智池容量仪

仪器信息网智池容量仪专题为您提供2024年最新智池容量仪价格报价、厂家品牌的相关信息, 包括智池容量仪参数、型号等,不管是国产,还是进口品牌的智池容量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智池容量仪相关的耗材配件、试剂标物,还有智池容量仪相关的最新资讯、资料,以及智池容量仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

智池容量仪相关的厂商

  • 三丰精密量仪(上海)有限公司(简称“上海三丰”)是日本排名前列的精密测量仪器生产商MITUTOYO在上海的销售子公司。日本MITUTOYO拥有80多年的历史,从小型测量工具到大型测量仪器,共5500多种产品,是世界上为数不多的全方位生产精密测量仪器的企业。在全世界共47家子公司: 日本9家, 美洲11家, 欧洲15家, 亚洲12家。上海三丰于2001年注册在上海外高桥保税区企业,总部设于上海,在全国有12家分公司及事务所,负责MITUTOYO产品在中国华东、华北及中部地区的销售。华南地区由合资公司负责销售。销售产品有:三座标测量仪、画像测量仪、测量投影仪、工具及测量显微镜、硬度计、卡尺、千分尺等。
    留言咨询
  • 山西新晟科学仪器有限公司是一家专业从事实验室智能仪器生产销售的公司。注册地位于革命英雄老区,红色沃土的山西省吕梁市。公司自主研发生产的ZHXS-01型全自动智慧称量仪可针对粉末样品及XRF熔片法专用进行高精度自动称量。ZHXS-01型全自动智慧称量仪在个实验室应用中大大降低了人员工作强度,大幅提高了工作效率。独创的高精度自动称量技术在用户处反复使用与验证,得到一致认可与好评。称量精度与速度均达到国内外一流领先水平。公司有一支强大的科研技术队伍和先进的生产设备,保证了产品始终走在同行的前列!公司以科技创新,用户至上为宗旨,时刻关注市场发展趋势和用户需求,不断创新、提升产品品质,以更优质的产品和服务回报用户!
    留言咨询
  • 昆山艾弗特计量仪器有限公司经销批发的三次元、影像仪、2.5D、高度仪、卡尺、千分尺、百分表、千分表、粗糙度仪、扭力扳手畅销消费者市场,在消费者当中享有较高的地位,公司与多家零售商和代理商建立了长期稳定的合作关系。昆山艾弗特计量仪器有限公司经销的量具量仪品种齐全、价格合理。昆山艾弗特计量仪器有限公司实力雄厚,重信用、守合同、保证产品质量,以多品种经营特色和薄利多销的原则,赢得了广大客户的信任。昆山艾弗特计量仪器有限公司被中国航天科技集团公司第一计量测试研究所授权为江浙沪地区唯一的业务合作单位。承接...
    留言咨询

