨询

有机钠相关的仪器

  • HTY 水中总有机碳(T0C)测定仪,属高性能检测分析仪器。采用薄膜电导率检测技术,避免了直接电导率中无法克服的杂质离子的干扰,解决了电导率在化学分析应用中的最大难题;采用双波长紫外光纳米催化氧化法,其氧化能力较传统的单波长紫外光氧化法提高100倍以上,灵敏度极高,避免了氧化剂或其它载气导入时杂质的影响。 『技术参数』 1. 电源:220V± 20V2. 电源频率:50Hz± 0.5Hz3. 额定功率:100W4. 基本尺寸:48CM× 42CM× 16CM5. 检测极限:0.001mg/L6. 检测精度:± 10%7. 干扰:对卤化物和碳氢化合物的干扰不敏感8. 检测范围:0.001mg/L&mdash 2.5mg/L9. 分析时间:6min10. 响应时间:30 min以内11. 样品温度:0-95℃12. 环境温度:10-40℃ 温度变化在± 5℃/d以内13. 内部样品流速:0.35ml/min 14. 相对湿度:85%以下 『 特点』 1. 校正和验证方法简单,使用公司提供的或者用户自制的标准液进行仪器校正和验证。2. 成本低并且易于操作和维护,最低的TOC保养开销。公司提供一个包括酸试剂,泵管,UV灯的维护组件。3. 可以连接一个自动进样装置应用于实验室、现场连续测量或手持定点取样和在线分析。4. 体积小、重量轻、耗能少、携带方便。5. 薄膜/电导技术和UV氧化6. 全面的售后服务,公司提供完善的原厂和现场服务。7. 具有自动的上限报警输出。超出设定的监测结果时可以提醒操作者。8. 易于按照美国药典26643和欧洲药典2.2.44以及中国药典所要求的TOC方法进行系统适应性测试。9. 超大的320*234的点阵真彩显示器以及人性化的界面。10. 具有RS232数据接口和微打印接口。『应用范围』 该仪器主要适用于制药用水、饮用水、生物化工、环保监测、清洁度验证等
    留言咨询
  • 纳滤膜设备 400-877-2799
    纳滤膜是指过滤精度介于超滤膜和反渗透膜之间,对有机物截留分子量从100~1000道尔顿的分离膜。大多数纳滤膜是荷电膜,具有Donnon效应,对二价离子具有高截留效率,而对一价离子具有低截留效率。利用这一原理,可以用来进行一价盐和二价盐的分离及生物有机产品浓缩脱盐。纳滤膜分离技术常被用于取代传统工艺中的冷冻干燥、薄膜蒸发、离子交换除盐工艺过程,具有能耗低,分离效果好,无酸碱再生废水等优点。主要特点:● 分离精度高;分离过程是纯物理过程,无相变,能耗低● 低温浓缩,非常适于热敏性物质的处理● 浓缩与脱盐同步进行 ,同时脱除小分子杂质应用:● 发酵类原料药的浓缩:6-APA,7-ACA,红霉素,万古霉素,阿卡波糖,奥利司他,谷胱甘肽,霉酚酸,苯丙氨酸,VC等● 食品行业产品浓缩(果糖、低聚糖、果汁等)● 单糖多糖分级分离● 染料及中间体脱盐浓缩● 自来水升级达标● 废酸、废碱回收(树脂交柱的洗柱废水、化纤行业碱液、印钞行业碱液等)
    留言咨询
  • 仪器简介:2111LL新一代微钠表,1811EL的升级产品! 近年来,火力发电厂中连续监测水和蒸汽流路系统中的钠离子含量越来越被人们所重视。有两个重要的原因:了解了钠离子对汽轮机的危害;机组正朝高压大容量方向发展。发生在汽轮机内的腐蚀过程被许多研究所证实,并且有相当数量的爆管,炉管变脆,汽轮机故障都是由于腐蚀造成的。腐蚀过程中有几种相关的化学成份,其中钠离子是造成这种问题最重要的原因之一。 超临界大容量机组对水质的要求更高,及时、准确地监测水、汽中极微量的钠离子含量是极其重要的,为此美国热电公司(Thermo)最新开发的新一代2111LL微钠分析仪将再次为电力行业做出卓越的贡献! 