当前位置: 仪器信息网 > 行业主题 > >

植物微量仪

仪器信息网植物微量仪专题为您提供2024年最新植物微量仪价格报价、厂家品牌的相关信息, 包括植物微量仪参数、型号等,不管是国产,还是进口品牌的植物微量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合植物微量仪相关的耗材配件、试剂标物,还有植物微量仪相关的最新资讯、资料,以及植物微量仪相关的解决方案。

植物微量仪相关的方案

  • 不同植物油微量成分与抗氧化能力的相关性研究
    生育酚、多酚、植物甾醇和色素等有益微量伴随物是天然植物油的重要组成部分。尽管此类物质含量较少,但其与食用植物油品质密切相关,直接影响食用植物油的功能性、氧化稳定性等。油脂氧化可导致油脂品质下降,体外抗氧化性能可作为综合评价食用植物油品质的间接指标,评判食用油品质差异。
  • 测量植物茎流、水势传导的持续性方法
    首先要在一棵树木的茎上安装一对PSY1茎渗透势测量仪,并在他们之间的位置安装一个 SFM1液流计 。选择样点时应当避免树木直径或水力结构发生显著变化的地方(如主要的分支处等)。然后测量茎直径以及渗透势测量仪之间的距离。通过对茎水势(液流计上下部分)及两只渗透势测量仪之间的液流进行持续性监测,我们即可确定木质部的液流量及植物茎中的水势梯度。由此,可测量在给定水势梯度或导水率的条件下流经树木主干的质量流量。(算式为:kh= F/ΔP, g/s /MPa).如果我们能确保两台渗透势测量仪之间的距离为1米且不受到任何扰动,则对于水力传导率的测量即可标准化、常规化(算式为:Kh= F L / (ΔP), g/s m /MPa)这些测量将为深入研究以下问题提供依据: 干旱胁迫,树干空穴或日间组织补液的相关影响,植物水分胁迫及恢复。SFM1 植物茎流计 (热比率原理)这是一台用于测量植物液流或植物蒸发的自包含、独立设备。仪器采用热比率原理,可测量植物高液流、低液流、液流回流及零流量。仪器既适用于小型木质茎或根,也同样适用于大型树木。PSY1 植物茎渗透势测量仪对于测量植物水势来说,PSY1植物茎渗透势测量仪的功能是十分强大的,因为它能够对周边环境中,所有能够对植物产生影响的要素如:太阳辐射,温度,湿度,风速及水分供给量进行持续性的监测。
  • Agilent 4200 微波等离子体-原子发射光仪对植物组织消解产物进行总金属K分析
    植物的生长和发育在很大程度上依赖于矿物质营养元素的组成和浓度,这反映在植物的叶片和其它组织上。这些必需的营养元素可分为两类常量营养元素(对植物的结构起重要作用,需求量大)和微量营养元素(往往与植物的调控作用相关,需求量小)。营养元素缺乏或过多都可造成植物生长变缓、产量下降或质量降低。火焰原子吸收光谱法(FAAS) 或电感耦合等离子体发射光谱(ICP-OES) 通常用于分析植物中的总金属含量。最近,许多农业检测实验室期望采用一种功能更加强大的技术来升级或更换自己的FAAS,把目光投向了具有诸多优势的微波等离子体-原子发射光谱法(MP-AES)。MP-AES 是一种多元素分析技术,与FAAS 相比,MP-AES 的检测限更低、分析范围更宽且能分析更多元素,包括土壤施肥中广泛使用的昂贵常量营养元素磷。
  • Agilent 4200 微波等离子体-原子发射光仪对植物组织消解产物进行总金属Mg分析
    植物的生长和发育在很大程度上依赖于矿物质营养元素的组成和浓度,这反映在植物的叶片和其它组织上。这些必需的营养元素可分为两类常量营养元素(对植物的结构起重要作用,需求量大)和微量营养元素(往往与植物的调控作用相关,需求量小)。营养元素缺乏或过多都可造成植物生长变缓、产量下降或质量降低。火焰原子吸收光谱法(FAAS) 或电感耦合等离子体发射光谱(ICP-OES) 通常用于分析植物中的总金属含量。最近,许多农业检测实验室期望采用一种功能更加强大的技术来升级或更换自己的FAAS,把目光投向了具有诸多优势的微波等离子体-原子发射光谱法(MP-AES)。MP-AES 是一种多元素分析技术,与FAAS 相比,MP-AES 的检测限更低、分析范围更宽且能分析更多元素,包括土壤施肥中广泛使用的昂贵常量营养元素磷。
