当前位置: 仪器信息网 > 行业主题 > >

植物光谱仪

仪器信息网植物光谱仪专题为您提供2024年最新植物光谱仪价格报价、厂家品牌的相关信息, 包括植物光谱仪参数、型号等,不管是国产,还是进口品牌的植物光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合植物光谱仪相关的耗材配件、试剂标物,还有植物光谱仪相关的最新资讯、资料,以及植物光谱仪相关的解决方案。

植物光谱仪相关的论坛

  • 植物光合作用测定仪反应灵敏度高吗

    [font=-apple-system, BlinkMacSystemFont, &][size=15px][color=#05073b]  植物光合作用测定仪反应灵敏度高吗,植物光合作用测定仪的反应灵敏度通常是非常高的,这主要得益于其先进的传感器技术和设计。以下是一些关于植物光合作用测定仪反应灵敏度的详细信息和特点:  传感器技术:  植物光合作用测定仪配备了高精度的传感器,用于测量与光合作用相关的关键参数,如二氧化碳浓度、空气温湿度、叶片温度、光照强度等。  这些传感器通常具有快速响应能力,能够迅速捕捉到微小的环境变化,并准确地转化为数据输出。  测量精度:  由于采用了高精度的传感器和先进的测量技术,植物光合作用测定仪能够提供非常准确的测量数据。  例如,一些光合作用测定仪的二氧化碳测量精度不会受到温度变化的影响,并且具备稳定、高精度、反应灵敏等特性,可以在一秒钟以内完成二氧化碳差值收集。  智能化系统:  许多植物光合作用测定仪配备了智能化系统,能够实时显示、储存和传输测量数据。  这种智能化系统可以大大提高测量的便捷性和效率,同时也能够确保数据的准确性和可靠性。  稳定性:  光合作用测定仪通常具有良好的稳定性,能够在长时间连续测量中保持高灵敏度。  这对于需要进行长时间监测或连续监测的研究项目来说尤为重要。  多功能性:  植物光合作用测定仪可以同时测量多个参数,如光合速率、蒸腾速率、细胞间二氧化碳浓度、气孔导度等。  这种多功能性使得它能够满足不同研究项目的需求,并提供全面的数据支持。  综上所述,植物光合作用测定仪的反应灵敏度通常是非常高的。它采用了高精度的传感器技术、先进的测量技术、智能化系统和稳定的设计,能够迅速、准确地捕捉到与光合作用相关的微小环境变化,并提供准确的测量数据。这些特点使得植物光合作用测定仪在植物生理学、生态学、农业科学等领域的研究中具有重要的应用价值。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406131144468576_457_6098850_3.jpg!w690x690.jpg[/img][/color][/size][/font]

  • 植物光合生理及环境监测是做什么的

    以色列PhyTechs PTM-48A植物光合生理及环境监测系统是目前正常环境条件下植物状态分析中更复杂的系统。系统可以利用叶片温度、茎流速率、茎杆微变化、茎杆与果实生长传感器等,来连续监测并记录完整的植物光合与蒸腾速率。 PTM-48M植物光合生理及环境监测系统的特点:12传感器通道设计 1)其中四个输入通道用于自动开合的叶室,测量叶片的光合与蒸腾速率; 2)另外的八个通道用于其他传感器,用于环境(PAR、空气温湿度、土壤湿度)与植物(叶片温度、茎流速率、茎杆微变化、果实生长、茎杆测量仪)监测。植物光合生理及环境监测系统特点: ·可长期、自动循环、同时测量四个叶片的CO2交换情况与光合速率 ·可长期、自动循环、同时测量四个叶片的H2O交换情况与蒸腾速率 ·可长期同时测量植株不同茎杆的茎流量 ·可长期同时测量植物所处的环境因子(空气温湿度、土壤湿度、PAR) ·可长期同时测量植物或者果实的微变化(茎杆微变化、果实生长、茎杆测量仪)植物光合生理及环境监测系统应用: ·4通道植物光合作用与蒸腾作用研究 ·作物的长期监测:实验室、温室和植物生长室中的植物生理学研究 ·野外长期生态监测研究,作物环境条件的变化与CO2的气体交换过程的相互关系等 PTM-48A植物光合生理及环境监测系统系统配置: 下面是系统的一些参数、用户可以根据自己的研究需要可选的传感器以及一般的系统构成可选传感器 ·PIR-1 光合作用辐射传感器 ·TIR-4 总辐射传感器 ·ATH-2 空气温湿度传感器 ·SMS-2 土壤湿度传感器 ·LT-2M 叶片温度传感器 ·SF-4M SF-5M 茎流速率传感器 ·SD-5M 或 SD-6M 茎杆微变化传感器 ·DE-1M 树木生长计 ·FI-LM,FI-MM,FI-SM和FI-XSM果实生长传感器 ·SA-20 茎杆生长计PTM-48A植物光合生理及环境监测系统性能参数 ·叶室数: 4个 ·叶室面积: 20 cm2 ·连接气体管路的标准长度: 6m ·叶室通道的正常空气流速范围: 0.8-1.0L/Min ·CO2浓度测量范围: 0-1000ppm ·CO2交换的额定测量范围: -20到20 μmolCO2m-2s-1 ·H2O交换的额定测量范围: 0-50mgH20m-2s-1 ·可选输入传感器数: 11 ·可选传感器输入范围: 0-10Vdc(12 bit) ·电源需求: 可选 220/110/100 VAC ; 50/60 Hz,150W ·连接串口: RS232 和 RS485(可选) ·终端软件要求系统为 Windows 98, 2000,ME 和 XP ·环境保护指标: IP51