智池容量仪相关的仪器

  • MP200手持式总辐射测量仪名称:手持式总辐射测量仪 型号:MP200 产地:美国用途:太阳短波辐射(总辐射)对于进行蒸散率计算、能量平衡研究和太阳能板净辐射利用率等有着非常重要的意义。MP系列手持式总辐射测量仪可用于测量达到地球表面的短波辐射,计算出总辐射值。特点:响应时间快自清洁式圆顶传感器头防水防尘经校准的硅光传感器精度高手持式设计方便携带 数据实时显示并可通过软件导出技术规格:探头主体光谱范围360nm~1120nm量程0~1999 W/m2视角180°校准误差±5%重复性1%非稳定性(长期漂移)2%/年非线性1%(≤1750W/m2)响应时间1ms方向响应±5%(75°天顶角)温度响应0.04±0.04%/℃工作环境0~50℃,90%非冷凝环境;分离式探头30m防水探头尺寸2.4cm(直径)×2.8cm(高)线缆长度2m读数表主体记录模式人工/自动记录容量99组数据外形尺寸12.6cm(长)×7.0cm(宽)×2.4cm(厚)供电CR2320纽扣电池×1重量180g产地:美国点将科技-心系点滴,致力将来! table: (上海) (北京) (昆明) (合肥) Email: (上海) (北京) (昆明) (合肥) 扫描点将科技官方微信,获取更多服务:
    留言咨询
  • 植物茎流测量仪 植物茎流测定仪采用热消散探针法测量树干瞬时茎流密度,可以长期连续观测树木的液流,有利于研究树木和大气之间的水分交换规律,并以此为观测手段,长期监测森林生态系统对环境变化的影响。对于造林绿化、森林管理和林业管理等具有重要的理论指导意义和应用价值。植物茎流测量仪 植物茎流测定仪工作原理 植物茎流测量仪采用法国学者Granier在20世纪80年代后发明的一种测定Sap Flow的新方法,即热消散探针法(恒定热流传感器法)。该方法的数据采集具有准确稳定的特点,而且可以连续不间断的读取数据,因而数据具有系统性。该测 定系统由一对长33mm的热消散探针组成,安装时将探针上下相隔10cm-15cm插入树木的边材中,上方的探针缠绕电阻丝,供以直流电加热,下方探针不 加热,保持与周围边材组织的温度相同,两探针的温差变化反应树木的液流密度。植物茎流测量仪 植物茎流测定仪器特点 双探针,配有相应的钻孔工具,容易插拔,可以反复使用采用热消散法,可恒温加热可以长期连续监测不锈钢探针,采用Teflon涂层,持久耐用植物茎流测量仪采用高精度T型热电偶直接与数据分析仪连接采用大容量SD卡存储技术指标测量指标:瞬时液流密度测量通道:单通道存储容量:2GB植物茎流测量仪 植物茎流测定仪采样时间间隔:1-99分钟可调显示:320×160液晶显示屏电源:8.4V可充电锂电池(也可选用太阳能电池供电)工作温度:10℃-60℃
    留言咨询
  • 一、仪器介绍 植物茎流测量仪采用热消散探针法测量树干瞬时茎流密度,可以长期连续观测树木的液流,有利于研究树木和大气之间的水分交换规律,并以此为观测手段,长期监测森林生态系统对环境变化的影响。对于造林绿化、森林管理和林业管理等具有重要的理论指导意义和应用价值。 二、工作原理 植物茎流测量仪采用法国学者Granier在20世纪80年代后发明的一种测定SapFlow的新方法,即热消散探针法(恒定热流传感器法)。该方法的数据采集具有准确稳定的特点,而且可以连续不间断的读取数据,因而数据具有系统性。该测定系统由一对长33mm的热消散探针组成,安装时将探针上下相隔10cm-15cm插入树木的边材中,上方的探针缠绕电阻丝,供以直流电加热,下方探针不加热,保持与周围边材组织的温度相同,两探针的温差变化反应树木的液流密度。三、仪器特点 双探针,配有相应的钻孔工具,容易插拔,可以反复使用 采用热消散法,可恒温加热 可以长期连续监测 不锈钢探针,采用Teflon涂层,持久耐用 采用高精度T型热电偶直接与数据分析仪连接 采用大容量SD卡存储 四、技术指标 测量指标:瞬时液流密度 测量通道:单通道 存储容量:2GB 采样时间间隔:1-99分钟可调 显示:320×160液晶显示屏 电源:8.4V可充电锂电池(也可选用太阳能电池供电) 工作温度:10℃-60℃ 工作湿度:0-99.99%RH
    留言咨询

