当前位置: 仪器信息网 > 行业主题 > >

正电子谱仪

仪器信息网正电子谱仪专题为您提供2024年最新正电子谱仪价格报价、厂家品牌的相关信息, 包括正电子谱仪参数、型号等,不管是国产,还是进口品牌的正电子谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合正电子谱仪相关的耗材配件、试剂标物,还有正电子谱仪相关的最新资讯、资料,以及正电子谱仪相关的解决方案。

正电子谱仪相关的资讯

  • 世界首台数字化正电子发射断层成像仪问世
    记者12月10日从武汉光电国家实验室(筹)获悉,华中科技大学教授谢庆国带领科研团队,成功研发出世界首台数字化正电子发射断层成像仪(PET)。利用该数字PET追踪到的肿瘤,仅为目前商用PET能够发现的最小肿瘤的二十分之一,有助于更早、更灵敏地发现肿瘤、诊断癌症。   谢庆国介绍说,首台数字PET已完成了13例肺癌、肝癌、卵巢癌等癌症鼠,16例阿尔茨海默病鼠,30例正常鼠模型的研究。这些研究对仪器性能进行了全面验证,特别是证实了在空间分辨率上的重大突破。   2001年以来,谢庆国带领的医、工、理等13个学科交叉融合的团队,发明了一种“多电压阈值采样方法”,成功获得了足够信息的采集,准确得到了待测量的“信号”,实现了精确的图像重建,进而通过学、研、产的协同创新,完成了从数字PET理论发现,到关键探测器工业化生产,到商业机装配与动物成像试验的整个研发过程。   中国核学会核医学分会理事长、华中科技大学附属协和医院PET中心教授张永学称,分辨率上任何一点进步,在医学上都是革命性突破,对患者都意味着生命的延长,对医生意味着治疗的最佳时机与精准度 数字PET能使PET系统性能提升到一个新境界,可以更早检测和更准确诊断出疾病。   美国芝加哥大学终身教授、PET成像领域知名专家高建民博士认为,谢庆国开创了数字PET的先河,其中最迫切的是将技术转化为产业优势,实现中国尖端医学成像设备的产业升级和跨越式大发展。
  • 2000万!东北师范大学化学学院球差校正电子显微镜(进口)设备采购项目
    项目编号:SYZX2022-290项目名称:东北师范大学化学学院球差校正电子显微镜(进口)设备采购预算金额:2000.0000000 万元(人民币)采购需求:1项目编号:SYZX2022-290。2项目名称:东北师范大学化学学院球差校正电子显微镜(进口)设备采购。3 采购方式:公开招标。4预算金额:274.5万美元(人民币限额2000万元)。5采购需求:一台球差校正电子显微镜(详见招标文件“第五章 项目需求”)。6合同履行期限(供货期):合同签订之日起300日内完成交付、安装及调试。7本项目不接受联合体投标。合同履行期限:合同签订之日起300日内完成交付、安装及调试。本项目( 不接受 )联合体投标。
  • 【自传】像差校正电镜技术先驱之Knut Urban
    p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " 【简介】 /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " span style=" font-size: 18px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/d0dc0dbb-1e74-46e2-b64b-1356a6ea1c91.jpg" title=" 图片1.png" alt=" 图片1.png" / /span strong span style=" font-size: 18px " br/ /span /strong /span /p p span style=" color: rgb(0, 112, 192) font-size: 18px " /span /p p style=" text-align: justify text-indent: 2em " Knut Urban,德国物理学家。曾就读于斯图加特大学,并于1972年获得物理学博士学位,之后前往斯图加特的马克斯· 普朗克金属研究所。 /p p style=" text-align: justify text-indent: 2em " 1986年,Knut Urban被任命为德国埃尔兰根-纽伦堡大学材料性能教授,一年后,成为亚琛工业大学实验物理系主任和尤利希奥地利维也纳大学微结构研究所所长。在此期间,Knut Urban与Harald Rose和Maximilian Haider合作获得了第一个像差校正的透射电子显微镜结果,该成果于1998年发表。 /p p style=" text-align: justify text-indent: 2em " 随后, span style=" text-align: justify text-indent: 32px " Knut& nbsp /span Urban致力于将像差校正的透射电子显微镜应用于材料科学,尤其专注于晶格内原子的精确排列与材料物理特性之间的联系。 /p p style=" text-align: justify text-indent: 2em " 2004年,Knut Urban被选为厄恩斯特· 鲁斯卡电子显微镜和光谱学中心的主任之一,自2012年以来,一直是亚琛工业大学的JARA高级教授。 span style=" text-align: justify text-indent: 32px " Knut& nbsp /span Urban已获得多项荣誉,这些奖项包括美国材料研究学会的冯· 希佩尔奖,并与 span style=" text-align: justify text-indent: 32px " Harald& nbsp /span Rose和 span style=" text-align: justify text-indent: 32px " Maximilian& nbsp /span Haider共同获得了沃尔夫物理学奖,本田生态技术奖和BBVA基础科学知识前沿奖。Knut Urban还是包括美国材料研究学会,德国物理学会和日本金属与材料学会在内的多个科学机构的荣誉会员。 /p p style=" text-align: justify text-indent: 2em " 2020年,Knut Urban与Maximilian Haider、Harald Rose、Ondrej L. Krivanek一起获得了科维理纳米科学奖。科维理纳米科学奖评审委员会认为,Knut Urban为首台像差校正常规透射电子显微镜的实现做出了突出贡献。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/noimg/faf1d133-0893-47d3-88dd-7cec59b90830.gif" title=" 1.gif" alt=" 1.gif" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 从左至右:Maximilian Haider, Knut Urban, Harald Rose, Ondrej L. Krivanek /span /p p span style=" color: rgb(127, 127, 127) " br/ /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " 【 span style=" text-align: justify text-indent: 32px " Knut Urban& nbsp /span 自传】 /span /strong /span strong /strong /p p style=" text-align: justify text-indent: 2em " 我在战后初期的德国斯图加特长大,这个城市因汽车工业和众多中小型工企而闻名。 /p p style=" text-align: justify text-indent: 2em " 我的父亲是一名电气工程师,经营着一家小型电动机公司。在过去的几十年里,父亲的一系列研发成了公司的主要产品。在我的家里,有很多关于科学和技术的思考、阅读和讨论。除了感谢父母的关心,我还感谢他们的一种批判、开放、合作的思维方式,这对我后来的发展非常有益,尤其是在职业上。 /p p style=" text-align: justify text-indent: 2em " 当我还是个小学生的时候,就利用学到的技术和祖父一起建造了我的第一台光学望远镜,这台仪器连接着一台反射望远镜,可用于更进一步的观察。几年后,我成为斯图加特天文台最年轻的成员。这就是我如何从天文学进入物理学的过程。 /p p style=" text-align: justify text-indent: 2em " 高中毕业后,我加入了西门子(Siemens)公司,在电气工程领域做了为期一年的学徒,这是六十年代进入大学学习物理的先决条件。这段时期对我来说很重要,通过与工人们一起学习生产和设计等电子工程技术,不仅让我获得了重要的专业知识,还增强了社交能力。 /p p style=" text-align: justify text-indent: 2em " 随后,我进入斯图加特技术大学(the Technical Univercity of Stuttgart)学习物理。期间,我受到博世(Bosch)公司在半导体领域工作的启发,在大学期间完成了半导体领域的实验文凭论文。在这里,我学到了很多有关低温、半导体的光学特性以及晶格缺陷如何影响半导体的光学特性等知识。这是我进入固态物理学,特别是进入晶体缺陷物理学的过程。 /p p style=" text-align: justify text-indent: 2em " 我的整个职业生涯进一步决定性因素是Alfred Seeger(斯图加特大学固体物理学教授,Max Planck金属研究所所长)对我在低温下塑性变形锗光学性质的研究结果感兴趣,并帮助我完成了博士学位论文。Seeger因在晶体缺陷领域的开拓性工作而享誉国际,并且是当时最灵活变通的固态物理学家之一,他所研究的领域和所使用的实验和理论方法都是非常多样的。 /p p style=" text-align: justify text-indent: 2em " Seeger向他的博士生介绍了具有挑战性的课题,并相信他们会成功。根据他的提议,我不得不跳入冷水中,为Max Planck研究所的新型高压电子显微镜搭建一个物镜台。难点在于,该平台应允许在不影响显微镜分辨率的情况下将样品冷却至液氦温度(-269℃),以便研究金属中的原子晶格缺陷。别的团队尝试了大约十年,都没有成功。用于冷却的沸腾氦的振动和低温的不稳定性破坏了光学分辨率。Seeger为我提供了在柏林的Fritz Haber研究所为Ernst Ruska进行系统设计和建造的机会。(Ruska后来因电子显微镜的研发而获得了诺贝尔奖。) /p p style=" text-align: justify text-indent: 2em " 作为一名彻头彻尾的工程师,Ruska一开始对我这个年轻的物理学家持怀疑态度。但在Siemens和Bosch车间的工作让我为这份高要求的工作做好了准备,几个月后,我联系Ruska进行面试,腋下夹着一大捆图纸走近他时,令他印象深刻。从那时起,他就怀着极大的兴趣关注了我的工作,并向我提供了研究所的所有设施。一个有新的、独立想法的新人可以取得别人所无法接受的突破,这种情况并不少见。 /p p style=" text-align: justify text-indent: 2em " 高压电子显微镜中的氦冷却物装置成为我们多年来直接在高分辨率观察下进行实验的平台。这种显微镜有一个吸引人的优点,即在高电子能量下,可以通过电子-原子位移产生原子缺陷,而在低能量下,可以在任何所需温度下观察它们的二次反应。我自己也得到了一些新的研究结果,其中最重要的就是发现了辐射引起的原子缺陷扩散(由电子缺陷相互作用引起)以及合金中旋节线有序性的证明,这是一种基于特殊晶格对称性的复杂工艺,经过多年的理论讨论,但是从未经过实验证明。 /p p style=" text-align: justify text-indent: 2em " 80年代后期,我离开了Max Planck研究所,成为埃朗根大学材料科学教授。几年后,我搬到了Jü lich研究中心,担任固态科学研究所所长,并兼任亚琛工业大学实验物理教席。在此期间,我开始对准晶体这一新兴领域产生了兴趣,之后不久,Dan Shechtman因其发现获得了诺贝尔奖。 /p p style=" text-align: justify text-indent: 2em " 结合低温和高温原位电子显微镜技术,我首次证明了合金中的准晶体相是由高温时非晶态自行形成(之前认为进入准晶相的唯一途径是从熔体中骤冷),并发表了论文,这篇论文成为我进入准晶体科学家“俱乐部”的“入场券”。 /p p style=" text-align: justify text-indent: 2em " 几年后,当偶然发现其中一张图像中的位错是一种与晶体塑性行为密切相关的晶格缺陷时,我开始对准晶体塑性感兴趣,并在这一领域工作了很多年。位错的发现非常令人兴奋,因为它出乎意料。准晶体是基于六维晶格的,要了解这些晶格缺陷的拓扑结构非常困难。同样复杂的是,在电子显微镜中对这些缺陷进行定量表征的对比理论的提出,让我们忙了很长一段时间。另外,位错的观察表明,准晶体材料一般来说很脆,可能会发生塑性变形,我们通过在高压电子显微镜下进行原位实验证明了这一点。 /p p style=" text-align: justify text-indent: 2em " 80年代是固态物理学和材料科学令人振奋的年代,尤其是氧化物材料高温超导性的发现以及扫描隧道显微镜(STM)的发明。我们从Alfred Seeger那里学到的很多新固态物理学内容,以及他为我们提供的例证,伴随了我的整个职业生涯中。当时,我刚刚接管了德国国家研究中心的一个研究所,该研究所拥有合理的设备和人员资源,于是我就全身心地投入了另外两个工作组的建设,一个是STM,另一个是氧化物超导体的研究。 /p p style=" text-align: justify text-indent: 2em " STM最初是作为表面物理技术引入的,由于我对晶格缺陷感兴趣,我们建立了一个新的STM,成为第一个研究半导体中单掺杂原子以及其电场、扩散和在器件pn结中行为的团队;而先进半导体技术,则是一个非常有趣的研究。对于氧化物超导体,有两件事被证明是对我们有利的。为了实现自己的想法,我们建造了用于沉积超导薄膜及器件的设施,并使用我们最先进的电子显微镜直接检查膜沉积结果的质量并对其不断改进。我们在Josephson装置和高频性能方面突破了国际记录,我们的超导微波谐振器被用于国际通信卫星项目。 /p p style=" text-align: justify text-indent: 2em " 当时的电子显微镜比以往任何时候都功能强大,我们为能够在80年代末投入使用新仪器而感到自豪,它们在200 kV时的分辨率约2.4埃,300 kV时的分辨率约1.7埃,这非常出色。另一方面,它们仍未达到原子尺寸,这在包括我在内的固态物理学家看来像“圣杯”一样。 /p p style=" text-align: justify text-indent: 2em " 1989年9月的“DreiLä ndertagung”(奥地利、德国和瑞士的电子显微镜学会四年一次的传统会议)上,Maximilian Haider和Harald Rose告诉我,有一个项目将决定性地改变我们未来的职业生涯,当然也将改变电子显微镜的“职业生涯”,这是一个大事件。Harald Rose刚刚完成了一项新的像差校正电子显微镜物镜的理论研究,保守估计,在目前的电子技术水平下,这种物镜有可能实现。几个月后,我们同意向大众基金会提交一份联合申请。目的是在海德堡欧洲分子生物学实验室的Haider实验室研制新的半平面校正透镜(即现在的“Rose 校正透镜”),并实现将其应用到经过适当改进的商用常规透射电子显微镜(CTEM)中。 /p p style=" text-align: justify text-indent: 2em " 由于在CTEM中还必须校正离轴像差,这是比较常见的情况,它自动包括扫描透射电子显微镜(STEM)的校正情况。由于该领域数十年的失败以及行业缺乏兴趣,美国资助机构决定不再资助像差校正电子光学系统的研发,因此全球相应的工作组开始解散。 /p p style=" text-align: justify text-indent: 2em " 大众基金会一般不为纯仪器的研发提供资金,但我们认为我们的项目有机会获得资助。作为一个由专门研究电子光学的理论和实验物理学家以及对不同领域具有研究兴趣的材料学家组成的团队,我们能从材料科学应用的角度来证明此项目的合理性。在经过一次真正的范式改变之后,今天,现在,电子光学中的像差校正问题得到了解决,并且原子副原子材料科学研究成为了我们日常生活的一部分,且几乎不可能使自己回到科学显然没有为原子分辨电子显微镜做准备的那个年代。 /p p style=" text-align: justify text-indent: 2em " 在材料科学即将进入纳米技术的时代,人们非常希望能达到原子范围的尺寸。但是几十年来电子光学无法实现,校正电子透镜像差的问题实在太困难了,这打击了材料科学家认为电子光学将能够帮助他们的信心。因此,最大的问题是说服我的同事——材料学家:我们的理论更好,比之前的尝试有更大的机会能取得突破。 /p p style=" text-align: justify text-indent: 2em " 在这种情况下,我决定在德国以及国外的材料科学的机构中举办多次演讲,并且组织了一些专门的会议来宣传材料科学对原子电光分辨率的需求。后来,我们的提案在最终审核会议上一票险胜,获得了资助。1997年,世界上第一台经过像差校正的透射电子显微镜的分辨率显示超过了1.4aiq(200 kV),几乎是未经校正仪器分辨率的两倍,这使我们能够在锗晶体中显示原子分辨率。 /p p style=" text-align: justify text-indent: 2em " 每个物理学家在大学的前几年都会学到原子世界遵守的量子物理,而这在很多方面与我们在日常生活中习惯的经典物理学有很大不同。所以如果我们想掌握原子尺寸获得的图像,还有很多东西需要学习。与外行人(直观地)看到高分辨率图像时的假设相反,原子不能被直接看到。电子对原子的电场起反应,因此需要特殊的光学操作才能获得图像。我们到底看到了什么,是我们接下来几个月的重点问题。努力最终得到了丰厚的回报,期间,仪器已移至Jü lich,在前人没有想到的特殊的新成像条件下,我们第一次成功地看到了氧化物中的氧原子。 /p p style=" text-align: justify text-indent: 2em " 氧化物正在成为最重要的材料类别之一,但是,由于其低散射能力,之前电子显微镜观测不到氧及其它轻原子,现在,这种情况突然改变了,氧化物化学家们非常热情,我们也已经从事材料中氧的研究许多年了。 /p p style=" text-align: justify text-indent: 2em " 通过原子像差校正电子显微镜解决的第一个重要的材料科学问题是证明了YBaCuO铜链平面中氧原子的顺序,这对高温超导理论非常重要,以前没有人能直接看到这些材料中的氧。此外,我们可以证明且测量BaTiO(和其他钙钛矿)晶格缺陷中氧原子的化学计量,从而解决了氧化物化学领域的一个长期争论。这再次证明了我们材料科学研究团队在这些领域以及电子显微对比理论方面的能力,使我们能够充分利用与电子光学同事同研发的新仪器。从一开始吸引我的是,我们发现通过将定量像差校正电子显微镜和测量与计算机中的量子物理和光学图像模拟相结合,可以测量原子位置和原子位移,且精确度比皮米计还高。这实际上是一个无法想象的维度,它相当于氢原子玻尔直径的百分之一,进入这些微小的维度意味着可以进入大量物理现象发生的领域。此外,显微镜和计算机模拟的结合为我们提供了有关所成像原子化学性质和浓度的分析信息。 /p p style=" text-align: justify text-indent: 2em " 2004年,我当选为德国物理学会主席,该学会是世界上历史最悠久,也是最大的物理学会,拥有超6万名会员。能够为这个协会服务,我一直感到特别的荣幸。该学会有很多非常文明的会长,是值得我们钦佩的人物,但是他们对物理学发展的巨大贡献却是我们所无法超越的。 /p p style=" text-align: justify text-indent: 2em " 科学领域是国际性的,能够遇见各国志同道合的人并跨越国界进行合作,是我的荣幸,我和许多同事也成为了一生挚友。以上这段简短的叙述是我整个科学生涯的摘录,没有提到我在法国巴黎附近的Saclay研究中心,在日本仙台东北大学担任客座教授,以及在中国的学校(清华大学和西安交通大学)多年的工作经历。 /p p br/ /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p a href=" https://www.instrument.com.cn/news/20200608/540683.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Maximilian Haider /span /a /p p a href=" https://www.instrument.com.cn/news/20201104/563818.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Harald Rose /span /a /p p a href=" https://www.instrument.com.cn/news/20201112/564599.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Ondrej L. Krivanek /span /a /p p br/ /p
  • 探索暗物质 阿尔法磁谱仪核心部件中国造
    美籍华人物理学家丁肇中领导的暗物质研究小组昨天发布重大研究成果,根据国际空间站上阿尔法磁谱仪的首批观测数据,科研人员已经找到了可以证明暗物质存在的6个证据中的5个。 暗物质是现有宇宙构成理论中最关键的假设之一,能够解决宇宙大爆炸理论的不自洽问题。为寻找暗物质,丁肇中于1995年提出了建造阿尔法磁谱仪的国际合作项目,中科院、上海交大、山东大学等中国科研机构都参与了磁谱仪核心部件的建造。2011年5月,阿尔法磁谱仪被送入太空,开始执行为期3年的暗物质探索任务。 距发现暗物质只剩最后一步 当地时间18日晚间,诺贝尔奖得主、美籍华人物理学家丁肇中领导的阿尔法磁谱仪项目,在欧洲核子研究中心公布了最新研究成果,进一步显示暗物质可能存在。这一成果发表在最新一期美国《物理评论快报》上。 据参与该项目的山东大学科学家程林教授介绍,目前阿尔法磁谱仪已发现了1090亿个电子与反电子,在业已完成的观测中,暗物质的6个特征已有5个得到确认。这一研究结果将人类对暗物质的探索向前推进一大步。 到底什么是暗物质呢?上世纪二十年代,物理学家们提出了宇宙大爆炸的学说。根据这一学说,宇宙在大爆炸以前处于真空状态,大爆炸以后才形成了物质世界,据此推断就应该有反物质存在。此后,物理学家们开始了寻找反物质或称暗物质的努力。 &ldquo 暗物质是一种人眼看不到的物质,想要证明它的存在可不容易。&rdquo 国家天文台宇宙暗物质暗能量组首席研究员陈学雷介绍说,1930年左右,科学家发现有一些星系团中的物质,产生的引力要比其他可以看到的星系多一些,但是这些物质不发光,所以就起名为暗物质。 现有物理学假设认为,人类目前所认知的物质世界大概只占宇宙的4%。在这之外,那些不发光不发热的暗物质,则占了宇宙的23%,还有73%是暗能量。 410亿数据将改变人类知识 寻找暗物质主要有3种途径。一种是利用粒子对撞产生直接暗物质;另一种是利用引力场间接探测。暗物质不发光,但是可以产生引力,因此可以通过对引力场变化的测量来寻找暗物质。中国主导的&ldquo 熊猫计划&rdquo (PandaX)就是后一种方法的实践。 阿尔法磁谱仪项目代表了第三种途径。从理论上讲,暗物质相互碰撞会产生过量正电子(所带电荷量与我们常见的带负电的电子恰好相反),因此可以通过探测正电子来寻找暗物质。 自从2011年5月16日被安置到国际空间站迄今,阿尔法磁谱仪已运行四十多个月,共搜集了540亿个宇宙射线数据。刚刚公布的研究成果,是基于对最先收集到的410亿个数据的分析。在这些数据中,科学家观测到约1000万个电子与正电子,这是半世纪来检测到的正电子分率的最大值。 根据丁肇中研究小组此次在美国《物理评论快报》上发布的结果,已发现的宇宙射线中过量正电子的5个特征分别为:正电子比例上升是从8吉电子伏特(1吉等于10亿)的能量开始;在速率方面,正电子占电子与正电子总数的比例快速增加;在275吉电子伏特左右停止增长;比例上升的过程较为均衡,没有明显的峰值;还有正电子似乎来源于宇宙空间的各个方向,而不是某个特定方向。 据丁肇中介绍,证明暗物质所需的最后1个特征就是正电子的产生率会不会突然下降,&ldquo 这个要花很多的时间,&rdquo 丁肇中说,&ldquo 很快下降一定是暗物质跟暗物质对撞产生正电子,因为暗物质能量有限,到一定能量以后就不可能再产生正电子,所以会突然下降。&rdquo 对于这一批数据的意义,丁肇中说:&ldquo 到现在为止我们所得到的结果,没有一个和过去100年所收集的结果是一样,所以也可以这么说,就是所有的结果慢慢改变人类对于这些的了解。&rdquo 中国研制阿尔法磁谱仪核心部件 由丁肇中教授领导阿尔法磁谱仪(AMS)项目是目前世界上规模最大的科学项目之一。阿尔法磁谱仪的结构很复杂,任务很艰巨,但它工作的基本原理却是高中物理中带电粒子在磁场中运动的知识。 说白了,阿尔法磁谱仪就是一个带电粒子探测器,其核心部件是由中国科学家和工程师经 4 年努力研制的永磁体,可以产生一个很强的磁场。当宇宙中的带电粒子穿过这个磁场时,磁场就对它施加洛仑兹力使之发生偏转,这时,记录有关数据,再用电子计算机进行数据处理,就可以从中区分出正电子等各种带电粒子。 丁肇中于1995年提出了阿尔法磁谱仪的设想,并主持其相关的国际合作计划。这计划是一个国际合作项目,动员了来自15个国家31所大学院校的上百名科研人员。 中国科学家为磁谱仪倾注了大量心血,参加阿尔法磁谱仪国际合作的中国单位还包括中国科学院电工研究所、上海交通大学、东南大学、山东大学、中山大学,以及中国台湾的&ldquo 中央研究院&rdquo 物理研究所、&ldquo 中央大学&rdquo 、中山科学研究院等。 阿尔法磁谱仪最关键的永磁体系统是由中国科学院电工研究所、中国科学院高能物理研究所和中国运载火箭技术研究院联合研制,211厂生产制造。 2011年5月16日,美国&ldquo 奋进号&rdquo 航天飞机将阿尔法磁谱仪送入太空,安放在国际空间站上。
  • 【自传】像差校正电镜技术先驱之Ondrej L. Krivanek