  • 光谱远程监测烟草植物病毒感染情况

    植物中传播的病毒致使叶片产生斑点,萎黄,甚至坏死,通常在这些病症对植物造成可视损伤时再作治疗,为时已晚。更有效的方式是通过远程监测,对植物叶片的变化作出及时监控及准确评估,以减少损失。通常远程监测基于以下推断,即环境有害因素对植物光合作用或物理形态的影响会导致植物反射光谱和叶绿素荧光光谱发生改变。因此监测主要通过反射及荧光光谱的摄取及分析实现。

  • 【求助】大家谁知道地物光谱仪和近红外光谱仪的区别呀

    从网上看到地物光谱仪可以做到200-2500nm波长范围,紫外-近红外区域都可以做,但是近红外在应用时是需要模型建立的,为什么地物光谱仪在近红外区域应用不需要模型建立呢?哪位高手能给详细分析地物光谱仪和[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的区别?

  • 小动物光声成像系统

    [b][url=http://www.f-lab.cn/vivo-imaging/msot.html]小动物光声成像系统[/url][/b]MSOT是全球唯一能够提供[b][url=http://www.f-lab.cn/vivo-imaging/msot.html]小动物全身光声成像[/url][/b]能力的小动物实时光声成像系统,用于临床前小动物成像和临床前研究。小动物光声成像系统能够可帮助生物过程和药理物质作用在体内,在深部组织中高分辨率下实时观察。小动物光声成像系统是全球唯一混合光声超声成像技术,OPUS成像技术的同类仪器,也是世界上第一个交叉断层成像系统,提供非平行的用户独立的图像质量,并且具有实时性,可以获得整个动物的横截面影像。这套小动物光声成像系统包含组织形态基于血红蛋白信息产生的光声层析成像,反射式超声成像的集成(r-uct)能力添加互补的解剖信息,特别是低灌注结构。小动物光声成像系统可以调谐激发激光波长,采集光声信号,执行多个波长的光谱分解,这样内源性色基团以及外在探针可有效被区分。小动物光声成像系统工作MSOT探测器小动物置台可以利用各种手持探测器实现小动物的二维和三维自动成像。动物置台可作为内部图像和EIP MSOT成像系统的附件。主要特点包括:自动数据采集三维阶段控制加热的动物垫激光安全联锁装置动物监控摄像机接入导管或生命体征监测[img=小动物光声成像系统]http://www.f-lab.cn/Upload/MOST-invision-imaging.JPG[/img]小动物光声成像系统混合光声超声成像技术(OPUS成像)小动物光声成像系统是全球唯一混合光声超声成像技术,OPUS成像技术的同类仪器,也是世界上第一个交叉操作断层成像系统,提供非平行的用户独立的图像质量,并且具有实时性,可以获得整个动物的横截面影像。这套小动物光声成像系统包含组织形态基于血红蛋白信息产生的光声层析成像,反射式超声成像的集成(r-uct)能力添加互补的解剖信息,特别是低灌注结构。[img=小动物光声成像系统]http://www.f-lab.cn/Upload/Hybrid-OPUS-IMAGING.jpg[/img]初步实验表明,小动物光声成像系统t的升级版将应用在以下需要可视化的任何结构:肿瘤边缘转移胰腺膀胱小动物光声成像系统技术信息单波长的光声成像在10 Hz帧频高达5赫兹帧频的实时频谱分量可视化公司注册的反射式超声计算机断层扫描(r-uct)MSOT IN VISION 512-ECHO成像穿透深度2-4厘米,适合全身小动物成像。横截面的空间平面分辨率:150μM高功率/快速可调谐激光系统(100兆焦耳/ 10毫秒)具有64/128/256/512元件的断层超声探测器阵列全自动图像采集用于光谱和时间分析的数据后处理套件[b][/b]