2111LL微钠表的其它特色及其优势: 人性化滚动式菜单操作界面,自动引导工作人员进行一一步的操作 可选择的校正周期和试剂的使用周期,极少的繁琐操作,无危险废弃物 弹性安装方式,整套仪表符合原1811EL钠表的安装定位孔,无需进行任何更改,即可方便替换原有的仪表 自动量程选择,仪表自动确定最佳的测量范围 大尺寸、带背景灯的LCD显示,即使在光线不足的测量现场或者也可清晰读数 自诊断功能,故障排除方便,维护简单服务热线: 8008105118(免费)/4006505118(支持手机用户)技术参数:钠离子选择性电极 测量范围 0.01 ppb &ndash 10 ppm 分辨率 1,2, 3 或4位有效数字 准确度 (DKA校正) +/-5% 或 0.01ppb,(大者为准) 准确度(DKA和离线校正) +/-2.5% 或0.01ppb, (大者为准)(以参考值作为"真值") 精度 标准偏差 +/-2.5% 或0.01ppb, 大者为准 响应时间 2分钟达到95%(新清洗过的电极) 显示的单位 ppb, ppm mV 测量 测量范围 +/-1999.9 分辨率 0.1 相对精度 +/-(0.5 mV + 0.1%) 温度测量 测量范围˚ C -10 至 120 ˚ C 分辨率˚ C 0.1 相对精度˚ C +/- 0.5 温度显示 有 手动温度补偿 有 温度连续读数 是 ATC电极 30K 热敏电阻 独特的离子标正方法 DKA 标正方法 是 DKA 标正点数 3 点 离线标定 有 离线标定点 1 点 预编程的标准值功能 有 传统标定方法 可编程方法输入浓度和体积值 LED状态指示 绿色 运行正常 黄色 报警 红色 失效 样品条件要求 温度 5 到 45˚ C 总碱度 低于50 ppm CaCO3 入口压力: 8 至 100 psig(0.6-6.9bar) 流速: 40 ml/分钟 通过压力调节阀来实现 水样入口: 1/4&rdquo NPTF内螺纹 水样排放口: 3/4&rdquo NPT 外螺纹 样水取样器 可选 试剂 纯二异丙胺 显示 显示类型 带背景光的传统LCD 显示大小 54 x 76 mm 显示背景光 有 图形显示 有 (上部) Marquee 温度, 用户提示,菜单/标定/诊断的滚动说明 中间 浓度, 错误代码 下部 mV (显示/关闭) 信号输出 输出通道 隔离的两路输出 输出方式 0-20mA 或 4-20 mA 线性或对数输出 数据记录 有 电源要求 85-132V 100mA 170-264V 200mA 50-60Hz AC 包装尺寸 65× 45× 27cm(L× W× D) 重量 22.7Kg主要特点:全新的专利ROSS Ultra® 电极  ROSS Ultra电极使用特殊的钠离子选择性玻璃成份,具有极高的钠离子选择性,在测量含有微钠的水样时能得到良好的线性曲线,从而获得最低的检测下限和精确可达0.01ppb的测量结果。  ROSS Ultra电极独特的内参比系统提供了快速的响应速度,更好的精度和重复性专利的无漂移参比系统受样品温度变化的影响最小:在0-100℃范围内,获得的测量结果比常规电极的精度高3-5倍。漂移量极小:0.1 ppb/月,避免了频繁的校正。  非银/氯化银的参比系统,避免了因银/氯化银电极离子析出造成的测量偏差。 独特的无泵试剂添加技术  2111LL微钠表使用独特的扩散技术,试剂以气态形式透过扩散管进入水样调节pH值,有效避免了因直接向水样中添加试剂而造成对水样的污染。  独特的扩散技术不再需要试剂泵向系统中添加试剂,从而简化流路系统,使得整个系统更加稳定、可靠。 DKA两点已经添加标定方法  DKA标定法仅需使用移液枪添加标准液,体积量取精度高,操作简单,标定结果可靠。  DKA标定法使用常规ppm级浓度的标准液,而无需准备极难精确配制的ppb级浓度的标准液。  DKA标定法可在含有痕量钠离子的被测水样中直接进行标定,并得到精确的标定结果。 专利的流通池设计 流通池将样品与参比溶液完全隔离,避免了参比溶液的干扰。  校正过程中循环流动,及时感测离子浓度的变化  快速、精密的混合样品,即使是微量的浓度变化也可以在数秒至数十秒内检测到  透明的流通池设计,可以快速、一目了然的观察到正在进行的操作  无电磁阀等运动机件,具有极高的可靠性 系统简单可靠,维护方便  流路系统结构简单,无复杂部件维护方便  电路系统集成设计,故障率低 极高的性价比 2111LL钠表融合了以上几种最优化的设计,而具有测量下限低,准确度高,使用操作简单,维护方便,运行费用低廉等优点。使得这款具有极高性价比的2111LL微钠表成为电力行业痕量钠离子测量的最佳选择。
    留言咨询