智池容量仪相关的资讯

  • 仪器市场新极新突破:锂离子电池容量骤升
    p style=" text-indent: 2em " 据美国《科学进展》杂志29日消息称,美国西北大学研究团队研发出一种全新材料,可用于制造性能稳定的大容量锂离子电池,从而大幅提升智能手机、电动汽车等的续航时间,甚至可以延长到目前的两倍多。 /p p style=" text-indent: 2em " 锂离子电池已是现代高性能电池的代表,应用最为广泛,其主要依靠锂离子在正极和负极之间移动来工作。而今消费电子和动力电池对能量密度提升的需求,推动着正极材料不断进步——通常,人们采用的是锂、氧和一种过渡金属的化合物为电池正极,这其中,正是过渡金属负责储存和释放电能,其性质也是电池容量的关键。 /p p style=" text-indent: 2em " 现阶段最常用的过渡金属是钴,而此前科学家研究发现,如果用镁取代钴,可以在提高容量的同时降低成本,但镁也有一定缺陷——电池性能退化太快,仅两轮充放电后就出现大幅下降。 /p p style=" text-indent: 2em " 据美国西北大学官方网站介绍,此次团队研发的新材料是掺有铬和钒元素的锂镁氧化物,其用作锂离子电池的正极,电池容量出现了大幅提高,同时兼具性能稳定、不会迅速退化的优点。 /p p style=" text-indent: 2em " 西北大学研究小组先是为锂镁氧化物材料建立了一个结构模型。该模型详细到了单个原子,团队借此分析了全部充放电过程,发现其中的氧也会参与存储电能,因而容量比以往要大。 /p p style=" text-indent: 2em " 随后,研究人员尝试了将不同元素掺入锂镁氧化物的方案,以期计算出不同混合物各自的储能效果。最终他们发现,掺入铬和钒能在保持电池大容量的同时实现最稳定性能。 /p p style=" text-indent: 2em " 研究人员表示,下一步他们将在实验室中检验该新材料的实际应用表现。 /p
  • 大连化物所提出颗粒细化诱导提高钠/锂离子电池循环容量的新机制
    近日,大连化物所储能技术研究部(DNL17)李先锋研究员、郑琼副研究员团队和燕山大学唐永福教授团队合作,在钠/锂离子电池电极储能机理研究方面取得新进展。  近年来,钠离子电池作为研究热点得到了国内外广泛关注,取得了快速发展。研究发现,具有较高Na+储存性能和循环稳定性的电极材料,对于提高钠离子电池的能量密度和倍率性能十分重要。 本工作中,研究团队设计了一种珊瑚状的FeP复合材料,该材料可锚定FeP纳米颗粒,并将其均匀分散在氮(N)掺杂的三维(3D)碳骨架(FeP@NC)上。珊瑚状FeP@NC复合材料具有较短的电荷转移路径和较高的导电氮掺杂碳网络,可显著改善复合材料的电荷转移动力学。同时,由于FeP纳米颗粒周围具有高度连续的N掺杂碳骨架和弹性缓冲的石墨化碳层,基于FeP@NC复合材料的钠离子电池(SIB)表现出优异的倍率性能和循环性能,在10A/g下经10000次循环后其容量保持率为82.0%。  更为重要的是,针对循环过程中电池容量逐渐上升的现象,研究团队结合电化学研究和原位电镜表征分析,证实了一种独特的颗粒细化在循环过程中提高容量的作用机制,这种容量提升效果在小电流下表现得更为显著。研究表明,均匀分布在氮掺杂碳基体上的FeP纳米颗粒,在第一个循环中经历了细化-复合过程,经过数次循环后呈现出全区域细化的趋势,这种细化对周围的非晶碳产生强烈的吸附作用,引起复合材料石墨化度和界面磁化强度逐渐增加,为Na+的存储提供了更多的额外活性中心,进而提高了循环容量。这种容量提升机制也可以扩展到锂离子电池(LIBs)。研究发现,在10A/g下,经5000次循环后,基于FeP@NC复合材料的LIBs的容量保持率为90.3%,超过了已报道的FeP基复合材料的容量保持率。  该研究提出了一种在循环过程中经颗粒细化诱导提高电池容量的新策略,为设计高性能的SIBs/LIBS负极材料提供了新思路。  相关成果以“A Coral-Like FeP@NC Anode with Increasing Cycle Capacity for Sodium-Ion and Lithium-Ion Batteries Induced by Particle-Refinement”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该工作的第一作者是大连化物所DNL17博士研究生王灿沛。上述研究工作得到国家自然科学基金、中科院青年创新促进会等项目的资助。  文章链接:https://doi.org/10.1002/anie.202110177