  • 有机化合物光谱鉴定

    [font=&]【题名】: 有机化合物光谱鉴定 第2版[/font][font=&]【全文链接】: https://mtoou.info/jueban/745541.html[/font]

  • 【转帖】经改良植物碳捕获能力或能翻倍

    据美国物理学家组织网近日报道,美国一个研究小组正在研究改良植物的技术,以期在未来几十年中,将植物光合作用捕获碳的能力提高一倍。当前植物光合作用每年从大气中捕获的碳只有30亿吨,而为遏制气候恶化,每年需要从大气中减少约90亿吨碳。该研究发表在10月出版的《生物科学》上。研究由美国劳伦斯·伯克利国家实验室和橡树岭国家实验室共同进行,旨在探索一种途径来更好地利用生物质能源作物控制大气中二氧化碳上升水平。论文第一作者、伯克利实验室地球科学部高级科研人员克里斯托·简森说,将在今后几十年把植物光合作用捕获碳能力提高一倍。到2050年,利用植物从大气中清除碳的能力将达到50亿吨到60亿吨,这大部分将来自草本或木本的生物能源作物。生物能源作物能从两方面抵制气候变化:一方面,植物纤维可转化为中性碳,作为运输燃料来替代化石燃料;另一方面,植物可通过光合作用吸收大气中二氧化碳,将大量的碳通过根系固定在土壤中,形成一种生物炭。如果一种草能结合高能量和高附加的优点,还能减少大气中的碳,人们首先会选它作为生物燃料,比如一种很有潜力的生物燃料原料——芒草,它们根系庞大,能从空气中捕获碳,并将碳固定在土壤中达数千年,是目前最佳的生物能源作物候选。但简森和研究小组却首先考虑如何提高这些植物的固碳能力,他们描述了几种途径:一是转变植物冠层,加强它拦截阳光的效率;二是提高植物吸收利用太阳光的能力,以提高二氧化碳合成生物质的效率;三是提高植物将所捕获的碳输送到根部的能力,将更多的碳储存在土壤中;最后在保持产量不变的前提下,加强植物对各种压力的耐受程度。简森认为,人们在利用生物能源作物时,能首先考虑对其进行基因改良,给生物能源作物引入一些优良的属性,比如让它们能耐受干旱,或能利用卤水、含盐废水或灌溉用海水,从而避免增加淡水供给的负担。生物能源作物基因改良较容易,强化它们耐压固碳的能力可大大降低大气中的碳含量。(来源:科技日报 常丽君)

  • [精品] 有机化合物光谱分析法课件

    有机化合物光谱分析(精品课件)沈阳药科大学一流大学的精品!有机化合物光谱分析法课程是研究四大光谱应用于有机化合物结构确定及有关知识的科学。它既是基础理论课,又是应用基础课。对搞光谱分析的工作者一定很有用!分6个分卷,要全部下载才能解压![url=http://www.instrument.com.cn/download/shtml/014625.shtml]part1[/url][url=http://www.instrument.com.cn/download/shtml/014626.shtml]part2[/url][url=http://www.instrument.com.cn/download/shtml/014627.shtml]part3[/url][url=http://www.instrument.com.cn/download/shtml/014628.shtml]part4[/url][url=http://www.instrument.com.cn/download/shtml/014629.shtml]part5[/url][url=http://www.instrument.com.cn/download/shtml/014631.shtml]part6[/url]

  • 小动物光声成像系统说明书

    [url=http://www.f-lab.cn/vivo-imaging/msot.html][b]小动物光声成像系统MSOT[/b][/url]是全球唯一能够提供[b]小动物全身光声成像[/b]能力的小动物[b]实时光声成像系统[/b],用于临床前小动物成像和临床前研究。小动物光声成像系统能够可帮助生物过程和药理物质作用在体内,在深部组织中高分辨率下实时观察。小动物光声成像系统是全球唯一[b]混合光声超声成像技术,OPUS成像[/b]技术的同类仪器,也是世界上第一个[b]交叉断层成像系统[/b],提供非平行的用户独立的图像质量,并且具有实时性,可以获得整个动物的横截面影像。[img=小动物光声成像系统]http://www.f-lab.cn/Upload/MOST-invision-imaging.JPG[/img][img=小动物光声成像系统]http://www.f-lab.cn/Upload/Hybrid-OPUS-IMAGING.jpg[/img]小动物光声成像系统:[url]http://www.f-lab.cn/vivo-imaging/msot.html[/url]