有机钠相关的资讯

  • 有机纳米光子路由器研制成功
    低维有机纳米光子路由器   纳米光子学主要研究如何在微纳米尺度上对光子运动进行操纵、调节和控制,在未来信号传播和信息处理方面具有广泛的应用前景。中科院化学所光化学重点实验室的科研人员成功研制出低维有机纳米光子路由器,可实现单点激发、多通道不同的光信号输出。相关结果近日发表于《美国化学会志》,英国皇家化学会《化学世界》杂志也对该成果作了报道。   据了解,该实验室近年来在低维有机材料光子学方面进行了系统的研究。在前期对一维有机光波导材料的研究中,研究人员发现了有机材料中的弗伦克尔激子与光子的强耦合作用所形成的激子极化激元(EP)在有机光子学中的作用机制 进而利用三重态敏化,通过EP传播过程中的双向能量转移作用,实现了稳定白光输出的光波导器件 进一步利用有机晶体材料中的激子极化激元的超高折射率,实现了双光子泵浦有机纳米线激光器。相关工作证实了有机低维材料在纳米光子学中的巨大潜力,为实现基于低维有机材料的光子学功能元件奠定了基础。   在此前研究的基础上,该实验室科研人员联合美国西北大学,从有机纳米线异质结的可控制备入手,利用有机小分子特定的组装与生长特性,通过液相和气相两步法,实现了客体分子在主体分子的一维主干结构上的可控外延生长,从而得到了一维有机分枝型异质结构。将有机异质结构中的荧光共振能量转移(FRET)和光波导性质结合起来,实现了信号可调制的纳米光子路由器。   这些成果为深入研究有机功能分子体系的组装行为,控制合成功能化有机复杂微纳结构,研究复杂结构中光子学的内在机制,以及探索光子通讯与运算中需要的各类元器件提供了重要的借鉴。
  • 有机核壳纳米线实现化学气体高效传感
    中科院化学所光化学院重点实验室的科研人员利用有机纳米光子学材料,实现了高效化学气体传感,相关成果发表在近期出版的国际期刊《先进材料》杂志上,并被作为即将出版的《先进光学材料》的内封面文章重点介绍。   据了解,光波导传感器具有普通传感器无法比拟的灵敏度高、体积小、抗电磁干扰、便于集成等优点,在气体与生物传感中扮演着越来越重要的角色。   中科院化学所光化学院重点实验室的研究人员近年来一直致力于低维有机光子学方面的研究,围绕光子学集成器件中所需要的光波导、微纳光源、光子路由器等开展了一系列探索工作。   近来,他们又在有机纳米材料电化学荧光转换方面取得突破,相关工作证实了低维有机材料在纳米光子学领域的巨大潜力,为实现有机纳米光子学传感器件奠定了基础。   最近,在国家自然科学基金委、科技部和中科院的支持下,科研人员在前期工作的基础上,通过超分子自组装方法制备出二元有机复合纳米带,利用荧光共振能量转移中受体的杠杆效应,制备出高效的酸碱气体传感器。他们进一步将有机金属配合物的单晶纳米线引入电化学发光传感体系,实现了对生物分子多巴胺的高效、灵敏检测,相关工作发表在《先进材料》杂志上。   在此基础上,研究人员与活体分析化学实验室合作,制备出有机核/壳纳米结构作为光波导传感器,利用核壳之间的消逝波耦合,有效地放大了波导材料对气体的响应,从而实现了对H2O2气体的快速、高灵敏、高选择性的原位检测。
  • CNAS发布《环境领域有机检测实验室认可技术指南》
    p   为进一步指导申请认可的开展有机检测活动的环境领域实验室提供技术建议,也为评审员的评审活动提供技术指导,CNAS秘书处组织制定了CNAS-GL036:2018《环境领域有机检测实验室认可技术指南》。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/87a86d91-f2ea-40b7-ad2f-7d297467c542.jpg" title=" 认证认可.jpg" alt=" 认证认可.jpg" / /p p   此指南适用于使用色谱和/或质谱法,对具有明确分析结构组成的有机物进行检测的活动。与《检测和校准实验室能力认可准则》相比,主要是对范围、资源要求和过程要求进行了细化和特殊规定。在最后又增加了高分辨气相色谱/高分辨质谱法测定二噁英类的特殊要求。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/0ef3586d-d21f-408f-bea4-fd2d6b8337e1.jpg" title=" 目录.jpg" alt=" 目录.jpg" / /p p   下载链接: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/b923103b-33be-4b4a-bc47-651dc7bac499.pdf" title=" 环境领域有机检测实验室认可技术指南.pdf" style=" color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " strong span style=" font-size: 16px " 环境领域有机检测实验室认可技术指南.pdf /span /strong /a /p p br/ /p