  • 新产品 | 新一代---高精度大容量动力电池评估系统
    目前,锂离子电池电芯与模组正朝着超大容量,高度集成化方向发展,锂离子电池生产企业,系统集成商和主机厂为了获得更高的体积能量密度,正从100Ah电芯逐渐切换到200Ah以上大容量电芯,此外刀片电池,CTP,CTC技术以及4680型电池的广泛应用,对现有检测设备的测试能力提出新的极限挑战。基于联合Nissan,英国华威大学(WMG)和Element Energy参与由英国商业、能源和工业战略部主导的”英国能源存储实验室”项目,AMETEK(普林斯顿及输力强电化学)公司开发了新一代大容量动力电池评估系统。输力强分析的SI-9300R,是一套针对动力电池开发,测试,诊断和梯次利用分级筛选的一站式多通道电池评估系统,适用于多种不同类型电池的分析,并具有无与伦比的超高精度,测量和快速诊断能力。 动力电池开发-测试-分析-分级 动力电池对高比容量、快速充电和长寿命等特性的需求,使得电池测量面临着更大的挑战。在对动力电池测试设备市场深入分析,对动力电池和电动汽车生产企业需求的充分了解的基础上, Solartron Analytical开发出一整套针对动力电池开发,测量,分析和分级的系统解决方案。 SI-9300R 五大技术特点 1.超大容量电流量程:2A-300A200A连续,300A脉冲并联可达到1000A可以满足各种类型的单体动力电池及模组的测试需要,不仅可以满足传统的18650,21700等类型的圆柱型电池,同时可以满足日益增长的高容量软包及方形动力电池测试。 2.超高精度• 24-位高精度ADCs• 磁通量电流传感器-高精度低热漂移• 高精度电流电压测量:0.03%• 高精度阻抗测试:0.1%, 0.1deg可满足动力电池在开发,测试,分析,分级等复杂应用场景下的差异性测试需求3.超强能力随着对动力电池安全及性能的要求越来越高,如何在满足常规直流测试的前提下,同时实现动力电池电化学性能快速精确测量呢?交直流同步测试,一站式完成,无需切换接线,确保人机安全。集充放电技术,电化学测试技术于一身,可提供如线性循环伏安,线性扫描,恒电流,恒电压,恒功率恒电阻和HPC(高精度库伦法)等全套动力电池测试技术。 每通道标配交流阻抗功能,可完成动力电池在充放电过程中的动态EIS分析,模拟实际工况下的使用状态。每通道标配两个辅助分压功能,可同时同步监测单体电池中正负极或串联模组中的单体及总体响应。快速进行正负极或单体失效分析。 4.全新技术专利数据直存硬盘技术–保证系统的可靠性和数据安全性电网回馈式–多余电能回馈电网不会产生热能损耗体积小,节约空间通道电能共享–放电电能将用于对其他电池充电-优化电能使用,节能环保,减少碳排放。实时数据分析–测试时可进行实时DC/EIS数据分析, 实时诊断电池性能。 5.超快SoH诊断基于9300R强大的充放电仪叠加交流阻抗功能,及灵活开放的软件界面,可开发出动力电池快速SoH(健康状态)诊断功能。全球首个成功案例,输力强通过与英国华威大学合作,使用9300R ,针对NISSAN LEAF的退役动力电池模组开发出SoH专利算法,仅仅3分钟之内即可分析出电池的SoH,且其误差为+/-3%,远高于传统的直流方法。 这为动力电池梯次利用,分级筛选提供了高可靠性,巨大经济性的解决方案。 “工欲善其事,必先利其器“,输力强作为全球超高精度,超高可靠性的动力电池,研发,测试,分析和分级的领先品牌,一直持续致力于为广大科研用户提供最先进的技术解决方案。