  • Agilent 4200 微波等离子体-原子发射光仪对植物组织消解产物进行总金属Fe分析
    植物的生长和发育在很大程度上依赖于矿物质营养元素的组成和浓度,这反映在植物的叶片和其它组织上。这些必需的营养元素可分为两类常量营养元素(对植物的结构起重要作用,需求量大)和微量营养元素(往往与植物的调控作用相关,需求量小)。营养元素缺乏或过多都可造成植物生长变缓、产量下降或质量降低。火焰原子吸收光谱法(FAAS) 或电感耦合等离子体发射光谱(ICP-OES) 通常用于分析植物中的总金属含量。最近,许多农业检测实验室期望采用一种功能更加强大的技术来升级或更换自己的FAAS,把目光投向了具有诸多优势的微波等离子体-原子发射光谱法(MP-AES)。MP-AES 是一种多元素分析技术,与FAAS 相比,MP-AES 的检测限更低、分析范围更宽且能分析更多元素,包括土壤施肥中广泛使用的昂贵常量营养元素磷。
  • Agilent 4200 微波等离子体-原子发射光仪对植物组织消解产物进行总金属Zn分析
    植物的生长和发育在很大程度上依赖于矿物质营养元素的组成和浓度,这反映在植物的叶片和其它组织上。这些必需的营养元素可分为两类常量营养元素(对植物的结构起重要作用,需求量大)和微量营养元素(往往与植物的调控作用相关,需求量小)。营养元素缺乏或过多都可造成植物生长变缓、产量下降或质量降低。火焰原子吸收光谱法(FAAS) 或电感耦合等离子体发射光谱(ICP-OES) 通常用于分析植物中的总金属含量。最近,许多农业检测实验室期望采用一种功能更加强大的技术来升级或更换自己的FAAS,把目光投向了具有诸多优势的微波等离子体-原子发射光谱法(MP-AES)。MP-AES 是一种多元素分析技术,与FAAS 相比,MP-AES 的检测限更低、分析范围更宽且能分析更多元素,包括土壤施肥中广泛使用的昂贵常量营养元素磷。
  • Agilent 4200 微波等离子体-原子发射光仪对植物组织消解产物进行总金属Mn分析
    植物的生长和发育在很大程度上依赖于矿物质营养元素的组成和浓度,这反映在植物的叶片和其它组织上。这些必需的营养元素可分为两类常量营养元素(对植物的结构起重要作用,需求量大)和微量营养元素(往往与植物的调控作用相关,需求量小)。营养元素缺乏或过多都可造成植物生长变缓、产量下降或质量降低。火焰原子吸收光谱法(FAAS) 或电感耦合等离子体发射光谱(ICP-OES) 通常用于分析植物中的总金属含量。最近,许多农业检测实验室期望采用一种功能更加强大的技术来升级或更换自己的FAAS,把目光投向了具有诸多优势的微波等离子体-原子发射光谱法(MP-AES)。MP-AES 是一种多元素分析技术,与FAAS 相比,MP-AES 的检测限更低、分析范围更宽且能分析更多元素,包括土壤施肥中广泛使用的昂贵常量营养元素磷。
  • Agilent 4200 微波等离子体-原子发射光仪对植物组织消解产物进行总金属Ca分析
    植物的生长和发育在很大程度上依赖于矿物质营养元素的组成和浓度,这反映在植物的叶片和其它组织上。这些必需的营养元素可分为两类常量营养元素(对植物的结构起重要作用,需求量大)和微量营养元素(往往与植物的调控作用相关,需求量小)。营养元素缺乏或过多都可造成植物生长变缓、产量下降或质量降低。火焰原子吸收光谱法(FAAS) 或电感耦合等离子体发射光谱(ICP-OES) 通常用于分析植物中的总金属含量。最近,许多农业检测实验室期望采用一种功能更加强大的技术来升级或更换自己的FAAS,把目光投向了具有诸多优势的微波等离子体-原子发射光谱法(MP-AES)。MP-AES 是一种多元素分析技术,与FAAS 相比,MP-AES 的检测限更低、分析范围更宽且能分析更多元素,包括土壤施肥中广泛使用的昂贵常量营养元素磷。
  • Agilent 4200 微波等离子体-原子发射光仪对植物组织消解产物进行B的分析
