当前位置: 仪器信息网 > 行业主题 > >

植物校准计

仪器信息网植物校准计专题为您提供2024年最新植物校准计价格报价、厂家品牌的相关信息, 包括植物校准计参数、型号等,不管是国产,还是进口品牌的植物校准计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合植物校准计相关的耗材配件、试剂标物,还有植物校准计相关的最新资讯、资料,以及植物校准计相关的解决方案。

植物校准计相关的资讯

  • 中国合格评定国家认可委员会关于CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》网上公示征求意见的通知
    各相关机构和人员:中国合格评定国家认可委员会(CNAS)组织制定了CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》。目前已完成文件征求意见稿,现于网上公示征求意见。请相关机构和人员对该文件有修改建议或意见,请填写附件中的意见征询表,并于2024年3月18日前反馈至CNAS秘书处。联系人:富宏坤联系电话:010-67105451Email:fuhk@cnas.org.cn附件:附件1:CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》(征求意见稿)附件2:CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》的编制说明附件3:认可规范文件修订内容差异对照表CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》附件4:CNAS文件意见征询表CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》
  • 中国合格评定国家认可委员会发布CNAS-CL01-A014:2024《检测和校准实验室能力认可准则在植物检疫领域的应用说明》及其实施安排
    关于发布CNAS-CL01-A014:2024《检测和校准实验室能力认可准则在植物检疫领域的应用说明》及其实施安排的通知  认可规范文件(CNAS-CL01-A014:2024 与CNAS-CL01-A014:2018)修订内容差异对照表
  • 博伦气象发布HPV 植物茎流传感器/植物液流计新品
    HPV 茎流量传感器/Sap Flow SensorHPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用双方法(DMA)热脉冲法,测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量茎流量传感器参考文献:1. Kim, H.K. Park, J. Hwang, I. Investigating water transport through the xylem network in vascular plants.J. Exp. Bot. 2014, 65, 1895–1904. [CrossRef] [PubMed]2. Steppe, K. Vandegehuchte, M.W. Tognetti, R. Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]3. Vandegehuchte, M.W. Steppe, K. Sap-flux density measurement methods: Working principles andapplicability. Funct. Plant Biol. 2013, 40, 213–223. [CrossRef]4. Marshall, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 , 33, 385–396.[CrossRef] [PubMed]5. Cohen, Y. Fuchs, M. Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4, 391–397.[CrossRef]6. Green, S.R. Clothier, B. Jardine, B. Theory and practical application of heat pulse to measure sap flow.Agron. J. 2003, 95, 1371–1379. [CrossRef]7. Burgess, S.S.O. Adams, M.A. Turner, N.C. Beverly, C.R. Ong, C.K. Khan, A.A.H. Bleby, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 , 21, 589–598. [CrossRef]8. Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 , 8, 350. [CrossRef]9. Bleby, T.M. McElrone, A.J. Burgess, S.S.O. Limitations of the HRM: Great at low flow rates, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts, Seville, Spain, 22–24 October 2008.10. Pearsall, K.R. Williams, L.E. Castorani, S. Bleby, T.M. McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014, 41, 874–883. [CrossRef]11. Clearwater, M.J. Luo, Z. Mazzeo, M. Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 , 32, 1652–1663.[CrossRef]12. Green, S.R. Romero, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951, 19–29. [CrossRef]13. Green, S. Clothier, B. Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846, 95–104. [CrossRef]14. Ferreira, M.I. Green, S. Concei??o, N. Fernández, J. Assessing hydraulic redistribution with thecompensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 , 425, 21–41.[CrossRef]15. Romero, R. Muriel, J.L. Garcia, I. Green, S.R. Clothier, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012, 951, 31–38. [CrossRef]16. Testi, L. Villalobos, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 , 149, 730–734. [CrossRef]17. Vandegehuchte, M.W. Steppe, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196, 306–317. [CrossRef] [PubMed]18. Kluitenberg, G.J. Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.Agric. For. Meteorol. 2004, 126, 169–173. [CrossRef]19. Vandegehuchte, M.W. Steppe, K. Improving sap-flux density measurements by correctly determiningthermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012 , 32, 930–942.[CrossRef]20. Looker, N. Martin, J. Jencso, K. Hu, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223, 60–71. [CrossRef]21. Edwards, W.R.N. Warwick, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulsetechnique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984, 27, 537–543. [CrossRef]22. Becker, P. Edwards, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19, 767–768. [CrossRef]23. Hogg, E.H. Black, T.A. den Hartog, G. Neumann, H.H. Zimmermann, R. Hurdle, P.A. Blanken, P.D. Nesic, Z. Yang, P.C. Staebler, R.M. et al. A comparison of sap flow and eddy fluxes of water vapor from aboreal deciduous forest. J. Geophys. Res. 1997, 102, 28929–28937. [CrossRef]24. Barkas, W.W. Fibre saturation point of wood. Nature 1935, 135, 545. [CrossRef]25. Kollmann, F.F.P. Cote, W.A., Jr. Principles of Wood Science and Technology: Solid Wood Springer: Berlin Heidelberg, Germany, 1968.26. Swanson, R.H. Whitfield, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,32, 221–239. [CrossRef]27. Barrett, D.J. Hatton, T.J. Ash, J.E. Ball, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 , 18, 463–469. [CrossRef]28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition Queensland Government: Brisbane, Australia, 2016.29. Steppe,K. de Pauw, D.J.W. Doody, T.M. Teskey, R.O. A comparison of sap flux density using thermaldissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 , 150, 1046–1056. [CrossRef]30. López-Bernal, A. Testi, L. Villalobos, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216, 321–329. [CrossRef] [PubMed]31. Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [CrossRef] [PubMed]32. Cohen, Y. Fuchs, M. Falkenflug, V. Moreshet, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80, 398–402. [CrossRef]33. Cohen, Y. Takeuchi, S. Nozaka, J. Yano, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85, 1080–1086. [CrossRef]34. Lassoie, J.P. Scott, D.R.M. Fritschen, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23, 377–390.35. Wang, S. Fan, J. Wang, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015, 79, 1545–1555. [CrossRef]36. Bleby, T.M. Burgess, S.S.O. Adams, M.A. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 , 31, 645–658.[CrossRef]37. Madurapperuma, W.S. Bleby, T.M. Burgess, S.S.O. Evaluation of sap flow methods to determine water use by cultivated palms. Environ. Exp. Bot. 2009, 66, 372–380. [CrossRef]38. Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigationscheduling. Acta Hortic. 2008, 792, 321–332. [CrossRef]39. Intrigliolo, D.S. Lakso, A.N. Piccioni, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern UnitedStates. Irrig.Sci. 2009, 27, 253–262. [CrossRef]40. Eliades, M. Bruggeman, A. Djuma, H. Lubczynski, M. Tree water dynamics in a semi-arid, Pinus brutiaforest. Water 2018, 10, 1039. [CrossRef]