有机钠相关的方案

  • 钠电池前驱体材料中总有机碳分析
    钠电池三元前驱体材料主要以共沉淀法合成,将铁、钴、锰等水溶性盐溶液混合,然后与氨,碱混合,通过控制反应条件形成氢氧化物,前驱体材料中少量的有机物残留严重影响钠离子电池的性能。本文使用总有机碳分析仪TOC-L CPH和SSM-5000A固体样品模块,采用加酸预处理方法测试了钠电池前驱体粉末中总有机碳含量,间接测定了有机物残留量,该方法可以为锂电材料生产工艺监控提供参考。
  • 上海纳锘实业:离子色谱法测定啤酒麦汁中的有机酸
    啤酒中阴阳离子、有机酸的种类、含量与构成对啤酒的风味和口感有很大的影响,因此它们的含量是啤酒的重要的质量指标。本文采用瑞士万通的Metrohm-861型离子仪对福建雪津啤酒有限公司啤酒/麦汁样品进行了分析测定,采用Metrosep C2 100 型阳离子分析柱,4mM酒石酸+0.75mM吡啶二羧酸+2%丙酮淋洗液,分离测定钠、钾、氨、钙、镁等阳离子;Metrosep A Supp 5 250 型阴离子分析柱和3.2mmol/L碳酸氢钠+ 1mmol/L碳酸钠+2%丙酮淋洗液分离测定7种常规阴离子和甲酸、乙酸、草酸等阴离子和有机酸;Metrosep Organic acid有机酸分析柱和0.3mM H2SO4+15%丙酮淋洗液分离测定a-酮戊二酸、丙酮酸、柠檬酸、酒石酸、乳酸、苹果酸、富马酸、琥珀酸、甲酸、乙酸等有机酸。方法操作简单,灵敏度高,结果令人满意。
  • 注射用硝普钠的分析
    按照2020版《中国药典》中注射用硝普钠含量测定项下分析方法,对系统适用性溶液进行分析时,调整有机相的比例和柱温,可以得到满足药典要求的分析结果。

有机钠相关的资料

有机钠相关的论坛

  • 有机硅测钠钾

    接到一个客户的样品,是有机硅的涂覆胶,要测样品的钾和钠,我的打算是烘干后用硝酸加氢氟酸消解后用ICP-OES 来测,不过效果我不敢确定,你们有做过么?是用什么方法来测的呢?

  • Rtx-5和Rtx-1701哪根做有机氯,哪根做有机磷,这个怎么区分啊?