    植物的生长和发育在很大程度上依赖于矿物质营养元素的组成和浓度,这反映在植物的叶片和其它组织上。这些必需的营养元素可分为两类常量营养元素(对植物的结构起重要作用,需求量大)和微量营养元素(往往与植物的调控作用相关,需求量小)。营养元素缺乏或过多都可造成植物生长变缓、产量下降或质量降低。火焰原子吸收光谱法(FAAS) 或电感耦合等离子体发射光谱(ICP-OES) 通常用于分析植物中的总金属含量。最近,许多农业检测实验室期望采用一种功能更加强大的技术来升级或更换自己的FAAS,把目光投向了具有诸多优势的微波等离子体-原子发射光谱法(MP-AES)。MP-AES 是一种多元素分析技术,与FAAS 相比,MP-AES 的检测限更低、分析范围更宽且能分析更多元素,包括土壤施肥中广泛使用的昂贵常量营养元素磷。
  • Agilent 4200 微波等离子体-原子发射光仪对植物组织消解产物进行总金属Mn分析
    植物的生长和发育在很大程度上依赖于矿物质营养元素的组成和浓度,这反映在植物的叶片和其它组织上。这些必需的营养元素可分为两类常量营养元素(对植物的结构起重要作用,需求量大)和微量营养元素(往往与植物的调控作用相关,需求量小)。营养元素缺乏或过多都可造成植物生长变缓、产量下降或质量降低。火焰原子吸收光谱法(FAAS) 或电感耦合等离子体发射光谱(ICP-OES) 通常用于分析植物中的总金属含量。最近,许多农业检测实验室期望采用一种功能更加强大的技术来升级或更换自己的FAAS,把目光投向了具有诸多优势的微波等离子体-原子发射光谱法(MP-AES)。MP-AES 是一种多元素分析技术,与FAAS 相比,MP-AES 的检测限更低、分析范围更宽且能分析更多元素,包括土壤施肥中广泛使用的昂贵常量营养元素磷。
  • Agilent 4200 微波等离子体-原子发射光仪对植物组织消解产物进行总金属Cu分析
    植物的生长和发育在很大程度上依赖于矿物质营养元素的组成和浓度,这反映在植物的叶片和其它组织上。这些必需的营养元素可分为两类常量营养元素(对植物的结构起重要作用,需求量大)和微量营养元素(往往与植物的调控作用相关,需求量小)。营养元素缺乏或过多都可造成植物生长变缓、产量下降或质量降低。火焰原子吸收光谱法(FAAS) 或电感耦合等离子体发射光谱(ICP-OES) 通常用于分析植物中的总金属含量。最近,许多农业检测实验室期望采用一种功能更加强大的技术来升级或更换自己的FAAS,把目光投向了具有诸多优势的微波等离子体-原子发射光谱法(MP-AES)。MP-AES 是一种多元素分析技术,与FAAS 相比,MP-AES 的检测限更低、分析范围更宽且能分析更多元素,包括土壤施肥中广泛使用的昂贵常量营养元素磷。
  • Agilent 4200 微波等离子体-原子发射光仪对植物组织消解产物进行总金属Na分析
    植物的生长和发育在很大程度上依赖于矿物质营养元素的组成和浓度,这反映在植物的叶片和其它组织上。这些必需的营养元素可分为两类常量营养元素(对植物的结构起重要作用,需求量大)和微量营养元素(往往与植物的调控作用相关,需求量小)。营养元素缺乏或过多都可造成植物生长变缓、产量下降或质量降低。火焰原子吸收光谱法(FAAS) 或电感耦合等离子体发射光谱(ICP-OES) 通常用于分析植物中的总金属含量。最近,许多农业检测实验室期望采用一种功能更加强大的技术来升级或更换自己的FAAS,把目光投向了具有诸多优势的微波等离子体-原子发射光谱法(MP-AES)。MP-AES 是一种多元素分析技术,与FAAS 相比,MP-AES 的检测限更低、分析范围更宽且能分析更多元素,包括土壤施肥中广泛使用的昂贵常量营养元素磷。
  • Agilent 4200 微波等离子体-原子发射光仪对植物组织消解产物进行总金属分析
    植物的生长和发育在很大程度上依赖于矿物质营养元素的组成和浓度,这反映在植物的叶片和其它组织上。这些必需的营养元素可分为两类常量营养元素(对植物的结构起重要作用,需求量大)和微量营养元素(往往与植物的调控作用相关,需求量小)。营养元素缺乏或过多都可造成植物生长变缓、产量下降或质量降低。火焰原子吸收光谱法(FAAS) 或电感耦合等离子体发射光谱(ICP-OES) 通常用于分析植物中的总金属含量。最近,许多农业检测实验室期望采用一种功能更加强大的技术来升级或更换自己的FAAS,把目光投向了具有诸多优势的微波等离子体-原子发射光谱法(MP-AES)。MP-AES 是一种多元素分析技术,与FAAS 相比,MP-AES 的检测限更低、分析范围更宽且能分析更多元素,包括土壤施肥中广泛使用的昂贵常量营养元素磷。