  • 植物茎流仪、果实生长变化仪、茎秆生长变化计应用于上海市农科院
    2020年5月,我公司为上海果蔬种植基地(上海清澄果蔬专业合作社)提供植物茎流仪、果实生长变化仪、茎秆生长变化计等数据采集系统。 上海清澄果蔬专业合作社占地面积480亩,先后被评为中国农业部和财政部现代农业产业技术示范基地、市农业技术推广服务中心先进科技示范户、2017年上海农业科学院梨树试验示范基地等多项荣誉。合作社坚持农旅结合,打造特色农业生态合作社,并利用网络平台开设微店,生产的各种特色果品深受市民喜爱。 PEM1000X植物生理生态监测系统是北京博伦经纬公司推出的一款新型的植物生理生态监测系统,分别有监测部分、采集部分、传输部分组成,监测部分包括:各种传感器和供电部分;采购部分包括:数据记录仪、数据存储部分和支架配件部分;传输部分包括:有线传输和无线传输。此系统包括:茎秆生长变化、果实生长变化、茎流等指标,可根据客户的需要酌情添加或减少传感器,可以长期地监测植物的生理变化和影响植物生长变化的监测系统。HPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用热脉冲速率法(HPV),测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量270mA线缆:5m,Max 60mDE-1T 树木生长变化传感器茎秆直径范围:60mm茎秆变化测量范围:0~10mm分辨率:0.005mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64尺寸:90 W × 60 H × 23 Dmm测量杆尺寸:160 L × 4Φ螺纹管口尺寸:10 L × 5Φ标准线缆:4m长,可选择10mFI-LT果实生长传感器是一个系列位移传感器,主要用于记录完全圆形的果实的生长尺寸和生长速度,在7 -160毫米范围内,通过三个直径变化测量。移动臂原始设计为平行四边形,提供牢固的笔直的传感器位置,用于果实研究。FI型传感器由一个安装在特殊夹子上的LVDT变送器,以及一个DC电源信号调节器组成。测量范围:30~160mm分辨率:0.065mm准确度:±0.3mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64标准线缆:4m长,可选择10m
  • 蓝菲光学积分球光谱分析仪在植物照明灯中的应用
    近几年来,随着LED技术与全球植物工厂、垂直农场等现代设施农业的发展,植物照明市场迎来了新的发展机遇,成为众多照明厂商走差异化竞争之选。 图1 植物照明由于LED灯具有光效高、发热低、体积小、寿命长灯特点,因此非常受植物照明生产厂商的青睐。不同植物生长过程中对不同光谱的光需求量不同,为此所选的补偿光也有差异。。 图2 LED灯具植物工程可分为种植设备技术和植物工艺技术,其中植物照明光谱技术是种植设备技术和植物工艺技术的关键。好的光谱设计可保证种植工艺所要求的光质能达到高效利用。 图3 光谱制造商设计植物照明系统,通常根据植物所需的光质、光密度,然后对植物照明光源进行选择。植物灯光谱设计需要依据植物种植工艺要求而设计,植物灯光谱分析和设计能力对制造商市场竞争至关重要。而这些都需要精确的光源光谱分析方法和设备。 蓝菲光学40年光学测量生产设备经验,可提供精确的光源光谱分析方法和积分球光谱分析设备,有效的计算PAR/PPF/PPFD值。 图4 蓝菲光学积分球光谱分析仪不同植物或者同一植物不同时期吸收光谱不同,通过确定种植工艺确定植物照明光谱范围和峰值波长,植物照明的光谱和峰值波长均可通过蓝菲光学积分球光谱分析仪获得。蓝菲光学(Labsphere)illumia® Plus2积分球光谱分析仪积分球尺寸 25 cm -3 m可选,具有 2π 和 4π 几何方式。三种光谱仪可选、特定的应用模块在保证生产效率最大化的同时也保证了非常高的精确度、可重复性。图5 蓝菲光学积分球光谱分析仪结构图提高生产力改进后的积分球设计允许待测灯在点亮的情况下放进,保证更高的效 率、缩短测量时间。 新增了兼具功能性与简易性的电控模块,符 合 IES LM-79-19、IES LM-78 等相关标准。图6 蓝菲光学积分球光谱分析仪系统图Integral® 软件驱动设备搭配的 Integral® 软件支持任何平台、任何设备、 任何地点、多种语言。符合 LM-45 标准要求进行稳定,自动执行校准程序。 符合 LM-79-19 和 LM-78 测量方法和行业标准颜色计算。 图7 Integral软件图概念:太阳辐射中对植物光合作用有效的光谱成分称为光合有效辐射(PAR,photosynthetically active radiation),波长范围400~700纳米,与可见光基本重合。标注单位有两种:一是用光合辐照度表示(w/m2),主要用于太阳光的光合作用的广义研究。二是用光合光子通量密度PPFD表示(umol/m2s),主要用于人造光源和太阳光对植物光合作用的研究。采用每秒辐射到植物表面的光子流量的这个方法表示辐射源的辐射能力,称为PPF_PAR法。PPF光合光子通量(Photosynthetic Photon Flux)是指波长在400-700nm波段里,人造光源每秒辐射出光子的微摩尔数量,单位umol/s。PPFD光合光子通量密度(Photosynthetic Photon Flux Density)是每平方米每秒光源辐射出的微摩尔数量,单位umol/m2s。
  • 【CEM】植物基替代肉类的近似组成和金属分析
    01 摘要 随着人口增长和环境问题的日益突出,对可持续且营养丰富的替代蛋白质来源的需求持续上升。为了应对这一挑战,工业界和监管机构一直在关注如何跟上这个不断变化的市场。基于植物的蛋白质几十年来一直是替代蛋白质来源的首xuan选。然而,为了增加消费者的接受度,仍需要进行大量研究。行业必须考虑这些基于植物的蛋白质的口感、质地、外观和营养成分,以便制定出与传统肉类相当的选择。这一点进一步强调了在新规定和测试协议进入市场时进行多组分测试的必要性。在此,我们介绍了一种测试水分、脂肪、蛋白质、灰分和微量金属(包括金属和盐)的方法,该方法采用高精度技术,适合在线结果快速反馈,以便批次可以发布。这项技术遵循现有的 AOAC 和 FDA 方法学,为替代蛋白质,特别是基于植物的蛋白质,设定了遵循类似协议的先例。+02 引言随着对动物养殖对环境的影响、动物福利以及传统肉类产品的营养质量问题日益关注,基于植物的替代产品正引起人们越来越浓厚的兴趣。然而,让消费者完荃接受基于植物的替代品一直是个挑战。对于生产商来说,复制传统肉类产品的口感和质地被证明是非同小可的难题。尽管各公司致力于确保其提供的产品营养密集且价格合理,但监管机构和标准组织则在努力监控和评估当前分析技术的有效性。从内部近似分析和营养标签测试,到遵循 FDA 对污染物的要求等,与分析替代蛋白产品相关的所有事项仍在探讨中。03 植物基产品的近似分析 除了需满足监管要求外,生产高品质植物基产品还需进行必要的近似分析测试。对原材料、生产过程中及最终产品的水分、脂肪、蛋白质和灰分含量进行准确测定,对于在制造阶段适时调整产品至关重要。尽管外部实验室通过精细的方法分析可提供可靠结果,但由于耗时较长,在产品急于上市的情况下,时间成本显得尤为昂贵。 水分 水分含量对于口感、保质期以及许多产品的一致生产至关重要。由于许多替代蛋白选项旨在复制传统基于肉类的产品,因此模仿动物肉的一致质地极为重要。此外,正确的水分含量确保了更长的保质期,有助于市场可行性。水分分析是一个简单过程,在传统测试中没有太多变化。现有方法非常适合新的和新奇的替代产品;无论是使用烘箱法进行批量干燥,还是使用卤素或 IR 水分天平在 10-20 分钟内获得结果,或者像 CEM 的 SMART 6&trade 这样的微波/IR干燥,在 2 分钟内获得结果,基本方法保持不变。从样品中去除水分含量,然后确定差异。方法理论之间主要的区别是所需的时间和结果的精确度。来自 SMART 6 的结果,一种 2 分钟的水分测试,呈现在表1-4(见文末)中,并与传统的参考方法如 AOAC 950.46 和 934.01 进行了准确性比较。精度可以通过重复样本或范围看出。 灰分 为了模拟动物肉的感官体验,植物基肉类中添加了粘合剂、矿物质、盐、调味料和色素,这些添加剂通常占产品总成分的 0-15%。1随着对口感和质地改进的持续研究与开发,测定新成分添加后剩余的无机材料百分比灰分变得必要。采用如 Phoenix BLACK&trade 这样的微波炉式马弗炉,能够快速升温,使企业能在一个系统中使用多种温度,避免了长时间加热。Phoenix BLACK&trade 的独牛寺设计在于其腔体内的气流,配合 CEM 石英纤维坩埚使用,可以显著减少烧灰所需的时间。如同水分测试一样,传统的烧灰程序可以很好地应用于替代肉制品的测试。然而,在面对更为复杂的技术挑战,如脂肪和蛋白质测试时,我们可能会遇到各种难题。 脂肪 植物基肉类替代产品通常天生脱脂,其脂肪含量较动物衍生产品为低。因此,在加工过程中需添加脂肪或油分。这种添加对纤维结构的形成影响深远,可能导致挤压过程中的问题并对大分子排列产生不利影响。2此外,植物基脂质的熔融特性、化学组成、饱和度、链长、分子性质及整体性质与动物来源的脂质存在显著差异,1这增加了另一层复杂性。尽管如此,脂肪仍是健康、均衡饮食的重要组成部分。脂肪是人体无法自行产生的必需脂肪酸的来源,同时还是吸收维生素 A、D 和E 等必需维生素的必需品。油脂还能增强风味、质地和口感,这对消费者偏好产生极大影响。由于油脂是一种成本较高的成分,对最终产品有很大影响,因此严格控制其含量对于管理成品的总成本以及最终的利润至关重要。 传统动物肉类拥有悠久的验证历史,有大量数据支持已定义的方法。这些脂肪分析方法包括经典的索氏提取参考方法和通过先进技术如 NIR、X 射线和 NMR 进行的快速校准方法。 蛋白质 在比较传统肉类与其植物基替代品时,营养密度是两者之间最大的差异所在。为了提高植物基肉类替代品的总蛋白含量,生产商必须利用水解、发酵、分离和提取的植物蛋白产品。这些经过深度加工的蛋白产品的添加可能会影响味道、气味、外观和质地。3这也正是准确和可重复测试的重要性所在。在经过验证的 Udy 染料结合法的基础上,CEM 创造了全自动化快速蛋白分析仪 Sprint® 。通过使用一种只与蛋白质相互作用的染料结合分子,而非游离氨基酸或非蛋白氮,Sprint 不仅能够为植物基食品的原料提供更准确的蛋白结果,也能够对过程中和最终产品本身进行测定。 对多种植物基肉类替代品的水分、灰分、脂肪和蛋白进行了测试。一式三份的数据呈现在表 1-4 中(见文末),这些表格还显示了通过 AOAC 950.46/934.01、954.02 和 2001.11 获得的水分、脂肪和蛋白的参考结果,以验证快速方法的精确度和准确性。同时,快速获取结果的能力使得可以在生产过程中或作为新产品研发的一部分进行调整。04 植物基产品中痕量金属的分析 植物基替代产品的另一个发展阶段是对质量控制测试的需求增加,如金属探测。像 Prop 65 这样的立法旨在更好地调整食品和其他消费品中的重金属测试。这为消费者提供了安心,确保他们食用的食品是安全的。然而,对于植物基替代产品的制造商来说,这可能是一把又又刃剑。例如,鱼中的汞含量一直是一个长期关注的问题。植物基产品旨在减少汞的问题,同时减轻商业捕鱼对环境的影响,但众所周矢口,植物会从地面吸收金属。因此,与动物基产品相比,植物基产品可能具有更高的金属本底水平。更进一步,制造商可能会引入某些成分和添加剂,这些成分可能会贡献这些升高的水平,所有这些都是为了改变最终产品的外观或味道,使消费者从传统肉类过渡到植物基替代品更加容易。 处理 FDA 及其他立法要求可能较为复杂。CEM 一直是 AOAC 和 FDA 传统食品样品制备和分析方法的关键合作者和参与者。MARS 6&trade 微波消解系统和协议被 AOAC 方法 2015.01 和 FDA EAM 方法 4.7 引用。作为行业令页导者和创新者,CEM 与许多主要的植物基公司合作,就金属测试的适当方法和要求提供咨询,并就如何避免可能导致审计、召回和失去消费者信任的重大错误提供指导。 以下是 CEM 收集的数据简要概述,包括植物基牛肉末、鸡肉条替代品、大豆基热狗和植物基金枪鱼。选择这些产品是因为它们易于获得,可以以最少加工(研磨)的形式购买,或作为一件后来被捣碎以获得更均匀样品的件。作为比较,还测试了三种不同类型的金枪鱼,提供了一种常见的消费鱼类样本的基线比较。基于营养、添加和毒性分析了十四种元素,以提供广泛的分析物范围。还制备并分析了三种标准参考材料(SRMs),以验证分析性能。这些包括 NIST 参考材料,SRM 1568c 米糠、SRM 1547 桃叶和 SRM 1947 密歇根湖鱼。 SRM 元素的恢复率均在 85-100% 之间,验证了方法学(微波消解和分析)。一般来说,四大毒性元素(Pb、Cd、Hg和As)的含量较低,如表 5 和表 6 (见文末)所示,这在消费品中是可以预期的。