    p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 18px " strong 【简介】 /strong /span br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/c8389825-135e-47c3-8dd3-de93f46e828e.jpg" title=" 91b36629-908d-449c-8019-9fb14da2dc83.jpg" alt=" 91b36629-908d-449c-8019-9fb14da2dc83.jpg" / /p p style=" text-align: center " strong Ondrej L. Krivanek /strong /p p style=" text-align: justify text-indent: 2em " Ondrej Krivanek出生于布拉格,于1960年代后期移居英国,并在利兹大学获得学位,然后移居剑桥,与Archie Howie一起在电子显微镜领域攻读博士学位。 /p p style=" text-align: justify text-indent: 2em " 剑桥大学毕业后,Ondrej Krivanek在京都、贝尔实验室和加州大学伯克利分校担任博士后职位。在伯克利任职期间,他对电子能量损失光谱学产生了兴趣,并建立了自己的光谱仪。他于1980年成为亚利桑那州立大学国家科学基金会NSF HREM设施的助理教授兼副主任,与此同时,他开始与Gatan公司合作,首先是担任顾问,然后永久加入公司并成为其研发总监。 /p p style=" text-align: justify text-indent: 2em " 1995年,他获得皇家学会的资助返回剑桥,与Mick Brown和Andrew Bleloch合作进行电子透镜像差校正。他的成就帮助他与Niklas Dellby于1997年创立了Nion公司,他目前仍是该公司的总裁。在Niklas Dellby和IBM的Phil Batson协助下,他通过扫描透射电子显微镜获得了亚埃的分辨率,该成果于2002年发表。 /p p style=" text-align: justify text-indent: 2em " Ondrej Krivanek是电子显微镜和电子能量损失光谱学的知名专家之一。他获得了许多奖项,包括Duddell Medal和英国物理学会奖,以及国际显微镜学会联合会的Cosslett Medal。他是皇家学会,美国物理学会,美国显微学会和美国物理学会的会员,也是皇家显微学会的名誉会员。他与Maximilian Haider、Knut Urban、Harald Rose一起获得了2020年度科维理奖(Kavli Prize)。 /p script src=" https://p.bokecc.com/player?vid=C5FEDAA47F2B90169C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-align: center " span style=" font-size: 18px " strong span style=" color: rgb(0, 112, 192) " br/ /span /strong /span /p p style=" text-align: center " span style=" font-size: 18px " strong span style=" color: rgb(0, 112, 192) " 【自传】 /span /strong /span /p p span style=" font-size: 18px " strong span style=" color: rgb(0, 112, 192) " /span /strong /span /p p style=" text-align: justify text-indent: 2em " 我出生于捷克斯洛伐克(现为捷克共和国)的布拉格,那时候,苏联和其他社会主义国家为自身的科学技术成就和教育体系感到自豪。1961年4月,Yuri Gagarin成为第一个绕地飞行的人。我和伙伴们因此受到鼓舞,成立了宇航员俱乐部,并且,我们的“火箭乘员RP-35”文章在布拉格最受欢迎的日报—— img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/d887de42-7b70-4098-af27-5c91367cfc71.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / 头版发表,这是一件非常开心有趣的事。 /p p style=" text-align: justify text-indent: 2em " 我父母是在第二次世界大战结束后相遇,战争给他们带来了苦难。父亲是一名化学工程师,专门研究彩色摄影化学,并且撰写了摄影方面的书籍,退休后,他还从事编辑月刊Zpravodaj。母亲的专业是新闻学,后来她成为了一名图书管理员。祖父是学校法律方面的专家,外祖父从事摩托车研制,在布拉格的捷克国家技术博物馆(the Czech National Technical Museum)中就展出了一辆他设计的摩托车。 /p p style=" text-align: justify text-indent: 2em " 高中时期,我最喜欢的科目是数学和物理,学校鼓励对这些科目感兴趣的学生参加课外竞赛,也会布置一些具有挑战性的家庭作业,我非常喜欢解决这些有难度的任务。那时候,我参加了全国的数学和物理比赛,并且都获得了奖项。获奖的学生就可以进入更高级别的比赛,1968年6月,我代表捷克斯洛伐克参加了在布达佩斯举行的第二届国际物理奥林匹克竞赛,获得了第二名。 /p p style=" text-align: justify text-indent: 2em " 奥林匹克竞赛由 img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ced3a030-e739-47df-84af-2d8e25f854cd.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / 教授和另外几个专职老师于1959年在捷克斯洛伐克发起,并于1967年成为了国际比赛。我们获得了第二名,仅次于匈牙利的“本土”团队。从那以后,我有幸与另一位前国际物理奥林匹克选手niklas Dellby共事,他是我在Nion的搭档。 /p p style=" text-align: justify text-indent: 2em " 我的另一大爱好是使用轻木和半透明的轻质纸组建飞机模型。我喜欢组建飞机模型和研究如何使它们变得更好。控制飞机飞行是一件非常有趣的事情,但对我来说,设计和组建的过程更令人有满足感。 /p p style=" text-align: justify text-indent: 2em " 在选择大学专业时,我在数学和物理之间左右为难。飞机模型组建的爱好使我选择了物理学,因为它是一个更加实用的专业,也许能让我建造出有趣的机器。我参加布拉格查尔斯大学(Charles University)数学-物理系的入学考试后,就去了法国和英国过暑假,并计划在大学开学的时候回到布拉格。 /p p style=" text-align: justify text-indent: 2em " 1968年8月,当苏联及其追随者入侵捷克斯洛伐克以阻止由 img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/70a12fb8-ad0f-4a07-a1ab-226cf1f533d5.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / 领导的民主运动时,我正在伦敦,并决定留下来,而我的父母和姐姐移民到了瑞士的弗里堡附近定居。 /p p style=" text-align: justify text-indent: 2em " 英国人非常同情这个被苏联坦克占领的欧洲小国的公民。利兹大学(The University of Leeds)慷慨地为想要在英国学习的捷克斯洛伐克学生提供了五项奖学金,我很幸运,获得了其中一项。我在利兹大学学习了三年物理,度过了一段美好的时光。我学会了用约克郡口音讲英语,遗憾的是,后来这项技能被遗忘了。我以全班第一名的成绩毕业,并被剑桥大学Cavendish实验室录取,成为一名研究生。Archie Howie教授是我的博士生导师,他灌输的严谨标准陪伴了我的整个学术生涯。 /p p style=" text-align: justify text-indent: 2em " 我的研究课题是使用电子显微镜表征非晶态材料的结构,然后使用最新的电子显微镜解析各种材料的原子平面。我从“非晶态”碳中获得了0.3 nm分辨率的图像,并且表明了碳中含有小的石墨纳米晶体(Krivanek, Gaskell and Howie, Nature 1976)。这项工作让我意识到,只有具有更高分辨率的电子显微镜才能在原子尺度上清晰地观察物质的结构。 /p p style=" text-align: justify text-indent: 2em " 20年后,当像差校正显示出可使分辨率大幅提高的希望时,我又回到了这个课题。电子显微镜是探索原子世界的强大工具,用途广泛,我迷上了使用它们,并产生想要让它们变得更好的想法。当时,世界上分辨率最高的电子显微镜在日本京都大学(Kyoto University)Keinosuke Kobayashi教授的实验室里:Yoshinori Fujiyoshi用一台500 keV的仪器获得了铜酞菁分子图像,所有原子(氢除外)都清晰地分辨了出来。我向英国皇家学会申请延长居留时间,并获得了成功。 /p p style=" text-align: justify text-indent: 2em " 当去了京都之后,我发现纸上的电子显微镜是世界上最好的,它的电子源很弱,不能使我们看到足够好的图像以优化显微镜的设置。因此,Seiji Isoda和我开发了一种快速的“辅助调节”程序,使人们能够正确地设置显微镜且不需要盯着昏暗的屏幕看。结果得到了清晰的锗晶体中复杂缺陷的图像,所有投射原子的位置都可以从图像中“读出”。这是我研发改进显微镜调整方法的开始,事实证明,这是成功进行像差校正的必要组成部分。 /p p style=" text-align: justify text-indent: 2em " 在京都待了一段时间之后,我又进行了三个月的陆路旅行,从亚洲返回欧洲,体验了许多不同的文化,然后在美国新泽西州默里山的Bell实验室开始了博士后工作。那时候,Bell实验室非常有实力,我与其他人共同工作,其中一位是Dan Tsui,他发现了分数霍尔效应(the fractional Hall effect),并因此在几年后获得了诺贝尔奖。 span style=" text-indent: 2em " Bell实验室有许多有趣的材料和设备,但没有显微镜能够解析它们的原子结构。当时的解决办法是,在Bell实验室制备样品,然后经John Silcox教授和Steve Sass教授的协助,在康奈尔大学(Cornell University)使用和我在博士期间所用的相同类型电子显微镜对它们进行成像。这项工作制备出了MOSFET器件中最重要的Si-SiO sub 2 /sub 界面的原子分辨成像。 /span /p p style=" text-align: justify text-indent: 2em " 我的下一个博士后工作是在加州大学伯克利分校的Gareth Thomas教授团队。该团队隶属于材料科学系,但是与材料相比,我对先进的技术和仪器更感兴趣。我认为电子能量损失谱(Electron Energy Loss Spectroscopy,EELS)是一项特别有趣的技术。 /p p style=" text-align: justify text-indent: 2em " 1978年,我在康奈尔举行的分析电子显微镜研讨会上第一次接触到这项技术,在那里,我遇到了一些人,他们成为了我一生的朋友,如Pat Batson、Christian Colliex、Ray Egerton和Mike Isaacson,我们被期望建立自己的光谱仪——那时候还没有商业模型。因此,在Peter Rez的大力帮助下,我设计并制造了一台紧凑型光谱仪,Peter Rez为这台光谱仪编写了软件。从最初的构想到一台可以工作的光谱仪,整个过程共耗时10个月,这是我第一次研制一个完整的仪器并把它应用到有趣的问题上。我遵循了五个简单的原则,这些原则对我后来的项目也非常有用: /p p style=" text-align: justify text-indent: 2em " 1)& nbsp 适度启动,从一个比大项目更容易完成的小项目开始。 /p p style=" text-align: justify text-indent: 2em " 2)& nbsp 仔细考虑那些会影响性能并且以后很难更改的设计选择。 /p p style=" text-align: justify text-indent: 2em " 3)& nbsp 动作要快,不要把事情搞砸。 /p p style=" text-align: justify text-indent: 2em " 4)& nbsp 从第一个设计中吸取教训,然后再进行第二个设计,以解决仅在第一个设计开始工作后才变得清晰的问题。 /p p style=" text-align: justify text-indent: 2em " 5)& nbsp 与他人合作以帮助项目更快地进行。 /p p style=" text-align: justify text-indent: 2em " 后来我添加了第六条: /p p style=" text-align: justify text-indent: 2em " 6)& nbsp 当进入由新仪器支持的未开发的研究区域时,请通过产学合作进行研究,其中由工业合作伙伴提供仪器以及如何操作仪器的专业知识,由合作大学(或研究机构)提供解决问题的方法、样本、理论知识以及热情的学生和博士后。 /p p style=" text-align: justify text-indent: 2em " 我的第一台光谱仪的主要局限性在于,除了一阶,它没有像差校正功能,这限制了可以提供良好能量分辨率的入口孔径大小,从而导致信号收集效率低下。因此,我采用了第4和第5个原则,与Gatan的Peter Swann和顾问Joe Lebiedzik以及康奈尔大学的Mike Scheinfein密切合作,研制出了修改设计,组建出的光谱仪具有完整的二阶像差校正,其信号采集效率比第一款光谱仪高约100倍。这是像差校正有用性的有利验证。我还从Peter那里学到了很多东西,Peter拥有出色的设计天赋,我们成为了密友。那款光谱仪被称为Gatan系列EELS 607型,获得了商业上的成功。 /p p style=" text-align: justify text-indent: 2em " 这个设计是在我转任新职位后完成的,即在亚利桑那州立大学(Arizona State University)担任由NSF资助的HREM设施的助理教授和副主任。Gatan向ASU捐赠了一款新的光谱仪,我们与合作者一起将其应用于许多有趣的问题,并把迄今为止使用的所有稳定元素的EELS图集汇总在一起。 /p p style=" text-align: justify text-indent: 2em " ASU是一个工作的好地方,员工或长期来访者中有许多电子显微镜专家:John Cowley、 Peter Buseck、John Spence、Johann Taftø 、Naoki Yamamoto、Channing Ahn、Kazuo Ishizuka、Ray Carpenter、Sumio Iijima (2008年Kavli奖获得者)等。 /p p style=" text-align: justify text-indent: 2em " 但是,当Peter Swann将Gatan研发中心从匹兹堡移至旧金山湾区时,加利福尼亚的魅力就变得不可抗拒。1985年,我成为Gatan的研究主管。接下来是一段富有成果的时期,在此期间,我们推出了许多成功的仪器,包括并行检测EELS、柱后成像滤镜、CCD相机、扫描图像采集系统以及数字显微照相和EL/P软件。这段时间里,Gatan的规模增长了近10倍,我了解到,制造商用仪器是资助仪器研究的一种好方法,尤其是当与志同道合的研究人员和精通科学的管理人员合作时,他们能了解比较好的科学价值。 /p p style=" text-align: justify text-indent: 2em " 我们在Gatan研制的成像滤波器使用了四极光学器件,并使用六极杆校正了二阶像差和畸变(图1)。成像滤镜执行两个不同的电子光学任务:它们在能量选择狭缝上形成能量损失谱,充当光谱仪,然后将通过狭缝选择(滤波)的部分光谱转换成图像,作为投影镜头系统。这使得它们的光学与整个电子显微镜的非常相似。我们的滤波器使用的校正原理和后来由我和Niklas Dellby研制的像差校正器相同:四极杆赋予高阶多极杆内部光束不同的一阶特性,多极杆校正了高阶像差/失真。尽管当时的光学系统看起来很复杂,但对软件的认真学习可以让仪器变得易于操作。更高版本的滤波器使用八极杆实现了三阶像差校正。这项课题的完成使我相信,我有很大可能性来校正电子显微镜物镜的三阶(球面)像差——自从Otto Scherzer在1930年代和40年代研究该问题以来,这就是电子光学中的一个经典问题。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 571px height: 355px " src=" https://img1.17img.cn/17img/images/202011/uepic/b4172849-171a-4ab0-bc28-a33dd8674086.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 571" height=" 355" / /p p style=" text-align: justify text-indent: 2em " strong 图1. 一款使用四极(Q)和六极(S)校正二阶像差和畸变的成像滤波器。它工作得很好,使我充满信心,显微镜物镜的球面像差校正器将不会很难制造。O.L. Krivanek et al., Microsc. Microanal. Microstruct. 2 /strong /p p style=" text-align: justify text-indent: 2em " 1950年代至70年代,德国和英国制造了几台成功的原理校正器,但在实际性能方面,其取得的成功都没能超过最好的未经校正的显微镜所达到的成就。有几个有雄心且费钱的校正器项目未能实现目标,给研究像差校正的人员带来了一种不可能成功的思想。这使得研制像差校正器对Gatan来说成为了一个过于投机的项目。 /p p style=" text-align: justify text-indent: 2em " 我很想研制一台,因此我尝试在其它地方进行。我第一次为校正器争取资金是在1992年左右与时任伯克利国家电子显微镜中心主任的Uli Dahmen聊天,但没有成功。幸运的是,我说服了我母校(剑桥大学)的Mick Brown,他有一台备用的真空发生器冷场发射(CFE)扫描透射电子显微镜(STEM),我们应该尝试为它建立一个校正器。 /p p style=" text-align: justify text-indent: 2em " 1994年初,我们与Andrew Bleloch一起向英国皇家学会申请了资金,并从保罗仪器基金会获得了8万英镑的资助。1995年9月,我与家人一起移居剑桥,在Cavendish实验室工作了两年,并在那里获得了博士学位。我于五年前和Niklas Dellby在Gatan合作,当时他正在麻省理工学院攻读博士学位,还有其他人加入了这个项目,Robinson学院授予了我Bye奖学金。 /p p style=" text-align: justify text-indent: 2em " 我们有两个关键的认识。第一,像差校正对STEM的益处最大,与传统透射电子显微镜相比(CTEM),STEM的工作受到色差的影响较小,且校正的益处是传统透射电子显微镜的两倍:小型探头具有更好的空间分辨率和更强的束流,从而大大改善了STEM的光谱性能。这就是为什么我们从一开始就专注于STEM像差校正,结果证明我们的预感是正确的:现在,世界上像差校正STEMs的数量是像差校正CTEMs的两倍以上。第二,球差校正需要复杂的电子光学器件,这必然会引入很多“寄生”像差。这些问题不能通过精心构造而避免,但是可以对其进行特征化和逐一取消。如果不采取此步骤,校正器也许能够固定球差,但是强寄生像差可能会使整体成像性能变差。我们专注于研发STEM自动调谐算法,该算法使用我在之前表征像差的工作中率先提出方法来量化寄生像差。在这部分的项目中,我们得到了Andrew Spence和Andy Lupini的大力帮助。 /p p style=" text-align: justify text-indent: 2em " 如果电子显微镜可以使用玻璃透镜,那么像差校正将非常容易:只需按照要求对关键的“物镜”进行形状调整,使其形成正确的四阶抛物线形状,以消除球差(Cs)。但是,与穿过玻璃而没有太多散射的光不同,电子会被物质强烈散射,并且由固体材料制成的透镜对它们不起作用(除了一些特殊的例外)。取而代之的是,它们被延伸到真空的磁场聚焦,在真空中电子传播,场分布服从拉普拉斯方程,其结果是在圆形透镜中无法避免强烈的正球差。 /p p style=" text-align: justify text-indent: 2em " 我们的解决方案与1960年代在英国剑桥研制的原理验证校正器类似,它使用非圆形四极和八极透镜,其中电子束的横截面制成椭圆形,且先在一个方向上,然后在垂直方向上,赋予了理想的像差特性。我们还确保可以测量并修复每个重要的寄生像差。 /p p style=" text-align: justify text-indent: 2em " 1997年夏,我们获得了修正STEM分辨率的校正图像,同年夏天,Heidelberg-Julich CTEM校正器项目获得第一批改善后的图像,并在1997年在剑桥举行的EMAG会议以及1998年在拉德洛港举行的TARA研讨会上介绍了我们的研究结果。我们在剑桥的研究结束了,1997年10月,我回到了美国。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/d145154a-980d-4ba5-85ca-198b88c25d64.jpg" title=" 图片2.png" alt=" 图片2.png" / /p p style=" text-align: justify text-indent: 2em " strong 图2. 第一个STEM Cs校正器的中心部分,提高了内置显微镜的分辨率,它具有6个多极载物台,其中包含强四极和八极,还有96个辅助线圈,用于消除寄生像差。 校正器Ø ~12cm /strong /p p style=" text-align: justify text-indent: 2em " 现在,校正器(图2)在Cavendish实验室的玻璃盒中展示,旁边展示的还有Deltrap的原理验证四极八极校正器和Cavendish的“皇冠上的珠宝”(包括J.J. Thompson发现了电子以及Watson和Crick建立的DNA模型)。我们的剑桥校正器没有改进当时最好的未校正STEM的性能,但我们的mark II校正器可以改进。在我成为西雅图华盛顿大学的研究教授后,我和Niklas Dellby设计并研制了该校正器,并在1997年底创建了Nion公司。 /p p style=" text-align: justify text-indent: 2em " 图3为Nion的创始人以及Nion的第一名员工George Corbin。George Corbin大学刚毕业就被我们雇佣,在Nion工作的22年里,他为公司做出了巨大的贡献。我们建了一个实验室,以3万美元的价格购买了一台二手VG STEM(它比我们在剑桥使用的STEM还要新),然后开始研究新的校正器。资金主要来自位于纽约约克镇高地IBM TJ Watson研究中心的Phil Batson。该项目具有双重优势:它是第一台商业校正器,于2000年6月/7月交付并安装在IBM公司,并且成就了第一款能够将电子束聚焦到直径小于1埃(0.1 nm)的STEM, 由Phil设定为120 keV,之后不久,当我们在Oak Ridge国家实验室(ORNL)将类似的校正器组建到300 keV STEM中时,结果很快有了进展,Matt Chisholm和Pete Nellist解析了相距0.78埃的原子柱。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 481px height: 304px " src=" https://img1.17img.cn/17img/images/202011/uepic/ec02e79e-1114-459c-b372-f3f663748d72.jpg" title=" 图片3.png" alt=" 图片3.png" width=" 481" height=" 304" / /p p style=" text-align: justify text-indent: 2em " strong 图3. Ondrej Krivanek,George Corbin和Niklas Dellby在Nion I大楼前,该大楼设有一个大型车库,后来我们改建把它改造为机械装配室,因此,Nion在某种程度上可以称其起源于一个车库。 /strong /p p style=" text-align: justify text-indent: 2em " 像差校正很快成为电子显微镜的新领域。德国CEOS公司为老牌电子显微镜制造商提供校正器,最初有CTEM,后来又有STEM,而Nion公司则专注于STEM校正器,并独立完成所有的工作。 /p p style=" text-align: justify text-indent: 2em " 首先,我们为VG STEM制作了校正器,将其分辨率提高了近2倍。我们下一个“大胆的想法”是:我们可以通过设计全新的电子显微镜来拓展校正器的功能,并且我们会比老牌的显微镜制造商做得更好。我们研发的显微镜Nion UltraSTEM& #8482 建立了许多性能基准,它使人们对材料的性质有了新认识。之后,我们为显微镜增加了许多其他的,通常是革命性的功能,如下所述。 /p p style=" text-align: justify text-indent: 2em " 例如,我们的新STEM制出了二维材料(如石墨烯)和一维材料(如纳米管)令人惊叹的图像。我们利用来自爱尔兰都柏林三一学院(Trinity College)的Valeria Nicolosi和日本先进工业科学技术研究院(National Institute of Advanced Industrial Science and Technology)的Kazu Suenaga所提供的样品进入了这一领域。Niklas和我把这些样品带到橡树岭国家实验室(ORNL),在那里,我们花了一个周末的时间研究Nion交付给客户的第四架电子显微镜。 /p p style=" text-align: justify text-indent: 2em " 当时的普遍观点是,我们使用的成像技术(高角度环形暗场(HAADF)成像)不能有效地对像碳这样的光原子进行成像,认为该信号太弱而无法对单个原子进行成像。与这种“观点”相反,我们在一次60 keV的情况下获得了纳米管和石墨烯的清晰图像,避免了样品的严重破坏。我花了很多时间操作其他电子显微镜,但从未见过像Nion仪器所显示的那样清晰的图像。我不是一个喜欢惊呼的人,但我记得我停了一下,把椅子从控制台往后推开,然后宣布:“Niklas,我们做了一个非常好的显微镜!” /p p style=" text-align: justify text-indent: 2em " 我不是唯一这样认为的人,一天晚上,在ORNL做博士后的Juan Carlos Idrobo走进实验室,当他看到我们获得的结果时,他看很长一段时间,好像粘在了那个地方一样。不久之后,他和其他人开始在ORNL进行类似的实验,几个月后,Matt Chisholm制出了一张标志性的BN单分子层原子取代图像,并登上了《自然》的封面上(图4)。随后在ORNL获得的结果显示了固定在石墨烯薄片上的由6个硅原子组成的结构是如何在两个相当稳定的构型之间来回跳跃。 /p p style=" text-align: justify text-indent: 2em " 大约同一时间,在橡树岭和Daresbury Super-STEM实验室中,从嵌入石墨烯中的单个Si原子获得了具有精细结构特征的EEL光谱,也在实验室中从2D MoS sub 2 /sub 片中雕刻了半导体MoS sub 2 /sub 纳米线,并且维也纳大学的一个研究小组能够通过电子束在石墨烯片中按选定的方向“驱动”单个Si原子。可用束流的增加,使材料的元素组成能够通过EELS和能量色散X射线光谱法(EDXS)在原子分辨率上有效地映射出来,这正是我们所期望的。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/2b803d25-ee00-4eb7-8f95-9ce510239343.jpg" title=" 图片4.png" alt=" 图片4.png" / /p p style=" text-align: justify text-indent: 2em " strong 图4. 《自然》期刊2010年3月25日的封面。 它显示了具有原子取代的单层BN的中角环形暗场(MAADF)STEM图像。将实验图像着色以对应于使用图像强度识别的原子类型,并在透视图中进行渲染。红色= B(硼),黄色= C,绿色= N,蓝色= O。Krivanek等人,Nature 464(2010)571-574. /strong /p p style=" text-align: justify text-indent: 2em " 也可以使用不同元素的EEL光谱中的化学位移来映射成键信息(图5)。所有这些功能只是Nion经像差校正的STEM所能实现的不同研究的一小部分。现在,全球有超过20台这样的仪器,还有约700台由其他制造商制造的像差校正STEM。在一个专题论文中覆盖使用这些仪器完成的所有创造性工作是不可能的。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/6665f87c-c8c7-476e-ab7c-91e55449b3b7.jpg" title=" 图片5.png" alt=" 图片5.png" / /p p style=" text-align: justify text-indent: 2em " strong 图5. EuTiO sub 3 /sub 晶体中Eu原子的EELS图导致了与DyScO sub 3 /sub 原子尖界面。图中每个像素的强度显示了从该像素获得的光谱算出的Eu浓度,无论原子是3+Eu(绿色)还是2+Eu(红色),颜色都是如此。插入图显示了从界面(绿色)和远离界面(红色)的Eu M4,5边缘阈值峰,由于Eu价的变化,化学位移为2.5 eV。 L.Kourkoutis,D.A. Muller等人,proceedings IMC17 (Rio de Janeiro, 2010). /strong /p p style=" text-align: justify text-indent: 2em " 我们在软件方面的努力增强了像差校正的先进性,使仪器功能更强大且更易于使用。如果没有像差校正,将无法实现能量分辨率的提高:我们研发的单色仪和电子能量损失光谱仪都采用了我们首先介绍的用于像差校正的设计原理。这些仪器的光学特性和无与伦比的稳定性已将EELS的能量分辨率达到3 meV(相对于不使用单色仪的电子显微镜,能量分辨率提高了约100倍),并且在常规情况下可达到5 meV。