  • 【资料】有机化合物光谱分析法-精品课件

    主要内容如下:有机化合物光谱分析法前言 光谱法的发展及其应用1. 四大光谱的介绍(紫外-可见光谱、红外光谱、核磁共振和质谱);四大光谱的发展历史。2. 有机化合物光谱分析法课程介绍。有机化合物光谱分析法课程是研究四大光谱应用于有机化合物结构确定及有关知识的科学。它既是基础理论课,又是应用基础课。3. 通过学习本课程,使学生能正确掌握四大光谱进行结构确定的原理及利用其综合解析有机化合物结构的方法,了解光谱学发展的最新动态和技术。主要讲述内容包括本课程的学习目的、学习内容、研究对象、学习要点、学习方法、课程安排、考核、教材、参考书和教师等介绍。4. 翻译英文原版教材的前言。第一章 紫外可见光谱(UV-Vis)-(I)1. 紫外可见光谱的引论:紫外可见光谱的产生-电子能级跃迁。2. 电子跃迁的条件,公式表示。3. 光的吸收定律(Lambert-Beer)和选择定则(Selection rules):计算公式和应用条件。4. 发色团的定义,类型,紫外可见光谱研究的发色团-含共轭双健,发色团的查找(波长范围,吸收带的强度)。5. 溶剂的选择和溶剂的极性对波长的影响,红移,兰移的概念。第一章 紫外可见光谱(UV-Vis)-(II)几种重要的发色团1. 共轭二烯类,Woodward定则预测最大吸收波长和应用实例。2. α,β不饱和酮类和醛类的π→π跃迁, Woodward-Fieser-Scott定则预测最大吸收波长、应用实例及相关溶剂校正。3. 取代苯的吸收。最大吸收波长预测和应用实例。4. 紫外光谱的应用:根据紫外光谱吸收峰的位置(λmax)和吸收强度(ε)推断发色团的种类和共轭体系的长短第二章 红外光谱(IR)1. 红外光谱的引论:红外光谱的产生-分子振动-转动能级跃迁。2. 红外光谱的选律(Selection rules),判别定则。红外光谱的几种振动形式(伸缩振动、弯曲振动等)。红外光谱的指纹区及鉴定。3. 拉曼光谱:拉曼效应,红外活性,拉曼活性,红外光谱和拉曼光谱的关系。4. 付立叶变换红外光谱:付立叶级数和变换,仪器介绍,原理和特点。第三章 核磁共振(NMR)-(I)1. 核磁共振引论:核磁共振的产生-核自旋能级跃迁。2. 核的Zeeman能级,公式表示。3. Boltzmann分布,公式表示。4. 核的进动与进动频率,公式表示。5. 弛豫过程。6. 核磁共振的灵敏度。一、提高磁场强度,二、连续波核磁共振仪转换为付立叶变换核磁共振仪第二章 核磁共振(NMR)- (II)1. 化学位移。屏蔽效应,核磁共振的条件,化学位移的公式表示法。2. NMR 信号的强度和积分。对于1H NMR谱:信号强度与分子中对应的核磁数目成正比,1C NMR谱:无此关系3. 影响化学位移的因素:分子内因素(诱导效应、化学键的磁各向异性)4. 影响化学位移的因素:分子间因素(氢键、温度、溶剂等)。第三章 核磁共振(NMR)- (III)1. 自旋—自旋偶合,自旋—自旋分裂的定义,偶合常数的表示方法。 2. 13C-D 自旋—自旋偶合3. 13C- 1H 自旋—自旋偶合:峰的裂分数服从n+1律,信号强度比为二项式展开 (a+b)n 系数比4. 13C NMR谱宽带质子去偶技术和偏共振去偶技术。5. 图谱解析实例。第三章 核磁共振(NMR)- (Ⅳ)1. 1H- 1H 一级偶合:峰的裂分数服从n+1律,信号强度比为二项式展开 (a+b)n 系数比。图谱解析实例。3. 裂分模式,图谱解析实例。裂分模式,图谱解析实例。第三章 核磁共振(NMR)- (Ⅴ)1. H-1H 偶合常数的大小及影响因素。邻偶的影响因素:二面角、电负性、角张力、键长。图谱解析实例说明。3. 偕偶的影响因素:相邻π键、电负性、角张力。图谱解析实例说明。4. 远程偶合的类型,图谱解析实例说明。第三章 核磁共振(NMR)- (Ⅵ)1. 对核磁共振谱的改进,利用位移试剂和改变磁场强度提高核磁的分辨率。2. 用自旋去偶的方法来查找偶合关系:简单自旋去偶,差别去偶3. 奥氏核效应(NOE)定义,奥氏核效应与核间距离成反比。4. 奥氏核效应差光谱。图谱解析实例说明。5. 多脉冲实验-脉冲序列6. 无畸变极化转移增强技术(DEPT),不同类型的碳原子在DEPT谱中的说明,图谱解析实例说明。第三章 核磁共振(NMR)- (Ⅶ)1 二维谱的定义、绘制、分类。2 1H-1H 相关谱(H-HCOSY):互相偶合的两个(组)H 核在图谱上出现相关峰,图谱解析实例说明。3 总相关谱(TOCSY):图谱解析实例说明。4 奥氏核效应相关谱(NOESY):两轴均为氢核的化学位移,空间距离较近,并有NOE相关的两种(组)氢核在图谱上出现相关峰。解析实例说明。5 1H-13C 二维相关谱(异核多量子相关谱 HMQC):图谱的一侧设定为1H的化学位移,而另一侧设定为13C的化学位移,所得二维谱。解析实例说明。6 远程1H-13C二维相关谱 (HMBC):图谱一侧设定为1H的化学位移,而另一侧设定为13C的化学位移,测定 1H-13C间隔 2 键以上的偶合所得二维谱。解析实例说明。7 13C-13C连接的鉴定(2D-INADEQUATE):横轴为 13C化学位移,纵轴为双量子相干频率,相互偶合的两个碳原子作为一对双峰排列在同一水平线上。解析实例说明。第四章 质谱(MS)-(I)1 质谱引论:质谱的原理与作用,质谱仪的组成及功能2 离子的形成:对于挥发性物质-电子轰击法(EI)、化学电离法(CI),对于非挥发性物质-场解析(FD)、激光解析(LD)、快原子轰击法(FAB)、大气压电离法等(API)。3 离子的分析:不同类型的质量分析器(扇形磁场仪,高分辨质谱仪等)。第四章 质谱(MS)-(II)1 利用同位素峰强比计算化合物分子式,计算公式。应用实例。2 应用Lederberg表推导化合物分子式,计算公式。应用实例。3 碎片的动能学:亚稳离子能确切地把两个质谱峰联系在一起,可以确证断裂方式;活化能与反应的倾向性-活化能越小,反应越容易进行。第四章 质谱(MS)(Ⅲ)1 质谱的碎裂机制:奇电子离子(EE+)、偶电子离子(OE+),质谱的碎裂反应遵循的一般规律。2 一些最基本的质谱的碎裂机制:α裂解、I过程、γH重排等。3 图谱实例解释离子碎片的碎裂机制。质谱图解析的方法和步骤。 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=17617]有机化合物光谱分析法[/url]