  • FluorCam便携式叶绿素荧光成像技术方案 ——植物表型分析、光合生理生态研究
    FluorCam便携式叶绿素荧光成像可以与LCi/LCpro等便携式光合仪及FluorPen手持式叶绿素荧光测量仪组合使用,应用于实验室和大田植物光合生理生态快速全面测量研究、植物表型分析、生物(病虫害)与非生物胁迫/抗性检测,具备使用方便、功能全面、原位无损伤在线测量、高性价比等优势。
  • 试验结束后微量水分测定仪的处理
    微量水分测定仪又被称为卡尔• 费休水分测定仪,同类有水分测定仪、水分仪、水分计、水分检测仪、水分测量仪、水分分析仪。其主要应用于水分值含量较低的样品检测,经过近年来改进,大大提高了准确度,扩大了测量范围。
  • 通过毛细管 HPLC-ICP-MS 分析微升体积的植物汁液中锌的形态
    许多金属元素对于正常的植物生长和发育非常重要。其中一种金属元 素就是锌,它通常是生物体中第二丰富的过渡金属,并且作为重要的 微量营养元素在植物生理学中发挥着不同的作用。锌是 300 多种酶的主要成分。它负责基因调控和蛋白质结构的稳定,包括锌指、锌簇和 RING 指结构域。锌还参与光合作用和 CO2 固定等基本过程。植物中的锌过量或缺乏将导致植物死亡率高、生长迟缓和萎缩、萎黄病、坏 死、小叶病和开花延迟。所有这些症状都可能对食品安全产生严重影响,因为与锌可利用性相关的作物产量将显著降低。本研究提出一种 ICP-MS 辅助的金属组学方法用于分离豌豆后韧皮部中存在的锌形态分析。通过具有在线预浓缩功能的毛细管 HPLC-ICP-MS 对胚囊液体进行分析。由于植物汁液量非常少,所以需要使用毛细管色谱。
  • MST分子互作技术在植物抗逆机制研究上的应用
    植物生长会受到各种复杂多变的逆境条件胁迫,包括干旱、盐碱和低温等。在长期的系统发育过程中,植物也逐渐形成适应、抵抗和忍耐的抗逆性,植物抗逆性机制为当前研究的热点,今天带大家来了解一下,微量热泳动(MicroScale Thermophoresis, MST)互作技术在植物适应逆境的机制研究的应用。
  • 微波消解仪消解植物油重金属检测前处理
    使用微波消解仪能够快速完全消解植物油,试剂用量少,实验空白少,能够保证检测数据更准确。台湾新竹市政府,查出多间大厂生产的七款植物油,含重金属铬、高含量反式脂肪,已通报卫福部要求回收,也通令辖内餐厅、学校不得使用。新竹市长林智坚20日会同新竹市卫生局、消保官举行记者会,并在现场展示含重金属铬、高含量反式脂肪的7款植物油桶,包括“台糖”烤酥油、“福寿”特级耐炸油、“福懋”汉氏益康耐炸油、“福懋”顶级烹调油、“泰山鲜榨的番”好炸油、“大成”纯炸油、“美食家”油炸专用油。据介绍,新竹市95%的餐厅、夜市业者都使用这7款问题植物油。新竹市卫生局长何秉圣说,反式脂肪是人体肝脏无法代谢的物质,摄取过量可能导致心血管疾病。他也说,这7款产品也验出重金属铬,在0.03至0.04ppm之间,比容许值高出10多倍,可能影响生殖能力,造成肝肾负担,甚至致癌。
  • 叶面积测量仪检测叶片叶面积的操作步骤
    使用叶面积测量仪来检测植物叶片的叶面积是一个常见的操作,可以帮助您获得准确的叶片表面积数据。
  • MST分子互作技术在植物与病原菌互作研究中的应用
    植物在整个生命周期中会经受多种微生物病原的侵袭,包括真菌,细菌,病毒,线虫等,作物约30%的产量损失是由病原体造成的,病害是农业可持续发展面临的主要问题。在植物与病原数百万年的协同进化中,植物与病原的互作经历了很多阶段,为掌握植物与病原互作中的重要信号分子,深入了解植物免疫分子机制,不可避免的要进行分子间互作的检测,今天来看一下为微量热泳动(MicroScale Thermophoresis, MST)分子互作技术在植物抗病方面的应用吧!