目前 FDA 没有为食品中的重金属设定限制。然而,如果我们查看世界卫生组织(WHO)对植物材料的允许限制,我们发现铅的限制在 ppm 范围内,而镉是 1.30 ppm。WHO 没有列出砷或汞。与动物基产品相比,植物基产品被发现含有略高的铅水平(但在监管限制内4),但其他四大重金属的含量较低。这与预期一致,由于土壤样本中通常发现高水平的铅。植物基蛋白质将从其生长的土壤中吸收重金属。另外,与传统的金枪鱼样本相比,传统的金枪鱼样本的砷和汞水平显著高于其他测试的植物基替代品,这对金枪鱼来说并不意外。 在植物基样本中的盐分含量(钠、钾和钙)普遍高于传统金枪鱼产品。这些通常是作为替代蛋白产品的调味剂添加的,以帮助它更接近模仿其肉类产品,但也可能因从土壤中吸收而存在。测试的锰、铜、钼和铝在植物基样本中也较高,这同样可能是由于土壤吸收,因为这些元素在土壤样本中非常常见。Mn 和 Mo 也用于各种植物喂养周期(如光合作用和氮固定5),因此在植物中比动物中更为常见。 05 结论 随着配方的发展和市场上出现更多可供选择的替代蛋白来源,消费者接受度和监管机构的监管力度都在增加。这导致了对可靠测试方法需求的增加。准确且及时交付的结果可以在制造和研发过程中节省资金和资源。CEM 产品在食品行业中的应用已超过 45 年,提供了快速且可靠的结果。CEM 致力于替代蛋白行业,正在与他人合作开发、测试和制定规章制度。将传统上用于动物基蛋白源的技术用于植物基蛋白源的独牛寺能力,将有助于平稳过渡到监管要求。06 结论 1.Chen, Q., Chen, Z., Zhang, J., Wang, Q., & Wang, Y. Application of Lipids and Their Potential Replacers in Plant-based Meat Analogs. Trends in Food Science & Technology [Online] 2023.138, 645-654. 2.Ahmad, M., Qureshi, S., Akbar, M. H., Siddiqui, S. A., Gani,A., Mushtaq, M., Hassan, I., Dhull, S. B. Plant-based Meat Alternatives: Compositional Analysis, Current Development and Challenges. Applied Food Research [Online] 2022, 2(2),100154. 3.Kiczorowski, P., Kiczorowska, B., Samolinska, W., Szmigielski,M., & Winiarska-Mieczan, A. Effect of Fermentation of Chosen Vegetables on the Nutrient, Mineral, and Biocomponent Profile in Human and Animal Nutrition. Scientific Reports [Online] 2022, 12(1), 13422. 4.Osmani, M., Bani, A., Hoxha, B. Heavy Metals and NiPhytoextractionin in the Metallurgical Area Soils in Elbasan.Albanian J. Agric. Sci. [Online] 2015, 14 (4), 414-419. 5.Alejandro, S., Holler, S., Meier, B., Peiter, E., Manganese in Plants: from Acquisition to Subcellular Allocation. Front. Plant.Sci. [Online] 2020, 11 (300), 1. 表1. 植物基鸡肉替代品的水分、脂肪、蛋白质和灰分含量 表2. 植物基热狗替代品的水分、脂肪、蛋白质和灰分含量 表3. 植物基牛肉替代品的水分、脂肪、蛋白质和灰分含量表4. 植物基金枪鱼替代品的水分、脂肪、蛋白质和灰分含量 表5. 标准参考材料的金属分析 表6. 植物基和传统肉类样品的金属分析
  • TL2350 快速测定植物油中磷脂含量
    TL2350 快速测定植物油中磷脂含量哈希公司 4 days ago背景介绍植物油中的磷脂含量,是植物油生产中的重要质控指标。在加工工艺中,磷脂的存在会增加脱酸环节中中性油的损失以及脱色白土的用量,同时还会导致加氢催化剂的中毒。在油品储藏环节,磷脂会使油脂反色,同时也会导致大豆油等油品的回味。因此,磷脂作为油品加工工艺中的重要质控指标,一直受到关注。油品的磷脂测定一般采用钼蓝比色法(GB/T 5537-2008),该方法将油品灰化加酸预处理后用分光光度计测定,经典的钼蓝比色法虽然可以准确的测定油品磷含量,但却存在耗时过长,分析效率低的缺点。近年来,中储粮某下属油脂加工企业,开始采用 TL2350 浊度仪用于油品磷脂含量的快速检测,该方法能基本满足油品行业磷脂检测的内部质控要求。应用情况主要仪器及试剂:TL2350,浊度样品瓶(2084900),无磷一级精炼油,已知磷含量油脂,分析纯丙酮。用户采用 TL2350 浊度仪,以不含磷脂的一级精炼植物油为溶剂,将已知磷含量的油样配置为浓度为 50、100、150、200、250mg/kg 的标准油样,用 TL2350 测定标准系列的浊度值并记录和绘制标准曲线,计算回归方程。在大豆油磷脂含量<300mg/kg 时,浊度法测定磷脂含量可获得较良好的重复性,能满足压榨车间磷脂控制的日常监测需求,单个样品的测试时间可缩短至 10min。总结浊度法是一种行之有效的油品磷脂快速测试方法,传统的 GB/T5537 -2008 中单个样品的分析时间至少为 4 小时,而浊度法仅为 10min。该方法适用于磷脂含量小于 300mg/kg 的大豆毛油检测,能满足绝大部分大豆油的生产质控需要。但当油脂类型改变时需单独摸索浊度与磷脂的相关条件。方法的标准曲线需要定期校准,建议校准周期为一周。浊度法与国标法的检测数据差异在工艺许可的范围内,只要定时调准曲线,既可满足日常质控要求。浊度法比较适用于工厂内部的检化验室使用,可及时提供数据,服务压榨车间生产。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • 全国植物新品种测试标准化技术委员会关于征集植物新品种测试领域2024年推荐入库标准项目建议的通知
    各有关单位:根据农业农村部农产品质量安全监管司印发的《农业农村标准项目库管理规定(试行)》要求,为进一步做好植物品种测试标准制修订和标准体系建设工作,现就2024年全国植物品种测试农业农村行业标准立项建议推荐入库征集通知如下。一、入库原则立足产业发展和国家需求,围绕乡村振兴战略和农业高质量发展,为现代种业发展和种业知识产权保护制度提供科学的技术支持。项目技术成熟并具有一定的研究基础,涉及的领域和产业具有一定规模。(一)建议的项目应立足于我国植物新品种保护发展及种业振兴需求,健全植物新品种测试标准体系。(二)建议的项目应技术成熟、可标准化,项目提出单位应当具备较强的标准研制技术能力和条件,具备一定研究基础,前期工作准备充分。二、征集范围(一)农业植物新品种保护初步审查标准。(二)农业植物新品种保护实质审查标准。(三)植物品种特异性、一致性和稳定性测试指南农业农村行业标准。(四)品种鉴定分子标记法标准。(五)实质性派生品种鉴定标准。(六)其他需要统一的技术方法、规程。三、相关要求(一)秘书处将根据各单位推荐的立项建议作为健全我国植物新品种测试标准体系的重要依据。(二)请各申报单位做好标准查新工作。立项建议不得与已立项标准项目和已发布标准重叠或交叉,与现行法律法规及相关标准协调一致。标委会归口管理的已发布标准可登录农业农村部科技发展中心查询。(http://www.nybkjfzzx.cn/Detail.aspx?T=AT&I=6947&N=25&ID=5a3f3e2a-78fb-407f-8e21-900a7a8c17f6)(三)以下情况可优先支持:一是按照农业农村行业标准审定程序完成审定工作的项目;二是起草单位有一定研究基础,原则上在一年内能够完成制修订,且可以提交符合标准审定要求的项目。(四)对无研制基础,但产业亟需的,暂不列入本年度入库,秘书处收到材料后对标准立项建议备案,达到审定要求的,按需推进立项。(五)2023年度已入库的项目,本年度无需再次申报。(六)报送要求:1.请各申报单位于2023年12月1日前,将标准项目纸质版及电子版材料上报。2.纸质材料需报送立项建议书(附件1)一式1份,加盖项目提出单位公章。3.电子材料需报送立项建议书、立项建议一览表(附件1为word格式和盖章后的PDF格式、附件2为excel格式)。4.申报多个标准建议的项目单位,每个标准电子材料形成一份文件夹,名称为“标准名称+申报单位”,并将所有标准信息汇总到附件2中,以上报单位名称命名。四、联系方式联系人:张凯淅地 址:北京经济技术开发区荣华南路甲18号科技大厦全国植物新品种测试标准化技术委员会秘书处邮 编:100122电 话:010—59198106邮 箱:kaixi0526@163.com附件:1.2024年植物新品种测试行业标准立项建议书2.2024年植物新品种测试行业标准推荐入库项目建议一览表3.已入库的农业农村行业标准目录清单全国植物新品种测试标准化技术委员会(秘书处)2023年11月14日通知
  • ISO正在修订动物和植物油脂方法标准
    截止2010年4月11日,ISO/TC34/SC11(国际标准化组织/农产食品标准化技术委员会/谷物和豆类分技术委员会)已制定了67项关于谷物和豆类的标准,其中正在修订中的标准有11项。标准号、标准名称、中文名称、进展阶段具体如下表所示: 标准号 标准名称 中文名 阶段 ICS ISO/DIS 3656 Animal and vegetable fats and oils -- Determination of ultraviolet absorbance expressed as specific UV extinction 动物性和植物性油脂-紫外线吸收率的测定 40.20 67.200.10 ISO/FDIS 12871 Olive oils and olive-pomace oils -- Determination of aliphatic alcohols content by capillary gas chromatography 橄榄油和橄榄果渣油 -脂肪族醇含量的测定,毛细管气相色谱法 50.20 67.200.10 ISO/FDIS 12872 Olive oils and olive-pomace oils -- Determination of the 2-glyceryl monopalmitate content 橄榄油和橄榄果渣油 - 2-甘油单棕榈酸酯 50.20 67.200.10 ISO/FDIS 12873 Olive oils and olive-pomace oils -- Determination of wax content by capillary gas chromatography 橄榄油和橄榄果渣油 - 蜡含量的测定,毛细管气相色谱法 50.20 67.200.10 ISO/DIS 12966-2 Animal and vegetable fats and oils -- Gas chromatography of fatty acid methyl esters -- Part 2: Preparation of methyl esters of fatty acids 动物性和植物性油脂-脂肪酸甲酯的气相色谱 - 第2部分:脂肪酸甲基酯的制备 40.60 67.200.10 ISO/CD 12966-4 Animal and vegetable fats and oils -- Gas chromatography of fatty acid methyl esters -- Part 4: Determination of cis-, trans-, saturated, mono- and polyunsaturated fatty acids in vegetable or non-ruminant oils and fats 动物性和植物性油脂-脂肪酸甲酯的气相色谱- 4部分:蔬菜或非反刍动物油脂中的顺,转,饱和,单和多不饱和脂肪酸的测定 30.99 67.200.10 ISO/WD 14477 Vegetable fats and oils -- Determination of triacylglycerols -- Method by high performance liquid chromatography (HPLC) 植物油脂 - 甘油三酯的测定 - 高效液相色谱法(HPLC法) 20.99 67.200.10 ISO/CD 17932 Vegetable fats and oils - Determination of carotene content 植物油脂 - 胡萝卜素含量的测定 30.99 67.200.10 ISO/DTS 23647 Vegetable fats and oils -- Determination of wax content by gas chromatography 植物油脂-气相色谱法测定蜡含量 30.99 67.200.10 ISO/DTR 24054 Animal and vegetable fats and oils -- Determination of polycyclic aromatic hydrocarbons (PAH) -- Method using gas chromatography/mass spectrometry (GC/MS) 动物性和植物性油脂- 多环芳烃(PAH)的测定- 气相色谱法/质谱法(GC / MS) 30.60 67.200.10 ISO/DIS 27608.2 Animal and vegetable fats and oils -- Determination of Lovibond? colour -- Automatic method 动物性和植物性油脂- Lovibond?色素测定- 自动方法 40.99 67.200.10 对我国的启示: 目前,我国还没有上述动物和植物油脂的检测方法标准或需修订类似标准。因此,急需相关机构或技术委员会参与国际标准的制定,及时制定我国相关国家标准或行业标准,加强植物和动物油脂产品质量的检验、监督,以保障植物和动物油脂产品的质量安全。