  • 推荐:实验室普通生物光学显微镜

    推荐:实验室普通生物光学显微镜[img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306302054141735_1341_5389809_3.jpeg[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306302054144492_4607_5389809_3.jpeg[/img]

  • 【原创】现代物理应用--植物声波助长技术

    对植物施加特定频率的声波,提高植物活细胞内电子流的运动速度,促进各种营养元素的吸收、传输和转化,增强植物的光合作用和吸收能力,促进早熟、提高产量和品质。 增产作用。声波助长仪能在植物生长过程中,增强光合作用,增大植物的呼吸强度,加快茎、叶等营养器官的生化反应过程,促进生长,提高营养物质制造量,加快果实或营养体的形成过程,提高产量。能使叶类蔬菜增产 30% ,黄瓜、西红柿等果类蔬菜和樱桃、草莓等水果增产 25% 。玉米等大田作物增产 20% 。 品质提高。声波助长仪在增强植物光合作用的同时,也增加了酶的合成,从而促进了蛋白质、糖等有机物质的合成,达到提高植物品质的效果。实验证明,西红柿、草莓的甜度都有较大提高,含糖量增加 20% 以上。促进早熟 。声波助长仪帮助植物促进呼吸作用,加强能量转变的速度,促进物质吸收和运转能力,使植物表现出旺盛的生长速度,达到早熟的功效。玉米可早熟 7 — 10 天。 提高抗病性。声波助长仪对植物发出的谐振波,能促进植物在生长进入旺盛期时,呼吸能力增高,从而保持细胞内较高的氧化水平,对病菌分泌的毒素有破坏作用。呼吸还能提供能量和中间产物,有利于植物形成某些隔离区(如木栓隔离层),阻止病斑扩大。 驱逐敏感害虫。当敏感害虫遇到声波助长仪产生的谐振波,会产生厌恶感或恐惧感,影响正常进食,使其难以生存,不能繁育或者主动离开,从而达到驱逐敏感害虫的功效。实验证明对蚜虫、红蜘蛛等顽固害虫有十分显著的效果。