这种分辨率级别允许在电子显微镜下进行振动光谱分析,并开辟了的新研究领域:声子(包括声学声子)的0.2-2 nm空间分辨率成像及其与晶体缺陷的相互作用; 检测和绘制氢分布图的能力; 区分不同的同位素(图6); 以及有机和生物样品的无损分析。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/4e3ccdd0-225d-455b-99d6-7452bd28efcb.jpg" title=" 图片6.png" alt=" 图片6.png" / /p p style=" text-align: justify text-indent: 2em " strong 图6. L-丙氨酸两种形态的实验振动光谱,其区别在于单个的12C原子被13C取代。由于C=O键的延伸,在200 meV处,高峰的4.8 meV位移可以映射为揭示约100 nm空间分辨率下这两种类型分子的位置。J.Hachtel等人,Science 363 (2019) 525–528. /strong /p p style=" text-align: justify text-indent: 2em " 在电子显微镜下分析生物样品的振动特征且不会造成重大损坏的能力尤其令人兴奋。它基于在我们所研究的振动能量(20-500 meV)下,激发光声子的偶极相互作用被局域化了,并有可能在30-100 nm甚至更远距离电子束的区域探测分子振动。当电子束离得很远时,每个高速电子可以传递到样品的能量通常被限制在& lt 1eV,并且没有明显的辐射损伤。空间分辨率不如将电子束照射到样品上并利用非偶极子信号时高,但在30-100 nm分辨率下探测冷冻水化生物样品中存在什么分子的技术仍有很多重要用途。 /p p style=" text-align: justify text-indent: 2em " 我是在柏林洪堡大学的Christoph Koch小组里,与洪堡大学的Christoph、Benedikt Haas、Zdravko Kochovski和JohannesMü ller以及Nion的Tracy Lovejoy、Niklas Dellby和Andreas Mittelberger合作,一直在探索这一想法。当冠状病毒大流行袭来的时候,我们已经把所有需要的仪器放在一起准备开始实验,并且,我决定返回华盛顿州。 /p p style=" text-align: justify text-indent: 2em " 我们计划在疫情允许的情况下尽快恢复工作。仪器设备的研发类似于探索未知领域,就像于200年前Alexander Mackenzie和David Thompson探索美国太平洋西北地区的方式,猜测在哪个方向上会有什么欢迎之地,之后是漫长的探险之旅,每天克服困难和障碍的聪明才智决定了成败。所有的探索者都尽了最大的努力,有时偶然的发现会给正确的方向带来关键性的推动。我非常感谢Nion实验室的合作伙伴,感谢他们付出的巨大的且显有成效的努力(图7)。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202011/uepic/d1542126-534d-489f-9a1b-aeb13ae166f2.jpg" title=" 图片7.png" alt=" 图片7.png" style=" text-align: center max-width: 100% max-height: 100% width: 617px height: 133px " width=" 617" height=" 133" / /p p style=" text-align: justify text-indent: 2em " strong 图7. 2019年8月Nion Open House集体合影。照片中Nion团队有Niklas Dellby、Tracy lovejoy、Chris Meyer, George Corbin、Russ Hayner、Matt Hoffman、Peter Hrncirik、Nils Johnson、Josh Kas、Ben Plotkin-Swing、Lemek Robinson、Zoltan Szilagyi、Dylan Taylor、Janet Willis和Ondrej Krivanek,以及Nion的合作伙伴Toshi Aoki、Nabil Bassim、Phil Batson、Andrew Bleloch、Wouter van den Broek、Peter Crozier、Christian Dwyer、Meiken Falke、Jordan Hachtel、Fredrik Hage、Bethany Hudak、Juan Carlos Idrobo、Demie Kepaptsoglou、Jani Kotakoski、Richard Leapman、Andy Lupin、Alan Maigne、Clemens Mangler、Molly McCartney、David Muller、Matt Murfitt、Xiaoqing Pan、Luca Piazza、Quentin Ramasse、David Smith、Rhonda Stroud、Toma Susi、Luiz Tizei、Kartik Venkatraman、Wu Zhou等。 /strong /p p style=" text-align: justify text-indent: 2em " 我特别感谢Niklas Dellby,我们与他一起创建了Nion,并愉快地合作了近30年。没有他的才华和努力,就不可能有这里所描述的进展。真是一次美妙的航行! /p p style=" text-align: justify text-indent: 2em " 对我们所爱的人来说,持续研究并不容易,正是他们的关心和支持让我们继续前行。感谢我的女儿Michelle和Astrid,感谢我的侄子David对我的爱和理解,也感谢Eda Lacar(图8)对我的爱和支持,她以许多奇妙而出乎意料的方式扩展了我的视野,使我成为一个更好的人。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/85cd3419-d863-42e7-ac6e-7559c9efdf5c.jpg" title=" 图片8.png" alt=" 图片8.png" / /p p style=" text-align: justify text-indent: 2em " strong 图8 Ondrej Krivanek和 Eda Lacar在亚利桑那州立大学西南像差校正电子显微镜中心前。 该中心有3台像差校正电子显微镜,在纳米表征方面发挥着世界领先的作用。 /strong /p p style=" text-align: justify text-indent: 2em " strong br/ /strong /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-align: left text-indent: 0em " a href=" https://www.instrument.com.cn/news/20201104/563818.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Harald Rose /span /a /p p style=" text-align: left text-indent: 0em " a href=" https://www.instrument.com.cn/news/20200608/540683.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Maximilian Haider /span /a /p p style=" text-align: left text-indent: 0em " strong /strong /p p style=" text-indent: 0em text-align: left " a href=" https://www.instrument.com.cn/news/20201204/566735.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Knut Urban /span /a /p p style=" text-align: justify text-indent: 2em " br/ /p
  • 阿尔法磁谱仪将传回首批数据 或发现暗物质证据
    阿尔法磁谱仪(又译反物质太空磁谱仪,简称AMS)于2011年被放置到国际空间站(ISS)   穿越辐射探测器(Transition Radiation Detector)能检测高能粒子的速度 硅追踪器(Silicon Trackers)用于追踪粒子的运动轨迹,轨迹的弯曲程度显示了粒子的电荷 永磁铁(Permanent Magnet)是阿尔法磁谱仪的核心部件,能令粒子轨迹弯曲 飞行时间计算器(Time-of-flight Counters)能计算低能粒子的速度 星体追踪器(Star Trackers)能扫描星域,以确定阿尔法磁谱仪在太空中的朝向 切伦科夫探测器(Cerenkov Detector)可精确计算快速通过的粒子速度 电磁量能器(Electromagnetic Calorimeter)用于计算影响粒子运行所需的能量 反符合计数器(Anti-coincidence Counter)可将干扰粒子过滤出去。   在宇宙的遥远天体之间,引力的作用并不能解释天文学家看到的一切,如果只有这些天体的引力,那各个星系应该处于分崩离析的状态,因此在各个星系之间,还存在把它们联接在一起的物质。天体物理学家将这种理论中的物质称为“暗物质”,我们看不见它们,但它们确实在星系间起着作用。在最大的距离尺度上,宇宙正在加速扩张。因此我们更需要关注与引力作用截然不同的暗物质。目前的理论估计,宇宙的73%为暗能量,23%为暗物质,而只有4%是我们已知的物质。   北京时间2月20日消息,据国外媒体报道,作为人类在太空中进行的最为昂贵的实验,阿尔法磁谱仪(简称AMS)项目即将向地球发送回首批观测数据。这个大型的实验装置被放置在国际空间站上,用于探测宇宙射线及高能粒子。   诺贝尔物理学奖获得者丁肇中称,将于未来几周内发表涉及暗物质的研究论文。阿尔法磁谱仪项目最初便是由丁肇中提议开始。在宇宙中,正是那些我们看不见的暗物质将各个星系联接在一起。研究者并不了解这些谜一般的宇宙物质如何构成,但有理论提出,大质量弱相互作用粒子(简称WIMP)是暗物质最有希望的候选者,这是一种尚处于理论阶段的粒子。   虽然天文望远镜无法探测到大质量弱相互作用粒子,但阿尔法磁谱仪很有希望通过间接的方法来确认其存在,并描述它的性质。即将刊出的研究论文(发表期刊还未确定)将对这项研究的进展作详细阐述。   丁肇中在麻省理工学院任物理学教授,他在20世纪90年代中期提出的这个项目如今到了一个重要的里程碑时刻。“我们等待了18个月来写这篇论文,如今到了最后审视的阶段,”丁教授在波士顿的一次美国科学促进会(AAAS)的年会上发言道,“我预计在未来两到三周内,我们就能发布研究成果。我们一共有六个分析小组对相同的数据结果进行分析。如你所知,每个物理学家都有他们自己的见解,我们现在要保证每个人都能同意彼此的观点。这项工作现在已经完成得差不多了。”   20亿美元的仪器:“探索未知”   2011年,造价20亿美元的阿尔法磁谱仪搭载奋进号航天飞机前往国际空间站,这也是奋进号的最后一次任务。阿尔法磁谱仪重达7吨,拥有一个巨大的特制超导磁铁,能使落在它上面的粒子轨迹发生弯曲。   粒子的弯曲轨迹显示了它的电荷,再通过一系列的探测器对粒子的质量、速度和能量等进行分析,科学家便能准确知道捕获的是什么粒子。据丁肇中教授称,在阿尔法磁谱仪运行的最初18个月中,已经探测了250亿次粒子事件。   暗物质和暗能量之谜   在这些粒子事件中,有近80亿次是快速运动的电子及与其对应的反物质——正电子。理论上,大质量弱相互作用粒子的碰撞和湮灭会产生大量电子和正电子。通过测定二者的比例,以及在能量谱上的行为变化,科学家或许能找到研究暗物质问题的途径。   “在对正电子和电子的观测中,如果发现二者比例突然上升然后急剧下降,那就是星系中暗物质湮灭的关键标志,”芝加哥大学卡弗里宇宙学研究所的迈克尔特纳(Michael Turner)教授说,“在能量体系中也要考虑,是否具有各向异性?正电子是从固定的某个方向还是从所有方向出现?”   特纳教授并未参与阿尔法磁谱仪的合作项目。他继续说道:“暗物质应该无所不在。因此如果我们发现正电子从某个特定的方向发出,就意味着该信号是来自像脉冲星(一种中子星)一类的天体,而不是暗物质。”据悉,此次阿尔法磁谱仪的数据涉及的是0.5至350GeV(10亿电子伏特)质量范围内的正电子—电子比例。这一范围已经是其他实验中,科学家认为可能发现暗物质的上限。   特纳教授说,科学家已经逐渐接近了目标。他预测未来数年将会被铭记为“大质量弱相互作用粒子(WIMP)的十年”,而且通过一系列的研究,包括利用大型强子对撞机制造WIMP等,暗物质的性质将逐渐呈现在我们面前。   “理论上,这种粒子的质量大约在质子质量的30、40和300倍之间,即在30至大约1000GeV之间,”特纳教授说,“大型强子对撞机能够制造这样质量的粒子,丁肇中的阿尔法磁谱仪能探测到这样质量的粒子湮灭,而位于深地底的探测器对这样质量的粒子也非常敏感。如果非常幸运的话,我们能同时获得有关暗物质的三个特征信号,分别是通过观测粒子湮灭、直接探测粒子以及用大型强子对撞机制造粒子,这三种方法在同样的质量范围内都很灵敏。”
  • 【自传】像差校正电镜技术先驱之Maximilian Haider
    p style=" text-align: justify text-indent: 2em " 日前,2020年度科维理奖(Kavli Prize)揭晓,本年度科维理天体物理奖、纳米科学奖和神经科学奖,三个奖项分别授予七位科学家,以表彰他们在天体物理学、纳米科学和神经科学领域作出的杰出成就。 a href=" https://www.instrument.com.cn/news/20200602/540174.shtml" target=" _self" style=" text-decoration: underline " 其中,纳米科学奖授予了对像差校正电镜技术的发展做出巨大贡献的四位欧洲科学家:Maximilian Haider、Knut Urban、Harald Rose和Ondrej L. Krivanek。 /a /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b9d1f53f-de22-4e55-bddf-c0c01576d0ad.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong Maximilian Haider,德国CEOS GmbH公司联合创始人 /strong /p p strong /strong /p p style=" text-align: justify text-indent: 2em " 作为科维理奖的获奖人之一,Maximilian Haider是奥地利的物理学家。在基尔大学获得学位后,他移居达姆施塔特(Darmstadt)攻读博士学位,并于1987年获得博士学位。仅仅两年后,他加入了海德堡欧洲分子生物学实验室(EMBL),在那里从事了博士学位的实验工作,成为物理仪器计划的组长,直到现在。 /p p style=" text-align: justify text-indent: 2em " 他的研究兴趣集中在开发提高透射电子显微镜分辨率的方法上。在EMBL任职期间,他根据Harald Rose的理论工作开发了透镜系统原型,并开始与Rose和Knut Urban合作,拍摄了第一张经晶格校正的原子结构的TEM图像,成果于1998年发表。 /p p style=" text-align: justify text-indent: 2em " Haider于1996年在海德堡联合创立了CEOS GmbH公司,其目的是商业化生产像差校正器。他仍然是该公司的高级顾问,自2008年以来,他还是卡尔斯鲁厄工业大学的名誉物理学教授。 /p p style=" text-align: justify text-indent: 2em " 他的工作获得了许多奖项,包括与Rose和Urban共同获得的Wolf奖和BBVA基础科学知识前沿奖,他还是英国皇家显微镜学会的荣誉院士。 /p p style=" text-align: center text-indent: 0em " span style=" font-size: 20px " strong span style=" color: rgb(0, 112, 192) " 【自传】 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 1950年,我出生于奥地利一个历史悠久的小镇,我的父亲Maximilian Haider和母亲Anna Haider在那里经营着一家父亲从爷爷手里接管的制表店,我的长兄此时已经步入了自己的人生轨道,成为了制表师。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 300px height: 260px " src=" https://img1.17img.cn/17img/images/202006/uepic/e2d16dd2-a64c-4f1a-8242-d945013d069f.jpg" title=" 1960年,10岁的我在小学读书.png" alt=" 1960年,10岁的我在小学读书.png" width=" 300" height=" 260" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 1960年,10岁的我在小学读书 /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " 为了扩大业务,我在童年时期,就被早早的认为应该成为一个眼镜师。因此,在14岁的时候,我开始在奥地利林茨做眼镜师学徒。 /span /p p style=" text-align:center" span style=" text-align: justify text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/edd1ed71-dcc3-45ac-9096-2bfcb6511b50.jpg" title=" 2.png" alt=" 2.png" / /span /p p style=" text-indent: 0em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: center " strong 在奥地利林茨当学徒时(我是右边的最后一个人) /strong /p p style=" text-indent: 0em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: justify text-indent: 2em " 第一次眼镜师认证考试后,我意识到自己并不喜欢作为眼镜师的一生。因此,在接下来的几年中,我通过了几次考试,上了大学,并在我26岁的时候,开始在基尔大学和德国达姆施塔特工业大学学习物理。 /p p style=" text-align: justify text-indent: 2em " 为了毕业论文,我联系了在理论粒子光学领域做研究的Harald Rose团队。当我还是一名眼镜师的时候就知道了电子光学中常见的像差,那时进行的像差校正项目更是深深的吸引住了我。我的任务是开发一种用于像差校正器的新型十二极元件,利用该元件生成所需的强四极和八极场。 /p p style=" text-align: justify text-indent: 2em " 在达姆施塔特工业大学应用物理研究所,由Otto Scherzer和Harald Rose领导的两个小组正在进行一项长期计划,即利用四极、八极杆校正系统装置校正传统TEM的Cs和Cc像差。这种校正器的开发是在七十年代末,是像差校正的最新技术,但是无法证明这确实能提高分辨率。由于自制瞬变电磁法的不稳定性失败了,而不是由于像差的限制。 /p p style=" text-align: justify text-indent: 2em " 因最后一位能够使用该仪器的科学家已离开本行业,所以在完成毕业论文之前,我必须学习如何操作复杂的仪器(最早的功能像差校正TEM):要控制大量电源的同时,还必须保持各种镜头的机械调节器稳定,整个系统的校准必须在没有计算机或CCD摄像机帮助的情况下手动进行。最后,该项目成功地证明了可以补偿Cs和Cc这两个像差,但未能显示出分辨率的提高。不过,该项目使我确信像差校正在未来可以提高分辨率,同时我也很清楚,人们应该只用足够的钱来购买最先进的TEM并首先对其进行研究以确保分辨率受到像差限制,否则,将会再次遇到相同的问题。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/202006/uepic/eda0c272-eb6f-4790-9848-283409802f2c.jpg" title=" 3.png" alt=" 3.png" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 1984年,我与Joachim Zach一起参加布达佩斯欧洲会议 /strong /p p style=" text-align: justify text-indent: 2em " 取得文凭后,我继续在Rose小组工作,计划对现有的像差校正TEM进行改进。不幸的是,德国研究基金会(DFG)的资助提案被拒绝了,因为Harald Rose是一名理论家,而他申请的项目是一项具有实验挑战性的任务。 /p p style=" text-align: justify text-indent: 2em " 此后不久,达姆施塔特像差校正项目的第二位“父亲”Otto Scherzer去世,项目也无法获得资金。因此,我在海德堡的欧洲分子生物学实验室(EMBL)任职,开发用于STEM的电子光谱仪。对于这种设备,像差的补偿也是必不可少的。 /p p style=" text-align: justify text-indent: 2em " 1987年,随着针对专用STEM的高色散电子光谱仪的成功开发,以及与Rose小组的密切合作,我获得了博士学位。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 300px height: 367px " src=" https://img1.17img.cn/17img/images/202006/uepic/2b221dc1-8442-4339-9aba-14d2a2db5ba4.jpg" title=" 4.png" alt=" 4.png" width=" 300" height=" 367" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 1987年,我带着小女儿参加博士庆典 /strong /p p style=" text-align: justify text-indent: 2em " 之后,我继续将现有的两个专用STEM用于TEM,因为实现像差校正系统来提高可用分辨率的想法并没有让我失望。然而,在全球范围内,电子光学在当时的物理学中失去了吸引力。emeriti被来自其他领域的科学家代替后,几个小组不得不关闭。同样,因为全球的几个像差校正项目都失败了,各资助机构也失去了兴趣,并且人们普遍认为,高分辨率电子显微镜(EM)的像差校正行不通,并且是“不可想象的”,尤其是对于商业仪器而言。 /p p style=" text-align: justify text-indent: 2em " 唯一可行的选择似乎是通过增加加速电压来减小用于物体成像的电子波长。因此,仪器体积变大,价格也更昂贵了:仪器已经非常先进,材料科学领域的高分辨率证明可以达到300kV、400 kV甚至1.2 MV;分辨率的确可以提高,然而,在TEM中观察到的物体的光束损伤大大增加。 /p p style=" text-align: justify text-indent: 2em " 虽然电子光学领域的工作并不受欢迎,但我不能忘记我长期以来的想法,即扫除达到亚埃分辨率道路上最大的障碍。在生物领域里,除了一些习惯使用SEM检查完整细胞的细胞生物学家之外,几乎没有人对我的这个想法感兴趣。 /p p style=" text-align: justify text-indent: 2em " 然而,在一些内部资金和与半导体公司ICT(慕尼黑)的合作下,我们能够开始在EMBL内开发像差校正SEM。Rose团队的研究生Joachim Zach提出了一种像差校正SEM色谱柱的理论,该色谱柱的分辨率应从5-6 nm降低到1-2 nm。基于此,我们与ICT合作,包括在EMBL工作了两年的ICT科学家Stefan Lanio,设计并构造了一个像差校正器。 /p p style=" text-align: justify text-indent: 2em " 在为SEM构造像差校正器的这段时间内,Arthur Jones退休了,我成为小组负责人,Joachim Zach加入了团队,并继续我们的研发。因为没有钱买现代的高分辨率扫描电镜,我们利用使用过的SEM,安装了带有肖特基发射器的新型电子枪。该电子枪具有更高的亮度和更小的能量宽度。我们的像差校正系统由四个复合的静电和磁多极(十二极)元件组成。该系统允许激发所有需要的四极场来调整校正器内的象散射线路径,并使线焦点位于元素2和3的中心,在这一点上,我们通过激发强的、几乎完全平衡的静电和磁性四极场来补偿色差。在这些元件上,我们还能够通过激发强八极杆场来补偿两部分的球差,球差的第三部分由元素1和4上的附加八极杆场补偿。 /p p style=" text-align: justify text-indent: 2em " 1995年,我们终于能够证明物镜的色差和球面像差得到了完全补偿,并且在1 keV的加速能量下,分辨率从5.8 nm降低到了1.8 nm。这是有史以来第一次通过四极八极杆校正器提高分辨率。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/55af1aa6-e8b4-4aff-873c-09418f1763f1.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " 但是很明显,我们的SEM校正系统是为极低的能量设计的。TEMs的解决方案,即当电子通过一个薄物体时,使用更高的能量来产生主要的单次散射事件,仍有待发现。 /p p style=" text-align: justify text-indent: 2em " 在1990年代初,用于高分辨率TEM和STEM的新型电子源(场发射源)在市场上可以买到。这些电子发射器具有较高的亮度和较小的一次能量宽度等优点,这与1980年代和Harald Rose进行的多次讨论中提出的想法相吻合:通过仅将系统集中在球差补偿上,可以降低像差校正器的复杂性,如果能将一次能量宽度保持在1ev以下,并且用能量约为200kev的电子对物体成像,就能将色差引起的对比度降低降到最低。 /p p style=" text-align: justify text-indent: 2em " 早在1981年,Harald Rose提出了一种用于STEM的六极校正器,该校正器仅能补偿球差。他认为该校正器对于形成探针的电子束已经足够,因为它不允许TEM需要任何视野。 /p p style=" text-align: justify text-indent: 2em " 1989年,在萨尔茨堡举行的显微镜会议是我们开发经Cs校正的TEM起点,此后由大众基金会资助:MPI斯图加特新订购的1.2 MeV TEM展示引发了一种方法的讨论,它能够提高TEM在材料科学中的分辨能,但是成本较高。Knut Urban是Forschungszentrum Julich的一名材料科学家,他迫切需要高分辨率的仪器,电子光学理论家Harald Rose和我讨论了为一个更便宜、具有更好分辨率和更少光束损伤项目筹集资金的可能性。 /p p style=" text-align: justify text-indent: 2em " 1989年底,Rose扩展了STEM校正器概念,并提出了一种在物镜后面带有附加传输系统的六极校正器,以实现可接受的视野并将其应用于TEM中。 /p p style=" text-align: justify text-indent: 2em " 1990年,他在《Optik》杂志上发表自己的想法,作为“球形校正半平面中压透射电子显微镜的概述”。 /p p style=" text-align: justify text-indent: 2em " 与此同时,我们三个人继续讨论如何实现提出的校准器,1990年底,我们最终确定了大众基金会的拨款提案。在提交之前,我需要总干事的许可才能在EMBL内执行该项目——毕竟是分子生物学实验室,而不是物理研究所。但是由于所有的资助都是外部的,而且技术是前瞻性的,该仪器以后可以用于EMBL的结构研究,项目得到了许可。 /p p style=" text-align: justify text-indent: 2em " 1991年夏天,这项建议预先获得接受,并将五年里分了两个项目:第一部分的任务是在最先进的TEM获得资金之前,对概念进行验证;1992年1月,我们开始了六极校正器得研制。