智池容量仪相关的方案

智池容量仪相关的资料

智池容量仪相关的论坛

  • 【求助】容量仪器校验计划怎么写

    我们是药厂化验室,对于容量仪器的校正一直都是有SOP自己校验的,但是接受国外客户的检查时,要求我们做到有计划-过程,所以想借鉴一下有这相关版本,不胜感激!

  • 【资料】容量仪器的校准

    容量仪器的校准目的:1.了解容量仪器校准的意义和方法 2.初步掌握移液管的校准和容量瓶与移液间相对校准的操作。移液管、吸量管、滴定管、容量瓶等,是分析化学实验中常用量器,它的准确度是分析化学实验测定结果准确程度的前提,国家对这些量器作了A、B级标准规定(参见表1.2.3.)。表1. 常用移液管的规格标称容量(ml) 2 5 10 20 25 50 100容量允差 A ±0.010 ±0.015 ±0.020 ±0.030 ±0.05 ±0.08(ml) B ±0.020 ±0.030 ±0.040 ±0.060 ±0.10 ±0.16水的流出 A 7 – 12 15 – 25 20 – 30 25 – 35 30 – 40 35 – 40时间(s) B 5 – 12 10 – 25 15 – 30 20 – 35 25 – 40 30 – 40表2. 常用容量瓶的规格标称容量(ml) 10 25 50 100 200 250 500 1000容量允差 A ±0.020 ±0.03 ±0.05 ±0.10 ±0.15 ±0.15 ±0.25 ±0.40(ml) B ±0.040 ±0.06 ±0.20 ±0.20 ±0.30 ±0.30 ±0.50 ±0.80表3. 常用滴定管的规格标称容量(ml) 5 10 25 50 100分度值(ml) 0.02 0.05 0.1 0.1 0.2容量允差 A ±0.010 ±0.025 ±0.04 ±0.05 ±0.10(ml) B ±0.020 ±0.050 ±0.08 ±0.10 ±0.20水流出时间 A 30 – 45 45 – 70 60 – 90 70 – 100(秒) B 20 – 45 35 – 70 50 – 90 60 – 100读整前等待时间 30秒 由于不同级别的允差不同,更何况还有不合格产品流入市场,都可能给实验结果引入误差。因此,在进行分析化学实验前,应该对所用的容量器具做到心中有数,保证其精度达到实验结果准确的要求。尤其是进行高精度要求的实验,应使用经过校准的仪器。由此可见,容量器具的校准是一项不可忽视的工作。校准的方法:称量被校量具的量入或量出的纯水质量,再根据不同温度下纯水在空气中的密度计算出量具的实际体积。校准工作是一项技术性较强的工作,操作要正确,故对实验室有下列要求:1. 1. 天平的称量误差应小于量器允差的1/10。2. 2. 分度值为0.1℃的温度计。3. 3. 室内温度变化不超过1℃• h–1,室温最好控制在20±5℃。若对校准的精确度很高,可引用ISO4787–1984《实验室玻璃仪器 — 玻璃量器容量的校准和使用方法》中公式: V20 = (IL – IE) ( ) ( ) [1– γ (t – 20)]式中 I L 为盛水容器的天平读数,g 。I E 为空容量器的天平读数,g 。ΡW 为温度t时纯水的密度,g • ml–1。ΡA 为空气密度,g • ml–1。ΡB 为砝码密度,g • ml–1。γ 为量器材料的体膨胀系数,℃–1。t 为校准时所用纯水的温度。试剂及仪器:乙醇(95%):供干燥仪器用具塞锥形瓶(50ml):洗净晾干温度计:最小分度值0.1℃分析天平:200g或100g / 0.001g电子天平:200g / 0.001g实验步骤:1. 1. 移液管(单标线吸量管)的校准取一个50ml洗净晾干的具塞锥形瓶,在分析天平上称量至mg位。用铬酸洗液洗净20ml移液管,吸取纯水(盛在烧杯中)至标线以上几mm,用滤纸片擦干管下端的外壁,将流液口接触烧杯壁,移液管垂直、烧杯倾斜约30˚ 。