  • 转基因植物标准物质研究进展
    转基因植物标准物质研究进展日期:2012-05-17 作者:董莲华 赵正宜 李亮 隋志伟 王晶 来源:《农业生物学报》.-2012,(2).-203-210 点击:107  近年来,随着转基因技术的飞速发展,转基因作物及其产品大量涌现。但是由于转基因作物及其产品对人体健康和生物多样性的影响未经过长期检验,所以一直以来其安全性都受到社会各界的关注。为了保护消费者对转基因产品的知情权、选择权和健康权,各国都建立了多种方法对转基因植物及其产品中的转基因特征分子进行检测,以期对转基因植物从源头到餐桌进行全程监控。目前,由于各国对于转基因产品的标识有不同的要求,有些国家规定必须标明转基因成分的含量,并且各个国家对所标识转基因含量的要求不尽相同,为了解决贸易争端等问题,转基因产品的定性、定量检测成为关键。但是,由于缺乏国际普遍认同的标准,所以检测结果不可比的问题尤为突出。转基因检测标准的制定是解决转基因产品检测结果不可比的根本。转基因检测标准包括标准检测方法和标准物质。而转基因标准物质在保汪转基因检测结果可比和可溯源方面起着重要作用。标准物质是具有高度均匀性、良好稳定性和量值准确性的一种测量标准。因此转基因生物标准物质的使用可以保证转基因产品检测缔果的有效和可比。 国外尤其是欧美国家自上个世纪起就已经开始转基因检测标准和标准物质相关研究。目前我国制定了一些急需的转基因安全检测标准和规范(GB/T19495.3~5-2004,NY/T719.l~719.3-2003,NY/T720.1~720.3-2003,NY/T 72l.1~721.3-2003),但是,转基因生物标准物质的缺乏,已成为制约我国转基因生物检测技术应用与发展的一个土要技术瓶颈。本文将对国内外转基因植物标准物质的研究现状及相关技术进行综述,以期为我国转基因植物标准物质研制和相关研究提供参考。1 转基因植物标准物质种类 目前国内外研制的转基因植物标准物质上要自基体标准物质(Gancberg et al.,2007;Trapmann et al.,2004a;Trapmann et al.,2004b)和核酸分子标准物质(Corbisier et al.,2007;AOCS 0306-A(http.//WWW.aocs org/LabServices))。基体标准物质是与被测样品具有相同或相近基体的实物标准,是给被测物质赋值的最有效的标准物质。目前所研制的基体标准物质根据存在形式不同主要有种子标准物质(AOCS 0304-B(http//WWW.aocs.org/yech/crm))和种子粉末标准物质(Trapmann et al.,2004b)。核酸分子标准物质是含有已知量值(目标基因拷贝数或含量)的植物基因组DNA或质粒DNA分子,目前已有的核酸分子标准物质主要有基因组DNA分子标准物质(Fluka69407(http//www. sigmaaldrich.com/etc/medialib/docs/Fluka/Datasheet/69407dat. Par. 0001 File.tmp/69407dat.pdf);AOCS 0306-A)和质粒DNA分子标准物质(Corbisiei et al.,2007),而基因组DNA分子标准物质主要有叶片DNA(AOCS 0306-A;AOCS 0208-A2(http://WWW aocs. org/tech/crm);AOCS 0306-H(Http://WWW. aocs org/tech/crm))和种子DNA(F1uka 69407)分子标准物质两种。每种类型的标准物质在制备、保存和使用中都有其优缺点。具体见表1略。 由表1略可知,基体标准物质由于具有与待测物相同司或相近的基体效应,而且可以用于核酸和蛋白两个水平的检测,应用相对较。但是其纯度和均匀性不容易保证,使用不方便、价格昂贵,而且原材料获得以及复制难度较大。核酸分子标准物质可以解决均匀性问题,其中质粒分子标准物质还有容易获得和使用方便等特点(Allnutt et al.,2006),但是因为其PCR扩增效率与基因组DNA的扩增效率可能存在差异,使用质粒分子标准物质对转基因产品定量时须谨慎。基因组DNA分予标准物质虽然不存扩增效率差异,但因为纯度难以控制,所以复制比较难,价格最高。2 转基因标准物质制备过程中关键点2.1 转基因基体标准物质 转基因植物基体标准物质的研制技术关键包括候选物品种纯度鉴定、标准物质均匀性研究,标准物质定值和不确定度评价等技术研究。基体标准物质候选物纯度鉴定非常关键,因为这直接关系到转基因成分含量的准确性,在目前所有基体标准物质研制报告中,都提供了该标准物质候选物纯度及鉴定方法(Clapper and Cantrill,2009;Trapmann et al.,2010a)。纯度鉴定分遗传背景纯度和基因型纯度鉴定。遗传背景纯度鉴定一般是标准物质候选物供应商(目前国际上主要的供应商为拜尔公司、先正达公司和孟山都公司)通过田间性状筛选、分子水平和蛋白水平的纯度检测完成。分子水平检测技术一般采用定性PCR(聚合酶链式反应)、荧光定量PCR、Southem杂交等技术。蛋白水平检测技术包括Western杂交和免疫试纸条法等(Trapmann et al.,2004b)。基因型纯度检测方法一般采用PCR、Invader(亲染探针法)和SNP Wave技术检测等位基因的纯合或杂合(Eijk et al.,2004;Twyman et al. 2005)。此外,标准物质生产者还要对标准物质候选物进行转化体特异性检测,如对转基因玉米NK603标准物质候选物进行转化体特异性鉴定时要排除转基因玉米其它的转化体(GA21、MON863和MON810)(Trapmann et a.,2005a)。不同的转化体特异性纯度鉴定水平依赖于该转化体特异性定量PCR方法的检测限(Limit of Detection,LOD),由于每个转化体特异性方法的检测限不同,因此对每种转化体的转基因标准物质候选物可检测的纯度水平不一致,如对转基因玉米GA21可鉴定纯度99.935%(LOD=0.065%,Trapmann et al.,2004c),对转基因玉米NK603可鉴定纯度99.970%(LOD=0.030%,Trapmann et al.,2005a)对转基因玉米TCl507可鉴定纯度99.960%(LOD=0.040%,Trapmann et al.,2005b),对转基因土豆EH92-527-1可鉴定纯度99.980%(LOD=0.020%,Trapmann et al.,2011)。 基体标准物质均匀性研究目前主要采用实时荧光定量PCR(Trapmann,et al.,2011)和金标记中子活化法(Trapmana et al.,2010a,b,c)。采用荧光定量PCR方法进行均匀性检验是通过测定目标基因与内标准基因的比值这一特性量值来考察瓶间与瓶内的一致性。利用这种方法进行均匀性检测的优点是测定的量值与标准物质特性量值一致,但缺点是PCR方法精密度低,从而导致均匀性检验对标准物质量值不确定度贡献较大。采用金标记中子活化法进行均匀性检测优点是灵敏度高,重复性好,但缺点是该方法的成本比较高。2.2 转基因植物质粒分子标准物质 转基因植物质粒分子标准物质的研制技术关键包括目标序列和内标准基因序列的选择和扩增、质粒分子标准物质定值和适用性验证等,其中对于质粒分子的定值和适用性验证是质粒分子标准物质研制的技术难点。内标准基因序列的选择一般取决于转基因检测时常用的基因,研制的玉米中常用的内标准基因有adh(Alcoholdehydrogenase,乙醇脱氢酶)、zSSIIB(淀粉合成酶基因)和hmg(High mobilitygroup,高迁移率族蛋白基因),转基因玉米Mon810质粒分子标准物质ERM-AD413的内标准基因为adh基因片段(Corbisier et al.,2007);报道的转基因玉米质粒分子pNK603和pUC57-Btll则选择zSSIIB基因作为内标准基因(董莲华等,201la;董莲华等,2011b)。水稻中常用的内标准基因有REB4(Starch branching enzymes,淀粉分枝酶基因)、SPS(Sucrose phosphate synthase,蔗糖磷酸合成酶)、GOS9和PLD(Phospholipdase D磷脂酶基因)(Ding et al.,2004;Wang et al.,2010)。Cao等(2011)在构建转基因水稻TT51-1质粒标准分子时选择了PLD基因作为标准基因。大豆中常用的内标准基因是Lectin(凝集素基因),棉花中常用的内标准基因是Sad(Steroyl-ACP desatuTase,硬脂酰-ACP脱饱和酶)(Yang et al.,2005)。 目标基因的选择可以是启动子或终止子基因序列,可以是转入的功能基因序列,也可以是转化体特异性边界序列基因(即一部分来源于植物基因组,一部分来源于转入的外源基因)。目前研究最多的是选择边界序列作为外源基因进行构建质粒分子,如Cao等(2011)构建的转基因水稻TT51-l质粒分子目标基因为3′端边界序列,Taveniers等(2005)等构建的Btl76和GA21质粒分子也选择了3′端边界序列作为目标基国。2.3 转基因植物基因组分子标准物质 转基因植物基因组分子标准物质的研制技术关键包括候选物纯度鉴定、基因绸DNA纯化和定值。对候选物纯度鉴定与和转基因基体标准物质研制中的候选物纯度鉴定一样关键,因为纯度直接决定了量值的准确性。基因组DNA的纯化同样至关重要,PCR抑制因子的存在会严重影响后续PCR的扩增,从而影响对待测样品的赋值。目前,基因组DNA纯度一般以A260/A280和A260/A230这两个比值的大小来进行评价:A260/A280比值要求在1.8~2.0之间,而A260/A230比值则要求2.0。PCR抑制因子的存在与否,可通过倍比稀释PCR扩增后比较测定的Ct值与推测Ct值之差进行确定(ENGL,2008)。3 转基因标准物质量值确定方法 基体标准物质定值方式目前主要有两种:第一是重量法,即以制备时的重量配比给标准物质进行赋值,单位一般为g/k或者以%表示,采用重量法进行量值时其不确定度来源主要包括称量引入的不确定度和标准物质的纯度引入的不确定度。目前欧洲标准物质和标准方法研究院(Institute for Reference Materials and Measuremnents,IRMM)所制备的转基因标准物质大部分都是使用这一方法进行量值(Trapmann et al.,2004a;TraPmann,et al.,2010b;Trapmann et al.,2004c;Trapmann et al.,2005a)。第二是采用定量PCR方法对目标基因与内标准基因的拷贝数进行测定,以拷贝数的百分数(%)表示。由于PCR方法为相对定量,而且精密度低,所以使用该方法进行量值时标准物质的不确定度较大。在IRMM最新发布的标准物质研制报告(Andade et al.,2011)采用了荧光定量PCR方法对转基因玉米NK603标准物质进行量值。 此外,数码PCR(digital PCR)技术是新发展起米的可应用于转基因检测及标准物质定值的方法,因为数码PCR技术不需要外标而可以进行绝对定量,因此在标准物质定值方面有很大的发展前景(Bhat etal,2009),如在BIPM组织的关键比对CCOM-K86中,有证据表明数字PCR对转基因盲样测定的结果与定量PCR测定结果一致(Corbisier et al.,2011),但该方法测定结果的不确定度和溯源途径还有待于进一步研究。最新出现的Droplet digital PCR(ddPCR)技术(Markey et al.,2010)也是一种不依赖于外标的绝对定量方法,用于转基因含量的测定和目标基因的绝对定量方面具有良好的发展满力。 对于转基因基因组和质粒分子标准物质的量值与基体标准物质不同,除了需要明确转基因成分含量外,还要明确DNA浓度。目前,对转基因基因组或质粒DNA标准物质浓度量值IRMM采用紫外分光光度法,还可用PicoGreen荧光染料法,但是这些方法在标准物质量值溯源性方面都不能满足要求(Haynes et al.,2009)。最近发展的超声波-高效液相色谱(董莲华等,2011c)和超声波一同位素稀释质谱法可以解决核酸浓度定量测定的溯源性问题。此外电感耦合等离子体发射光谱技术(ICP-OES)也是溯源清晰的核酸浓度定定量方法(English et al.,2006)。用于转基因成分含量或拷贝数量值确定的方法主要是荧光定量PCR方法。荧光定量PCR方法是发展起来比较成熟的转基因定量方法(Ronning et al.,2003;Holst-Jensen et al.,2003;Cankar et al.,2006),但由于该方法是依赖于外标的相对定量,且重复性较差,难以成为标准物质定值的绝对方法。目前对于质粒分子标准物质的量值方式还没有合理的模式,因为质粒分予标准物质不同于基体含量标准物质,首先质粒分子本身的量值为目标基因和内标准基因的比值,而这一比值可以通过基因测序法来确定,也可通过定量PCR方法来确定。通过测序方法对标准值进行确定,其不确定度基本可以忽略(董莲华等,201lb),而通过PCR方法进行定值,不确定度需要考虑PCR过程中的影响因素,一般不确定度都较大(董莲华等,2011b1)。 