因此,我们的两个像差校正项目并排运行:SEM项目旨在校正1.5 kV至0.5 kV之间的色差和球差,而TEM项目旨在消除80 kV至200 kV的球差。 span style=" text-indent: 2em " 对于SEM项目,必须采用四极/八极校正器设计,而对于TEM项目,则要开发新的六极校正器。 /span /p p style=" text-align: justify text-indent: 2em " 在1994年夏季的巴黎国际会议上,证明了遵循Harald Rose概述的六极校正器的原理。这为新TEM的筹资铺平了道路。 /p p style=" text-align: justify text-indent: 2em " 1995年,仪器安装完毕,开始安装六极校正器。早在1995年底,Joachim Zach即可通过SEM像差校正器将分辨率从5.6 nm降低到1.8 nm。然而,与此同时,新的EMBL主任停止了物理仪器项目,这意味着我们组的所有合同,包括我自己的合同,将在1996年7月终止。看起来,我们已经快没有时间进行突破了。 /p p style=" text-align: justify text-indent: 2em " 因此,我们与时间的竞赛开始了。1996年夏天,我们能够在TEM中显示六极校正器对球差的补偿。但是,由于物镜中附加镜头的水冷引起的不稳定性,无法证明分辨率的提高。我获得了大众基金会一个为期一年的项目资金,并且在没有EMBL额外资金的情况下获得了可用空间进行此扩展的许可。1996年秋,我们设法摆脱了一些不稳定因素,但在1997春,在物镜区域仍然很明显地存在一种不稳定因素。 /p p style=" text-align: justify text-indent: 2em " 接下来的几个月是非常戏剧性的。我知道我们必须关闭TEM并将显微镜在7月底转移到Jü lich。5月,我决定在物镜下设计一个新的强透镜,以减少光束直径周围的不稳定区域。我们在6月份的时候就可以使用这种新镜片,但是在开启新镜片后的第一次测试中仍然显示出已知的不稳定性。然而,几个小时后,在午夜时分,我们突然获得了分辨率从最初的0.24 nm下降到0.12 nm的图像! /p p style=" text-align: justify text-indent: 2em " 1997年6月底,项目圆满完成。我们拍摄了一些照片用于会议演示,1997年7月,第一个经过校正的像差TEM被送到了位于Julich的Knut Urban实验室。 /p p style=" text-align: justify text-indent: 2em " 没有以下两个先决条件我们是不可能实现这一重大飞跃的。首先,在1996年夏季,当EMBL很显然无法实现进一步的发展时,我们在海德堡成立了校正电子光学系统(CEOS)公司。在很短的时间内,通过专门设计的中间镜头来消除不稳定性的策略,只有在CEOS一名员工的帮助下才可行,他把新镜头的设计和建造作为自己的首要任务。其次,在该项目的最后一年中,我从Rose小组聘请了Stephan Uhlemann,他在博士期间已经研究了六极校正器的理论,以开发一种对准策略。,实践证明,该方法对于使校正器和整个仪器都处于良好对准状态非常有用。 /p p style=" text-align: justify text-indent: 2em " 为什么CEOS公司成立于1996年? 就在第一个SEM校正器完成时,我们收到了日本JEOL公司的要求,用于开发用于晶圆检查工具的SEM校正器。为了执行此任务,我说服Joachim Zach(30%)共同创立了我们公司的CEOS。另外还有Harald Rose(5%)和我所在集团的前电子工程师Peter Raynor(5%)。公司成立后,我们开始与JEOL合作,并为他们的检测工具开发了第一个商用像差校正器。Harald Rose和Peter Raynor仅充当股东,而我和Joachim Zach共同管理,并在只增加三名员工的情况下创建了这家公司。 /p p style=" text-align: justify text-indent: 2em " 用于高分辨率TEM的新型六极校正器的展示引起了很多关注:实验室开始筹集资金,几家公司与我们进行了谈判,以确保获得这项新技术并出售包括新型校正器在内的仪器,德国研究基金会发起了一项为各种机构的新仪器提供资金的计划。越来越多的活动使得CEOS有必要在海德堡寻找新的办公地点,因此我们用私人资金投资建造了一座可以容纳四个单独实验室的新楼,为我们的客户——EM制造商Zeiss、Hitachi、JEOL和Philips/FEI。在2003年,我们已与四家公司达成了合作协议。 /p p style=" text-align: justify text-indent: 2em " 2000年,当新的像差校正系统很显然取得了成功,受到材料科学界的广泛认可和赞赏时,美国能源部开始讨论进一步开发300 kV的超高分辨率TEM,在TEM和STEM中均达到50 pm的分辨率,不仅要求TEM补偿球面色差,还要补偿色差。 span style=" text-indent: 2em " 随后,TEAM项目(透射电子像差校正显微镜)于2005年启动,且要在2008年夏季完成。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 2008年4月,在Argonne的DOE实验室安装了TEM原型机,并在Oak Ridge安装了经过Cs校正的STEM之后,我们终于设法将整个双校正300 kV仪器运送到NCEM/Berkeley。对于STEM,我们开发了先进的六极校正器,甚至可以补偿五阶极限像差,并显示50 pm的分辨率。但是,对于Cc / Cs校正器,我们发现在200 kV时分辨率为55 pm,在300 kV时分辨率仅为65 pm,尽管在300 kV时较短的波长有望显示出更好的结果。即使接受了像差校正的TEM,我们也没有放弃调查在300kV和200kV时失去相干性的原因。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 直到2013年,我们才能够通过计算和实验工作(主要是Stephan Uhlemann)来解释降低分辨率的原因。由于校正器内电子束的直径较大,因此任何金属中的自由电子均会通过相关作用产生小的电子电流,其较小的磁场会产生磁噪声。由于四极场的强度有限,需要较大的束径才能产生足够的聚焦功率。为了解决磁噪声的问题,我们为Julich升级了TEAM的现有副本,从而将200kv和300kv的分辨率提高到50pm。 /span /p p style=" text-align: justify text-indent: 2em " 当我们刚刚完成TEAM项目时,乌尔姆大学的Ute Kaiser要求进行一个联合项目,以开发专用的低压(20kV至80kV最高)像差校正器。 /p p style=" text-align: justify text-indent: 2em " 亚秒级低压电子显微镜(SALVE)项目是与蔡司(Zeiss)的联合项目,该项目由德国联邦政府和DFG和巴登-符腾堡州共同资助。然而,2013年,蔡司停止了TEM业务,并与FEI找到了一个新的基础仪器项目合作伙伴。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 311px " src=" https://img1.17img.cn/17img/images/202006/uepic/6719a238-98b8-47c9-b5de-1bc2ec386768.jpg" title=" 6.png" alt=" 6.png" width=" 450" height=" 311" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 我和Christa Charlotte在夏威夷 /strong /p p strong /strong /p p style=" text-align: justify text-indent: 2em " 我们利用蔡司回酬谈判和与FEI达成新协议之间的时间来修改现有的SALVE校正器并针对磁噪声进行优化。 /p p style=" text-align: justify text-indent: 2em " SALVE项目于2016年完成,具有低能耗实现分辨率的新里程碑。例如,即使在40keV能量下,也能达到亚埃分辨率,尽管在这种能量下电子的波长要比200kV时大得多。作为实现分辨率的品质因数,采用了用于成像电子的波长:在具有挑战性的TEAM项目中,目标是达到20倍波长的分辨率。我们为SALVE项目设定了相同的目标,设法获得了20到80kV之间波长约15倍的分辨率,超过了TEAM项目的结果。与具有100倍波长分辨率的未校正TEM相比,提高了近7倍。 /p p style=" text-align: justify text-indent: 2em " 除了这些具有挑战性的研发项目外,我们还必须为多家公司组织Cs校正器的生产。因此,在2005年TEAM项目启动时,我们改变了与FEI在TEM和STEM方面的合作,并准许他们根据我们的技术生产六极Cs校正器。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/cf9f8aa9-53b9-45c8-81e3-fd7c7cb481e6.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " strong 2005年,和Joachim Frank在瑞士达沃斯举行的EM会议上 /strong /p p style=" text-align: justify text-indent: 2em " 多年来,CEOS公司不断发展壮大,从1996年5个人组成的团队发展成为如今拥有近50名员工的企业。由于与达姆施塔特的Roses团队的密切互动,我们认识了他的博士生,并且可以聘用一些。最后,我们聚集了Rose的前7名博士生,他们都对电子光学非常了解。 /p p style=" text-align: justify text-indent: 2em " 我们必须将Heidelberg公司的办公场所扩展三倍,到2019年底,全球共安装了约900台基于CEOS技术的六极校正器,约占像差校正电子显微镜全球市场的90%。 br/ /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 295px " src=" https://img1.17img.cn/17img/images/202006/uepic/a7666669-5faf-4411-854c-27463941b80f.jpg" title=" 7.png" alt=" 7.png" width=" 450" height=" 295" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 一群曾经在CEOS公司工作的H.Rose的学生在大楼前庆祝10周年 /strong /p p style=" text-align: justify text-indent: 2em " 当我从眼镜师转为物理学家时,妻子Brigitte在1988年被诊断出患有癌症,我的生活发生了巨大变化。 /p p style=" text-align: justify text-indent: 2em " 1989年,我们从达姆施塔特搬到海德堡附近的一个村庄,住在离我当时工作的EMBL更近的地方。妻子于1990年去世,同年,Harald Rose、Knut Urban和我建立了经Cs校正的联合TEM项目,并且正为该项目筹集资金。 /p p style=" text-align: justify text-indent: 2em " 随着Brigitte病情的发展,她碰巧遇到正在休产假的新教牧师Christa Charlotte,她的孩子与我的两个孩子的年龄相近。在接下来的几个月中,Christa Charlotte承担起了对我妻子精神上的照顾,Brigitte去世后,作为单亲妈妈的她很支持我。我们坠入了爱河,于1995年建立了一个共同的家庭,并在2000年幸福地结婚。我感到非常荣幸,感谢我的第二任妻子和所有的孩子,我的生活经历了这种积极的变化。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/202006/uepic/88d5d50c-2606-4318-8bc5-dd5f5d8697bc.jpg" title=" 8.png" alt=" 8.png" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 2008年,我与K.Urban和H.Rose在本田奖庆祝活动后的合影 /strong /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 423px " src=" https://img1.17img.cn/17img/images/202006/uepic/684f5c59-1526-4dfc-82dd-a8b926dcb504.jpg" title=" 9.png" alt=" 9.png" width=" 450" height=" 423" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 与H.Rose一起参加海德堡大学生日研讨会 /strong /p p & nbsp /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: left text-indent: 0em " span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/news/20201104/563818.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " 【自传】像差校正电镜技术先驱之Harald Rose /a /span /p p style=" text-align: left text-indent: 0em " a href=" https://www.instrument.com.cn/news/20201112/564599.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Ondrej L. Krivanek /span /a /p p style=" text-indent: 0em text-align: left " a href=" https://www.instrument.com.cn/news/20201204/566735.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Knut Urban /span /a /p p br/ /p
  • “大科学装置前沿研究”重点专项2021申报指南:拟支持电子自旋共振谱仪等21个项目
    5月10日,科学技术部发布国家重点研发计划“大科学装置前沿研究”等“十四五”重点专项2021年度项目申报指南。“十四五”国家重点研发计划深入贯彻落实党的十九届五中全会精神和“十四五”规划,坚持“四个面向”总要求,积极探索“揭榜挂帅”等科技管理改革举措,全面提升科研投入绩效。有关事项通知详情点击此处链接。“大科学装置前沿研究”重点专项2021 年度项目申报指南本重点专项总体目标是:开展专用大科学装置的科学前沿研究,推动我国粒子物理、核物理、天文学等重要学科的部分研究方向进入世界先进行列;开展平台型大科学装置的先进实验技术和实验方法研究,提升大科学装置支撑科技创新、经济社会发展和国家安全的能力。继续支持我国具有特色和优势的大科学装置开展前沿探索研究,力争在世界上率先实现若干重大前沿突破。2021年度指南围绕粒子物理、核物理、强磁场、天文学、先进光源、交叉应用等6个方向进行部署,拟支持21个项目,拟安排国拨经费概算5.15亿元。同时拟支持8个青年科学家项目,拟安排国拨经费概算4000万元,每个项目500万元。本专项 2021 年度项目申报指南如下。1. 粒子物理1.1 CKM 矩阵参数与底强子非粲衰变CP破坏的精确测量研究内容:利用海量的底夸克实验数据开展CP破坏等重味 物理前沿课题研究,主要包括:精确测量CKM夸克混合矩阵参数,例如β和γ相角等;精确测量B介子非粲衰变的CP破坏,包括理解三体衰变复杂的CP破坏结构等;在底重子衰变中寻找CP破坏,包括衰变到三体或四体末态,并理解其中多体末态的CP破坏结构。考核指标:对γ相角相关的重要衰变道进行测量,并结合其他测量结果,将γ相角的测量精度提高到4度以内;在无圈图污染过程中完成sin2β测量,精度达到10%以内。若干B介子非粲衰变和底重子衰变的CP破坏的测量结果达到世界最好水平或为世界首次测量。1.2 基于中微子的反应堆监测新技术及相关物理研究研究内容:发展新型中微子探测技术,开展反应堆监测技术和物理研究,主要包括:发展极低阈值、极低本底双相氩时间投影室探测技术,寻找反应截面最大但尚未被探测到的反应堆中微子—原子核相干散射过程,以实现中微子探测器的小型化,用于反应堆监测,同时研究其相关物理;发展基于新型低温液体闪烁体的高能量分辨探测器技术,用于精确测量反应堆中微子能谱及核素谱。考核指标:发展小型化反应堆中微子探测技术,研制并运行一个极低阈值、极低本底的双相氩时间投影室探测器,采用低本底氩,有效质量不低于150kg,探测阈值达到1keV核反冲能;利用台山反应堆,成功探测到反应堆中微子—原子核相干散射信号;测量低能标下的弱混合角。研制并运行一个采用高量子效率硅光电倍增管的新型低温液体闪烁体探测器,有效质量不低于1吨, 能量分辨在3MeV时优于1%,比现有大型液闪探测器的最好水平(Borexino,~2.8%)提高2.5倍以上;利用台山反应堆,测量高精度反应堆中微子能谱和核素谱,为江门中微子实验提供有效谱形误差1%以内的数据依据,对U235和Pu239测量的有效谱形误差达到4%和8%。1.3 无中微子双贝塔衰变和太阳中微子实验关键技术研究研究内容:依托中国锦屏地下实验室,开展寻找无中微子双贝塔衰变、太阳中微子探测实验的关键技术和方法研究,并初步建立相关实验装置开展实验探测。考核指标:在无中微子双贝塔衰变实验领域开展先进高纯锗半导体探测器、极低温晶体量能器、基于Topmetal技术的高气压时间投影室等实验技术研究,确定具有中微子双贝塔衰变有效质量小于10meV灵敏度的探测器技术方案;建设百吨级太阳中微子探测平台,实现太阳B8中微子的探测,重建出太阳中微子方向,5MeV 能量区间,太阳角重建的角度分辨为35度(68%的置信区间)。1.4 依托大型国际合作装置阿尔法磁谱仪(AMS)的物理研究研究内容:依托大型国际合作装置AMS实验,开展暗物质和反物质寻找,宇宙线的起源加速和传播规律机制的物理研究工作。通过宇宙线正电子、反质子和反氘核的精确测量,进行暗物质寻找;通过宇宙线反氦核、反碳核和反氧核的测量寻找原初反物质;精确测量宇宙线各原子核的能谱以研究宇宙线的起源加速和传播规律。参与国际合作,研制满足空间环境要求的新型大面积硅探测器,应用于AMS02的探测器升级。考核指标:暗物质寻找的研究,分析AMS实验数据得到1GeV~1.4TeV的宇宙线正电子能谱测量结果700~1000GeV精度达到35%;得到1GV~500GV的宇宙线反质子能谱结果,反质子能谱500GV精度好于20%;得到宇宙线反氘研究结果。反物质寻找的研究,得到宇宙线反氦研究结果。宇宙线起源加速传播机制的研究,得到2GV~3TV的宇宙线Na、Al、S、亚铁(Z=21~25)等分析结果,100GV精度4%~5%,3TV精度20%~40%;研制成 满足空间条件的10cm×100cm硅探测器,位置分辨率好于5微米,优良通道占比超过 95%。2. 核物理2.1 STAR束流能量扫描实验中QCD相结构和临界点的实验研究研究内容:针对量子色动力学(QCD)的核物质相结构和QCD临界点的重大科学问题,依托相对论重离子对撞机(RHIC)的螺旋管径迹探测器(STAR)的第二期束流能量扫描实验,主要开展质心能量20GeV以下的重离子碰撞实验的物理分析。通过测量守恒荷的高阶矩、超子整体极化和矢量介子的自旋排列、多奇异强子的产生、同质异位核素的可能的手征磁效应分析等,建立系统的QCD相结构和临界点的实验探针与方法,研究QCD物质相结构和QCD临界点。考核指标:基于STAR实验第二期能量扫描实验数据,获得质心系7~20GeV不同能量点下的守恒荷的高阶矩的高精度实验数据,系统测量Λ、反Λ超子及矢量介子的整体极化及自旋排列的快 度依赖与能量依赖并揭示其物理起源,精确测量Ω粒子、φ粒子等 多奇异强子的产额分布并揭示其产生机制;通过测量分析同质异 位素碰撞中相关物理量给出QCD手征磁效应、手征磁波效应是否在夸克胶子等离子环境中被观测到的结论;利用以上分析得到的系统实验结果给出QCD相结构及QCD临界点的信息。2.2 低能区原子核结构与反应及关键天体核过程研究研究内容:针对 X 射线暴和超新星等爆发性天体环境中的关键核反应过程,依托北京放射性核束装置BRIF和相关核天体物 理研究装置等,在低能区开展高精度的原子核的基本性质、结构特性与反应机制及关键天体核过程研究,积极发展相关微观模型,在更广泛的同位旋和角动量维度上探索原子核有效相互作用新规律,探索宇宙元素起源和星体能量产生机制。考核指标:完善BRIF高精度核物理实验平台(带电粒子探测器阵列立体角覆盖达4Pi的40%以上,能量分辨好于50keV),测量3~5项奇特原子核的基本性质、反应截面和衰变过程,统计精度好于10%;发展结合人工智能的核理论分析方法,探索原子核有效相 互作用及其演化规律;完善BRIF和相关核天体物理实验平台(伽马探测器阵列立体角覆盖达4Pi的60%以上),发展天体核反应的 高精度实验方法,测量天体演化相关的3~5项核反应截面和放射性原子核半衰期,统计精度好于10%;结合天文观测,验证天体演化模型,理解宇宙元素起源和星体能量产生机制;建立相关微观模型,研究α团簇和核物质状态方程等在天体核过程中的关键作用。3. 强磁场及综合极端条件3.1 强磁场下的代谢性疾病发病机制及防控新方法研究研究内容:瞄准糖尿病和脂肪肝两种代谢性疾病,依托稳态强磁场大科学装置,发展高场生物磁共振波谱与成像新技术,深入研究糖尿病和脂肪肝发生发展和调控机理;探索不同参数稳态磁场对糖脂代谢、铁代谢和氧化还原等代谢性疾病关键过程的调控及机制,研究稳态磁场对肠道微生物代谢的影响,探索稳态磁场在糖尿病和脂肪肝诊疗中的新策略。考核指标:发展针对糖尿病和脂肪肝等代谢性疾病的新型核磁共振波谱与成像检测方法,开发1~2种治疗糖尿病和/或脂肪肝的候选药物;阐明稳态磁场对糖脂代谢、铁代谢和氧化还原的调控机制,明确稳态强磁场生物安全界限,开发磁场在糖尿病和脂肪肝的潜在应用,研发1~2种基于磁场防控糖尿病和脂肪肝的演示样机,血糖和脂肪肝改善达到20%。3.2 强磁场下零/窄带隙新型电子材料制备及其应用研究研究内容:依托稳态强磁场装置,针对下一代电子器件对零带隙/窄带隙新型电子材料的需求,围绕极端条件强磁场下电子材料制备的关键技术与关键科学问题,聚焦磁场对材料生长调控规律的获取,系统开展强磁场下窄带隙化合物半导体、零带隙低维碳基材料、高频碳/磁薄层材料、新型热电材料等新型电子材料制备与应用研究,开拓其量产应用。考核指标:开发出强磁场(≥18T)辅助布里奇曼单晶炉样机1台;在强磁场下研发出几种具有实用化前景的零带隙/窄带隙电子材料,包括大尺寸窄带隙化合物半导体(~1 英寸,带隙~0.62eV,霍尔电阻率2000cm2/Vs,位错密度2)、高性能碳基光热催化量子点与光电材料(吸收/发射波长1200nm,光热转换效率≥40%,纳米酶催化效率≥0.1μM/s,载流子迁移率~10cm2/Vs,光响应性~106A/W)、适应于GHz/THz 波段的轻质宽带高频吸收材料 (GHz波段:吸收20dB、带宽5GHz;THz波段:吸收20dB、 带宽1THz)、低成本高性能多元纳米复合热电薄膜(ZT 值≥2.0, 温差≥10K,成本降低 50%);探索研发材料在器件中的量产应用。3.3 强磁场回旋管高功率太赫兹波源及电子自旋共振谱仪研究内容:依托脉冲强磁场装置,针对材料电子自旋与核自旋的关联、激发和弛豫过程等研究需求,开展THz回旋管理论与技术、高精度磁场位形和波形调控方法、THz高品质波束形成与瞬态测量技术、高功率THz波激励下的电子自旋共振谱仪研究,为探索关键材料结构、性能以及动力学变化提供先进测试平台。考核指标:建立基于强磁场的高功率回旋管太赫兹波源设计理论体系,解决磁场时空分布精确调控等关键技术问题,实现高功率太赫兹脉冲波和连续波输出。(1)脉冲波辐射源:磁场强度40T,频率1THz,功率300W;(2)连续波辐射源:磁场强度15T,频率800GHz,功率30W;(3)电子自旋共振谱仪:时间分辨≤10ns,带宽1GHz,DEER空间分辨2~50nm。4. 天文学4.1 依托LAMOST、FAST的恒星稀有天体和关键物理过程研究研究内容:瞄准恒星内部结构和关键物理过程,依托LAMOST、FAST大科学装置,搜寻和发现恒星关键/稀有天体, 探测恒星内部结构,识别Ia型超新星前身星;发展恒星对流模型,研究特殊元素的形成和输运、角动量转移过程;深入探讨双星演化的走向和结局,以及超新星等重要双星相关天体的形成和演化,结合黑洞观测,多方面提高宇宙测距精度。考核指标:发现几颗双星公共包层演化阶段天体;构建贫金属星和氦星的快速物质损失模型,系统建立双星演化的关键性判据;确定对流超射和星风在物质与角动量转移中的作用; 获得下主序恒星和红巨星表面存在磁场的星震学证据;通过FAST确定几颗超新星前身星;提高超新星等宇宙标尺的测距精度。4.2 第25太阳周重大爆发活动与空间天气研究研究内容:针对太阳爆发活动及空间天气形成的重大科学问题,充分利用我国自主观测设备,探索重大爆发活动中磁场时空演化、爆发机理、能量释放机制、空间天气形成机理及影响的全链路过程。诊断太阳活动中等离子体加热、粒子加速、激波形成与演化,获得对重大太阳活动产生机理及其空间天气效应新的可靠物理理解,并建立高精度的物理和数值预报模型。考核指标:确保我国自主观测新设备,如MUSER、NVST、AIMS、WeHot、FASOT等发挥科学效益;取得第25太阳活动周重大活动事件完整观测,建立数据库,涵盖国内外磁场、光学、 射电等多波段成像及光谱/频谱数据,开发新型大数据分析方法;发展三维(辐射)磁流体力学数值模拟,建立针对重大太阳爆发事件的理论和数值模拟模型;建立灾害性空间天气的高精确度预报模式和方法。5. 先进光源、中子源及前沿探索5.1 超高功率软 X 射线光源新原理及关键技术研究研究内容:针对能源科学、超导材料科学、超快物理化学和光刻等科学和应用领域对高功率EUV/软X射线光源的具体需求,依托软X射线自由电子激光大科学装置,开展超高平均功率和超 高峰值功率EUV/软X射线光源的新原理及核心关键技术研究,包括探索基于同步辐射和自由电子激光等产生高功率软X射线脉冲的新机制,发展高功率X射线光源所需种子激光、光学传输和诊断等关键技术。考核指标:完成基于角色散机制的高平均功率EUV/软X射 线光源(平均功率100W)和基于啁啾激光增强型自放大自发辐射的高峰值功率软X射线光源(峰值功率100GW)的物理机制研究;基于软X射线自由电子激光装置实验验证高功率X射线产 生的新机制,掌握其关键技术和实验方法,为用户提供峰值功率大于1GW、光子能量大于200eV的软X射线激光;掌握超高重复频率(1MHz)紫外波段种子激光和超大带宽红外波段种子激光等关键技术;掌握超高功率软X射线的光学传输、光学元件冷却(平均热负载100W,峰值功率100GW)和光学诊断(时间测量精度好于1fs)等技术。6. 交叉科学与应用6.1 超高真空平面微纳量子器件的分子束外延直接生长和原位表征技术研究研究内容:发展选区外延生长和片上掩模外延生长等技术,实现量子材料微纳结构和平面异质器件的超高真空分子束外延直接生长;开发极低温、强磁场原子力显微镜,实现绝缘基底上的微纳结构和器件的扫描隧道谱电子态表征;改进平台扫描微波显微镜、氧化物分子束外延生长等技术设备;基于这些新发展的技术研究拓扑-超导异质结构中的马约拉纳模相关物理机理等关键科学问题。考核指标:利用分子束外延在超高真空环境直接生长出超导电极间距6.2 粒子流、先进光源新实验技术研究研究内容:依托同步辐射光源、超快强激光、先进中子源、加速器等束流装置平台,针对材料科学技术、信息科学技术、生命健康和环境保护等领域的关键科学技术问题,发展急需的先进实验技术和方法。考核指标:在选定的研究领域和研究目标,通过研究平台与相关领域研究部门的密切合作,研发在同步辐射光源、超快强激光、中子源和加速器上为解决上述瓶颈问题急需的先进实验技术和实验方法,促进大设施在材料科学技术,信息科学技术、生命健康和环境保护等领域的交叉实验研究。有关说明:本方向拟支持不超过8个项目。附件:“大科学装置前沿研究”重点专项2021年度项目申报指南.pdf形式审查条件要求.pdf指南编制专家名单.pdf
  • 清华大学于荣团队在电子显微学方法研究中取得突破