调节液面使其最低点与标线上边缘相切,然后将移液管移至锥形瓶内,使流液口接触磨口以下的内壁(勿接触磨口!),使水沿壁流下,待液面静止后,再等15s。在放水及等待过程中,移液管要始终保持垂直,流液口一直接触瓶壁,但不可接触瓶内的水,锥形瓶保持倾斜。放完水随即盖上瓶塞,称量至mg位。两次称得质量之差即为释出纯水的质量mW。重复操作一次,两次释出纯水的质量之差,应小于0.01g。将温度计插入5~10min,测量水温,读数时不可将温度计下端提出水面(为什么?)由附录中查出该温度下纯水的密度ΡW,并利用下式计算移液管的实际容量: V = mW / ΡW2. 2. 移液管与容量瓶的相对校准在分析化学实验中,常利用容量瓶配制溶液,并用移液管取出其中一部分进行测定,此时重要的不是知道容量瓶与移液管的准确容量,而是二者的容量是否为准确的整数倍关系。例如用25ml移液管从100ml容量瓶中取出一份溶液是否确为1/4,这就需要进行这两件量器的相对校准。此法简单,在实际工作中使用较多,但必须在这两件仪器配套使用时才有意义。将100ml容量瓶洗净、晾干(可用几毫升乙醇润洗内壁后倒挂在漏斗板上),用25ml移液管准确吸取纯水4次至容量瓶中(移液管的操作与上述校准时相同),若液面最低点不与标线上边缘相切,其间距超过1mm,应重新做一标记。3.容量瓶的校准用铬酸洗液洗净一个100ml容量瓶,晾干,在电子天平上称准至0.01g。取下容量瓶注水至标线以上几毫米,等待2min。用滴管吸出多余的水,使液面最低点与标线上边缘相切(此时调定液面的作法与使用时有所不同),再放到电子天平上称准至0.01g。然后插入温度计测量水温。两次所称得质量之差即为该瓶所容纳纯水的质量,最后计算该瓶的实际容量。4. 4. 滴定管的校准用铬酸洗液洗净1支50ml具塞滴定管,用洁布擦干外壁,倒挂于滴定台上5min以上,打开旋塞,用洗耳球使水从管尖(即流液口)充入。仔细观察液面上升过程中是否变形(即弯液面边缘是否起皱),如变形,应重新洗涤。洗净的滴定管注入纯水至液面距最高标线以上约5mm处,垂直挂在滴定台上,等待30s后调节液面至0.01ml。取一个洗净晾干的50ml具塞锥形瓶,在电子天平上称准至0.001g。打开滴定管旋塞向锥形瓶中放水,当液面降至被校分度线以上约0.5ml时,等待15s。然后在10s内将液面调节至被校分度线,随即使锥形瓶内壁接触管尖,以除去挂在管尖下的液滴,立即盖上瓶塞进行称量。测量水温后即可计算被校分度线的实际容量,并求出校正值。按表1.所列容量间隔进行分段校准,每次都从滴定管0.00ml标线开始,每支滴定管重复校准一次。表1. 滴定管校准记录格式校准分段(ml) 称量记录/g 水的质量 实际体积/ml 校正值(ml) 瓶+水 瓶 瓶+水 瓶 1 2 平均 ΔV = V – V200 – 10.00 0 – 15.00 0 – 20.00 0 – 25.00 0 – 30.00 0 – 35.00 0 – 40.00 0 – 45.00 以滴定管被校分度线体积为横坐标,相应的校正值为纵坐标,绘出校准曲线。思考题:1. 1. 容量仪器为什么要校准?2. 2. 称量纯水所用的具塞锥形瓶,为什么要避免将磨口部分和瓶塞沾湿?3. 3. 本实验称量时,为何只要求称准到mg位?4. 4. 分段校准滴定管时,为何每次都要从0.00ml开始?附录 不同温度下的纯水密度(ρw)温度t ℃ ρw 温度t ℃ ρw 温度t ℃ ρw8 0.9886 15 0.9979 22 0.99689 0.9985 16 0.9978 23 0.996610 0.9984 17 0.9976 24 0.996311 0.9983 18 0.9975 25 0.996112 0.9982 19 0.9973 26 0.995913 0.9981 20 0.9972 27 0.995614 0.9980 21 0.9970 28 0.9954 出自: http://www.pubpot.com