此外,质粒分子作为标准物质是要用于转基因成分含量检测的,检测对象是基因组DNA,因为分子大小差异可能会导致PCR扩增效率有差异,因此对质粒分子标准物质定值还要充分考虑质粒和基因组可替代性问题。可替代性是指标准相对于未知样品的行为。一般观点认为,质粒DNA与基因组DNA是否可以替代主要取决于PCR过程中两者产生的标准曲线,具体反应在两者标准曲线的斜率(与PCR扩增效率相关)、截据和线性相关系数。但笔者认为这些参数中最关键的是两者标准曲线的斜率,其次是截据,线性相关系数只是反应标准曲线自身的线性,该参数更多的是取决于标准曲线制备过程中的梯度稀释。如果斜率和截据这两个参数之间没有显著差异,那么两者基本就可以替代(Taverniers et al.,2009)。但是如果斜率没有差异,截据存在差异,不能简单的认为两者不可以替代,这种情况F可经过实际样品验证,如果两者对于已经标准值的物质或者有证标准物质进行定量测定的结果一致,也可以证明两者是可以替代的(董莲华等,2011a;董莲华等,2011b)。或者通过大量实验找出质粒分子与基因组分子扩增之间的系数,也是解决这一问题的方法。4 国内外转基因标准物质研究现状与展望 目前国际上主要由IRMM、美国油料化学会(American Oil Chemists’Society,AOCS)和Sigma公司等专业机构进行转基因标准物质的研制和销售。国外对转基因标准物质的研制多集中在基体标准物质,目前仅有一个质粒分子标准物质(MON810)申请了有证标准物质(Corbisier et al.,2007),具体见表2略。国内目前仅有一种转基因大豆粉二级标准物质(GB/W100042/43),还没有有证质粒分子标准物质。但是我国目前批准的转基因标准品已有20种,这些转基因标准也具有明确的量值,它们与标准物质的区别在于转基因标准品的研制以应用为首要目标和出发点,对溯源性并不关注,因此其溯源途径尚不明确。而转基因标准物质除了以应用为目的具有明确的量值和不确定度外,对量值的溯源性也要声明。我国自2009年启动转基因生物新品种培育重大专项以来,研制的转基因标准物质涉及的国内外16个转化体30多个基体和质粒分子标准物质,分别由中国计量科学研究院、上海交通大学、中国农科院油料所研制。目前的这些标准物质正在进行有证申报。预计这些转基因标准物质将很快能够服务于我国的进出口贸易和出入境检验检疫等,从而有效的避免贸易争端。5 展望 转基因标准物质的使用将有效地解决转基因检测不可比的问题,从而避免国际贸易争端。然而,只有转基因标准物质的量值得到国际互认,才可真正有效地避免贸易争端,消除贸易壁垒。而要达到国际互认最简便有效地方式是通过国际比对或各国协同定值。具有国际互认量值的标准物质才能够更好的服务于进出口贸易检测。此外,未来的转基因标准物质研制应以简单实用为主,由于基体标准物质会受其原材料的限制,而质粒分子标准物质自身的特点决定了其应用的广泛性和使用的方便性。况且,如果将多个转化体特异性检测片段同时构建在同一个质粒分子上,可达到一个标准物质进行多个转化体检测应用的目的,这样既可提高标准物质的利用率,又可节约成本,应是未来的转基因标准物质研制的发展方向。 作者单位:(中国计量科学研究院,北京 100013) 文章采集:caisy 注明:国家科技支撑项目(No.2008BAK41B01)和转基因生物新品种培育重大专项(No.2008ZX08012-003)。
  • 华南植物园发现新的重金属超富集植物
    由于工矿企业的发展,农业化肥的过量使用,污水灌溉等,中国乃至世界的土壤重金属污染越来越严重。植物修复技术是目前重金属污染治理的研究热点,它具有治理效果的永久性、治理过程的原位性、治理成本的低廉性、环境美学的兼容性、后期处理的简易性等优点。这个技术成功的关键在于寻找超富集植物。虽然目前全世界已发现400多种超富集植物,但是大多数超富集植物都有生物量小,生长缓慢,弱抵抗力,种子少,缺乏与当地植物竞争的能力等缺点,所以能够真正应用于植物修复技术的超富集植物并不多。因此采用更有效的方法来筛选更多超富集植物是非常必要的。   中科院华南植物园土壤生态与生态工程研究组博士研究生张杏锋在导师夏汉平研究员的指导下,首次提出了用土壤种子库-重金属浓度梯度法来筛选重金属超富集植物,并成功找到一种Cd的超富集植物——少花龙葵(Solanum photeinocarpum)。该方法是指利用土壤种子库筛选对重金属具有超富集特性的植物,然后通过重金属浓度梯度实验对其超富集特性进行验证。结果发现,当土壤Cd浓度为60mg/kg时,少花龙葵的生长未受影响,根部Cd含量高达473mg/kg,茎、叶和地上部Cd含量分别达215、251和230mg/kg。在两个浓度梯度实验中,少花龙葵地上部Cd含量均超过Cd超富集植物的临界含量标准(100mg/kg),具有Cd超富集植物的基本特征,是Cd的超富集植物。   这一研究结果近期发表在环境工程领域主流杂志Journal of Hazardous Materials (2011,189: 414–419)上。   土壤种子库—重金属富集植物初步筛选实验中的植物种类(重金属添加到土壤中65天后)。最高的植物为少花龙葵。盆中数字分别表示如下:1-CK, 2-Cd4, 3-Cd8, 4-Zn100, 5-Pb300, 6-Pb600, 7-Cu100, 8-Cu300。
  • 九项植物检疫行业标准通过审定
    2009年6月25-26日,由国家认监委科技标准部组织,植物检疫专业检验检疫标准化技术委员会在湖北省武汉市召开了行业标准审定会,对《中美英象检疫鉴定方法》等30项标准的送审稿进行审定。国家认监委科技标准部刘仲书处长到会并讲话,我院陈洪俊副院长作为审定委员会主任委员参加会议。我院10项植物检疫行业标准参加审定,审定委员会一致通过了《中美英象检疫鉴定方法》(B065-2004)等9项标准的审定,建议取消《植物检疫实验室质量管理基本要求》。   通过审定的植物检疫行业标准目录   序号 计划编号 标准项目名称   1、 B170-2001 苜蓿细菌性萎蔫病检疫技术标准   2、 B205-2001 转基因微生物定性检测方法   3、 B028-2004 扁桃仁蜂和李仁蜂检疫鉴定方法   4、 B030-2004 落叶松种子小蜂与黄连木种子小蜂检疫鉴定方法   5、 B065-2004 中美英象检疫鉴定方法   6、 2006B267 苹果丛生植原体检疫鉴定方法   7、 2006B257 植物类病毒脱除处理标准   8、 2006B258 植物病毒脱毒处理标准   9、 2006B264 有害生物信息采集要求   建议取消的标准   1、 2006B263 植物检疫实验室质量管理基本要求
  • 超实用!植物源性食品标准汇总及常用仪器盘点
    近年来,动物流行疾病(如禽流感、猪流感)频发,与营养有关的疾病、胃肠炎、食物中毒、抗生素类药物滥用等公共卫生问题受到了越来越多的关注。并且随着消费者消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,植物源性食品营养已成为饮食界讨论的焦点。从营养角度来看,植物性食品具有优良的营养健康效能,其中植物蛋白能够满足人对氨基酸、蛋白质的营养需求,尤其大豆蛋白是优质蛋白,完全可以满足人体对蛋白质营养的需求,植物蛋白还具有低饱和脂肪酸、零胆固醇、无抗生素等特点。因此小编汇总整理出植物源性食品标准及常用仪器盘点,供大家参考。国家标准标准名称实施时间仪器方法(点击可查看仪器专场)GB 23200.38-2016 食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.36-2016 食品安全国家标准 植物源食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.35-2016 食品安全国家标准 植物源性食品中取代脲类农药残留量的测定 液相色谱-质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法2021-09-03气相色谱法GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法2020-02-15高效液相色谱法GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法2020-02-15气相色谱法GB 23200.114-2018 食品安全国家标准 植物源性食品中灭瘟素残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱联用法GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法2018-12-21气相色谱-质谱联用法GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法2018-12-21液相色谱-柱后衍生法GB 23200.111-2018 食品安全国家标准 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.109-2018 食品安全国家标准 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB/T 40348-2021 植物源产品中辣椒素类物质的测定 液相色谱-质谱/质谱法2021-08-20液相色谱-质谱/质谱法GB/T 40267-2021 植物源产品中左旋多巴的测定 高效液相色谱法2021-12-01高效液相色谱法GB/T 40176-2021 植物源性产品中木二糖的测定 亲水保留色谱法2021-12-01亲水保留色谱法GB/T 22288-2008 植物源产品中三聚氰胺、三聚氰酸一酰胺、三聚氰酸二酰胺和三聚氰酸的测定 气相色谱-质谱法2008-12-01气相色谱-串联质谱法农业标准标准名称实施时间仪器方法NY/T 2640-2014 植物源性食品中花青素的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 2641-2014 植物源性食品中白藜芦醇和白藜芦醇苷的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 3300-2018 植物源性油料油脂中甘油三酯的测定液相色谱-串联质谱法2018-12-01液相色谱-质谱/质谱法NY/T 3565-2020 植物源食品中有机锡残留量的检测方法 气相色谱-质谱法2020-07-01气相色谱-串联质谱法NY/T 3948-2021 植物源农产品中叶黄素、玉米黄质、β-隐黄质的测定高效液相色谱法2022-05-01高效液相色谱法NY/T 3950-2021 植物源性食品中10种黄酮类化合物的测定 高效液相色谱-串联质谱法2022-05-01液相色谱-质谱/质谱法NY/T 3945-2021 植物源性食品中游离态甾醇、结合态甾醇及总甾醇的测定 气相色谱串联质谱法2022-05-01气相色谱-串联质谱法NY/T 3949-2021 植物源性食品中酚酸类化合物的测定 高效液相色谱-串联质谱法2022-05-01高效液相色谱-质谱法进出口行业标准标准名称实施时间仪器方法SN/T 2233-2020 出口植物源性食品中甲氰菊酯残留量的测定2021-07-01气相色谱-串联质谱法气相色谱法SN/T 5171-2019 出口植物源性食品中去甲乌药碱的测定 液相色谱-质谱/质谱法2020-05-01液相色谱-质谱/质谱法SN/T 0491-2019 出口植物源食品中苯氟磺胺残留量检测方法2020-05-01气相色谱法气相色谱-串联质谱法SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-01气相色谱-串联质谱法SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 4260-2015 出口植物源食品中粗多糖的测定 苯酚-硫酸法2016-01-01紫外分光光度计SN/T 0293-2014 出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法2014-08-01液相色谱-质谱/质谱法SN/T 0217-2014 出口植物源性食品中多种菊酯残留量的检测方法 气相色谱-质谱法2014-08-01气相色谱-串联质谱法SN/T 5221-2019 出口植物源食品中氯虫苯甲酰胺残留量的测定2020-07-01液相色谱-质谱/质谱法液相色谱法SN/T 1908-2007 泡菜等植物源性食品中寄生虫卵的分离及鉴定规程2007-12-01荧光PCR仪SN/T 3628-2013 出口植物源食品中二硝基苯胺类除草剂残留量测定 气相色谱-质谱/质谱法2014-03-01气相色谱-串联质谱法SN/T 0603-2013 出口植物源食品中四溴菊酯残留量检验方法 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 3699-2013 出口植物源食品中4种噻唑类杀菌剂残留量的测定 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 0151-2016 出口植物源食品中乙硫磷残留量的测定2017-03-01气相色谱法气相色谱-串联质谱法SN/T 0337-2019 出口植物源性食品中克百威及其代谢物残留量的测定 液相色谱-质谱/质谱法2020-07-01液相色谱-质谱/质谱法SN/T 0602-2016 出口植物源食品中苄草唑残留量测定方法 液相色谱-质谱/质谱法2017-03-01液相色谱-质谱/质谱法SN/T 0693-2019 出口植物源性食品中烯虫酯残留量的测定2020-07-01气相色谱-串联质谱法液相色谱法SN/T 0217.2-2017 出口植物源性食品中多种拟除虫菊酯残留量的测定 气相色谱-串联质谱法2018-06-01气相色谱-串联质谱法SN/T 5072-2018 出口植物源性食品中甲磺草胺残留量的测定 液相色谱-质谱/质谱法2018-10-01液相色谱-质谱/质谱法SN/T 0695-2018 出口植物源食品中嗪氨灵残留量的测定2018-10-01气相色谱法液相色谱-质谱/质谱法物源性食品检测标准主要集中在农药残留和活性物质检测中,GB 23200系类标准覆盖的农药种类多,数量大,涉及的基质范围广,为农药残留的风险监控提供了高效可靠的法规方法。