  • 利用X射线可看到植物光合作用分子结构 为最终实现人工光合作用提供新途径

    中国科技网讯 据物理学家组织网6月5日(北京时间)报道,一个由瑞典、德国等多国人员组成的小组,利用短脉冲X射线分析看到了植物进行光合作用的分子结构,发现钙在水分解过程中极为重要,是构建人工光合系统的关键“建材”。这一方法为理解自然界植物的光合作用、光合系统结构与反应机制并最终实现人工光合作用提供了新途径。论文发表在近日出版的《美国国家科学院学报》上。 光合作用可分两步进行:第一步为光反应,由阳光提供能量分解水分子,放出氧气,为下一步暗反应供应能量;第二步为暗反应,利用第一步的能量与CO2反应,生成各种碳水化合物。而光合作用中心的两种不同的光合蛋白复合色素体系,分别进行光合系统Ⅰ(PSⅠ)和光合系统Ⅱ(PSⅡ)两种光化学反应。其中,PSⅡ在光反应过程中激发高能电子、分解水分子、释放氧和推动电子传递,并启动第一步光反应,在该过程中地位非常重要。 瑞典奥默大学化学系教授约翰尼斯·梅辛杰领导的团队试图以“人造树叶”项目模拟植物利用太阳能的方法,开发人工光合作用。但其必须先清楚,光合作用中哪些分子是分解水必不可少的,以及这些分子如何发挥作用。为此,团队设计了一种工具来研究植物在进行光合作用时的光合系统。 此前研究发现,放氧复合物(Mn4O5Ca)是PSⅡ的组成部分,去除钙离子则导致无法放氧。梅辛杰团队从PSⅡ中分离出放氧复合物分子,设法去除了其中的钙离子,再用美国斯坦福大学的X射线自由电子激光设备发出的超短X射线脉冲对分子结构进行了分析,记录下原子50飞秒(1飞秒=10-15秒)的运动过程。 “放氧复合物中5个氧原子将4个锰离子联合在一起,去除了钙离子后,这种结构没有变化,说明钙离子一定在水分解反应中起着极为重要的作用。”梅辛杰解释说,由于实验所用的X射线脉冲极短暂,所以探测时不会扰乱光合系统。“利用这一新工具,我们最终能够探求水在被分解时,氧原子怎样形成了氧络桥最后产生氧分子的。以往要从细节上研究这一阶段是不可能的。”(记者 常丽君) 总编辑圈点 如果要评选地球上最重要的化学反应,光合作用毫无疑问排在第一,它是目前已知的绝大多数生命的基础。19世纪后半期人们才发现光合作用的存在,而直到今天,科学家也没有完全把握其实质。欧洲科学家此次利用新的光学手段,窥测到转瞬即逝的化学迹象,从而将光合作用的机制还原到了分子级尺度。如此一来,人们就有望模仿自然界,造出高效率的“光合机器”。 《科技日报》(2012-06-06 一版)

  • X射线荧光光谱仪能不能对植物样品的重金属进行检测?

    X射线荧光光谱仪能不能对植物样品的重金属进行检测?请问大家:一些植物样品中重金属含量较低,如零点几到几十PPM,这样的含量范围,X射线荧光光谱仪能不能对植物样品的重金属进行检测?准确度如何?对于植物样品中重金属的定量限有没有个大概值?另外不知测试的重现性如何?谢谢

  • 使用高效液相色谱仪与液质联用仪时植物样品前处理的差别

    我实验中需使用高效液相色谱仪测定植物激素的含量,但植物激素含量的测定方面,当前大量文献都在介绍使用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url],且使用HPLC-VWD的文献极少且年代稍久。 感谢大家的专业指导,谢谢!