  • 容量仪器的校准

    目的:1.了解容量仪器校准的意义和方法 2.初步掌握移液管的校准和容量瓶与移液间相对校准的操作。移液管、吸量管、滴定管、容量瓶等,是分析化学实验中常用量器,它的准确度是分析化学实验测定结果准确程度的前提,国家对这些量器作了A、B级标准规定(参见表1.2.3.)。表1. 常用移液管的规格标称容量(ml) 2 5 10 20 25 50 100容量允差 A ±0.010 ±0.015 ±0.020 ±0.030 ±0.05 ±0.08(ml) B ±0.020 ±0.030 ±0.040 ±0.060 ±0.10 ±0.16水的流出 A 7 – 12 15 – 25 20 – 30 25 – 35 30 – 40 35 – 40时间(s) B 5 – 12 10 – 25 15 – 30 20 – 35 25 – 40 30 – 40表2. 常用容量瓶的规格标称容量(ml) 10 25 50 100 200 250 500 1000容量允差 A ±0.020 ±0.03 ±0.05 ±0.10 ±0.15 ±0.15 ±0.25 ±0.40(ml) B ±0.040 ±0.06 ±0.20 ±0.20 ±0.30 ±0.30 ±0.50 ±0.80表3. 常用滴定管的规格标称容量(ml) 5 10 25 50 100分度值(ml) 0.02 0.05 0.1 0.1 0.2容量允差 A ±0.010 ±0.025 ±0.04 ±0.05 ±0.10(ml) B ±0.020 ±0.050 ±0.08 ±0.10 ±0.20水流出时间 A 30 – 45 45 – 70 60 – 90 70 – 100(秒) B 20 – 45 35 – 70 50 – 90 60 – 100读整前等待时间 30秒 由于不同级别的允差不同,更何况还有不合格产品流入市场,都可能给实验结果引入误差。因此,在进行分析化学实验前,应该对所用的容量器具做到心中有数,保证其精度达到实验结果准确的要求。尤其是进行高精度要求的实验,应使用经过校准的仪器。由此可见,容量器具的校准是一项不可忽视的工作。校准的方法:称量被校量具的量入或量出的纯水质量,再根据不同温度下纯水在空气中的密度计算出量具的实际体积。校准工作是一项技术性较强的工作,操作要正确,故对实验室有下列要求:1. 1. 天平的称量误差应小于量器允差的1/10。2. 2. 分度值为0.1℃的温度计。3. 3. 室内温度变化不超过1℃• h–1,室温最好控制在20±5℃。若对校准的精确度很高,可引用ISO4787–1984《实验室玻璃仪器 — 玻璃量器容量的校准和使用方法》中公式: V20 = (IL – IE) ( ) ( ) [1– γ (t – 20)]式中 I L 为盛水容器的天平读数,g 。I E 为空容量器的天平读数,g 。ΡW 为温度t时纯水的密度,g • ml–1。ΡA 为空气密度,g • ml–1。ΡB 为砝码密度,g • ml–1。γ 为量器材料的体膨胀系数,℃–1。t 为校准时所用纯水的温度。试剂及仪器:乙醇(95%):供干燥仪器用具塞锥形瓶(50ml):洗净晾干温度计:最小分度值0.1℃分析天平:200g或100g / 0.001g电子天平:200g / 0.001g实验步骤:1. 1. 移液管(单标线吸量管)的校准取一个50ml洗净晾干的具塞锥形瓶,在分析天平上称量至mg位。用铬酸洗液洗净20ml移液管,吸取纯水(盛在烧杯中)至标线以上几mm,用滤纸片擦干管下端的外壁,将流液口接触烧杯壁,移液管垂直、烧杯倾斜约30˚ 。调节液面使其最低点与标线上边缘相切,然后将移液管移至锥形瓶内,使流液口接触磨口以下的内壁(勿接触磨口!),使水沿壁流下,待液面静止后,再等15s。在放水及等待过程中,移液管要始终保持垂直,流液口一直接触瓶壁,但不可接触瓶内的水,锥形瓶保持倾斜。放完水随即盖上瓶塞,称量至mg位。两次称得质量之差即为释出纯水的质量mW。重复操作一次,两次释出纯水的质量之差,应小于0.01g。将温度计插入5~10min,测量水温,读数时不可将温度计下端提出水面(为什么?)由附录中查出该温度下纯水的密度ΡW,并利用下式计算移液管的实际容量: V = mW / ΡW2. 2. 移液管与容量瓶的相对校准在分析化学实验中,常利用容量瓶配制溶液,并用移液管取出其中一部分进行测定,此时重要的不是知道容量瓶与移液管的准确容量,而是二者的容量是否为准确的整数倍关系。例如用25ml移液管从100ml容量瓶中取出一份溶液是否确为1/4,这就需要进行这两件量器的相对校准。此法简单,在实际工作中使用较多,但必须在这两件仪器配套使用时才有意义。将100ml容量瓶洗净、晾干(可用几毫升乙醇润洗内壁后倒挂在漏斗板上),用25ml移液管准确吸取纯水4次至容量瓶中(移液管的操作与上述校准时相同),若液面最低点不与标线上边缘相切,其间距超过1mm,应重新做一标记。3.容量瓶的校准用铬酸洗液洗净一个100ml容量瓶,晾干,在电子天平上称准至0.01g。取下容量瓶注水至标线以上几毫米,等待2min。用滴管吸出多余的水,使液面最低点与标线上边缘相切(此时调定液面的作法与使用时有所不同),再放到电子天平上称准至0.01g。然后插入温度计测量水温。两次所称得质量之差即为该瓶所容纳纯水的质量,最后计算该瓶的实际容量。4. 4. 滴定管的校准用铬酸洗液洗净1支50ml具塞滴定管,用洁布擦干外壁,倒挂于滴定台上5min以上,打开旋塞,用洗耳球使水从管尖(即流液口)充入。仔细观察液面上升过程中是否变形(即弯液面边缘是否起皱),如变形,应重新洗涤。洗净的滴定管注入纯水至液面距最高标线以上约5mm处,垂直挂在滴定台上,等待30s后调节液面至0.01ml。取一个洗净晾干的50ml具塞锥形瓶,在电子天平上称准至0.001g。打开滴定管旋塞向锥形瓶中放水,当液面降至被校分度线以上约0.5ml时,等待15s。然后在10s内将液面调节至被校分度线,随即使锥形瓶内壁接触管尖,以除去挂在管尖下的液滴,立即盖上瓶塞进行称量。测量水温后即可计算被校分度线的实际容量,并求出校正值。按表1.所列容量间隔进行分段校准,每次都从滴定管0.00ml标线开始,每支滴定管重复校准一次。表1. 滴定管校准记录格式校准分段(ml) 称量记录/g 水的质量 实际体积/ml 校正值(ml) 瓶+水 瓶 瓶+水 瓶 1 2 平均 ΔV = V – V200 – 10.00 0 – 15.00 0 – 20.00 0 – 25.00 0 – 30.00 0 – 35.00 0 – 40.00 0 – 45.00 以滴定管被校分度线体积为横坐标,相应的校正值为纵坐标,绘出校准曲线。思考题:1. 1. 容量仪器为什么要校准?2. 2. 称量纯水所用的具塞锥形瓶,为什么要避免将磨口部分和瓶塞沾湿?3. 3. 本实验称量时,为何只要求称准到mg位?4. 4. 分段校准滴定管时,为何每次都要从0.00ml开始?附录 不同温度下的纯水密度(ρw)温度t ℃ ρw 温度t ℃ ρw 温度t ℃ ρw8 0.9886 15 0.9979 22 0.99689 0.9985 16 0.9978 23 0.996610 0.9984 17 0.9976 24 0.996311 0.9983 18 0.9975 25 0.996112 0.9982 19 0.9973 26 0.995913 0.9981 20 0.9972 27 0.995614 0.9980 21 0.9970 28 0.9954