在农业标准中更关注营养物质的检测,标准中对白藜芦醇和白藜芦醇苷、黄酮类物质、花青素、游离态甾醇等活性物质都要相应的检测方法规定。在检测方法中多用到气相色谱法、气相色谱-串联质谱法、高效液相色谱法、液相色谱-质谱/质谱法等。今年下半年仍有许多植物源性食品标准即将实施:标准名称实施时间仪器方法SN/T 5522.10-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第10部分:豌豆淀粉2023-12-01荧光PCR仪SN/T 5522.1-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第1部分:红薯淀粉2023-12-01荧光PCR仪SN/T 5522.2-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第2部分:木薯淀粉2023-12-01荧光PCR仪SN/T 5522.3-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第3部分:马铃薯淀粉2023-12-01荧光PCR仪SN/T 5522.4-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第4部分:藕淀粉2023-12-01荧光PCR仪SN/T 5522.5-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第5部分:葛根淀粉2023-12-01荧光PCR仪SN/T 5522.6-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第6部分:山药淀粉2023-12-01荧光PCR仪SN/T 5522.7-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第7部分:玉米淀粉2023-12-01荧光PCR仪SN/T 5522.8-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第8部分:小麦淀粉2023-12-01荧光PCR仪SN/T 5522.9-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第9部分:绿豆淀粉2023-12-01荧光PCR仪NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法2023-08-01高效液相色谱法NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法2023-08-01分光光度法NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法2023-08-01高效液相色谱法植物源性食品未实施标准.rar植物源性食品农业标准.rar
  • 默克生命科学植物提取标准物质突破2千种
    https://www.sigmaaldrich.cn/CN/zh/products/analytical-chemistry/reference-materials/phytochemical-standards?utm_campaign=seo%20-%20china&utm_source=instrument&utm_medium=news生姜“七步之内必有芳草” 传说中神农尝百草以辨药性,一天神农误食毒蘑菇昏迷,醒来时发现自己躺倒的地方有一丛尖叶子青草,散发着香气。神农拔了这株草,连同它的根茎放在嘴里嚼。过后竟然中毒的症状全没了。神农姓姜,于是给这株救命草取名为“生姜”,意思是使自己起死回生。而今,生姜成为中国人餐桌上重要的调料。 青蒿“呦呦鹿鸣,食野之蒿。我有嘉宾,德音孔昭。”东晋葛洪所著的《肘后备急方》即有“青蒿方”用于治疗疟疾的记录。现代中国女药学家屠呦呦因开创性地从中草药中分离出青蒿素用于疟疾治疗而获得2015年诺贝尔生理学奖和医学奖。屠老师数十年的研究,成功研发出青蒿素和双氢青蒿素,挽救了全球数百万人的生命。草本植物-青蒿跨越千年而又熠熠生辉。 不断发展的现代科技,使人们能够不断了解、开发和利用植物的奥秘。植物提取物作为膳食补充剂、中草药品以及日化补充剂的良好来源,也在全球范围内越来越受欢迎。 神农尝百草的年代已经不复存在,可靠的标准物质在植物化学品成分的准确鉴定和定量测定中越发重要,成为了安全和质量的保障基石。 目前,默克生命科学可提供超过2,000种植物提取标准品及认证参考物质, 200多种不同植物属别,均已通过详尽测试,以确定其特性和色谱纯度,用于植物提取物的定性/定量分析检测和质量控制。此外,今年新增约200种植物提取标准品,包括Cerilliant® 植物提取物单标和混标CRM、分析标准品。同时我们和PhytoLab、HWI Analytik杰出的植物提取标准品生产商全球合作,极大地丰富了植物提取标准品产品线。选择植物提取标准品,选择默克Supelco。 HPTLC测定甜菊糖苷类提取物如下是经过样品前处理,根据USP 方法使用Merck HPTLC(高效薄层板) 分别在UV 366nm 和白光下分别对瑞鲍迪苷D、A、C、甜菊糖苷、瑞鲍迪苷B、杜尔可苷A、甜菊双糖苷和甜叶菊提取物标准品(HWI),以及甜叶菊叶1、甜叶菊叶2测定。更多分析细节及应用方案,欢迎随时联系我们。 产品描述包装货号生姜中6种姜辣素和姜烯酮混标1mLG-027绿茶8种儿茶素混标1mLG-016卡瓦胡椒9种混标1mLK-0076种大麻酚混标1mLC-218青蒿素10mg69532双氢青蒿素50mgD7439叶绿素A1mg96145对-香豆素50mg55823矢车菊素葡萄糖苷氯化物10mgPHL89616瑞鲍迪苷 A20mgPHL80067全缘千里光碱5mgPHL83968滨蓟黄苷10mgPHL85726柽柳黄素10mgPHL85778苦艾素10mgPHL84170积雪草苷 B10mgPHL84263蜂斗菜酸10mgPHL84767富马原岛衣酸5mgPHL82266 点击此处,了解更多植物提取标准品。https://www.sigmaaldrich.cn/CN/zh/products/analytical-chemistry/reference-materials/phytochemical-standards?utm_campaign=seo%20-%20china&utm_source=instrument&utm_medium=news
  • 根系扫描仪-一款对植物根系生长状况分析的仪器2024实时更新
    型号推荐:根系扫描仪-一款对植物根系生长状况分析的仪器2024实时更新,根系扫描仪作为现代农业科技与植物研究的重要工具,通过非侵入性的方式,为植物根系生长状况的分析提供了前所未有的精准度和便利性。以下将从四个方面详细阐述根系扫描仪对植物根系生长状况分析的帮助。 一、精准测量根系参数 根系扫描仪能够精准测量根系的长度、直径、面积、体积以及根尖数量等关键参数。这些参数的获取,不仅为研究人员提供了详尽的根系生长数据,还使得定量分析根系生长状况成为可能,有助于揭示根系的生长规律和发育机制。 二、三维重建根系结构 根系分析系统利用高质量图形扫描仪获取高分辨率植物根系彩色图像或黑白图像,该扫描仪在扫描面板下方和上盖中安装有专门的双光源照明系统,并且在扫面板上预留了双光源校准区域。此外,还配备有不同尺寸的专用、高透明度根系放置盘。扫描时,扫面板下的光源和上盖板中的光源同时扫过高透明度根盘中的根系样品,这样可以避免根系扫描时容易产生的阴影和不均匀等现象的影响,有效地保证了获取的图像质量。研究人员可以更加全面地了解根系的生长状况,为优化植物种植结构和提高作物产量提供科学依据。 三、提升研究效率与准确性 根系扫描仪的操作简单,软件界面友好,用户可以通过软件轻松地进行数据分析和处理。此外,根系扫描仪还可以与计算机连接,实现数据的快速传输和存储,大大提升了研究效率。同时,非侵入性的检测方式减少了对植物根系的破坏,保证了测量结果的 准确性和可靠性。 四、广泛应用于植物研究与农业生产 根系扫描仪广泛应用于植物生长发育、植物营养状况、植物逆境耐受性等领域的研究。在农业生产中,根系扫描仪可用于实时检测作物根系的生长情况,为作物提供适宜的养分和水分管理方案;同时,通过根系结构分析,可以筛选具有优良根系特征的作物品种,提高作物的抗逆性和产量。 五、仪器用途 根系分析系统用于洗根后专业根系分析,还可以用于根盒培养植物的根系表型分析,可以分析根系长度、直径、面积、体积、根尖记数等,功能强大,操作简单,软件可分析植物根系的形态分析及根系的整体结构分布等,广泛运用于根系形态和构造研究。 综上所述,根系扫描仪以其精准测量、三维重建、提升研究效率与准确性以及广泛应用的优势,为植物根系生长状况的分析提供了强有力的支持。随着技术的不断进步和应用领域的拓展,根系扫描仪有望在植物研究和农业生产中发挥更加重要的作用。
  • 中科院分子植物卓越中心蔡文娟博士:激光扫描共聚焦显微镜使用和管理心得分享
    生命科学基础研究与人类健康和社会经济发展密切相关,在科学和经济社会领域中的重要性日渐增强。Science 曾发布125 个挑战全球科学界的重要基础问题,其中涉及生命科学的问题约占 54%。生命科学研究过程离不开各类科学仪器的帮助,今年,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展、学习仪器使用方法。 本篇为中国科学院分子植物科学卓越创新中心细胞结构分析技术平台主管蔡文娟撰写,蔡老师根据多年工作经验,详细介绍了激光扫描共聚焦的发展、系统组成和应用,并分享了工作中仪器使用的心得体会。以下为供稿内容:1957年, Malwin Minsky博士在其博后阶段首次阐明了激光扫描共聚焦显微镜技术的基本工作原理,但由于当时没有足够强度的照明光源,工作一直停留在理论阶段。20世纪60年代,伴随着激光器技术的发展,激光扫描共聚焦技术开始进一步发展,直到80年代中期才基本成熟,有了成熟的商业化产品(Bio-Rad)。由于该系统所用光源为激光,成像方式为逐点扫描成像,因此又被称为“laser scanning confocal microscope”, 简称为LSCM。激光扫描共聚焦仪器发展至今,已经不再是简单的光学显微镜 ,而是整合了光学显微镜 、激光、检测器、工作站和图像处理软件的复合型显微成像系统。1987年,White和Amos在英国《自然》杂志发表了“共聚焦显微镜时代的到来”一文,标志着LSCM已成为进行科学研究的重要工具。作为细胞生物学研究的必备工具,激光扫描共聚焦显微镜堪称各个成像平台的“扛把子”,其对各种标本和荧光标记方法具备很强的普适性,即使在各种高端显微成像技术飞速发展的当下,也依然占据着极高的使用率。中国科学院分子植物科学卓越创新中心所级中心细胞结构分析技术平台成立于2010年,经过10余年的发展,拥有多种细胞成像设备,包括激光扫描共聚焦(7台)、转盘共聚焦和SIM超高分辨等高端显微系统(http://cfc.cemps.ac.cn/xibao.php),为中心内部及周边科研院所和企业提供专业的显微成像服务,最大程度地满足中心及周边的成像需求。一、 激光扫描共聚焦显微镜的组成和应用激光扫描共聚焦显微镜(以下简称为LSCM)的灵魂部件是针孔(pinhole),针孔与物镜的焦平面共轭,因此被称为“共(共轭)聚焦”。由于共轭针孔的存在,只有标本焦平面的荧光信号才会透过针孔被检测器捕捉,而非焦平面的信息被阻挡在针孔之外,形成类似光学CT的效果。配合针孔成像, LSCM硬件部分通常包括光学显微镜、激光器、扫描振镜、检测器和图像工作站组成,每一个重要部件均可根据实验需求选择合适的配置,以下将结合分子植物卓越中心细胞平台的实际需求,逐一进行简要介绍。1、光学显微镜 LSCM可以搭建在正置或倒置荧光显微镜上。生命科学研究中,倒置显微镜使用更为广泛,适合组织切片、贴壁细胞等相对较薄的标本。样品固定在载玻片上,可以方便地倒置观察。在植物研究领域,倒置显微镜也经常用于观察拟南芥根/叶片、烟草叶片、原生质体等标本,这类标本的特点是相对较薄,制片简单,可以通过简单压片的方式,利用水或其他压片溶剂在载玻片盖玻片之间形成的吸附力,将标本固定住,从而可以倒置观察。但也存在部分无法使用倒置观察的应用场景,如茎尖分生组织、较厚的作物叶片或根等,由于标本过于厚重,倒置观察时容易掉落,不方便固定,或者由于压片会导致表面形态发生变化或组织破裂,从而影响定位观察。针对这类应用,正置显微镜就显得尤为重要,尤其是搭配合适的浸入式水镜,可以帮助这类厚标本实现清楚方便的显微成像。作为光学显微平台,需要考虑到研究所各个课题组之间的应用差异,保证正置与倒置的合理配备,设备组合可最大程度地满足各类研究需要。2、激光器 为了激发出足够的荧光信号,LSCM采用激光作为照明光源。根据标记和成像需求,一般LSCM至少配置4个波段的激光器,包括405/488/561/633nm等,涵盖了整个可见光波段的激发需求,能满足大多数荧光染料和蛋白的成像。在此基础上,研究组经常涉及荧光共振能量转移(FRET)相关实验,需要对CFP和YFP等分子对进行特异性激发,这种情况下,必须选择配置有458和514nm激光器的LSCM系统。红色荧光蛋白中,mCherry以单体形式存在,不易出现由荧光蛋白多聚化带来的artifact定位现象,因此现在很多研究组选择mCherry荧光蛋白标记,543nm和561nm等波长都能够激发mCherry蛋白,但如果希望得到更为明亮和特异的红色荧光信号,最好选择含594nm激发波长的系统。