  • 高等植物启动子研究进展

    高等植物启动子研究进展 启动子是RNA聚合酶能够识别并与之结合,从而起始基因转录的一段DNA序列,通常位于基因上游。一个典型的启 动子包括CAAT-box和TATA-box,它们分别依赖DNA的RNA聚合酶的识别和结合位点,一般位于转录起始位点上游几十个碱基处。在核心启动子上 游通常会有一些特殊的DNA序列,即顺式作用元件,转录因子与之结合从而激活或抑制基因的转录。一旦RNA聚合酶定位并结合在启动子上即可 启动基因转录,因此启动子是基因表达调控的重要元件,它与RNA聚合酶及其他蛋白辅助因子等反式作用因子的相互作用是启动子调控基因转录的实质。 根据启动子的转录模式可将其分为3类:组成型启动子、组织或器官特异性启动子和诱导型启动子。 1 组成型启动子 在组成型启动子调控下,不同组织器官和发育阶段的基因表达没有明显差异,因而称之组成型启动子,双子叶植 物中最常使用的组成型启动子是花椰菜花叶病毒(CaMV)35S启动子,它具多种顺式作用元件。其转录起始位点上游-343~-46bp是转录增强区 ,-343~-208和-208~-90bp是转录激活区,-90~-46bp是进一步增强转录活性的区域,在了解CaMV 35S启动子各种顺式作用元件的基础上,人 们利用它的核心序列构建人工启动子,以得到转录活性更高的启动子,Mitsuhara等利用CaMv 35s核心启动子与CaMV 35S启动子的5'端不同区段 和烟草花叶病毒的5'非转录区(omega序列)相连,发现把两个CaMV 35S启动子-419~-90(E12)序列与omega序列串联,在转基因烟草中GUS有 最大的表达活性,把7个CaMV35S启动子的-290~-90(E7)序列与omega序列串联,非常适合驱动外源基因在水稻中的表达。用这两种结构驱动 GUS基因表达,在转基因烟草和水稻中GUS活性比单用CaMV 35S启动子高20~70倍。 另一种高效的组成型启动子CsVMV是从木薯叶脉花叶病毒(cassava vein mosaic virus )中分离的。该启动子 -222~-173bp负责驱动基因在植物绿色组织和根尖中表达,其中-219/-203是TGACG重复基序,即as1 (activating sequence 1),-183/-180为 GATA(又称为as2),这两个元件的互作对控制基因在绿色组织中表达至关重要。该启动子-178~-63bp包含负责调控基因在维管组织中表达的 元件。CsVMV启动子在转基因葡萄中驱动外源基因的转录能力与使用两个串联的CaMV35S启动子相当,两个串联的CsVMV启动子转录活性更强。 Rance等利用CoYMV(commelina yellow mosaic virus),CsVMV启动子区和CaMV 35S启动子的激活序列(as1,as2)人工构建高效融合启动子,瞬 时表达实验表明该启动子可驱动报告基因在双子叶植物烟草中高效表达,在单子叶植物玉米中其驱动能力比通常使用的γ玉米蛋白启动子高6倍。因此用这种人工构建的高效 启动子驱动抗病基因或目的蛋白基因,在双子叶和单子叶植物中均可达到较理想的效果。 人们高度重视从植物本身克隆组成型启动子,并初见成效,例如肌动蛋白(actin)和泛素(ubiquitin)等基因的启 动子已被克隆。用这些启动子代替CaMV 35S启动子,可以更有效地在单子叶植物中驱动外源基因的转录。Naomi等分别从拟南芥的色氨酸合酶β 亚基基因和植物光敏色素基因中克隆了相应启动子,用其代替CaMV 35S启动子,在转基因烟草中也取得了很好的表达效果。 由于组成型启动子驱动的基因在植物各组织中均有不同程度表达,应用中逐渐暴露出一些问题。例如外源基因在 整株植物中表达,产生大量异源蛋白质或代谢产物在植物体内积累,打破了植物原有的代谢平衡,有些产物对植物并非必需甚至有毒,因而阻 碍了植物的正常生长,甚至导致死亡。另外,重复使用同一种启动子驱动两个或两个以上的外源基因可能引起基因沉默或共抑制现象。因此, 人们寻找更为有效的组织、器官特异性启动子代替组成型启动子,以更好地调控植物基因表达。

  • 高校科研院所招聘联盟今日正在招聘,复旦大学生命科学学院李琳课题组诚招植物分子生物学方向博士后及科研助理,坐标上海,高薪寻找不一样的你!

    [b]职位名称:[/b]复旦大学生命科学学院李琳课题组诚招植物分子生物学方向博士后及科研助理[b]职位描述/要求:[/b]李琳课题组主要研究植物光信号传导通路,揭示植物避荫反应产生的分子机制。在自然生态环境和大多数农业生产中,高密度生长的植物互相遮挡,不耐受遮荫环境的植物进化出了一套避荫反应来逃避这种不利环境。避荫反应虽然可以增强植物对光的捕获力,但同时也会让植物叶绿素含量降低,种子量减少,而且更容易被食草动物侵害。课题组针对避荫反应的不同发育时期的表型,鉴定了多个避荫反应的调控元件,并揭示了相关的作用机制。近5年来,该实验室已经在Development Cell、e Life、Molecular Plant、Plant Physiology等国际主流刊物发表多篇学术论文。现诚邀有志科学研究的青年加盟。博士后应聘条件:1)已获得或即将获得生物学相关专业博士学位。2)能够利用分子生物学、生物化学、遗传学或蛋白质组学、生物信息学等手段进行相对独立的研究。3)能够熟练使用英文进行交流和写作。4)有责任心和团队精神。在相关专业领域国际水平刊物发表过较高水平文章或具有海外研究经历者优先。岗位目标与职责:1.相对独立地完成相关方向的课题研究,发表高水平学术论文。2.协助课题组长指导低年级研究生的训练与培养。研究助理应聘条件:1)具有分子生物学研究经历;2)有责任心和团队精神。岗位目标与职责:实验室管理、试剂订购,财务报账等;根据实验需要一定程度参与课题研究。[b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/59859]查看全部[/url]