    始于上世纪90年代末期的像差校正电镜开启了定量电子显微学时代。其亚埃分辨能力显著提高了图像的信噪比,使人们能够对材料中的原子位置进行定量分析,测量精度达到5皮米。然而,实现这些性能要求入射电子束与晶带轴近乎严格平行,毫弧度量级的偏离便足以破坏图像质量,引入假象,降低测量精度。如图1所示,在常见的高分辨成像技术中,ABF技术和iDPC技术受晶带轴偏离的影响很大;HAADF技术虽然受晶带轴偏离的影响较小,但难以对轻原子成像。图1. 高分辨成像技术对比。样品为SrTiO3。自上而下晶带轴偏转为0, 4, 8, 12 mrad。HAADF:高角环形暗场像;ABF:环形明场像;iDPC:积分差分相位衬度;FPP:固定传播因子叠层成像;APP:自适应传播因子叠层成像(新方法)叠层成像是一种结合扫描透射电镜和相干衍射成像的计算成像方法,能够大幅提高像差校正电镜的空间分辨率,进入深亚埃分辨。但是,现有的叠层成像方法(FPP)对晶带轴偏离非常敏感,需要苛刻的实验条件。于荣课题组针对这一难题,提出并实现了“自适应传播因子叠层成像”方法(APP),成功地消除了晶带轴偏离对空间分辨率和测量精度的影响。结果表明,即使存在明显的晶带轴偏离,仍能实现深亚埃分辨成像(图2)和皮米测量精度(图3)。自适应传播因子叠层成像方法为深亚埃分辨成像和皮米精度测量在材料科学中的广泛应用铺平了道路。图2.叠层成像重构效果对比。FPP为现有的叠层成像方法,APP为新的自适应传播因子叠层成像方法图3. 不同高分辨成像技术的原子位置测量准确度和精度。HAADF为高角环形暗场像方法,FPP为现有的叠层成像方法,APP为新的自适应传播因子叠层成像方法。理论值为零。该方法的实验验证工作以“基于取向校正电子叠层成像方法的深亚埃分辨成像”(Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction)为题发表在学术期刊《科学进展》(Science Advances)上。清华大学材料学院2018级博士生沙浩治和2019级博士生崔吉哲为共同第一作者,于荣教授为通讯作者。材料学院程志英高级工程师和陈震副研究员在实验数据采集方面提供了重要帮助。该研究获得国家自然科学基金基础科学中心项目的支持。论文链接:https://www.science.org/doi/10.1126/sciadv.abn2275
  • 北京谱仪III开创探索正反物质不对称性的新方法
    近期,我国自主研发的大型高能物理实验装置北京谱仪III合作组实现一种创新实验方法,为研究物质和反物质不对称性提供了极其灵敏的实验探针。相关研究成果于6月2日发表在《自然》上。  宇宙大爆炸之初应该产生等量的正反物质,但为什么我们的宇宙却只有物质组成而非反物质?这个问题困扰了科学界半个多世纪。物质和反物质遵循不同的规律吗?粒子衰变为研究正反物质不对称性提供了重要线索:如果粒子和反粒子的衰变模式存在差异,那么这些差异可能是导致我们今天丰富的物质世界形成的原因。然而,由于粒子衰变通常是由多种相互作用诱导发生的,比如一种类似质子的短寿命粒子叫做科西超子,它的内部含有两个重的奇异夸克和一个轻夸克,带一个负电荷,其衰变过程中既有弱也有强作用发生。如何识别是哪种作用导致正反物质衰变行为不同呢?北京谱仪III实验最近首次利用处于量子纠缠的正反科西超子对的级联衰变,成功把导致正反物质不对称的弱作用力从强作用力中分离出来,这一创新方法和实验结果引起该领域世界同行的密切关注。  实验数据北京谱仪III实验国际合作组收集的。合作组成立于2008年,由来自亚洲、欧洲和美洲等17个国家80个研究机构约500名科学家组成。在北京谱仪III实验中,电子与其反粒子正电子碰撞的能量是其固有质量的上万倍。在这些碰撞中,电子和正电子湮灭,并从释放的能量中产生其他粒子或粒子对。在这项新的研究中,科研人员利用正反科西超子的“自旋”信息和量子关联来揭示正反物质不对称性,粒子物理学家称为“CP破坏”。超子衰变是寻找CP破坏的一个很有希望的狩猎场,因为它们的“自旋”方向可以通过其“子粒子”的衰变直接测量。考虑成对的正反超子级联衰变,可以把强力和弱力的贡献分开,导致对CP破坏测量的敏感度显著提高。北京谱仪III实验这一创新方法为寻找CP破坏提供了一种全新的视角。  尽管该研究给出的结果显示没有CP破坏的迹象,但这一创新方法为科学家未来确认或排除超出标准模型的CP破坏来源带来了希望。“这是理解正反物质不对称性的一个里程碑,我期待北京谱仪III合作组将取得更多成就。”中国科学院院士、中科院高能物理研究所所长王贻芳说。“北京谱仪III实验的灵敏度远高于之前费米实验室的HyperCP实验,是HyperCP实验单事例灵敏度的1000倍,这得益于北京谱仪III实验上正反科西超子的自旋极化和量子纠缠。”BESIII国际合作组发言人李海波表示。  北京谱仪III探测器拥有目前国内正在运行的最大国际合作组。此次研究由中国科学家和国外合作者共同完成,是国际合作的典范。  论文链接 北京谱仪III探测器侧面照  正反科西超子级联衰变演示图:如果物质和反物质遵循相同的物理法则,科西超子与反科西超子的衰变应该是镜像对称的,只是空间坐标是相反的。镜像之间纽带连接表示正反超子的量子关联。
  • FEI公司将为美国TEAM计划建造世界上最高分辨率的电子显微镜
    能源部TEAM 计划目标于直接观察0.5 埃尺度 [2004 年11 月29 日] FEI 公司(NASDAQ:FEIC)宣布,联合承担TEAM 计划的几家实验室,已选择FEI 公司作为建造世界上最高分辨率(扫描)透射电子显微镜的研发合作伙伴。TEAM 计划是由美国能源部基础能源科学司投资数千万美元资助的显微学项目。该项目将促成一台新型显微镜的诞生。这台能在前所未有的0.5 埃分辨率下直接观察和分析纳米结构的显微镜,必将创造卓越的新科学良机。0.5 埃大约是碳原子尺寸的三分之一,也是原子尺度研究的一个关键尺寸。 在此项独一无二的计划中,电子显微学领域颇有建树的五家主要实验室(阿贡国家实验室,Brookhaven 国家实验室,劳伦斯伯克力国家实验室,橡树岭国家实验室,Frederick Seitz 材料研究室)通力合作,并筛选出FEI 公司为研发伙伴。每家实验室分别在这项雄心勃勃的使命中担当不同的角色,以期实现(甚至在三维空间)直接观察原子尺度的有序度、电子结构、单体纳米结构的动态。提议中的电子显微镜,自成一小型材料科学实验室,可进行实时的分析和特征描述,以促进独特的多学科交叉研究。 像差矫正电子显微技术将是TEAM 显微镜的核心。为达到0.5 埃分辨率而需要的更密集、更明亮的电子束,也会导致更强的样品信息、更高的图像衬度、更灵敏的分析本领以及史无前例的空间分辨率。成功开发新型像差矫正器将展现最基本的原子世界景观。矫正器的设计和开发,将与CEOS 公司(FEI 公司在尖端矫正器技术上的协作单位)合作完成。 “TEAM 协作团体考察了FEI 公司,以及公司的发展规划和在尖端电子光学上的历史记录,得出结论该公司是促成这项热望中的计划成功的最佳伙伴。”TEAM 科学总监暨伯克力国家电镜中心主任Uli Dahmen 指出:“FEI 公司全新的矫正器专用平台,因为能满足像差矫正仪器严格的稳定性要求,是TEAM 显微镜的最可行的出发点。有FEI 公司作为合作伙伴,我们有信心实现TEAM 计划的挑战性目标。” “我们对被有威望和有国际声誉的TEAM 计划选中而感到自豪,” FEI 公司董事长、总裁兼执行总监Vahé Sarkissian 说:“这将给我们机会以提升我们的电子光学才能,保持在高分辨成像和分析领域的世界领先地位,保持纳米技术时代的重要设备厂商地位。FEI 公司承诺:通过与TEAM计划等的合作,与CEOS 公司的联系,我们将竭尽全力完成任务。” “我们十分自豪,TEAM 计划首肯了我们常规推广的、用于超高分辨率的300 千伏(扫描)透射专用矫正电镜。” FEI 公司(扫描)透射电镜事业部副总裁George Scholes 说。“几年来我们致力于开发具有前所未闻的可靠性和不可比拟的重复性的系统。在此过程中,我们认真听取了TEAM伙伴和其它(扫描)透射电镜科学泰斗的建议。”他补充道:“我们深感激动,将要出台的新矫正器专用平台就已被TEAM 选中。我们坚信,我们的努力将重建纳米尺度研究、发现、开发的准则。” 科研人员和工业界用户的最大收益之一,是新平台所提供的极为重要的变通性,以适应于今后的部件升级发展。将来FEI 公司和TEAM 计划所做的(扫描)透射电镜技术革新,能在这一系统上进行翻新改造。 “成功制做了200 千伏透射和扫描透射电镜的球差矫正器之后,我们很高兴被选中为TEAM计划300 千伏球差/色差矫正器的开发伙伴。” 位于德国海德堡的CEOS 公司的创办人之一Max Haider 博士说:“我们自信我们今天在FEI 公司超稳定平台上所做的工作,必将为科学家们提供新的装备,以迎接前沿开发和研究的挑战。” 关于FEI 公司: FEI 公司服务于纳米技术的装备,以聚焦离子束和电子束技术为特色,提供最高分辨率小于1 埃的3D 特征描述、分析及修改功能。公司在北美和欧洲拥有研究开发中心,在全球四十多个国家经营销售和提供维修服务。FEI 公司将纳米尺度呈献给研究人员和生产厂商,协助将本世纪一些最杰出的理念变成现实。更多的信息可在FEI 公司网页上找到:http://www.feicompany.com 关于TEAM 计划: 能源部电子束微特征描述中心提议,引导开发尖端像差矫正电子显微镜,提供必要的基础设施,使该设备能广泛地被科学界用户利用。五家在电子显微学卓有成绩的单位阿贡、Brookhaven、橡树岭、劳伦斯伯克力国家实验室、Frederick Seitz 材料研究室,将联手在国家电镜中心(运作于劳伦斯伯克力国家实验室)建造第一台TEAM电镜。更多信息,请访问: http://ncem.lbl.gov/team3.htm 和http://www.anl.gov/Media_Center/News/2004/MSD041112.html 关于CEOS公司: CEOS公司(Corrected Electron Optical Systems或矫正电子光学系统)是带电粒子透镜像差矫正器的代表。由M. Haider博士和J. Zach博士八年前在德国海德堡成立的公司,专门从事高尖端电子光学部件的研究和开发。更多信息见: http://www.ceos-gmbh.de 此新闻发布具有瞻前性的陈述,对预期产品的论述。影响到这些超前性陈述的可能因素包括(并不局限于项目的改变和取消):FEI 公司、供应商或项目伙伴在实现项目预期计划上的技术能力局限性;执行中产生的延迟因素或与预期结果相异的结论;意料之外的技术需求;主要供应商或项目伙伴破产。欲了解这些或其它有可能造成与预期目标不符的因素,请参阅10-K 和10-Q 表格,以及美国证券交易委员会的文件。FEI 公司将不予进一步陈述。 中文版译注: 1. TEAM为Transmission Electron Aberration-corrected Microscope 的字头缩写,意为透射电子像差矫正显微镜。 2. (扫描)透射电子显微镜的英文原文是scanning/transmission electron microscope 或(S)TEM,意为带有或不带有扫描透射功能的透射电子显微镜。 3. 任何中文版疑义,以英文版为准。
  • 第七届海峡两岸电子显微学会议
    8月29日—31日,第七届海峡两岸电子显微学会议在台湾花莲县召开。两岸学者积极参与,大陆方面来自北京大学、清华大学等十几所国内知名大学和国家科研院所的37位专家参加了会议,代表了大陆在此领域的主要学术实力和水平。我校固体所张泽院士作为大陆电子显微学会理事长组织并出席会议,固体所四位教授在会上做邀请报告。   会议期间,海峡两岸近90位学者就显微学及其在材料、生命医学等领域的前沿科学技术问题做了学术报告,材料方面涉及到球差校正电子显微学、扫描隧道显微学、分析电子显微学、纳米材料结构与性能原位研究、现代轻质合金、功能薄膜、三维成像等等。   此次是大陆学者第三次赴台参加海峡两岸电子显微学会议,也是来台人数最多的一次,前六届会议分别在厦门、北京、台北、乌鲁木齐、哈尔滨等地举办。会议不仅加深了两岸学者的学术交流与了解,更加深了两岸同胞的友谊。明年的海峡两岸电子显微学会议将在大陆召开。
  • PerkinElmer新获得一项质谱专利
    2014年4月9日消息 PerkinElmer新获得一项质谱专利(8,686,356)。该项专利名称为质谱裂解方法(fragmentation methods for mass spectrometry),有5位共同发明者,分别是康涅狄格州布兰福德的Craig M. Whitehouse,康涅狄格州特朗布尔的David G. Welkie,马萨诸塞州沃尔瑟姆的Gholamreza Javahery, Lisa Cousins、Sergey Rakov。   据了解,该发明专利涉及质谱分析领域,于2012年12月13日提交申请(13/714,089),特别适用于采用电子捕获解离(ECD)技术或正电子捕获解离(PCD)技术的多极离子阱质谱仪,以促进化学物种结构的鉴别。该发明的实体可以连接到任何类型的离子源,包括大气压离子(API)源或低压源、大气压离子源包括但不限于电喷雾电离(ESI)、基质辅助激光解吸(MALDI)、电感耦合等离子体(ICP)和大气压化学电离(APCI)源。 (编译:刘玉兰)
  • 放射性药品检验实验室:药监局建议配置28种基本仪器设备
    为落实《国家药监局关于改革完善放射性药品审评审批管理体系的意见》,鼓励有能力和条件的药品检验机构开展锝标记及正电子类放射性药品检验能力的建设,增加有资质的检验机构,国家药监局组织制定了锝标记及正电子类放射性药品检验机构评定程序,2024年3月7日发布,自发布之日起施行。在实验仪器设备方面,《国家药监局锝标记及正电子类放射性药品检验机构评定程序》对药品检验机构的要求如下:(1)应配备与放射性药品检验工作相适应的仪器设备,仪器设备应按检验项目进行功能划分,合理布局,避免不同检验项目相互干扰。放射性药品检验实验室配置的主要仪器设备可参考表1。(2)实验室应制定检验设备和辐射防护监测设备的操作规程、使用记录、维护保养、校准方案等相关文件。应确保设备功能正常并防止污染或性能退化。(3)放射性药品检验用仪器应进行检定、校准或核查。应配备仪器期间核查相关的放射性标准源,并定期进行复核和必要的调整,以保持对校准状态的可信度。(4)放射性药品检验用仪器的检定、校准或核查项目应满足检验要求。(5)放射性校准源应由具备能力的标准物质生产者提供(满足ISO17034要求的标准物质生产者被视为是有能力的)。应确保放射性标准源满足检验要求,如γ谱仪标准源的γ光子能量应涵盖待测核素的主要光子能量,大小、体积、介质和容器材料应与样品相同。表1:锝标记及正电子类放射性药品检验实验室建议配置的主要仪器设备序号仪器设备名称1放射性活度计2放射性薄层色谱扫描仪3γ能谱仪4γ计数器5液体闪烁计数器6铅防护手套箱7辐射剂量监测仪8表面污染监测仪9紫外可见分光光度计10气相色谱仪11高效液相色谱仪(含放射性检测器)12电子分析天平13酸度计14微量渗透压测定仪15可见异物测定仪16照相显微镜17电热干燥箱18超净工作台或隔离器19精密恒温水浴箱(或其他具备相同功能的设备)20离心机21低温冰箱22蒸汽灭菌锅23生物安全柜24恒温培养箱25浮游菌采样器26尘埃粒子计数器27旋涡混合器28超纯水机注:上述仪器设备为锝标记及正电子类放射性药品检验所需要的基本配备。
  • 下一代激光器可让“幽灵粒子”显形
    据英国《新科学家》杂志网站8月18日(北京时间)报道,俄罗斯国立核研究大学的亚历山大费德罗夫及其同事在即将发表于最新一期《物理评论快报》上的研究论文中说,根据他们的计算,一个强大的激光器可将制造出的首个正负电子对加速到很高的速度,从而让它们发光,这道光再与激光“合力”,产生更多的电子对。而这正是量子力学在20世纪30年代的一种预言。   量子力学的不确定性原理意味着,宇宙空间并不是真的空无一物。相反,宇宙的随机波动使之变成了“一锅热腾腾的粒子汤”,电子以及其对应的反物质正电子就在其中。通常情况下,这些粒子一碰到其反物质,彼此都会瞬间湮灭于无形,我们根本来不及一睹其真容。不过,物理学家在20世纪30年代曾经预言,一个非常强大的电场可以让这些“幽灵粒子”显露形迹。由于这些粒子带有相反的电荷,电场可以将它们推往相反的方向,使它们分开而不至于同归于尽。   而能够产生强大电场的激光器就是完成这项任务的理想“人选”。1997年,美国斯坦福直线加速器中心的物理学家们利用激光成功制造出了正负电子对,不过当时一次只能产生一个正负电子对。现在,科学家通过计算表明,下一代功能更强大的激光器可以通过启动连锁反应,捕捉到数以百万计的正负电子对。   俄研究小组的计算表明,对于一台可将大约1026瓦的能量聚焦于一平方厘米范围的激光器而言,这样的连锁反应能够有效地将其激光转变成数百万个正负电子对。   该研究论文的合作者、德国马普量子光学研究所的乔治科恩称,第一个拥有如此强大功能的激光器或许于2015年由欧洲超强激光设施项目建成,不过之后还需几年时间完成必要的升级才能达到每平方厘米聚焦1026瓦的能量。   美国普林斯顿大学的柯克麦克唐纳表示,能够产生大量正电子的能力对于粒子加速器非常有用,比如提议新建的国际直线对撞器,其能够以极高的能量使电子和正电子一起粉碎,模拟宇宙诞生瞬间的高能量场景。   目前用于大批量制造正电子的标准方法是将一块金属片上的高能电子束点火,以产生正负电子对。有专家认为,与之相比,超强激光器利用连锁反应来制造正电子的成本过于高昂。
  • 2016年全国电子显微学学术年会在天津召开
    仪器信息网、中国电子显微镜学会、中国电镜网联合报导:2016年全国电子显微学学术年会于10月13-15日在天津东丽湖恒大酒店隆重召开,共有700余位来自大专院校、科研院所、企业等单位的代表出席。本次会议内容包括球差透射电子显微学、原位显微学技术、高分辨扫描电子显微学、微束分析、扫描探针显微镜、激光共聚焦显微学等,以及这些技术在前沿物理科学、化学、生命科学、信息科学等学科及新能源技术、信息技术、环境科学与技术、先进结构材料等领域中的基础研究和应用基础研究成果。大会邀请了国内外著名学者、电镜生产厂家参加会议并作特邀报告。本次会议也旨在展示显微学相关仪器理论、技术和试验方法的最新进展,同时也希望促进电镜及其它显微学仪器在使用、改进与维修经验等方面的交流。会议现场  在会议首日的开幕式上,中国电子显微镜学会理事长、中国科学院院士、浙江大学材料科学与工程学院教授张泽先生首先致辞。他在发言中提到,近年来,随着国际化的交流与合作不断扩大深入,中国的电子显微学事业正日益发展壮大,参加年会的人数也是在逐年增加。据了解,我国的球差校正电子显微镜的数量已突破60台,而世界范围内的保有量是600台,中国所占比例已超过10%。未来,如何更好地利用这些先进仪器设备做出更多一流的科研成果是每一位业内人士应该思考的问题。电子显微学也覆盖前沿物理科学、化学、生命科学、能源、环境等众多领域,张院士表示,中国电子显微学的发展不仅要在学术方面取得长足进步,更要为中国的经济发展贡献力量。随着青年一代电子显微学人才逐渐崭露头角,张院士希望中国电子显微学界的老、中、青能够进一步增强交流、共同努力,推动中国电子显微学事业持续发展。中国电子显微镜学会理事长、中国科学院院士、浙江大学材料科学与工程学院张泽教授  国家自然科学基金委物理科学一处张守著处长在致辞中指出,中国电子显微学学术年会为了解学科前沿提供了很好的机会,也为国家自然科学基金委员会更好地进行项目管理提供了帮助。他说,中国电子显微学的发展应该由三个因素共同促进:一是最新最前沿的科学问题,二是良好的科研学术氛围,再就是热情人士的参与。他希望中国电子显微学的专家学者共同努力,一起促进学科的发展。国家自然科学基金委员会物理科学一处处长张守著教授  电子显微学的发展,能够帮助科学研究向着更加高端、复杂的方向挺进,而科研水平的进一步发展则对电子显微技术提出新的要求。本次会议邀请了国内外电子显微领域顶尖的专家学者和仪器厂家代表,共同交流探讨电子显微学科近期所取得的新成果和未来的发展方向。  本次会议不仅设有特邀报告环节,还开设了显微学理论、技术与仪器发展分会场;能源、环境、信息等功能材料的微结构表征分会场;机构材料及缺陷、界面、表面,相变与扩散分会场;扫描谱学分会场(STM/AFM);扫描电子显微学(EBSD)分会场;原位电子显微学表征分会场;生命科学研究分会场;生物电镜技术分会场等八个分会场,详情请关注本网后续报道。
  • 【自传】像差校正电镜技术先驱之Harald Rose
    p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " 【简介】 /span /strong /span br/ /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/efc046ba-50b1-4340-87d3-9ae63656c042.jpg" title=" Harald Rose.jpg" alt=" Harald Rose.jpg" / /span /strong /span /p p style=" text-align: center " strong Harald Rose /strong /p p style=" text-align: justify text-indent: 2em " Harald Rose是德国物理学家。他在达姆施塔特大学学习,并获得了博士学位,在Otto Scherzer的指导下从事理论电子光学工作,在1930年代做了一些电子显微镜的开创性工作。 /p p style=" text-align: justify text-indent: 2em " Harald Rose的研究生涯与达姆施塔特大学和他在美国的任命有着密切的联系。在达姆施塔特大学,从1980年到2000年退休,一直担任教授。在1970年代初期,他在STEM的发明者Albert Crewe的实验室里工作过一段时间。自1970年代后期以来,他在美国各机构担任过多个职位,包括芝加哥的阿贡国家实验室。 /p p style=" text-align: justify text-indent: 2em " 他的研究主要集中在电子透镜的像差校正。在1990年,他设计了一种可行的透镜系统来提高TEM分辨率。然后,他与Maximilian Haider和Knut Urban合作,于1998年,以实验方式实现了他的建议。 /p p style=" text-align: justify text-indent: 2em " 自2009年以来,Harald Rose一直担任乌尔姆大学的蔡司高级教授。他获得了多个著名的奖项,包括与Haider和Urban一起获得沃尔夫物理学奖和BBVA基础科学知识前沿奖,以及与Maximilian Haider、Knut Urban、Ondrej L. Krivanek一起获得2020年度科维理奖(Kavli Prize)。他还是英国皇家显微镜学会的荣誉院士。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " 【自传】 /span /strong /span /p p span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " /span /strong /span /p p style=" text-align: justify text-indent: 2em " 1935年2月14日,我在不来梅出生,是父母Anna-Luise和Hermann Rose的第二个孩子。我的父母在数学上都很有天赋。父亲出生在一个奏乐世家,他本人擅长弹奏钢琴。由于20世纪20年代初的恶性通货膨胀,祖父破产,父亲被迫经商。父亲在商业上非常成功,在1937年成为黑森州著名公司Kaffee-Hag的销售代表。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 322px " src=" https://img1.17img.cn/17img/images/202011/uepic/416726c6-966b-4f3b-b7dd-1d5755b7ee9a.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 450" height=" 322" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 5岁的我(右)、母亲Anna-Luise和7岁的哥哥。 /strong /p p style=" text-align: justify text-indent: 2em " 1937年,我们搬到了达姆施塔特,在那里,父亲在一个名为Mathildenhohe的高档社区里建造了一栋非常漂亮的房子,这是德国新艺术(Art Nouveau)的聚焦点。1939年,我们搬进了这栋房子。 span style=" text-indent: 2em " 一年后,希特勒发动了第二次世界大战,我父亲应征加入了德国军队。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 到1944年止,我只见父亲几次,最后一次有父亲的消息是1944年2月,也就是我9岁生日那天,父亲被报道在东线的行动中失踪,我们再也没有见过他。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 1944年9月11日,由于皇家空军袭击,我们的房屋被摧毁,12,000名平民也因此丧生。幸运的是,母亲和哥哥幸存下来了,并搬到了乡下的一个小村庄。1945年3月,美国士兵抵达这里时,对我们来说,战争结束了。 /span /p p span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " /span /strong /span /p p style=" text-align: justify text-indent: 2em " 同年年底,我通过了达姆施塔特实科中学的入学考试,母亲在税务局找到了一份工作。由于没有住房,我们不得不搬到房子废墟里潮湿的地下室。每当下雨天,水从楼板上滴下来,母亲就将床移到干的地方。此外,食物很难买到,在二战结束和1948年5月德国货币改革期间,我们经常饿肚子。 /p p style=" text-align: justify text-indent: 2em " 母亲不得不同时工作和照顾两个孩子,因此没有时间帮助我们完成学校作业。幸运的是,和德国其他大多数州一样,母亲不必支付黑森州文理高中(Gymnasium)的费用。在文理高中期间,我对数学越来越感兴趣。因为没钱买昂贵的数学书,所以我经常去达姆施塔特黑森州立图书馆(Hessische Landesbibliothek),该图书馆在指定时间内免费向学生提供科学书籍,学习书籍可以帮助我轻松地理解学校的数学知识。结果,我在学校几乎没有做过任何数学题,但在考试成绩中始终是最好的。1955年初,我以优异的成绩通过了自然科学的期末考试(Abitur)。 /p p style=" text-align: justify text-indent: 2em " 因为成绩优秀,我被录取到达姆斯达特工业大学(现为Technical University Darmstadt)学习。 当时,由于大多数房屋物尚未修复,因此严格限制出入(numerus clausus)。& nbsp span style=" text-indent: 2em " 那时候,由于母亲不得不从银行借钱来重建我们的房屋,家里的财务状况仍然很危急。因为在黑森州读州立大学是免费的,所以我能够上得起大学。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 我想报读电气工程课程,但由于电学的基础知识很少被提及,该课程没有达到我的期望。因为对电动力学的基础更感兴趣,所以我决定遵从自己的喜好,在学期结束的时候转到了物理和数学课。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 当时,祖父和母亲对我的决定很不满意。课程的变化对我来说并不容易,因为我错过了第一学期的物理和数学课程,这两门课程一般在4月份开始。为了赶上进度,我学习了大学理论物理学教授Otto Scherzer的力学讲义课程。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " Otto Scherzer是20世纪上半叶最著名的理论物理学家之一Sommerfeld的学生和助手。和他的老师Sommerfeld一样,Scherzer在微积分领域也很出色,并且对物理现象的本质有着深入的了解。在量子力学课程中,他通过将数学的形式主义与对原子世界神秘本质的物理解释相结合,展示出了卓越的教学技巧。由于我正确解答了所有的习题,Scherzer给我提供了一个带薪职位,即作为理论物理习题助手。我非常高兴,因为这给我带来了足够的经济支持来养活自己,而不必在假期从事建筑工作。此外,我可以免费住在母亲的房子里,那里距离学校步行只有几步路。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 450px height: 340px " src=" https://img1.17img.cn/17img/images/202011/uepic/6379f81a-a42e-40a5-b9c5-52e65e4615a4.jpg" title=" 图片2.png" alt=" 图片2.png" width=" 450" height=" 340" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " strong 我于1997年在达姆施塔特工业大学应用物理研究所的研讨室中介绍六极校正器的功能。 /strong /p p style=" text-align: justify text-indent: 2em " 我很钦佩Scherzer作为老师具有的杰出能力。因此,由于已经加入Scherzer的研究所,我决定在他的指导下完成Diplom论文,课题是找出通过利用电子显微镜不同的角度散射行为来检测不同原子的可能性。结果表明,由于当时的仪器技术水平不足,无法实现这一概念。尽管这令人沮丧,但量子力学散射的深入研究为我以后的电子显微镜成像工作奠定了基础。 /p p style=" text-align: justify text-indent: 2em " 1961年初,我获得了学士学位。那时,大多数学生和科学家都渴望在科学的中心,即美国的一个科学研究机构待上一段时间。因此,我很高兴收到了正在Scherzer研究所休假的Fischer博士的录用通知,在马萨诸塞州贝德福德的空军剑桥研究所担任为期一年的研究顾问。我的研究重点是极短光脉冲半导体光电探测器。虽然这个课题很有实际意义,但并不符合我的兴趣。 /p p style=" text-align: justify text-indent: 2em " 1962年回到达姆施塔特,我很高兴Scherzer同意我再次加入他的研究所攻读博士学位。按照Scherzer的建议,我在自己的论文中详细研究了非旋转对称电光系统的成像特性。目的是研制能够以另一种方式实现补偿球面像差的可行系统,就像在Scherzer-Seeliger校正器中实现的那样,并研制针对圆形透镜不可避免的球面和色差进行校正的系统。这个性质被称为Scherzer定理,它阻碍了电子显微镜在低于原子位移阈值的电压下工作时的原子分辨。 /p p style=" text-align: justify text-indent: 2em " Scherzer用非相对论近似推导了这个结果,我花了一些时间证明它在相对论下仍然有效。此外,我还证明了在任何光轴为直线的磁性系统中,色差校正是无法补偿的,但附加的电四极子是必不可少的。 /p p style=" text-align: justify text-indent: 2em " 尽管Gottfried Mollenstedt在一个独创性的实验中表明,Scherzer-Seeleger校正器可以补偿球差,但这种校正并没有提高电子显微镜的分辨率,因为它受到了机械和电磁不稳定性的限制,而不是透镜光学缺陷的限制。 /p p style=" text-align: justify text-indent: 2em " 为了能真正的改进,我计算了稳定性标准,必须满足此标准才能使像差校正提高分辨率。如今,不稳定性的影响在对比传递理论中被称为信息极限。计算表明,校正元件的数量必须尽可能少,并且必须机械固定,以最大程度地减少由不稳定性引起的非相干像差。我设计了一个电磁多极校正器,该校正器由四个电磁八极元件组成,每个元件都可以激发四极和八极场以及偶极和六极场的磁场以补偿寄生对准像差,从而避免了机械运动。 /p p style=" text-align: justify text-indent: 2em " 获得博士学位后,Scherzer为我提供了一份薪酬丰厚的助理职位,为德语国家教授资格考试工作,这需要获得“venia legendi”,即在大学任教和成为教授的资格。 /p p style=" text-align: justify text-indent: 2em " 在我题为“球面校正消色差透镜的性能”的“取得在大学授课资格的论文(habilitsschrift)”中,我论述了当时所有已知的校正器都有巨大的离轴昏迷,从而过度地减小了视野范围。因此,这些校正器不适用于常规透射电子显微镜(TEM)。 /p p style=" text-align: justify text-indent: 2em " 为了补偿球差和色差和轴外彗差,并尽可能减少元素数量,我设计了一种利用对称特性的新型五元素校正器。后来证明,在设计高性能的滤光器、单色仪、镜面电子显微镜中的光束分离器以及六极校正器时,引入对称特性是关键。 /p p style=" text-align: justify text-indent: 2em " 校正器是在1972年至1982年由德国研究基金会(DFG)资助的达姆施塔特项目框架内在Scherzer研究所成功制造和测试的。实验表明,该校正器引入了过大的五阶像差。为了充分减少这种像差,于1980年加入我团队的Max Haider用十二极杆元件替代了校正器的中央八极杆元件,该元件是在他的“毕业论文(Diplomarbeit)”中研制的。但是,由于没有计算机控制,他无法在短于光学系统稳定持续的时间内校准系统。结果就是显微镜的分辨率没有得到提高,尽管该项目在1982年Scherzer去世后结束并取得了成功。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 313px " src=" https://img1.17img.cn/17img/images/202011/uepic/425afc87-d62b-403e-82d4-661f1809265b.jpg" title=" 图片3.png" alt=" 图片3.png" width=" 450" height=" 313" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 1998年,我在测试SMART项目的镜像校正器。 /strong br/ /p p style=" text-align: justify text-indent: 2em " 在通过教授资格考试一年后,我于1970年被任命为达姆施塔特工业大学(TU)理论物理学的二级教授。1972年,Albert Crewe邀请我到芝加哥大学(University of Chicago)他的小组里待了一年。在此期间,我设计了一个新的探测器,可以在扫描透射电子显微镜(STEM)中实现高效相衬。而且,我计算了由非弹性散射电子形成图像中的非局部性。结果由Mike Isaacson和John Langmore在Crewe实验室使用STEM进行了证实。之后的20年里,我一直致力于解决与非弹性散射有关的相位问题,并与Helmut Kohl合作,他在其博士学位论文中对图像形成进行了深入的量子力学描述。 /p p style=" text-align: justify text-indent: 2em " 1976年初,我离开达姆施塔特移居美国,被任命为纽约州奥尔巴尼市卫生局首席研究科学家以及纽约州特洛伊市RPI物理系的兼职教授。在奥尔巴尼期间,我遇到了辐射损伤问题,这限制了生物样品的电子显微镜图像的分辨率。为了尽可能的降低这种不良影响,电子显微镜小组的主要任务之一就是找到在可耐受电子剂量下提供有关样品最大信息的方法。一种可能性是,许多相同粒子(如核糖体)的低剂量图像的相关性。 /p p style=" text-align: justify text-indent: 2em " 比我早几个月加入该小组的Joachim Fran研究了该方法很多年。他的成功的开创性工作于2017年获得了诺贝尔化学奖。我研究的是寻找方法提高仪器的光学性能,可以让所有散射电子都被利用。在该项目中,我设计了几种新的电子光学元件,如磁单色仪、象限STEM探测器和像差校正的Ω成像滤镜,它们由柏林的Dieter Krahl制造并成功测试,后来被纳入蔡司的TEM中。此外,我提出了STEM中的集成差分相衬成像技术,该技术已在几年前由FEI在商用仪器中实现。我们和同事Jü rgen Fertig首次研究了聚合电子波在STEM中通过厚晶物体的传播,结果表明,如果入射波的锥角超过布拉格角,相邻原子柱之间会发生强串扰。 /p p style=" text-align: justify text-indent: 2em " 1980年,我回到达姆施塔特大学,成为应用物理研究所的全职教授,长期从事像差校正的研究。直到1986年,我每年都要回到奥尔巴尼几个月,以保持与奥尔巴尼的联系。 /p p style=" text-align: justify text-indent: 2em " 回到达姆施塔特后不久,我在1980年夏季发现了一种出乎意料的简单校正器,可用于消除采用对称条件的电子透镜的球差,这是我在达姆施塔特四极八极杆校正器中使用的。众所周知,六极除了有三倍像差外,还有一个小的球差,其符号与圆形电子透镜的相反。因此,如果有可能以某种方式消除大的寄生三倍像差,则该系统可以用作校正器。计算表明,如果系统对近轴射线表现出双重对称性而不受六极场的影响,这确实是可能的。这种最简单的设置可以用作STEM的校正器,它由被两个六极杆包围的两个相同的圆形透镜组成。但是,没有足够的资金来实现这种校正器,因为那时所有高分辨率电子显微镜的分辨率都受到不稳定性的限制,而不是受到透镜缺陷的限制。到1980年代末,仪器的稳定性已不再是阻碍原子分辨的主要限制因素。 /p p style=" text-align: justify text-indent: 2em " 1989年,通过在物镜和六极校正器之间增加另一个圆透镜二倍体,我发现了一个类似光学平面系统,该系统没有球差和离轴彗差。根据这一特性,校正器可以在稳定的TEM中实现大视野的原子成像。由于电子-光学平面的高对称性和简单性,我请教了Max Haider对利用这种新型校正器成功实现像差校正的看法。 /p p style=" text-align: justify text-indent: 2em " 当时,Max正在海德堡的欧洲分子生物学实验室开发和试验用于低压扫描电子显微镜的四极八极校正器的性能,因此,他可以对我观点的可行性做出最好的判断。令我惊讶的是,Max从一开始就坚信校正器可以提供真实的原子分辨率。但是,需要足够的资金才能实现该校正器。 /p p style=" text-align: justify text-indent: 2em " 幸运的是,在1989年9月于萨尔茨堡举行的Dreilä ndertagung会议上,我们与Knut Urban就材料科学成功进行像差校正的前景进行了成果颇丰的讨论。Knut Urban意识到校正像差的重要性,建议向大众基金会提交一个共同的(Rose, Haider, Urban)提案,因为美国暂停了对实现像差校正的资助,其它资助机构都拒绝了该提案。与其它机构做出的令人沮丧的决定相反,大众基金会冒险于1991年开始筹资。这种支持成就了Max Haider在1997年6月成功降低基础(未校正)的点分辨率后,大众基金会有史以来最成功的一个项目。 /p p style=" text-align: justify text-indent: 2em " 1997年,柏林电子同步加速器BESSY II投放市场,并为开发新型光子源功能的新项目提供了资金。SMART项目的组织者Alex Bradshaw和Eberhard Umbach希望我成为致力于开发像差校正电子显微镜的科学家中的一员,该电子显微镜可以作为一个使用反射电子的低能量电子显微镜(LEEM)来工作,还可以作为一个由光子从表层发射的电子来形成图像的光发射电子显微镜(PEEM)来工作。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 我团队的任务是设计、构造和测试磁物镜浸没透镜、分离入射和反射电子束的无像差分束器以及补偿透镜球差和色差的镜校正器。四年后,这些任务完成,主要是由我的非常优秀且有远大志向的学生Dirk Preikszas、Peter Hartel和HeikoMü ller实现的。除SMART项目外,我团队还参与了由ManfredRü hle发起的Sub-eV Sub-Angstroem显微镜(SESAM)项目,以开发具有高空间和高能量分辨率的电子过滤电子显微镜(EFTEM)。Stefan Uhleman的博士论文中设计了高性能的MANDOLINE滤光片,该滤光片由Zeiss制造,并结合到SESAM显微镜中。直到今天,显微镜在斯图加特的Max Planck研究所一直以出色的性能在运行。 /span /p p style=" text-align: justify text-indent: 2em " 尽管我所在的团队取得了巨大的成就,在国际上享有很高的声誉,也获得了许多科学家和行业的称赞,但在2000年4月,达姆施塔特技术大学却在我退休后放弃了我的研究领域。由于和美国的许多同事保持良好的联系,应美国同事的邀请,我在橡树岭国家实验室(Oak Ridge National Laboratory)担任了一年的研究员。在这里,我遇到了来自阿尔贡(Argonne)的Murray Gibson,他的目标是研制一种可以进行任何形式原位实验的高分辨率电子显微镜。因为只有大的物镜室才能满足此条件,所以必须校正物镜的球差和色差,以在中压下获得约0.2 nm的高分辨率,这对于减少辐射损伤是必需的。 /p p style=" text-align: justify text-indent: 2em " 我接受了Murray提出进行经校正物镜设计的邀请,于2001年9月移居阿尔贡。但是,2002年4月,因为检查出患有早期前列腺癌,我不得不停止在阿尔贡的工作。幸运的是,癌症尚未扩散,存活的机率很高。在美因兹大学(the University of Mainz)接受手术后,我花了一年多的时间进行康复。与此同时,随着Murray换任高级光子源主任,Lawrence Berkeley国家实验室(LBNL)的Uli Dahmen成为TEAM项目主任。美国能源部改变了该项目的目标,要求使用彩色球面校正的中压电子显微镜提供0.05 nm的分辨率。 /p p style=" text-align: justify text-indent: 2em " 2003年9月,我搬到伯克利,成为LBNL高级光源(ALS)的一名研究员。由于ASL距国家电子显微镜中心(NCEM)仅几步之遥,所以我接受了Uli的邀请成为TEAM项目顾问,该项目始于2004年,并于2009年成功以0.047 nm的分辨率结束,这大约是氢原子的半径。我与CEOS公司合作设计了TEAM校正器,通过用电磁四极八极杆五联体替换六极校正器的每个六极杆,所得校正器通过保持双重对称性来补偿色差、球差和彗差。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ae3742be-568d-4dcb-8b7c-780a1720ceaf.jpg" title=" 图片4.png" alt=" 图片4.png" / /p p style=" text-align: center " strong 2009年,我在M&M会议上与Hannes Lichte教授讨论问题。 /strong /p p style=" text-align: justify text-indent: 2em " 2007年,乌尔姆大学(University of Ulm University)的Ute Kaiser教授邀请我就像差校正进行演讲,特别是关于六极校正器的设计和功能。该校正器是其新TITAN电子显微镜的一部分,该电子显微镜是FEI公司在2005年提供的第一台商业像差校正TEM。 /p p style=" text-align: justify text-indent: 2em " Ute Kaiser对二维物体(如石墨烯)的原子结构可视化很感兴趣。然而,在300 kV电压下操作显微镜时,样品立即被破坏。幸运的是,由于进行了像差校正,显微镜能够提供在80 kV(仪器的最低可调电压)下的原子分辨率。由于该电压低于石墨烯中原子位移的阈值电压,因此能够对其原子结构进行成像。该结果证明辐射损伤也限制了材料科学中许多物体的分辨率。由于很多对辐射敏感的二维物体的撞击阈值在20 kV至80 kV之间,因此对像差校正低压电子显微镜的需求很明显。因为在这种低电压下,色差超过了物镜的球差,并且需要大的可用孔径角才能获得原子分辨率,所以有必要开发新型的校正器。高性能SALVE校正器是通过将达姆施塔特四极杆-八极杆校正器的中央多极杆分成两个在空间上分离的元素而获得的。以该系统为起点,CEOS公司成员在由Ute Kaiser发起和领导的Sub-Angstroem低压电子显微镜(SALVE)项目的框架内开发了校正器。SALVE项目于2009年开始,在蔡司终止TEM生产后于2011年中断。2013年,FEI与CEOS公司一起继续了该项目,并于2017年结束,取得了意想不到的成功,显微镜的分辨率比合同所要求的提高了近30%。在SALVE项目开始时,我成为Ute Kaiser团队成员,并于2015年被任命为Ulm大学的高级教授。 /p p style=" text-align: justify text-indent: 2em " 除了和在量子力学基础上设计电子光学组件和发展电子显微镜成像理论外,我对了解电子的基本性质也一直很感兴趣。特别是,我花了20多年的时间尝试了解自旋的起源、电荷和电子的质量。为此,我采用了一种相对论的量子力学方法,其与相对论电动力学和狄拉克理论密切相关。可能是因为我不属于基本粒子领域,所以我解释基本粒子结构的新理论被忽略了,投稿的文章未经审查就被拒绝。不过,2019年12月10日,我可以在乌尔姆大学的一次特殊物理座谈会上发表我的新理论,并希望我的演讲能引发对该主题富有成果的讨论。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/544effa6-64ee-4899-92ad-11a4ff02c2d1.jpg" title=" 图片5.png" alt=" 图片5.png" / /p p style=" text-align: center " strong 80岁生日之际,与蔡司的代表一起在乌尔姆大学2015学术研讨会展示半块欧米茄过滤器。 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/646ca763-0f23-4140-b909-ca5cd73c8a0e.jpg" title=" 图片6.png" alt=" 图片6.png" / /p p style=" text-align: center " strong 2012年,与网球伙伴聚会。 /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 374px " src=" https://img1.17img.cn/17img/images/202011/uepic/23d35705-a80e-44f2-b9f4-38127f463ad5.jpg" title=" 图片7.png" alt=" 图片7.png" width=" 450" height=" 374" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 2012年2月14日,我和Dorothee在一家餐厅庆祝生日。 /strong /p p style=" text-align: justify text-indent: 2em " 在我上学后的所有时间里,我都热衷于打曲棍球、冬天滑雪和秋天在阿尔卑斯山远足。曲棍球是一项非常苛刻的运动,但会有严重受伤的风险,且这种风险随着年龄的增长而增加。因此,我不得不在50岁时放弃这个爱好,并寻找其他活动。 /p p style=" text-align: justify text-indent: 2em " 我选择学习网球是很自然的事,因为我的妻子Dorothee是一位非常有才华的网球运动员,曾在当地一家体育俱乐部的球队中打过球。她愿意给我上网球课,因为没有其他人愿意和初学者一起玩。在她的帮助下,我能够找到合作伙伴并成为团队成员。尽管由于年龄大而不能进行单打,我每周与几个伙伴打双人网球。此外,我和Dorothee每年都会与前曲棍球队友及其妻子一起远足数天。 /p p style=" text-align: justify text-indent: 2em " 在我的科学生涯中,我与世界各地的许多同事都有联系,这些年来,许多联系也变为了友谊。我非常感谢这些友谊,它们是宝贵的礼物。最后,我要感谢我的妻子,多年来在我周末的工作期间所给予的支持和耐心。 /p p br/ /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: left text-indent: 0em " span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/news/20200608/540683.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " 【自传】像差校正电镜技术先驱之Maximilian Haider /a /span /p p style=" text-align: left text-indent: 0em " a href=" https://www.instrument.com.cn/news/20201112/564599.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Ondrej L. Krivanek /span /a /p p style=" text-indent: 0em text-align: left " a href=" https://www.instrument.com.cn/news/20201204/566735.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Knut Urban /span /a /p p br/ /p
  • 高通量、多信息通道、高分辨电子衍射成像技术获江苏省物理学会科学技术一等奖
    p   近日,第二届江苏省物理学会公布了江苏省物理杰出青年奖、获江苏省物理教育贡献奖、江苏省物理学会科学技术奖获奖名单。共有2人获江苏省物理杰出青年奖,4人获江苏省物理教育贡献奖,2项成果分获江苏省物理学会科学技术奖一等奖和二等奖。南京大学王鹏教授团队的《高通量、多信息通道、高分辨电子衍射成像技术》项目获江苏省物理学会科学技术奖一等奖,项目完成人为王鹏,丁致远,高斯,宋苾莹。 /p p    strong 王鹏教授简介 /strong : /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/d85fa0aa-54ab-4149-8421-31c1ec66e601.jpg" title=" 南京大学教授 王鹏.jpg" alt=" 南京大学教授 王鹏.jpg" / /p p style=" text-align: center " strong 南京大学教授 王鹏 /strong /p p   王鹏,现为南京大学现代工程与应用科学学院教授,博士导师,首批国家海外高层次人才计划入选者。2006年英国利物浦大学博士学位,先后在英国国家超高分辨率电镜室SuperSTEM和牛津大学电镜中心作博士后研究。2012年回国到南京大学任教, 组建南京大学亚原子分辨透射电镜中心,具有国际领先水平两台高分辨透射电镜(球差校正TITAN G2 60-300 Cubed和TF20)。 /p p   主要从事以球差校正电子显微学和电子能量损失能谱学的研究,以及其在信息和能源存储等低维功能材料高分辨表征上的应用。已在SCI期刊上发表论文100余篇,包括Nature Electronics、Nature Catalysis、Nature Communications、Physical Review Letters、Advanced Materials、Nano Letter 和Nano Energy等。获得多项发明专利,包括10件中国专利,其中7件授权。主持科技部“973“项目和多项国家自然科学基金,参与国际合作项目以及其他国家和省部级项目的研究。 /p p    strong 研究方向 /strong : /p p   高分辨成像与智能算法、信息和能源存储材料表征、二维材料原子结构研究 /p p    strong 电子衍射成像研究部分成果 /strong : /p p   Song, Biying and Ding, Zhiyuan and Allen, Christopher S. and Sawada, Hidetaka and Zhang, Fucai and Pan, Xiaoqing and Warner, Jamie and Kirkland, Angus I. and Wang, Peng.(2018). Hollow Electron Ptychographic Diffractive Imaging .Phys. Rev. Lett., 121(14),146101.doi :10.1103/PhysRevLett.121.146101   /p p   Gao, S., Ding, Z., Pan, X., Kirkland, A., & amp Wang, P. (2019). 3D Electron Ptychography. Microscopy and Microanalysis, 25(S2), 1802-1803. doi:10.1017/S1431927619009747 /p p   Song, B., Ding, Z., Allen, C., Sawada, H., Pan, X., Kirkland, A., & amp Wang, P. (2019). Electron ptychography using an ultrafast direct electron detector. Microscopy and Microanalysis, 25(S2), 20-21. doi:10.1017/S1431927619000837 /p p    /p p br/ /p
  • 西安交大-日本电子战略合作签约仪式暨球差电镜专题学术研讨会成功举办
    12月1日,“西安交大-日本电子战略合作签约仪式暨球差电镜专题学术研讨会”在创新港大型仪器设备共享实验中心召开。西安交通大学校长助理单智伟教授,日本电子中国区总经理杉本圭司出席签约仪式,并为“西安交大-日本电子创新技术联合实验室”揭牌。西安交通大学大型仪器共享实验中心主任高禄梅、日本电子中国区副总经理张晓露代表双方签约。西安交通大学大型仪器共享实验中心副主任、分析测试中心主任孟令杰教授主持签约及揭牌仪式。单智伟对嘉宾们的到来表示诚挚欢迎。他表示,西安交大坚持以国家战略需求为导向,以中国西部科技创新港为依托,探索产学研深度融合的路径,建立校企深度融合的联合研发中心;围绕产业链,布局创新链,汇聚创新资源、对接产业需求,加速科技成果转移转化。他指出,西安交大与日本电子签署战略合作协议,将有助于推动公共平台创新链、产业链、资金链、人才链的深度融合,为公共平台与企业的融合发展贡献智慧和力量。同时,大仪中心作为校级仪器设备共享平台,应当持续发挥引领与担当作用,继续促进研究团队与公共平台在技术创新研究与应用上协同发展,有力推动学科和团队高水平成果产出,为学校教学科研保驾护航。希望以此次双方签署战略合作协议为契机,充分发挥各自优势,不断丰富发展模式和路径,联合攻关“卡脖子”技术难题,为高质量发展提供强有力的科技支撑,书写合作共赢的新篇章。杉本圭司表示,西安交通大学与日本电子的合作源远流长,西安交通大学是国内最早购买日本电子公司设备的高校之一,目前已有超过20台日本电子设备在交大投入使用。本次战略合作以及创新技术联合实验室的成立,是日本电子公司与国内外优秀科研机构合作的重要成果,也是其积极探索新的科研模式,推动科研创新的重要尝试。本次合作能够实现资源的有效配置与共享,为公司的科研创新和发展提供强有力的支持,意义重大。杉本圭司表示在双方的共同努力下,联合实验室一定能取得更加辉煌的成绩。西安交通大学能动学院卢晨阳教授作为用户代表发言。卢晨阳结合自己的发展体会,认为自己的科研生涯与日本电子公司设备难以分割,众多设备支撑起了自身的科研工作。他对日本电子提供实验“利器”,对西安交通大学提供优质实验平台表示真诚感谢,相信本次合作对推动电子显微镜技术的应用与发展、促进材料及多学科领域研究的深化具有重要意义,期待这次合作能为科研团队带来更多的科研突破,为科学界贡献更多的创新成果。本次“球差电镜专题学术研讨会”邀请了国内多位电镜知名专家进行报告和技术交流。会议以“球差电镜应用技术与平台管理”为主题,分享各领域专家利用球差电镜开展高水平研究的最新应用成果,以及球差电镜平台建设管理经验,旨在促进高校球差电镜分析技术的应用与发展。单智伟围绕“金属材料变形与损伤起源的原位电子显微镜研究”介绍了研究团队在氢致材料变形与损伤领域的最新进展。清华大学谷林教授以“功能材料功能性起源”为题,从球差校正电子显微方法入手,讨论内积过程中对称性破缺下功能材料的精细结构与新奇物性。浙江大学余倩教授围绕合金强塑性的位错调控新机制,通过多尺度、原位透射电子显微镜表征,并结合三维显微结构断层成像和计算机模拟等,研究了多元复杂合金体系中的位错调控行为。武汉大学物理科学与技术学院、武汉大学电子显微镜中心主任王建波教授结合球差校正透射电子显微学和第一性原理计算,介绍了团队在纳米氧化物(ZnO和CuO)材料的原子尺度原位研究领域的最新进展。郑州大学程少博教授报告了第四代半导体金刚石材料中的构效关系研究,为金刚石-铁性材料界面反应的原子机制提供新见解,有利于提高金刚石基器件性能。太原理工大学郭俊杰教授报告了二维电催化材料可控构筑与精确表征,通过对纳米尺度的金属电催化材料进行原子尺度结构调控提升电催化性能。日本电子透射产品经理袁建忠以“时空的交汇—日本电子透射电镜进展”为题,介绍了目前最新的能够在更宽的加速电压范围内进行更高灵敏度的分析和更高空间分辨率成像的球差矫正显微镜技术,以及加入时间因素进行材料瞬间态和瞬时行为研究的最新技术。西安交通大学卢晨阳教授以“高熵合金的多级构筑抗辐照结构设计及核用前景”为题,介绍了如何利用先进的材料表征技术开展辐照效应研究。西安交通大学武海军教授报告了基于序参量短程有序化的电子功能材料,通过调控点缺陷实现长程序参量的短程化,优化了铁电/压电和热电材料的动态响应。西安交通大学大仪中心李娇工程师介绍了大仪中心球差电镜的功能配置,结合案例介绍球差电镜分析技术在材料科学领域中的应用。与会师生与报告嘉宾进行了热烈的互动和交流。会后,与会人员参观了西安交通大学大仪实验中心。
  • BCEIA 2021电子显微学及材料科学分会在京开幕!