除了固定波段的激光器,还可选择搭配脉冲式白色激光器,自由选择所需激发波段。由于白色激光器在激发波段方面调节的灵活性,以及其特有的脉冲式而非连续激发,可以配合检测器做基于门控技术的荧光寿命成像,有助于过滤部分自发荧光信号,或者得到荧光寿命信息。分子植物卓越中心细胞平台(辰山园区)就配备了该系统,配合脉冲式白激光和高灵敏度检测器,可以进行FLIM-FRET实验,在荧光强度成像的基础上,增加荧光寿命维度的检测。3、扫描振镜 扫描振镜一般由x和y两个方向的振镜组成,通过高速振动控制激光在成像视场内逐点扫描,“点动成线,线动成面”,形成一个完整的2D图片。根据振动速度的区别,在LSCM中一般分为检流式振镜(galvanometer)和共振振镜(resonant)。检流式振镜是应用最多的扫描振镜,单个像素点上停留时间在微秒层级,可激发出更多的荧光信号,保证图像信噪比。常规拍摄荧光2D/3D图像和非毫秒级变化的time-series,检流式振镜一般都可以满足需求。共振振镜的振动频率相比检流式有显著提高, 能实现万赫兹,512X512分辨率的图像采集频率可达到30fps。如果涉及到钙波捕捉、相分离小体快速融合/FRAP实验、囊泡运动等快速变化,使用该振镜更容易检测完整的运动变化。细胞平台2015年后购买的系统,多为混合式振镜(含有两种振镜),在实际实验中,会根据需求选择合适的振镜使用。但必须注意的是,由于共振振镜速度很快,牺牲了每个像素点上的激发时间,图像的信噪比下降严重,一般需结合合适的图像处理,才可以得到相对清晰的共聚焦图片。近三年植物领域由于相分离和钙信号相关研究逐渐增多,对扫描成像速度的要求也日渐提高,共振振镜的存在可以很好地补充检流式振镜的不足,两种振镜同时存在,可兼顾成像分辨率和时间分辨率,更好地满足不同研究方向的需求。4、检测器 配合振镜的点扫描方式,光电倍增管(PMT)和雪崩式光电二极管(HyD)均可用于激光扫描共聚焦系统的荧光检测,实现光电子信号的倍增放大。除了常规的PMT(一般以多碱作为光阴极感光材料),细胞平台每套LSCM系统上也会配置高灵敏度的GaAsP检测器(镓砷磷为感光材料的PMT)或HyD检测器,目的是提高检测灵敏度,提升弱信号的捕捉能力。对于较明亮的荧光信号,常规PMT即可满足需求;碰到相对较弱的信号,建议使用高灵敏度的GaAsP或HyD检测器,以获得信噪比更高的图片。但实际使用中,高灵敏度检测器并非万能,如果荧光发射在近红区域(Cy5.5和Cy7等),常规PMT的检测效率会相对更高,这是因为不同的感光材料对各个光谱波段的响应效率不一样。作为细胞成像平台,需要保证各类型检测器的存在,根据荧光染料的强度和特性,给出专业的建议和设置,能够更好地保证成像效率。5、图像工作站 激光扫描共聚焦系统需要整合多种硬件协同工作,因此对图像工作站和操作软件都提出了较高的要求。操作软件和工作站必须能稳定运行,精准控制各电动部件,流畅采集显微图片,针对3D/time series等较大的图像数据,能够保证后期图像处理速度。一般来说,成熟的商业化共聚焦系统在硬件控制上都可以做到稳定流畅,但对于后期的图像处理,则需要根据平台常见的数据做合理配置。反卷积处理,3D重构和AI分析等图像数据处理都对图形处理显卡有一定的要求,因此我们平台一般都会选择配备有GPU的工作站,以满足越来越高的分析需求。同时,在实际使用中,尽量避免在采集电脑上使用USB等移动存储设备,以最大可能杜绝电脑病毒的存在引起整机系统故障。二、 激光扫描共聚焦系统管理心得和未来可提升空间细胞平台成像设备类型多样化,各有特点,作为其中的“扛把子”成员,激光扫描共聚焦系统使用频率极高,受众很广,应用方向也更为多样化。作为平台管理人员,如何管理统筹多台LSCM系统的使用,使其更好地服务于科研工作,也是常思常修的一门功课。现将日常管理心得和提升空间分享如下:1、激光扫描共聚焦系统的日常维护必不可少,尤其是物镜的清洁和光路的校准。每位用户根据观察标本的不同,会选择空气镜/水镜/油镜等不同介质类型的物镜,很容易存在交叉污染,导致物镜使用不当。在培训用户遵守使用章程的同时,平台工作人员必须保证2-3天检查一次常用物镜的清洁程度。光路校准方面,建议根据仪器使用状况每半年或一年检查一次光路状态,保证光路的准直。如果共聚焦光路上搭载了超高分辨系统,使用中尤其需要注意光路状态,以确保使用效率。2、激光扫描共聚焦系统的基础操作培训是重中之重。平台工作人员要精通已有设备的软件使用和参数调节,组织小范围培训,每次上机培训不超过5人,确保培训效果。培训必须结合考核进行,第一次上机实验须保证培训老师陪同,以了解用户的实验和使用薄弱点,巩固培训效果。3、预约体系和微信用户群的合理使用。目前中科院仪器平台有统一的预约体系,可以在网预约所需仪器机时。但作为使用频率极高的激光扫描共聚焦系统,经常面临僧多粥少难以预约的状况。我们针对高频使用的LSCM建立了仪器专用微信用户群,培训考核通过后即可入群。用户在使用结束或临时取消后会在微信群内公告,便于后续用户及有需求的用户及时知晓,提升使用效率。同时,该仪器如有任何不合理使用和故障,管理人员也可在群内及时公告,方便用户调整实验。4、拓宽平台设备的应用边界,提升管理人员的技术能力。作为平台管理人员,需要密切关注生命科学领域的研究进展,尽可能从应用角度提前布局所需的成像设备,做到有备无患,不断拓展应用边界。另外,必须时刻关注显微成像的技术前沿,结合用户的实验特性和科研目的,立足已有的设备进行必要的改造和改进,提升自身的技术能力。5、国产化成像设备的落地展望。2019年已有相关国产化LSCM设备搭建成功的报道(苏州医工所),2021年也有商业化SIM超高分辨显微镜的落地(北京大学),今年再传出国产超分辨显微成像设备商业交付的消息(中科院生物物理所),这表明国产化设备正在显微成像赛道不断发力,相信其能够更好地结合国内科研用户的应用需求,不断突破瓶颈,落地于细胞平台,提升平台的技术实力。作者简介: 蔡文娟 博士,高级工程师,中国科学院分子植物科学卓越创新中心(植物生理生态研究所)细胞结构分析技术平台主管。2012年中国科学院上海生科院植生所获博士学位,2012-2017年中科院上海生科院植生所担任助理研究员, 2017-2020在奥林巴斯中国有限公司担任应用工程师,2020年12月加入中科院分子植物科学卓越创新中心,担任细胞结构分析技术平台主管,主要负责所级中心细胞结构分析技术平台的管理维护和运行,承担院级功能开发研制项目,承担和参与多项国自然基金等。
  • 宁夏计质院新建微量进样器校准装置计量标准
    近期,宁夏计质院新建的微量进样器校准装置通过自治区市场监管厅考核,取得《计量标准考核证书》。   微量进样器作为色谱分析仪、酒精检测仪和其他化学分析仪器中常用的计量器具,主要应用于实验过程中对各种物质吸取定量样品,并进行微量定量、定性分析。随着全区医疗卫生、生物化学、食品安全、石油化工、环境保护等领域的快速发展,各实验室使用微量进样器越来越广泛,为满足在定性、定量分析中保证进样微小容量量值准确可靠的要求,宁夏计质院坚持问题导向,结合实际情况和近两年微量进样器的发展状况,新建了微量进样器校准装置,测量范围为(0.5~1000)μL。该项计量标准的建立,将为全区微量进样器校准工作提供科学依据和标准规范,保证微量进样器的量值溯源准确可靠。
  • 32项植物检疫行业标准在珠海通过审定
    由国家认监委科技标准部组织,为期三天的植物检疫行业标准审定会议今日在珠海落下帷幕。该审定会议顺利通过了《植物检疫实验室能力验证规范》等32项植物检疫行业的标准审定。   来自华南农业大学、中国检验检疫科学研究院、相关检验检疫局十二位专家组成的审定委员会通过认真审查标准草案及其相关材料,听取标准起草人有关情况汇报,对标准的科学性、适用性、与相关法律法规和检验检疫标准体系符合性的讨论和审议,提出具体修改意见,作出审定结论。   审定委员会一致认为,《植物检疫实验室能力验证规范》、《毒莴苣检疫鉴定方法》、《出口水果注册果园、包装厂管理规程》等三十二项标准适应我国植物检疫的新形势和现行检验检疫监管法规要求以及检验检疫标准体系建设需要,能有效地满足进出口植物及其产品的检疫、监督管理,为植物及其产品的检验检疫提供了准确、快速、简便的检测依据,对于保障进出口植物及其产品质量,提高和保护我国进出口植物产品在国际贸易中的声誉,促进进出口贸易和参与国际交流等,具有十分重要的意义。   中国检验检疫科学研究院副院长陈洪俊、珠海检验检疫局副局长何宏恺、标准起草人、部分起草单位标准化管理人员参加了会议。
  • 99项食品和植物检疫行业标准通过审定
    12月8日至10日,由国家认监委主办,中国检科院承办的2009年检验检疫食品专业行业标准审定会和植物检疫行业标准审定会在京召开。会议审定并通过了2009年73项检验检疫食品专业行业标准和26项植物检疫行业标准。此次通过审定的行业标准能够适应我国检验检疫新的形势和现行监管法规要求以及检验检疫标准体系建设需要,有效地满足进出口检验检疫监督管理,为检验检疫提供了有效的检测鉴定依据。对于保障进出口食品安全,防止重大植物疫病传入传出,促进进出口贸易具有十分重要的意义。
  • 聚焦氢化植物油反式脂肪酸 标准或20日前公布
    一则关于“植物奶油”的报道,好似一场速成的化学课,让消费者一夜之间认识了“氢化油”这个名词。   随着“问题”氢化植物油频频被媒体曝光,有关食品安全的话题再度牵动了人们敏感的神经。   同时,在部分企业人士看来,氢化植物油暗藏食品灾难的说法并不能完全“站得住脚”。有企业人士表示:“反式脂肪酸在天然食品里也存在,只要量控制得好,就没什么健康问题。”   江南大学油脂专家王兴国表示,中国粮油协会油脂分会正在起草一份关于氢化油的说明文件,将具体就其定义和在国内的生产、使用量进行公布,具体时间在本月20日前。届时,有关氢化油的真相才可能真正呈现在大众面前。   11月10日,《每日经济新闻》记者调查发现,国内能够生产氢化油的企业并不如人们想象的那么多。   同时,氢化油即植物奶油的说法也遭到专家质疑。“植物奶油与氢化油不是一个概念,将两者混为一谈是一种误导。”11月10日,江南大学食品学院博导、油脂专家王兴国告诉《每日经济新闻》记者,“氢化油只是植物奶油、植脂末中可能的一个成分,不能混为一谈,也有一些不添加氢化油的植物奶油。”   氢化油厂商难觅踪迹   自CCTV2曝光了植物奶油的乱象之后,氢化油“一夜成名”。   不过,记者调查发现,在全国范围内,氢化油的生产商上并没有想象中的那么多。“你要的氢化油我们没有。”11月10日,上市公司安徽丰原生化的一位油脂销售人员如此告诉《每日经济新闻》记者,“我们从来没生产过。”   “我们没有氢化油。”11月10日,记者咨询了多家从事油脂生产、加工的上市企业,对方均表示不生产该产品。   为何日前报道中“大量存在于各种食品当中”的氢化油却在上游市场难觅踪迹?是企业想避避风头,还是确有其事?湖南金健植物油有限责任公司一位工作人员表示,“事实上,制造氢化油的成本很高,对生产机器有着较高的要求,我们不生产。”   王兴国在接受媒体采访时也表示:“中国一年消耗的食品专用油和烹饪油在2300万吨左右,其中90%是用棕榈油做的,氢化油只占很小一部分。”   一位广州地区的油脂企业的技术人员说,“据我所知,国内生产氢化油的企业只有几家。”   聚焦“反式脂肪酸”   为何氢化油又成为媒体眼中的恶魔?有学术界人士认为,将植物奶油与氢化油画上等号是一种误读。真正对人体造成危害的元凶,是“反式脂肪酸”。   “植物奶油与氢化油不是一个概念,将两者混为一谈是一种误导。”王兴国表示,“氢化油只是植物奶油、植脂末中的一个成分,不能混为一谈,也有一些不添加氢化油的植物奶油。”   一位上海主要生产植脂奶油企业的人士表示,“植物奶油并不等于氢化油,但是在某些植物奶油的生产中,需要加入氢化油,而氢化油中则含有少量的反式脂肪酸。”   不过,在部分媒体报道中,认为植物奶油又称为氢化油,两者为一种物质。   王兴国告诉《每日经济新闻》记者,中国粮油协会油脂分会正在起草一份关于氢化油的说明文件,将具体就其特质和在国内的使用量进行公布,具体时间在本月20日前。届时,关于植物奶油、氢化油的争论或将有一个定论。   资料显示,反式脂肪酸才是对人体造成损害的“元凶”。其最常见存在于速溶咖啡伴侣、奶精之中,还包括如方便面、饼干、酥皮面包、薯片这样的速食品。反式脂肪酸的大量摄入,会导致心血管疾病的几率是饱和脂肪酸的3~5倍,甚至还会损害人们的认知功能。此外,人造脂肪还可能诱发肿瘤(乳腺癌等)、哮喘、2型糖尿病、过敏等疾病。   在11月9日卫生部召开的新闻发布会上,卫生部有关人士表示,正组织开展反式脂肪酸风险监测评估工作。   值得关注的是,卫生部于昨日公布了《食品安全国家标准管理办法》,规定了食品安全国家标准规划和制(修)订计划的内容及制订程序、标准起草过程要求、公开征求意见要求、标准审查程序、标准批准发布形式及实施后的管理等。根据这一规定,自今年12月1日起,任何公民、法人和其他组织都可以提出食品安全国家标准立项建议。
  • 国家粮食局:食用植物调和油标准正待批准发布
    近日,国家粮食局就人民网 网友在“部委领导留言板”中提出的有关“促进粮食深加工”、 “陈化粮处理”、“保障储备粮供应”、“粮食农药残留是否危害健康”、“粮食银行推广”、“升级老旧粮仓”、“扶持国内粮食企业”、“食用植物调和油标准”等10大方面的粮食领域热点问题进行了详细解答。这次国家粮食局第三次专门就人民网“部委领导留言板”上的网友留言进行公开回应。(证券时报网快讯中心kuaixun.stcn.com)   据人民网报道,在回答人民网网友我国现在有没有一个制作调和油的规范标准的问题时,国家粮食局表示,从2004年开始,国家粮食局即组织粮油科研院所、有关院校和油脂生产骨干企业,研究调和油组成成分检验技术等问题,并积极着手制订调和油国家标准。今年5月,国家粮食局已将《食用植物调和油标准》上报归口主管部门,正待批准发布。
  • 生物检测仪器校准用标准样品专业工作组成立