  • 高速逆流色谱在植物有效成分分离中的应用

    高速逆流色谱在植物有效成分分离中的应用国家自然科学基金资助项目袁黎明(云南师范大学化学系 昆明 650092)傅若农(北京理工大学化工与材料学院 北京 100081)张天佑(北京市新技术应用研究所 北京 100035)高速逆流色谱(High-speed Countercurrent Chromatography,简称HSCCC)是由美国国家医学院Yiochiro Ito博士于1982年首先开始的。到目前为止,此项技术已用于生物化学、生物工程、医学、药学、天然产物化学、有机合成、化工、环境、农业、 食品、材料等领域。开展此项技术研究的科学家遍及美国、日本、中国、俄罗斯、法国、英国、瑞士等地。高速逆流色谱具有两大突出优点:1.聚四氟乙烯管中的固定相不需要载体,因而消除了气液色谱中由于使用载体而带来的吸附现象,特别适用于分离极性物质和具有生物活性的物质2.由于其与一般色谱的分离方式不同,使其特别适用于制备性分离。最近的研究结果表明:一台普通的高速逆流色谱仪一次进样可达几十毫升,一次可分离近10g的样品。因此,在80年代后期被广泛地应用于植物化学成分的分离制备研究,本文就其在这方面的成果作一综述。 HSCCC在天然产物中的分离制备是很成功的。既可分离又可定量,进样量可从毫克级到克级,进样体积可从几毫升到几十毫升;不但适用于非极性化合物,而且适用于极性化合物的分离;它可用于天然产物粗提物的去除杂质,也可用于最后产物的精制,甚至直接从粗提物一步纯化到达纯品;当加快仪器转速如1800r/min,其分离速度可与HPLC媲美,用于天然产物化学成分的分离始于1985年,到1988年、1989年达到一个高潮,发表了大量的文章,目前处于平稳发展阶段。1994年HSCCC创始人Ito又发展了pH-zone-refining CCC,使HSCCC的进样量又大大地前进了一步,能方便地分离克量级的样品,使其更加有利于天然植物的分离制备。因此,我们可以说HSCCC已为天然植物的分离制备开辟了一个十分广阔的新天地。

  • 植物除甲醛是否靠谱

    提到家居安全,90%以上的人会想到甲醛超标问题。的确,甲醛作为家居环境的首要污染物,其危害已经得到了前所未有的重视。而一些除甲醛的“偏方窍门”也不胫而走,尤其是在网络中,植物除甲醛被渲染的神乎其神,好像只要一盆绿色植物,室内的甲醛就可以全部清除干净。植物除甲醛 是耶非耶众说纷纭  植物除甲醛真的有这么神奇吗?风靡网络的十大除甲醛植物,分别为:常春藤、绿萝、吊篮、虎皮兰、芦荟、鸭跖草、龙舌兰、虎尾兰、仙人掌、铁树。这些植物在众多网友的转载中被传为“除甲醛利器”,大有“一盆植物定乾坤”的气势。但是,科学不是建立在网传或者“想当然”上的,真正的效果到底如何,用事实说话才最具说服力。

  • 大家看一下这个植物油的喇曼光谱怎么样

    大家看一下这个植物油的喇曼光谱怎么样

    这是我在植物油中加了两滴苯的拉曼光谱图http://ng1.17img.cn/bbsfiles/images/2014/06/201406071110_501417_2894002_3.png下面这个加了5滴苯http://ng1.17img.cn/bbsfiles/images/2014/06/201406071114_501418_2894002_3.png 对于这两个图我有些疑问想问大家1、这两谱的基线都是斜的,而且都是左边偏高,这正常吗?如果不正常,是不是仪器没调好,比如狭缝宽度什么的2、与加两滴苯的图谱相比,加了5滴的图谱中苯的拉曼特征峰1000cm-1处确实变大了很多,但是为什么其他峰都变小了啊?希望各位能为我解惑,小弟将感激不尽!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制