    仪器信息网讯 2021年9月27-29日,第十九届北京分析测试学术报告会暨展览会(简称BCEIA2021)在北京中国国际展览中心(天竺新馆)召开。作为BCEIA的重要组成部分,学术报告会邀请来自海内外众多著名科学家,为与会者带来精彩的学术报告。学术报告会分为大会报告和分会报告,分会报告包括电子显微学及材料科学、质谱学、光谱学、色谱学等10个分会报告会。会场掠影9月28日上午,为期两天的“电子显微学及材料科学”分会正式开幕,分会以“显微学启迪新希望”为主题,分设原位透射电子显微镜技术及应用、球差透射电子显微镜表征、功能材料、合金及催化等四大专题,邀请多位业界资深科学家及青年才俊分享报告。北京工业大学韩晓东教授主持会议中国科学院院士、中国科学院金属研究所叶恒强教授致开幕词叶恒强院士在致辞中回顾了1985年首届BCEIA举办以来,电子显微学分会与BCEIA的历史渊源。接着,以自己昨日刚参加 BCEIA同期“科学试验标准化论坛”为例,谈到的关于科学仪器标准化的问题,并分享了电镜工作者在科研、技术创新过程中关于“标准化”的思考。首日开展的“原位透射电子显微镜技术及应用”和“球差透射电子显微镜表征”专题,部分报告摘要如下:报告人:中国科学院金属研究所唐云龙研究员报告题目:新型铁电拓扑结构的实验探索唐云龙在报告中梳理介绍了团队从2015年至今,在新型铁电拓扑原子结构方面开展的系列研究探索工作。以定量像差校正电子显微学为主要研究手段,取得的重要进展包括极化通量闭合畴阵列的发现、室温电极化斯格明子晶格的发现、新型功能梯度纳米结构的构建、相关定量电子显微学方法等。报告人:浙江大学余倩教授报告题目:位错调控金属材料性能余倩教授从显微结构如何影响金属材料性能出发,借助科学仪器,尝试从微观去解释一些宏观问题。接着,详细介绍了从合金元素位错核靶向固溶引起超常强化、基于合金元素非均匀分布的位错行为调控、基于界面的位错行为调控等三个方向开展的相关研究。报告人:北京工业大学李志鹏报告题目:透射电镜原位原子尺度力-热-电耦合技术发展及应用透射电子显微镜中对材料施加力-热-电学等单一或耦合外场并在原子层次原位研究其结构-性能相关性将为高性能新材料开发提供重要实验和理论支撑。李志鹏在报告中介绍了多种透射电镜原位原子尺度力-热-电单/多场耦合实验系统的研发及其在金属、合金、半导体等多种材料领域和研究方向中的应用。报告人:北京工业大学韩晓东教授报告题目:原子分辨率的宽温区材料力学显微学与高强高韧性材料设计原位力学实验方法长期局限于纳米尺度,而发现原子分辨了的原子力学实验方法成为关键。韩晓东教授团队发展了原子分辨了的材料弹塑性力学行为研究的新方法,包括采用热力驱动、面内力学加载,以及突破力学加载空间尺度极限等,将材料的弹塑性力学行为研究分辨率由纳米提高至原子层次。基于此,发展了多晶金属塑性理论阐明晶界塑性原子层次机理,为设计异构材料、高熵合金等高强、高韧、高强重比材料体系提供了基础科学依据。报告人:清华大学于荣教授报告题目:透射电子显微学中的重构算法于荣教授从四方面分享了近来开展的透射电镜重构算法研究,分别是:动力学电子衍射计算(WIEN2K potential, iDPC);二维出射波重构(实验图像自动权重校正);原子尺度三维重构(直接实空间重构);四维扫描透射重构(取向校正moc-ptycho)等。报告人:兰州大学彭勇教授报告题目:Dynamic magnetics of magnetic materials and spintronics in situ TEM近年来,彭勇教授团队一直致力于低维磁性纳米材料的结构设计、微观磁结构和磁化动力学方面的研究。报告主要分享了利用原位透射电镜技术对磁性材料的动态磁学和自旋电子学 的研究进展,包括证明Ni2MnGa铁磁形状记忆合金可以用作记忆原件或记忆损伤电传感器、实现了手性操纵旋涡磁场等。报告人:中国科学院物理研究所谷林研究员报告题目:从晶格,电荷到原子轨道报告人:武汉大学郑赫教授报告题目:Orientation-Dependent Ductility and Deformation Behaviors in BBC Mo Nanowires报告人:天津理工大学罗俊教授报告题目:Structure-Performance Relationship and Sub-Atomic Structures of Metal-Based Catalysts报告人:安徽大学葛炳辉教授报告题目:Applications Aberration-corrected TEM on thermoelectric materials报告人:赛默飞世尔科技 牟新亮报告题目:Spectra Ultra: Offers a Leep Forward for Advanced Matririals Characterization报告人:中科科仪贾雪峰报告题目:扫描电镜中的物镜技术报告人:欧波同苏瑞雪报告题目:欧波同显微分析系统解决方案颁发最佳POSTER奖合影留念关于功能材料专题、合金及催化专题报告,请关注仪器信息网后续报道。
  • 2016年全国电子显微学学术年会之特邀报告篇(一)
    仪器信息网、中国电子显微镜学会、中国电镜网联合报导:2016年全国电子显微学学术年会于10月13-15日在天津东丽湖恒大酒店隆重召开。大会现场电子显微学的发展,能够帮助科学研究向着更加高端、复杂的方向挺进,而科研水平的进一步发展则对电子显微技术提出新的要求。本次会议在首日邀请了国内外电子显微领域顶尖的专家学者和仪器厂家代表作特邀报告,共同交流探讨电子显微学科近期所取得的新成就和未来的发展方向。  德国科学院院士、德国于利希研究中心的Knut Urban教授分享了皮米量级超高分辨率透射电镜技术及其在介电材料中的应用研究。Urban教授的主要研究方向之一为球差校正透射电子显微学研究(包括仪器的发展和软件控制),2011年因对球差校正电子显微镜像差的研究贡献而荣获沃尔夫物理学奖(Wolf Prize in Physics)。这一研究使得科学家们能在皮米尺度下观察研究原子结构,对材料科学发展影响深远。近些年来,Urban教授通过将目前的球差校正透射电镜技术与专用的数字化评估程序(dedicated numerical evaluation procedures)相结合,克服了球差校正透射电镜技术在某些应用方面的缺陷,进一步拓展了球差校正透射电镜技术的应用领域。此外,他还介绍了皮米量级超高分辨率透射电镜技术应用于介电材料中缺陷和界面方面研究的最新成果。德国科学院院士、德国于利希研究中心的Knut Urban教授  日本电子(捷欧路(北京)科贸有限公司)的OKUNISHI EIJI博士在报告里介绍了日本电子在透射电镜方面的最新技术和产品进展,给笔者留下较深刻印象的包括:  JEM-ARM300F,又称GAND ARM,是日本电子JEOL开发的300 kV原子分辨级透射电子显微镜,采用了日本电子自有的十二极像差校正器(dodecapole correctors)。作为JEM-ARM200F的增强型号,其分辨率提高到63pm(STEM分辨率)。  JEM-2200MCO FEGTEM是一款配有单色器,双像差校正的TEM / STEM仪器,分辨率达到亚埃级别(0.08nm),其用于STEM成像的探针的尺寸也低至0.1nm水平。2200MCO配备了一个带有单色器的Schottky场发射枪以及像差校正器。该产品可在200kV和80kV加速电压下运行。  日本电子新一代冷冻电镜——CRYOARM,其使用200kV加速电压,可选用改进的冷场发射电子枪或Schottky 场发射枪,制冷剂采用液氮,温度可低至100K以下。日本电子(捷欧路(北京)科贸有限公司)的OKUNISHI EIJI博士  国家自然科学基金委物理科学一处张守著处长报告的题目是“从基金项目看我国电子显微学的发展”。张处长简单总结了近五年来我国显微学的基金资助以及国家重大科研仪器研制的相关情况。随后他讲述了显微学发展的交叉性强、自身发展主线明确、既经典又新潮,既主流也辅助的特点,并介绍电子显微在申请基金、重大科学仪器、杰青等项目的注意事项。国家自然科学基金委物理科学一处张守著处长  徕卡公司的应用专家吴长江报告介绍了徕卡电镜制样技术最新进展:徕卡超薄切片系统EM UC7/FC7装配的低角度和超声波震动钻石刀可以减小切片过程对材料结构影响 三离子束切割仪EM TIC3X采用非聚焦鞍型场离子枪抛光面积大,楔形效应不明显 高压冷冻仪EM ICE可在2100 Bar气压下,30 ms内实现样品冷冻固定,样品内的水不经过结晶直接冻成玻璃态,厚度可达200微米。徕卡公司的应用专家吴长江  北京大学生命科学学院的孙育杰教授利用超高分辨率单分子荧光成像技术实现了对活细胞内细胞工厂(RNA聚合酶II复合物,Pol II Cluster)动态过程观测和定量分析。通过贝叶斯超分辨显微术(3B)观察到活体细胞核内Pol II聚合和解聚过程,以50 nm空间分辨率和4 s时间分辨率,测量了活细胞内转录工厂的数目和大小随时间及细胞环境的变化,揭示了转录工厂产生和消失的异质性,支持了转录工厂产生的“立即响应”式模型,证明了转录工厂在延长前期招募Pol II分子。孙教授认为超高分辨率显微技术会有三个发展趋势:从显“微”镜进入分辨率更高、更快和更深的显“纳”镜时代 不同超高分辨显微技术的模态融合,其中双光子荧光显微镜、电子显微镜和片层光技术很值得融合 发展和优化荧光探针技术。北京大学生命科学学院的孙育杰教授  蔡司公司的Ruth Chalmers-Redman博士报告了公司应用于生命科学领域的二维和三维相关扫描电镜成像技术。相关成像技术可以实现不同显微镜系统获得图像间的比较分析,研究细胞、组织或材料的特殊结构或生物学现象。蔡司公司拥有多项三维成像有关技术和仪器,Ruth利用动画展示了它们进行三维成像的工作原理和流程。给笔者印象较深的技术有:第三代Gemini镜筒,保证在超低加速电压下获得小束斑和高信噪比 Atlas5可在以样品为中心的关联模式下,创建多尺度多模式的综合图片 蔡司成像系统界面ZEN提供适合不同硬件的模块选择,操作更便捷直观。蔡司公司的Ruth Chalmers-Redman博士  比利时安特卫普大学教授Van Tendeloo博士报告综述了软材料领域的高级电镜研究进展。电镜技术已经从放大工具发展成为量子机制研究的通用工具,可以研究原子层面的结构、化学、电学和磁力信息。并且不再局限于二维成像,三维成像的研究逐渐常规化,应用局限也不再是透镜质量,而是取决于基础的物理原理。报告举例介绍了三维成像解决的材料科学问题,如锂电池用富锂层状材料中原子的排列。显然,高级电镜技术会把纳米材料研究带入到一个新高度,帮助我们更好地认识和优化现有材料以及设计具有某些特征的新材料。比利时安特卫普大学教授Van Tendeloo博士  孟丽君博士报告了牛津仪器在能谱仪探测器方面的研究进展,改进后的硅漂移探测器X-Max Extreme能够在1 kV 到3 kV的低加速电压下采集数据,并且在非常短的工作距离进行元素分析。该探测器在FEG-SEM应用中,能够获得优于10 nm的元素表征 材料表面表征灵敏度高,适合对低至1 kV电压材料进行表征 对轻元素的灵敏度高,可探测到锂元素。另外孟博士还介绍了牛津公司所属的两个网站:电镜耗材在线商城和EBSD技术教育网。牛津仪器孟丽君博士
  • iCEM 2016特邀报告:像差校正电镜原理与应用
    p style=" TEXT-ALIGN: center" strong 第二届电镜网络会议(iCEM 2016)特邀报告 /strong /p p style=" TEXT-ALIGN: center" strong 像差校正电镜原理与应用 /strong /p p style=" TEXT-ALIGN: center" & nbsp img title=" 于 荣.jpg" style=" HEIGHT: 231px WIDTH: 250px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201610/noimg/d52e7af2-b526-418b-9e1b-cec74a4911ff.jpg" width=" 250" height=" 231" / /p p style=" TEXT-ALIGN: center" strong 于荣 教授 /strong /p p style=" TEXT-ALIGN: center" strong 清华大学北京电子显微镜中心 /strong /p p strong 报告摘要: /strong /p p   作为文明的物质载体的材料都是由原子构成的。但原子到底是以怎样的方式构成材料?它们又是怎样影响材料的功能?对这些问题的探索就是材料的原子结构研究。在现代社会,这已不仅仅是纯科学的好奇。因为材料的原子结构从根本上决定了材料的功能,所以也是工程技术研究的重要内容。 /p p   与材料研究的需求相适应,近年来在材料原子结构的实验与理论分析领域都取得了长足进展。尤其是在高分辨透射电镜上实现了像差校正,成为电子显微学发展的里程碑。这不仅使人们具有了亚埃尺度的分辨能力,而且对材料表面、界面、催化剂颗粒等局域结构的原子位置的测量达到了皮米精度,可以与X射线衍射对宏观单晶的原子位置的测量精度相媲美。这从根本上改变了高分辨电子显微学长期以来以定性分析为主的局面,给材料研究带来了重大机遇。目前,世界上高端的透射电子显微镜不仅在大学与科研院所逐渐普及,也大量安装在各大高科技企业。本报告将简要介绍像差校正电镜的基本原理及典型应用。 /p p strong 报告人简介: /strong /p p   于荣,清华大学材料学院教授,北京电子显微镜中心主任,国家杰出青年基金获得者。1996年毕业于浙江大学,1999年与2002年分别获中国科学院金属研究所硕士与博士学位,随后在美国劳伦斯伯克利国家实验室与英国剑桥大学从事博士后研究,2008年起任教于清华大学材料学院。 /p p   主要从事材料的高分辨电子显微学和第一性原理计算研究,在原子尺度探索材料的微观结构、电子状态、及其与宏观性能的相互关联。在Phys. Rev. Lett., Angew. Chem., Acta Mater., Nature Comm.等SCI期刊发表论文90余篇 他引1600余次。 /p p   担任中国晶体学会常务理事,中国电子显微镜学会物理与材料科学专业委员会副主任,中国物理学会固体缺陷专业委员会委员,中国有色金属学会理化检验学术委员会委员,Science China Materials编委,《中国科学:技术科学》青年工作委员会委员等。 /p p strong 报告时间:2016年10月25日下午 /strong /p p a title=" " href=" http://www.instrument.com.cn/webinar/icem2016/index2016.html" target=" _self" span style=" COLOR: #ff0000" img src=" http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width=" 600" height=" 152" / /span /a span style=" COLOR: #ff0000" /span /p
  • 气相色谱质谱技术助力:发现识别肺癌细胞关键挥发物
    近日,中国科学院合肥物质科学研究院健康所医用光谱质谱研究团队采取糖酵解控制策略,通过气相色谱质谱非靶向分析,发现用一种挥发性有机物(VOC)可以识别出肺癌细胞。该研究结果日前发表在《科学报告》期刊上。  2022年我国肺癌新发106.06万例,死亡73.33万例,发病率和死亡率均位列全部恶性肿瘤首位。早期肺癌多无明显症状,临床上多数患者出现症状就诊时已属晚期,晚期肺癌患者整体5年生存率在20%左右 若能早诊早治,5年生存率可达90%以上。  呼气测试具有大众易于接受等特点,有望用于肺癌的无创筛查。然而,肺癌的呼气VOC标志物迄今还没有达成共识。因此,开展细胞实验,确立肺癌细胞特征VOC,将为肺癌呼气标志物检测技术的开发提供科学基础和依据。  在前期开展肺癌患者呼气分析研究的基础上,考虑到糖酵解是癌细胞普遍存在的代谢过程,并且利用该代谢特征的正电子发射计算机断层成像已用于肿瘤的临床诊断。为此,研究团队采取抑制糖酵解的方法,检测分析了三种肺癌细胞和正常肺上皮细胞挥发性代谢物的变化特征,发现肺癌细胞释放的羟基丁酮升高了2.6至3.3倍,而正常肺细胞挥发出的该物质几乎没有变化,表明用一种VOC即羟基丁酮就可以识别肺癌细胞。此外,他们还通过阻断谷氨酰胺酵解等实验手段,研究了肺癌细胞代谢物羟基丁酮异常的生化机制。  研究人员介绍,该项工作发展的控制糖酵解产生肺癌细胞特征VOC新方法,将为癌细胞的鉴别提供一种新方案。  相关论文信息:https://doi.org/10.1038/s41598-024-67379-x
  • 国务院印发2017-2018政府采购目录及标准 涉多项仪器
    仪器信息网讯 2016年12月27日国务院办公厅关于印发《中央预算单位2017—2018年政府集中采购目录及标准的通知》  《通知》详列了集中采购机构采购项目和部门集中采购项目,其中部门集中采购项目涉及多个部门的仪器设备采购项目,如质检总局、气象局等,涉及具体仪器设备品目如下表:部门集中采购项目涉及仪器设备品目部门品  目卫生计生委大型医用设备,包括正电子发射型断层扫描仪(PET/CT)、正电子发射磁共振成像系统(PET/MR)、内窥镜手术器械控制系统(手术机器人)、伽马射线头部立体定向发射外科治疗系统(头部伽玛刀)、X线立体定向发射治疗系统、螺旋断层放射治疗系统、高端直线加速器、医用电子回旋加速治疗系统、质子治疗系统、306道脑磁图等质检总局被服,其他分析仪器项下定量聚合酶链式反应(PCR)仪、全自动生化分析仪、微生物鉴定仪、蛋白质测定仪、气相色谱—质谱联用仪、电感耦合等离子体发射光谱仪、原子吸收分光光度计、能量色散X射线荧光光谱仪、红外光谱仪、紫外可见分光光度计、原子荧光光度计、X光机,色谱仪项下离子色谱仪、气相色谱仪、液相色谱仪,饮水器项下纯水机,离心机,其他政法、检测专用设备项下前处理系统(全自动固相、超临界、加速溶解、微波消化等萃取仪)、B超机、酶标仪、微波消化器、放射性检测仪、生物芯片检测系统、培养箱、碳硫元素测定仪、生物安全柜、红外体温测量仪地震局地震专用仪器项下测震观测系统设备、强震动观测系统设备、重力观测系统设备、地形变观测系统设备、地磁场观测系统设备、地电场观测系统、地下水观测系统设 备、地震数据分析处理设备、地震计量检测仪器设备、地震灾害救援仪器设备,其他卫星通信设备项下地震卫星通信设备 气象局气象仪器测绘地信局全球导航卫星系统接收机,全站仪,数字水准仪,重力量测仪,航摄仪(包括数字航摄仪、机载激光扫描仪、机载SAR),全数字摄影测量系统,地下管线探测设备,三维激光扫描仪 《通知》说明,政府采购货物或服务项目,单项采购金额达到200万元以上的,必须采用公开招标方式。政府采购工程公开招标数额标准按照国务院有关规定执行。 以下为《通知》原文:国务院办公厅关于印发《中央预算单位2017—2018年政府集中采购目录及标准的通知国办发〔2016〕96号  国务院各部委、各直属机构:  《中央预算单位2017—2018年政府集中采购目录及标准》已经国务院同意,现印发给你们,请遵照执行。  国务院办公厅  2016年12月21日  中央预算单位2017—2018年政府集中采购目录及标准  一、集中采购机构采购项目  以下项目必须按规定委托集中采购机构代理采购:  注:①表中“适用范围”栏中未注明的,均适用所有中央预算单位。  ②表中所列项目不包括部门集中采购项目和中央高校、科研院所采购的科研仪器设备。  二、部门集中采购项目  部门集中采购项目是指部门或系统有特殊要求,需要由部门或系统统一配置的货物、工程和服务类专用项目。  注:①表中所列部门所属各级中央预算单位均执行本目录,地方预算单位不包括在内。  ②表中“品目”栏中所列项目名称主要参照《政府采购品目分类目录》(财库〔2013〕189号)中的有关名称。  三、分散采购限额标准  除集中采购机构采购项目和部门集中采购项目外,各部门自行采购单项或批量金额达到100万元以上的货物和服务的项目、120万元以上的工程项目应按《中华人民共和国政府采购法》和《中华人民共和国招标投标法》有关规定执行。  四、公开招标数额标准  政府采购货物或服务项目,单项采购金额达到200万元以上的,必须采用公开招标方式。政府采购工程公开招标数额标准按照国务院有关规定执行。
  • 从“阜成门”到“中关村”——让日本电子离客户更近