  • 利用等温微量热仪研究食品微生物的代谢能量
    近年来已有越来越多利用微量热仪器研究食品相关课题发表,包含天然物的分离纯化、食品加工程序优化、食品添加剂、食品污染及毒性评估等。基于仪器的高灵敏度及能够量测活体生物生长代谢能量的优点,已有许多研究植物细胞、动物细胞或微生物(细菌、真菌、病毒等)相关文献发表在不同领域。本短文乃是基于生长代谢能量之量测,在食品加工上的应用简介。
  • 用高压微量热仪评价深水钻井液气体水合物抑制性
    评价深水钻井液气体水合物抑制性的新方法-DSC技术,利用高压微量热仪的特点研究甲烷气体在不同液体介质中生成气体水合物的规律,建立了钻井液气体水合物抑制性实例。
  • 橡胶圈测试报告-晟鼎精密接触角测量仪测试
    晟鼎精密接触角测量仪采用现代化先进工艺制造,仪器采用先进的专用CCD数字摄像机,配备高分辨率远心变倍工业镜头和高亮度LED背景光源系统,搭配三维样品台,可进行工作台上下、左右、前后等方向移动。实现微量进样及上下、左右精密移动。仪器设计美观大方、操作简单、符合用户所需。适用于各种行业测定接触角的用户。
  • 微波消解植物油脂样品
    植物油脂(如豆油、花生油、菜籽油、芝麻油、玉米油)是人们日常饮食中必不可少的食物,如果重金属超标,随着每日三餐的摄入,重金属很难排出,便在人体内积蓄。重金属超标对儿童产生非常大的负面影响,影响发育,导致血液循环系统的疾病,使神经系统受损等。植物油中的重金属一般来源于油料作物、加工过程等,主要包括铅、镉、汞、砷、铬等,国标《GB 2762-2012 食品安全国家标准 食品中污染物限量》对其进行了限量。利用微波消解可以快速的对油脂样品进行前处理,高效便捷空白低,对环境环境友好,与原子吸收、原子荧光、ICP或者ICP-MS联用可以快速准确的检测油脂中的重金属元素的含量。
  • 显微CT在竹制等植物纤维检测中的应用
    高分辨率显微CT扫描实现了试样内部纤维状态的三维可视化,揭示了不同碱浓度处理过的内、外竹条的柔韧性和拉伸性能,是一种研究植物纤维材料在不同碱浓度作用下微观结构的有效方法。
  • 植物油中谷维素含量的测定
    本文建立了一种使用岛津LC-20A系统对植物油中的谷维素含量进行检测的方法。实验结果表明:该方法校准曲线线性、仪器保留时间及峰面积的重现性、灵敏度均良好。本方法适合作为植物油中谷维素含量的快速分析。
  • 易科泰植物表型成像技术应用案例 - 优化药用植物人工培养方案
    药用植物栽培经常会遇到一个左右为难的问题,即如果一味追求产量(生物量),药用植物的有效成分含量(很多是多酚、黄酮类的次生代谢物)往往会较低,最终获得的总有效成分可能反而更少。那么怎样确定并评估最优的药用植物培养方案呢?由于自然环境多变而且难以控制,很多研究者把专注点放到了人工培养与植物工厂上,并通过植物表型成像技术来综合衡量药用植物的培养效果。在药用植物培养方案的相关研究中,国内外研究者利用易科泰及合作厂家提供的植物表型成像技术方案已经取得了大量研究成果。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制