智池容量仪相关的耗材

  • VWR多参数测量仪
    VWR多参数测量仪该款用户友好型便携仪器,配有活动关节电极支架和IP 43级外壳,能够为精确的多参数测量提供高分辨率。该测试仪可以同时测量pH/mV和导电率或pH/mV和氧气。带连接至电脑的USB输出。GLP合规。 大尺寸LCD图形显示,带持续LED背光,能够同时显示测得的参数和温度值1分钟和1小时间可选择数据记录功能;5000条数据集记忆容量自动断电:10分钟到24小时可调时间范围DIN和NIST缓冲液的自动缓冲液识别功能(1.68 / 4.00 / 6.86 / 9.18 / 12.54)记忆内可另外增加25 °C条件下的技术型缓冲液(4.00 / 7.00 / 10.00)先进的自测试和诊断功能(电极效率诊断,漂移控制) 可以提示校准需要的校准标志电网供电或续航时间超过1000个工作时的4 × AA电池可选VWR多参数测量仪说明 包装规格 VWR目录号台式pH/mV/导电率/溶氧计pHenomenal® MU 6100 L,套组1 1 SET VWRI665-0309 台式pH/mV/导电率/溶氧计pHenomenal® MU 6100 L,套组2 1 SET VWRI665-0310
  • VWR多参数测量仪 662-1157 1
    VWR 多参数测量仪该款用户友好型便携仪器,配有活动关节电极支架和IP 43级外壳,能够为精确的多参数测量提供高分辨率。该测试仪可以同时测量pH/mV和导电率或pH/mV和氧气。带连接至电脑的USB输出。GLP合规。 大尺寸LCD图形显示,带持续LED背光,能够同时显示测得的参数和温度值1分钟和1小时间可选择数据记录功能;5000条数据集记忆容量自动断电:10分钟到24小时可调时间范围DIN和NIST缓冲液的自动缓冲液识别功能(1.68 / 4.00 / 6.86 / 9.18 / 12.54)记忆内可另外增加25 °C条件下的技术型缓冲液(4.00 / 7.00 / 10.00)先进的自测试和诊断功能(电极效率诊断,漂移控制) 可以提示校准需要的校准标志电网供电或续航时间超过1000个工作时的4 × AA电池可选 VWR 多参数测量仪PH 电级:说明类型电解质隔膜直径×长度连接包装规格VWR目录号数量pHenomenal® 111 pH电极,3合1,带温度传感器pHenomenal® 111,3合1,凝胶*凝胶陶瓷12×120 mmBNC,1 m电缆1VWRI662-1157说明 包装规格 VWR目录号台式pH/mV/导电率/溶氧计pHenomenal® MU 6100 L,套组1 1 SET VWRI665-0309 台式pH/mV/导电率/溶氧计pHenomenal® MU 6100 L,套组2 1 SET VWRI665-0310
  • 多功能翘曲度测量仪配件
    多功能翘曲度测量仪配件是孚光精仪公司进口的全球领先的翘曲度检测仪器,一套翘曲度测试仪器可以测量:热沉,晶圆(wafer),太阳能电池和硅片翘曲度,应力以及表面形貌。多功能翘曲度测量仪配件是特别为半导体晶圆(wafer)和太阳能电池(solar cell)的翘曲度(warp) 和弯曲度(bow)以及表面形貌(topography)的测量而设计,可以测量晶圆翘曲度(wafer warpage) 和晶圆表面形貌, 晶圆应力,硅片张力,太阳能电池量子效率,既适合科研单位使用,也适合工业客户大产品、高效率的晶圆翘曲度和表面形貌的检测的需要。 我们还根据不同晶圆类型提供如下两种硅片翘曲度测量仪: 1. 非反射型:适合晶圆表面覆盖晶圆保护膜/胶带(wafer tape),图案化晶圆 /图样化晶圆(patterned wafer),粗糙的晶圆的应用; 2. 高反射型: 适合晶圆表面光滑 / 镜反射的应用。 多功能翘曲度测量仪配件特点: × 适合不同尺寸的晶圆检测,从0.5’‘到12' ' 的直径; * 标准检测能力为: 每小时可检测2000个晶圆或更多太阳能电池; × 同时测量多个晶圆或太阳能电池; × 测量镀膜后的晶圆或solar cell * 分析太阳能电池或晶圆应力和张力; * 对晶圆表面进行图像分析; * 测量图案化晶圆或非图案化的晶圆; * 具有太阳能电池的量子效率测量选项供选择 多功能翘曲度测量仪配件参数: × 翘曲度测量范围:1-20微米; * 重复精度: 百分之0.5 (1 sigma) * 给出结果:曲率半径,晶圆弯曲高度,翘曲度,测量日期和时间; * RMS粗糙度mapping: 0.5-20A (可选项); * 光源:根据用户的应用而配备不同光源; * 探测器:高分辨率探测器阵列并配备亚像素软件;
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制