    p & nbsp & nbsp 2015年5月29日,日本电子株式会社北京事务所的乔迁之喜。它从原来位于北京阜成门万通新世界广场的旧址正式搬迁到了中关村中科资源大厦,离它的重要客户之一中科院物理所仅“一墙之隔”。同时,日本电子在京的DEMO实验室也得到了进一步扩大。 /p p br/ & nbsp & nbsp 而就在不久之前,李克强总理在物理所视察时,参观了JEM-ARM200F双球差校正冷场发射透射电子显微镜实验室,并坐在显微镜前,观察了电子束在荧光屏上的扫描过程。在此次日本电子庆祝北京新址开张的活动中,专程从日本赶来的日本电子株式会社栗原社长在其致辞中也专门非常荣幸地提到了李总理的此次视察。 /p p br/ & nbsp & nbsp 从本次活动中笔者了解到,作为中国乃至全球电子显微市场的主要“玩家”之一,近些年来日本电子在中国电子显微镜市场的业绩可以称得上是“逐年翻番”,尤其是在透射电镜领域。而本次日本电子加大在华投资,与其在华的优异表现应当说不无关系。同时,年市场(电子显微)规模近亿美元的中国,也是值得这些跨国公司去苦心经营。 /p p br/ & nbsp & nbsp 作为此次市场活动的重要环节之一,日本电子还专门邀请了三位来自中国、日本和英国的科学家,分别就各自在材料和结构生物学方面的最新研究成果进行了介绍。而他们在研究中所用到的基本仪器正好是日本电子的两个拳头产品——电子显微镜和核磁共振谱仪。 /p p br/ & nbsp & nbsp 尽管报告数不多,但笔者仍然可以感觉到,当前,拥有一台带有球差矫正技术的透射电镜已成为那些在材料领域进行前沿研究工作的科学家们的普遍愿望。观察样品中的单个原子像,始终是科学界长期追求的目标。在当前的技术条件下,电子显微镜已可以在原子尺度上同时获得材料的原子和电子结构信息。利用球差校正电子显微镜还可以对材料(例如:石墨烯)的缺陷进行细致入微的研究,对人们重新认识缺陷对性能的影响提供帮助。 /p p br/ & nbsp & nbsp & nbsp 笔者的另一个感觉是原位电镜技术也正在得到越来越广泛的应用。通过样品台的设计,可以在电镜下对材料进行加热,通电和外加应力等等,实现对材料在实际服役条件下的行为的观察,从而为人们设计材料、改良材料提供更加直接的证据。 /p p br/ & nbsp & nbsp 在新的日本电子北京solution center里面,除了展示有日本电子的扫描电镜和核磁共振谱仪外,笔者还发现了一台日本尼康的三坐标测量仪。据了解,日本尼康是日本电子目前最大的股东,而这种强强联合,主要也是出于加强市场竞争能力的需要。譬如将日本电子的电子显微镜和日本尼康的光学显微镜进行联用,无论是对于生命科学最前沿的样品精细结构和功能的研究,还是工业新材料的开发,都具有非常大的应用潜力。(主编当班) /p p & nbsp /p p img style=" WIDTH: 600px HEIGHT: 400px" alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/2015531103716.JPG" width=" 1280" height=" 853" / /p p strong 庆典会场 /strong /p p & nbsp /p p img style=" WIDTH: 600px HEIGHT: 436px" alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/2015531103844.JPG" width=" 1170" height=" 850" / /p p strong 栗原社长致辞 /strong /p p & nbsp /p p img style=" WIDTH: 600px HEIGHT: 400px" alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/2015531104355.JPG" width=" 1280" height=" 853" / /p p strong 参观实验室 /strong /p p & nbsp /p p img style=" WIDTH: 600px HEIGHT: 400px" alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/2015531104456.JPG" width=" 1280" height=" 854" / /p p strong 新址办公区 /strong /p p & nbsp /p p strong img style=" WIDTH: 600px HEIGHT: 449px" alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/201561104729.jpg" width=" 600" height=" 449" / /strong /p p strong 答谢晚宴 /strong /p
  • 马秀良研究员就铁电拓扑结构研究接受Nature Index专访
    钙钛矿型铁电氧化物具有外场可控的极化,可作为信息存储和逻辑器件。拓扑极化结构自身的拓扑保护性,使其在信息处理、传输、存储等方面具有重要的应用价值。然而,铁电材料中的极化拓扑结构一般都包含本体对称性不允许的连续极化旋转。如何突破铁电极化与晶格应变的相互制约,实现极化反转与晶格应变的有效调控,获得有望用于超高密度信息存储的结构单元,是当今铁电材料领域面临的一个基础性科学难题。  2015年,马秀良研究团队利用具有亚埃尺度分辨能力的像差校正电子显微术,在超薄PbTiO3铁电薄膜中不仅发现通量全闭合畴结构及其新奇的原子构型图谱,而且观察到由顺时针和逆时针闭合结构交替排列所构成的大尺度周期性阵列(Science 2015)。在此基础上,美国伯克利国家实验室Ramesh院士领导的课题组发现了具有涡旋特征的通量全闭合结构(Nature 2016)以及与唐云龙博士合作发现了斯格明子晶格(Nature 2019)。最近,马秀良研究团队又相继在铁电材料中发现半子及半子晶格(Nature Materials 2020)以及周期性电极化波(Science Advances 2021)。  针对铁电拓扑结构目前的研究现状、未来发展方向、科学研究的原动力、电子显微技术的作用、物质结构的再认识、新材料的探索等诸多话题,2021年5月,马秀良研究员和Ramesh院士同时接受了自然指数(Nature Index)的视频专访。该访谈的简要内容于2021年7月1日刊登在《自然》(Nature)上。  2014年11月开始发布的自然指数(Nature Index)是依托于具有重要影响力的国际学术期刊,统计各高校、科研院所(国家)在国际上最具影响力的研究型学术期刊上发表论文信息的数据库。自然指数现已发展成为国际公认的,能够衡量机构、国家和地区在科学领域的高质量研究产出与合作情况的重要指标,在全球范围内具有一定的影响力。(a) 斯格明子中的三维极化示意图;(b)会聚型和发散型半子交替排列所形成的周期性半子晶格示意图。
  • 5万亿设备更新|医疗设备配置启动,多地卫健委发布通知
    近期,国家发改委会同有关部门研究制定了《推动大规模设备更新和消费品以旧换新行动方案》,重点将实施设备更新、消费品以旧换新、回收循环利用、标准提升“四大行动”。在实施设备更新行动方面,重点将聚焦工业、农业、建筑、交通、教育、文旅、医疗等7个领域,这些领域设备更新换代需求巨大。目前,医疗设备更新的细节举措还未出台,具体落地方式还尚待揭晓。根据国家卫生健康委于2023年3月3日发布的《大型医用设备配置许可管理目录(2023年)》,新版大型医用设备配置许可管理目录中的管理品目已经由10个调整为6个。具体来看,甲类设备从4个减少到2个,乙类设备从6个减少到4个。这一积极调整有效降低了医疗机构配置大型医用设备的门槛。据观察,开年以来,北京、浙江、河北、安徽、河南等多地推进乙类大型医用设备配置审核工作。 北京市 北京市卫生健康委员会分别于3月18日和1月3日公布了两批乙类大型医用设备配置审核结果。市卫生健康委“双公示”委官网公示模板行政相对人名称*行政相对人代码_1(统一社会信用代码)或身份证号(加密)行政许可决定文书名称*行政许可决定书文号*许可内容*许可决定日期*许可机关*北京全景德康医学影像诊断中心有限公司91110106MA01HK0F85乙类大型医用设备配置许可证乙0108000001同意配置2024/3/11北京市卫生健康委员会北京一脉阳光医学影像诊断中心有限公司91110105330315742R乙类大型医用设备配置许可证乙0108000002同意配置2024/3/11北京市卫生健康委员会北京大学第一医院12100000400010558Y乙类大型医用设备配置许可证乙0101200062同意配置2024/1/3北京市卫生健康委员会首都医科大学附属北京世纪坛医院12110000400003235L乙类大型医用设备配置许可证乙0102000031同意配置2024/1/3北京市卫生健康委员会北京市密云区医院121102284010107444乙类大型医用设备配置许可证乙0102000032同意配置2024/1/3北京市卫生健康委员会首都医科大学附属北京潞河医院121101124009623800乙类大型医用设备配置许可证乙0102000033同意配置2024/1/3北京市卫生健康委员会北京华信医院12100000400001571T乙类大型医用设备配置许可证乙0102000034同意配置2024/1/3北京市卫生健康委员会北京清华长庚医院12110000318301495P乙类大型医用设备配置许可证乙0105200092同意配置2024/1/3北京市卫生健康委员会 浙江省 2024年3月11日,浙江省卫生健康委发布2023年第四季度医疗机构申请配置乙类大型医用设备申请许可情况的通告,同意新增配置X线正电子发射断层扫描仪(PET-CT)共3台,同意新增配置腹腔内窥镜手术系统共9台,同意新增配置医用直线加速器(LA)共7台。具体情况如下:一、许可同意浙江大学医学院附属第四医院、湖州市中心医院、丽水市人民医院(东城院区)新增配置X线正电子发射断层扫描仪(PET-CT)各1台;二、许可同意浙江大学医学院附属第一医院(之江院区)、浙江省中医院(钱塘院区)、杭州市中医院(丁桥院区)、宁波市医疗中心李惠利医院(兴宁院区)、湖州市中心医院、嘉兴市第一医院、金华市中心医院、衢州市人民医院、浙江省台州医院东院区新增配置腹腔内窥镜手术系统各1台;三、许可同意浙江大学医学院附属第一医院(庆春院区)、浙江大学医学院附属第四医院、宁波大学附属人民医院、桐乡市第一人民医院、金华市中心医院(金义院区)、衢州市人民医院、台州恩泽医疗中心(集团)恩泽医院新增配置医用直线加速器(LA)各1台。 河北省 3月3日,河北省卫生健康委发布了申报乙类大型医用设备配置许可的通知,申报类型包括正电子发射型磁共振成像系统(PET/MR),X线正电子发射断层扫描仪(PET/CT),腹腔内窥镜手术系统,常规放射治疗类设备(包括医用直线加速器、螺旋断层放射治疗系统、伽玛射线立体定向放射治疗系统),首次配置的单台(套)价格在3000—5000万元人民币的大型医疗器械。获得配置指标的单位须在2年内完成设备采购、安装调试检测并办理配置证副本。逾期未完成和不申请办理配置许可证副本的,将收回配置指标。 安徽省 2月9日,安徽省卫生健康委员会发布开展乙类大型医用设备配置许可审批工作的通知,审批范围包括:(一)新增设备,政府办医、自贸区以外社会办医新增拟采购配置的乙类设备分别实行行政审批和告知承诺制审批。(二)更新设备,经审批已有配置许可证的乙类大型医用设备,因达到使用年限或者损坏,经鉴定不能继续使用的,申请报废原有设备、更新配置同种类新设备。本次乙类大型医用设备配置审批工作涉及以下五类设备:(一)正电子发射型磁共振成像系统(英文简称PET/MR);(二)X线正电子发射断层扫描仪(英文简称PET/CT);(三)腹腔内窥镜手术系统;(四)常规放射治疗类设备(包括医用直线加速器、螺旋断层放射治疗系统、伽马射线立体定向放射治疗系统);(五)省内首次配置的整台(套)单价在3000-5000万元人民币的大型医疗器械。 河南省 2024年01月29日,河南省卫生健康委员会发布了关于同意河南省肿瘤医院等医疗机构配置乙类大型医用设备的通知,同意河南省肿瘤医院、河南科技大学第一附属医院等公立医疗机构新增1台PET/MR、8台PET/CT、8台腹腔内窥镜手术系统以及1台伽马刀等,具体情况如下:一、公立医疗机构(一)PET/MR及PET/CT 同意河南省肿瘤医院、河南科技大学第一附属医院各新增配置1台PET/MR。同意郑州市第三人民医院、河南省中医院、林州市人民医院等8家单位各新增配置1台PET/CT。同意开封市中心医院延期配置1台PET/CT(详见豫卫财务〔2020〕28号批复)。(二)腹腔内窥镜手术系统 同意许昌市中心医院、河南科技大学第一附属医院、河南中医药大学第一附属医院等8家单位各新增配置1台腹腔内窥镜手术系统。(三)常规放射治疗类设备 同意开封市肿瘤医院新增配置1台伽马刀。同意郑州人民医院、许昌市中心医院、社旗县人民医院等6家单位各新增配置1台直线加速器。同意信阳职业技术学院附属医院(详见豫卫规财〔2011〕193号批复)、新野县人民医院(详见豫卫规划〔2013〕33号批复)各更新配置1台直线加速器(乙类)。同意鄢陵县人民医院(详见豫卫财务〔2020〕28号批复)延期配置1台直线加速器(乙类)。二、社会办医疗机构 同意兰考第一医院新增配置1台直线加速器。同意郑州全景医学影像诊断中心、林州红旗渠医院各配置1台PET/CT。同意南阳南石医院新增配置1台伽马刀(全身)。
  • 我国首台高清晰磁兼容脑PET功能成像仪器研制成功!
    近日,中国科学院深圳先进技术研究院(简称“深圳先进院”)成功研发国内首台高清晰磁共振兼容人脑PET功能成像仪器(命名为“SIAT bPET”),实现了我国在高端磁兼容脑PET成像仪器研发方面零的突破。“通常,PET成像仪器由于探测器的深度不确定效应,空间分辨率会随着偏离成像视野中心而变差,严重影响成像精度。”深圳先进院医工所劳特伯生物医学成像研究中心研究员杨永峰表示,他们团队研发了高三维分辨率双端读出探测器,使得该大口径成像系统达到14%的中心效率(350-750 keV能量窗),和整个成像视野好于1.4 mm的空间分辨率,两项性能指标都处于国际领先水平。 杨永峰介绍道,与国外商业磁兼容脑PET成像仪器相比,SIAT bPET的效率提高了近2倍(从7.2%到14%),平均体分辨率提高了30倍以上(从约64mm3到2mm3)。同时,SIAT bPET采用了创新的电子学和磁兼容设计,使得磁共振成像对PET成像的影响几乎可以忽略不计,PET成像对磁共振成像图像信噪比的影响小于5%,满足同时开展PET/MRI成像的尖端科研需求。 据了解,PET和MRI都是脑科学研究和脑疾病诊断的重要工具,PET的高灵敏度、高定量精度功能代谢成像和MRI的高空间分辨率、高软组织对比度解剖结构成像高度互补,PET和MRI还可以相互辅助,进一步提升各自的脑神经成像能力。PET分子成像通过测量大脑的血流、葡萄糖和氧的代谢、蛋白质的生成、药物的分布和神经递质的动力学等,探索不同脑区的功能,确定病变脑区的功能演变,对于脑疾病干预治疗策略和新药物探索具有重要意义。 “不过,目前市场上并没有高性能脑PET成像仪器。”杨永峰说,与美国脑计划项目正在资助研发的多个高性能脑PET成像仪器相比,SIAT bPET的空间分辨率和效率也处于先进水平。“高空间分辨率使得研究大脑的细微焦点脑功能区和小的核团成为可能,还可以通过降低部分容积效应来提高脑PET成像研究的定量精度;高效率除了通过提高脑PET图像的信噪来提高研究的定量精度,也为高精度研究神经递质活动和其他动态脑生化与功能活动奠定基础。” 2022年,团队成员邝忠华在国际核医学和分子影像年会与IEEE医学成像会议上口头报告了该研究成果,随即引起了广泛的国际关注。同时,该仪器也为开展基于PET功能成像的脑科学研究、老年性痴呆等疾病的早期定量诊断研究和新药开发提供了一台重要的新工具。 据悉,相关研究由基金委国家重大科研仪器研制、深圳市孔雀团队和中国科学院仪器研制团队等项目资助。 深圳先进院研制的SIAT bPET探测器系统和脑成像仪器照片SIAT bPET获得的Derenzo模体图、人脑FDG代谢图和兔子NaF骨扫描图SIAT bPET和联影uMR790 3T磁共振成像系统上同时获得的人脑PET/MRI图像关于PET:正电子发射断层扫描(PET)是一种核成像技术(也称为分子成像),可以显示体内代谢过程。PET成像的基础是该技术检测由正电子发射放射性核素(也称为放射性药物,放射性核素或放射性示踪剂)间接发射的γ射线对。将示踪剂注入生物活性分子的静脉中,通常是用于细胞能量的糖。PET系统灵敏的探测器捕获身体内部的伽马射线辐射,并使用软件绘制三角测量排放源,创建体内示踪剂浓度的三维计算机断层扫描图像。目前主要的PET系统制造商包括GE Healthcare,Philips Healthcare,Siemens Healthcare和Toshiba。PET/MRI系统的供应商包括GE,飞利浦和西门子。SPECT供应商包括通用电气,飞利浦,西门子和Digirad公司。
  • 一滴血确诊老年痴呆?岛津质谱技术再发威
    p   日本国立长寿医疗研究中心和岛津制作所等团队1月31日在英国科学杂志《自然》网络版上发表研究成果,称开发出了通过微量血液调查认知症之一阿尔茨海默症的原因物质是否积存在脑内的检查手法。诊病价格可能将变得便宜。在投入商用方面也存在课题,但未来或可用于发病前调查患病风险。 /p p   据日本媒体报道,阿尔茨海默症的原因众说纷纭。不过,脑内的“β-淀粉样蛋白”异常积存被视为原因之一。积存可能从发病的二三十年前开始,积存的人就算没有症状,未来发病的可能性也会升高。 /p p   目前是通过大型正电子发射断层成像装置(PET)或向腰部刺入长针抽取脑脊髓液调查是否积存,但费用高和患者负担重成为了很大课题。 /p p   该团队开发的检查手法为,用被称为抗体的蛋白质从0.5毫升的血液中分离“β-淀粉样蛋白”相关物质,运用岛津制作所高级研究员、诺贝尔化学奖得主田中耕一等人开发的质量分析技术展开调查。相关物质有三种,从量的占比可知“β-淀粉样蛋白”是否积存。 /p p   包括阿尔茨海默症患者和健康人群在内,以日本和澳大利亚的60岁至90岁男女总计232人为对象,使用该手法进行调查后发现,约90%与PET检查结果一致。 /p p   该团队称从以前就持续开发,此次进行大规模研究后确认了能以高精确度判定。岛津今后打算面向制药公司和研究人员提供分析血液的服务。 /p p   长寿医疗研究中心所长柳泽胜彦表示:“未来若能治疗和预防阿尔茨海默症,这一手法也许可在高龄人士的诊察中广泛使用。” /p
  • 重磅!美恢复352项中国进口商品关税豁免,大批仪器设备在列
    华盛顿—美国贸易代表办公室(USTR)于3月23日宣布,恢复部分中国进口商品的关税豁免。此次关税豁免涉及此前549项待定产品中的352项。该规定将适用于2021年10月12日至2022年12月31日之间进口自中国的商品。美国贸易代表办公室表示,2021年10月8日,USTR邀请就是否恢复先前授予和延长的549项排除条款发表评论。此次决定是在仔细考虑了公众意见并与其他美国机构协商后做出的。据了解,2018年,特朗普正式对我国发起贸易战,除制裁中国高新科技公司外,还使用美国301条款、对中国出口到美国的商品进行惩罚性关税的加增,最高25%。全部301制裁的商品分为四个列表总量四万种,包含了几乎全部中国的出口商品。恢复的排除条款在《联邦公报》通知中列出,其中包括了以下品目:73)立体显微镜,未配备图像拍摄工具,每台价值不超过500美元(统计报告编号9011.10.8000)74)适配器环、管和延伸套筒、支架和臂组件、台和滑台、护目镜和聚焦架,所有上述设备均设计用于复合光学显微镜(统计报告编号9011.90.0000)75)测深仪,每台价值不超过50美元(见统计报告编号9014.80.2000)76)气象站设备,每套设备由一个监控显示器和室外天气传感器组成,传输范围不超过140米,每套设备价值不超过50美元(统计报告编号9015.80.8080)77)锗酸铋晶体具有设定的尺寸和表面光洁度要求,用作正电子发射断层扫描(PET)探测器的检测元件(统计报告编号9018.19.9560)78)CO2监测装置零部件 (统计报告编号9018.19.9560)80)组合正电子发射断层扫描/计算机断层扫描(PET/CT)扫描仪,在一个共同的基础上使用多个PET机架(框架)(统计报告编号9022.12.0000)81)放射治疗系统,每个系统由钢制结构外壳包裹,带有机架盖,包括三对塑料板(统计报告编号9022.14.0000)82)X射线表(统计报告编号9022.90.2500)83)X射线管外壳及其零件(统计报告编号9022.90.4000)84)基于X射线的放射治疗系统的多叶准直器(统计报告编号9022.90.6000所述)85)设计用于X射线设备的印刷电路板组件(如统计报告编号9022.90.6000所述)86)专门设计用于支撑、容纳或调整X射线数字探测器或完整X射线诊断系统中的X射线管和准直器的移动的垂直支架(如统计报告编号9022.90.6000所述)26)液体泄漏检测器(在2022年1月27日之前的统计报告编号8543.70.9960中描述;在2022年1月27日生效的统计报告编号8543.70.9860中描述)32)数字临床温度计(在2020年7月1日之前的统计报告编号9025.19.8040中描述;在2020年7月1日生效的统计报告编号9025.19.8010或9025.19.8020中描述)33)数字临床温度计,每台不超过11美元(在2020年7月1日之前的统计报告编号9025.19.8040中描述;在2020年7月1日生效的统计报告编号9025.19.8010或9025.19.8020中描述)34)便携式无线气体监测仪(统计报告编号9027.10.2000)161)复合式双目光学显微镜(立体显微镜和显微摄影、电影显微摄影或显微投影显微镜除外),每台放大倍数为40倍或以上,但不超过1000倍,重量不超过3千克(统计报告编号9011.80.0000)162)复合光学显微镜(立体显微镜和显微摄影、电影显微摄影或显微投影用显微镜除外),每台放大倍数为40倍或以上但不超过400倍,重量不超过15千克(统计报告编号9011.80.0000)163)气象仪器和器具的零件和附件,每个零件和附件由重量不超过25 g的塑料和贱金属制成的风向标组成(如统计报告编号9015.90.0190所述)164)气象仪器和器具的零件和附件,每个零件和附件由一个组件组成,该组件包括3个旋转风杯、轴承、一个内部吸气风扇和一个或多个太阳能电池板(统计报告编号9015.90.0190中描述)165)气象仪器和器具的零件和附件,每个零件和附件由塑料和金属制成的组件组成,包括3个重量不超过35 g的风杯(如统计报告编号9015.90.0190所述)详情请查看:FRN for Notice of Reinstatement.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制