    近日,全国标准样品技术委员会发布通知,批准4个专业工作组成立,包括动物防疫标准样品专业工作组、茶叶标准样品专业工作组、生物检测仪器校准用标准样品专业工作组和植物检疫标准样品专业工作组。其中生物检测仪器校准用标准样品专业工作组编号为SAC/TC 118/WG17,由中国计量大学牵头筹建,主要负责生物大分子和有机体检测仪器校准用标准样品研复制的申报、审批、立项、监查、评审等工作。第一届工作组共30人,由中国计量大学副校长俞晓平研究员任组长,中国计量大学院长叶子弘任秘书长,此外还有来自全国有关生物检测、检验检疫、计量校准、仪器开发等领域的专家。生物检测仪器校准用标准样品专业工作组的成立标志着我国生物检测仪器相关标准样品工作步入新的发展阶段。生物检测技术是生命科学和医学的基础,涉及临床检验、疾病防控、食品安全等众多领域。随着社会医疗健康的需求不断增长以及生物技术进步,生物检测技术近年来高速发展,生物检测仪器的市场规模也越来越大。与市场的快速扩张相比,生物检测仪器校准用国家标准样品的发展速度远远落后,无法满足现在的生物检测仪器生产与使用需求。生物检测仪器校准用标准样品专业工作组将聚集国内相关科研、产业优势资源,建设和完善生物检测仪器校准用标准样品体系,增加国家标准样品的有效供给,为填补国内生物检测仪器标准样品空白、有效推进生物检测仪器国产化进程和促进生物产业的快速发展提供有力的标准支撑。
  • 红外分光测油仪的检测范围及校准方法
    红外分光测油仪是一款可以用于地表水、地下水、生活污水、工业废水、土壤中的矿物油和动植物油及废气中油烟和油雾排放检测的仪器设备,现在使用越来越广泛,今天小编就来介绍一下红外分光测油仪的相关情况。红外分光测油仪检测范围:红外分光测油仪检出限:DL≤0.04mg/L(四氯乙烯空白液测定11次的3倍SD)方法检出限:检出限为0.06mg/L;当样品体积为500ml,萃取液体积为50ml时(HJ637-2018标准)最低检出浓度:0.003mg/L样品测量范围:0~100%油(富集和稀释)基本测量范围:0.0-800mg/L重复性:RSD ≤ 0.6%(30-80mg/L 油样测定 11 次 )准确度误差:≤2%相关系数:r0.999扫描速度:全谱扫描,快速模式45 秒钟/次,精密模式3分钟/次波数范围:3100cm-1 ~ 2800cm-1 (即 3200nm ~ 3570nm )红外分光测油仪如何校准?1.选择:选择一条空白检测的曲线作为检测页背景线条;2.清空:将已选择的背景曲线清空,检测页将不显示背景曲线;3.校正系数计算:根据上方所选的四类样品计算出XYZF的值;4.保存:将计算出的XYZF的值进行保存;5.选取数据:选取用于计算标准曲线法参数的数据;6.计算:根据所选数据计算出相应公式;7.清空:将已保存的标准曲线法参数清除;8.保存:将计算得出的标准曲线法参数进行保存。红外分光测油仪校准页为出厂前对光路、基本波长和三个检测点进行校准,由于红外分光测油仪出厂前已经校准完毕,用户不需要对其进行设置,直接进行样品检测即可。
  • 宁夏计质院直流标准电阻校准能力验证获“满意”结果
    近日,宁夏计质院参加中国航空工业集团公司北京长城计量测试技术研究所组织的“直流标准电阻校准能力验证计划”获得满意结果。直流标准电阻是电磁学基本量,作为一个标准阻值的参照或比较,它的准确一致对其它电磁学量值统一有着举足轻重的作用。此次能力验证,宁夏计质院严格按照相关要求,认真做好样品实验工作和数据处理,按时完成样品交接,及时提交实验数据和结果,最终各项测量结果与参考值之差都在合理预期之内,结果为“满意”。通过能力验证,进一步验证了宁夏计质院“一等直流电阻标准装置”检定人员业务素质和实验室能力水平,能够有效保证我区直流标准电阻量值传递的准确可靠。宁夏计量质量检验检测研究院(简称:宁夏计质院)成立于2017年8月,经自治区编委会批准,由宁夏计量测试院、宁夏产品质量监督检验院、宁东能源化工基地质量监督检验与计量测试所整合组建而成,为自治区市场监督管理厅直属公益类检验检测研究事业单位,是国家市场监督管理总局授权的法定计量检定和产品质量检验检测机构。宁夏计质院主要承担国家计量基准和宁夏公用计量标准的研究、建立、保存、维护、计量器具检定校准以及产(商)品质量监督检验、产品质量仲裁检验、产品质量鉴定、各种取证(生产许可证、CCC认证、产品认证等)检验、委托检验等工作。开展计量质量产学研一体化的合作与科研,为社会各界提供计量质量专业技术、能力提升、质量管理培训和咨询等技术服务。
  • 卫计委征求《食品营养强化剂植物甲萘醌》等食品安全国家标准意见函
    p   各有关单位: /p p   根据《食品安全法》及其实施条例的规定,我委组织拟订了《食品安全国家标准食品营养强化剂 植物甲萘醌》等3项食品安全国家标准(征求意见稿),现向社会公开征求意见。请于2018年2月28日前登录食品安全国家标准管理信息系统(http://bz.cfsa.net.cn/cfsa_aiguo)在线提交反馈意见。 /p p   附件: /p p & nbsp & nbsp & nbsp 1.《食品安全国家标准 食品营养强化剂 植物甲萘醌》(征求意见稿)及编制说明 /p p   2.《食品安全国家标准 食品营养强化剂 酒石酸氢胆碱》(征求意见稿)及编制说明 /p p   3.《食品安全国家标准 食品营养强化剂 氯化钠》(征求意见稿)及编制说明 /p p style=" text-align: right "   国家卫生计生委办公厅 /p p style=" text-align: right "   2017年12月12日 /p p    a title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.nhfpc.gov.cn/ewebeditor/uploadfile/2017/12/20171226135322495.rar" target=" _self" span style=" color: rgb(0, 112, 192) " 下载链接:附件1-3.《食品安全国家标准 食品营养强化剂 植物甲萘醌》等3项标准征求意见稿及编制说明 /span /a /p
  • 如何校准照度计?选对校准光源是关键
    图1 用于光密箱内照度计校准光源照度计在使用前必须进行校准,以确保它们给出正确的结果。然而,在许多测试中,存在背景光。任何数量的背景光都可以到达传感器并影响校准数据。因此,客户要求 Labsphere (蓝菲光学)提供一个均匀校准光源,以防止背景辐射影响到校准。解决方案图2 Labsphere(蓝菲光学)用于光密箱内照度计校准光源标准的 Labsphere(蓝菲光学) HELIOS® V系列系统虽具有单个光源但动态范围出色,且可以满足了客户的光谱要求。将 Labsphere(蓝菲光学)积分球和框架朝下旋转到一个定制的密封暗箱中,在那里测试客户的照度计。带 90° 旋转镜的外置卤素灯用于微调灯泡亮度的手动衰减器校准硅探测器,可准确测量亮度带有快门滑块、针孔滑块和人眼滤光片的滤光片选择器 定制的不透光黑匣子外壳照度计安装平台高度可调密封的磁性检修门拉丝索环馈通,允许照度计的电缆在没有杂散光进入的情况下退出暗箱HELIOSense 软件用于控制和监控系统门打开,露出一个带有插槽平台和锁定夹,用于固定客户的照度计。两个小 L 型手柄可以转动来解锁平台,然后平台轻松向上滑动到测试位置。L 形手柄锁定平台到位,门关闭后,可以开始测试了。产品特点图3 可见波段光谱辐亮度图4 系统均匀性99.3%暗箱可防止任何背景辐射在测试过程中到达传感器,最大限度地提高校准的准确性具有 99.3% 的面均匀性和 99.3% 的角度均匀性,确保每次测试都能获得准确的结果Labsphere 与客户密切沟通,使客户能够收到与其内部组件相匹配的系统使用 Labsphere 的 HELIOSense 软件可以轻松实现组件控制以及实时数据收集和可视化提供完整的校准报告,包括光谱辐射、亮度、均匀性和色温
  • 输美植物提取物谨防“杀虫剂残留”
    据美国FDA官方网站统计,今年8月份,中国输往美国的植物提取物有6批次因“含有一种杀虫剂”和“含有一种不安全的农药”而遭拒绝入境,而该类产品2012年全年都未见类似通报。主要产品涉及红景天提取物、欧洲越橘提取物、银杏提取物等。     植物提取物是应用现代提取分离技术从植物原料(水果、药食两用植物、中草药等)中定向获取和浓缩的某一种或多种成分,而不改变其有效成分而形成的产品。按照提取植物的成分不同,形成甙、酸、多酚、多糖、萜类、黄酮、生物碱等。其用途非常广泛,不仅可作为制药行业的主要原料,还可应用于普通食品、保健品、膳食补充剂、化妆品、食品添加剂(色素、甜味剂等)、香精香料等行业。在美、日、韩和欧洲等发达国家和地区,以植物提取物为原料的保健品备受消费者青睐,市场需求逐年上升。     中国提取物出口美国量近两年来不断增长,美国FDA今年以来对植物提取物的关注度提高,对农残限量要求呈不断加严趋势。由于植物提取原料来源广泛,目前FDA对植物提取的质量和农药残留进行判定主要基于以下标准:一是对所有在美国药典(USP-NF)中已经列名的提取物,依据美国药典(USP36-NF31)标准进行判定。二是对于其他在药典中无列名的提取物,农残则按照NF28进行检测和判定(NF28相当于USP36,比USP36的限量指标稍微宽松)。美国基于技术性贸易壁垒的考量,不断加重农残限量检测砝码,一些农药检测限量值一般要求在0.01PPM以下,中国部分野生植物和中药材原料的提取物,都有可能被检测出微量残留而遭拒绝入境,今年国内一些大公司出口量比较大的产品而因此遭到美国FDA退货。   美国是宁波地区植物提取物出口的重要出口市场,为防止相关企业再遭美国通报,检验检疫部门提醒各出口企业一定要谨防输美产品杀虫剂和农药残留:一是要把好植物原料、中药材等采购关,对于种植的原料,要调查清楚种植户的用药情况或相关记录。二是要把好原料验收关,原料进厂时,企业应加强抽样自检,有代表性的抽样送往专业机构检测杀虫剂、农药残留等项目,同时,做好原料的批次验收和核销记录,确保植物提取物产品质量可追溯。三是要把好产品出厂检验关,加强成品检验,尤其是针对提取物有效成分高的产品,由于提取浓缩幅度大,溶剂残留和农药残留更容易超标,一定要加大检测把关力度,以避免不必要的退货损失。
  • 我国首个植物基因编辑安全证书下发
    近日,农业农村部发布《2023年农业用基因编辑生物安全证书批准清单》,下发全国首个植物基因编辑安全证书,该证书由舜丰生物获得。  基因编辑是世界生物育种领域的前沿技术。与转基因不同,基因编辑育种仅对作物自身基因进行修饰,并不转入其他物种的基因,其原理等同于常规诱变育种,培育出的品种也与常规育种培育出的品种无异。  “目前国际上诸如美国、日本、印度等地对于没有外源基因的编辑作物不是按照转基因作物管理,而是按照传统作物来对待。因为基因编辑的原理跟传统的诱变育种是一样的,和诱变作物相比,基因编辑产品并没有增加环境安全和食品安全风险。”中国科学院院士、著名水稻育种家刘耀光表示,“《细则》的发布和第一个安全证书的发放让我们看到了基因编辑作物产业化的希望。”  刘耀光院士提及的《细则》是指农业农村部刚发布的《农业用基因编辑植物评审细则(试行)》,进一步明确基因编辑植物的分类标准和简化评审的细则。  “基因编辑育种有着先天的优势,可以快速培育出高产高附加值的优良品种。”得知舜丰生物获得全国首个植物基因编辑安全证书,中国科学院院士许智宏表示,“《细则》的发布和第一个基因编辑安全证书的下发,让我们看到了民族种业振兴的希望。”  美国科学院院士、南方科技大学前沿生物技术研究院院长,舜丰生物首席专家顾问朱健康向记者表示:“此次《细则》的发布是继2022年《农业用基因编辑植物安全评价指南(试行)》发布后的又一个里程碑事件,它从分子特征、环境安全、食品安全三个方面界定评审细则,将已有文献或产业数据表明对环境安全和食品安全没有风险的基因编辑产品,予以简化安全评估流程,这无疑会加速基因编辑的产业化进程。”
  • 国家植物基因研究中心植物激素检测平台举办技术讲座
    植物激素是植物体内合成的一系列天然微量有机物小分子化合物, 调控着植物生长发育过程中重要的生理反应,但其定量分析检测一直是限制研究深入的瓶颈问题。为了解决这一难题,国家植物基因研究中心(北京)从2007年开始致力于植物激素测定平台的建设,经过不断努力探索,目前已经建立了稳定的生长素、脱落酸、茉莉酸和水杨酸等激素的测定方法,并对外提供技术服务,部分数据已发表在Plant Cell、Cell Host & Microbe等杂志上。   为了充分发挥植物激素检测平台的作用,国家植物基因研究中心(北京)于11月26日举办了植物激素检测技术讲座。   此次讲座由负责植物激素检测平台工作的褚金芳主持。Waters公司的王则含首先介绍了超高效液相—三重四级杆串联质谱仪的工作原理、特点及其在痕量组分定性、定量分析中的应用及优势。随后,褚金芳就国内外植物激素检测的现状、植物激素检测平台的建设和运行、植物激素检测方法的建立以及植物激素检测流程需要注意的问题作了详细说明。来自所内外多个科研院所的70多名科研人员参加了此次培训。大家就植物激素检测相关问题踊跃提问,并得到了细致耐心的解答。
  • 食用植物调和油国家标准有望年内出台
    《食用植物调和油》国家标准正征集意见,并有望于年内出台。昨日了解到,标准有可能明确规定调和油配料的比例问题,并有可能被强制要求在产品标签中明示。   据介绍,食用植物调和油一直没有统一的国家标准,尤其是没有对调和油配料比例的统一要求,导致一些生产企业打“擦边球”,误导消费者。此外,调和油市场还存在以次充好、随意勾兑、冠名标志混乱等问题。为此,《食用植物调和油》标准从2005年开始制定。   记者了解到,标准倾向于将标注调和油的配料比例列为强制性条款,这基本得到企业的认同。另外,标准规定,食用调和油的标签中应标注产品的质量等级。如果不标注质量等级,就按不合格处理。同时,还要标注原料成品油的加工方式,如“压榨”或“浸出” 标注所添加的香精和香料。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制