    Rtx-5和Rtx-1701哪根做有机氯,哪根做有机磷,这个怎么区分啊?新上的农残检测项目,买了岛津的GC2014C,配的是双FID,FPD和ECD,色谱柱给配的是Rtx-5和Rtx-1701,本人对农残检测以前没接触过?不知道哪根做有机磷,(要做敌敌畏和甲胺磷),哪根做有机氯(要做666和DDT),请高手指点啊,这个怎么区分啊?是不是和柱子的极性有关啊?另外哪位大侠有农残检测相关资料,能给小弟发一些吗?万分感激!!!

有机钠相关的耗材

  • 有机硅光扩散微球
    纳微科技利用自主专利技术生产的光扩散微球,产品包括单分散有机高分子微球PMMA、PS、P(MMA/S) 和有机硅微球。其优异的滑动性、高分散性、热稳定性及耐气候性,使纳微光扩散微球广泛地应用于LED 灯罩、灯管、LCD 光扩散板和光扩散膜、化妆品、油漆涂料、塑料添加剂等众多领域。光扩散膜示意图 产品特性有机高分子微球(PMMA、PS、P(MMA/S) ) 有机硅微球※ 粒径均一※ 分散性好,无重叠或团聚※ 纯度高,无污染※ 兼容性好,可高效分散在基质中※ 化学稳定性好※ 透光率高,折光率可调※ 粒径分布窄※ 光扩散效率高※ 耐热性能好※ 机械强度和硬度高※ 不溶于有机溶剂 纳微光扩散微球扫描电镜SEM图 产品应用※一般照明散光灯罩※塑料薄膜抗粘结剂(开口剂)※LCD光扩散板和光扩散膜※化妆品添加剂以改善光散射特性,涂感及光滑性等※LED光扩散灯罩※油漆涂料,橡胶等添加剂以改善耐磨性,防水性等※降/消光剂用于塑料膜,板材及油漆涂料※塑料改性添加剂※用于板材的抗阻碍剂※陶瓷制孔剂以降低密度,比热,和热传导订货信息
  • 气相色谱固定液:Bentone 34 (有机皂土34) | 10033
    产品特点:Bentone 34 (有机皂土34), 50 grams订货号:10033Categories:GC Stationary Phases, Miscellaneous Liquid Phases描述:● 推荐使用温度(最低/最高):20℃/200℃● 推荐的溶剂是甲苯/氯仿
  • 个别集中单元素有机元素有机金属Spectrostandard® 油量标准
    Individual Concentrated Single-Element Organo-Element Organo-Metallic Spectrostandard® Oil Standards个别集中单元素有机元素有机金属Spectrostandard® 油量标准 Individual Concentrated Single-Element Organo-Element Organo-Metallic Spectrostandard® Oil Standards产品货号元素符号重量%, Z LOMSAl 3.0铝Al3.0000LOMSSb 2.0锑Sb2.0000LOMSBa 12.5钡Ba12.500LOMSCd 10.0镉Cd10.000LOMSCa 5.0钙Ca5.0000LOMSCe 5.0铈Ce5.0000LOMSCr3.50铬Cr3.5000LOMSCo 7.5钴Co7.5000LOMSCu 6.0铜Cu6.0000LOMSFe 4.0铁Fe4.0000LOMSPb 20.0铅Pb20.000LOMSLi 1.5锂Li1.5000LOMSMg 3.0镁Mg3.0000LOMSMn 6.0锰Mn6.0000LOMSMo 5.0钼Mo5.0000LOMSNi 5.0镍Ni5.0000LOMSP5.0磷P5.0000LOMSK 7.5钾K7.5000LOMSPr 3.0镨Pr3.0000LOMSSe 3.5硒Se3.5000LOMSSi 7.5硅Si7.5000LOMSNa 2.5钠Na2.5000LOMSSr 10.0锶Sr10.000LOMSTl 5.0铊Tl5.0000LOMSSn 7.5锡Sn7.5000LOMSTi 5.0钛Ti5.0000LOMSV 4.0钒V4.0000LOMSY 2.5钇Y2.5000LOMSZn 6.0锌Zn6.0000LOMSZr 5.0锆Zr5.0000
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制