当前位置: 仪器信息网 > 行业主题 > >

细胞株

仪器信息网细胞株专题为您提供2024年最新细胞株价格报价、厂家品牌的相关信息, 包括细胞株参数、型号等,不管是国产,还是进口品牌的细胞株您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞株相关的耗材配件、试剂标物,还有细胞株相关的最新资讯、资料,以及细胞株相关的解决方案。

细胞株相关的资讯

  • 大咖驾到 I 生物制药与细胞株开发研讨会
    大咖驾到 I 生物制药与细胞株开发研讨会生物药的前景美好,而竞争也日趋激烈。这对项目选择提出了更高的要求,知己知彼,避开拥挤的赛道,是成功的关键第一步。随着新技术的不断涌现,法规亦日益完善。如何在拥抱新技术、新方法的同时更好地满足法规的要求,是在与时间竞争时无法回避的问题。本次交流会,我们邀请多位生物药行业资深科学家,围绕生物药研究的现状,工程细胞株单克隆性验证,以及最新的细胞株开发流程和自动化解决方案展开讨论和交流,诚挚邀请各位踊跃参加。生物药物具有美好的前景,但是竞争也日趋激烈。如何选择项目,避开拥挤的赛道,是成功的关键一步。同时,随着新技术的不断涌现,法规亦日益完善。如何在拥抱新技术、新方法的同时,更好地满足法规的要求,是在与时间竞争时无法回避的问题。为此,佰傲谷与美谷分子仪器(上海)有限公司邀请多位生物药物行业资深科学家,将于2020年7月1日晚上七点至九点,举办生物制药与细胞株开发研讨会。本次交流会,将围绕“生物药研究的现状,工程细胞株单克隆性验证,以及最新的细胞株开发流程和自动化解决方案”,展开讨论和交流,诚挚邀请各位踊跃参加。直播时间2020年7月1日17:00-21:00直播平台Zoom+小鹅通直播平台直播安排时间安排安排19:00-19:05主持人介绍19:05-19:45自身免疫疾病的生物药研发现状曹卓晓博士先声药业执行总监19:45-20:25工程细胞株的单克隆源性问题刘大有博士创胜集团执行总监20:25-21:00细胞株开发流程探讨:细胞克隆技术的案例比较分析Dr.SteveWiltgenMolecularDevices高级产品经理嘉宾介绍曹卓晓博士,负责公司整个生物创新药的临床前开发。已有十多年丰富的生物药研发经验,负责和参与近30个不同类型大分子药物形式的开发,熟悉各类抗体药物筛选平台和生物药开发的全流程。于2004年获得美国纽约圣约翰大学药理毒理专业博士学位。之后在哈佛大学医学院从事心血管疾病及炎症免疫性疾病方面的博士后研究工作。其博士及博士后研究成果共发表在近20篇高影响力国际期刊的论文中。先后任职于诺和诺德北京研发中心和上海恒瑞医药有限公司,负责自身免疫疾病,炎症,肿瘤免疫,代谢,纤维化等广泛疾病领域方面的生物药开发,多个项目进入临床开发阶段。刘大有博士于2002年加入安进细胞株开发部门,拥有将近20年细胞株开发经验,领导了多个重要项目的分子评估和工程细胞株开发工作以及IND/BLA申报,包括已上市的EVENITY,aimovig,和Prolia/Xgeva的第二代细胞株(产量超过10g/L)。有丰富的工程细胞株的遗传学表征方面的经验,曾为Prolia/Xgeva的BLA申报工作做出重要贡献。2016年加入默沙东细胞株开发部门,是默沙东新一代业界领先的高效高速细胞株开发平台的主要设计者,现任职创胜集团细胞株开发部门执行总监。毕业于内布拉斯加大学林肯分校获数学与生物科学学士学位,后在加州大学欧文分校获神经生物学博士学位,主要应用超高分辨技术研究离子通道功能。Steve随后加入了Molecular Devices,历任应用科学家、产品经理等。参会方式方式一:点击下方按钮,即可报名立即报名方式二:扫描下方二维码报名详情请咨询美谷分子仪器(上海)有限公司。
  • 【应用合辑】贝克曼助力细胞株开发整体解决方案
    在细胞株开发上,贝克曼库尔特生命科学部不仅提供“基因-蛋白-细胞”系统解决方案,同时还应对海量数据挑战,实现数据追踪和管理。点击以下应用,了解更多细节。 一种让你快速构建细胞株的策略 如何应对细胞株开发数据挑战 Echo如何以快速、精准、任意孔到任意孔移液加快细胞株开发 丹纳赫生命科学细胞株开发整体解决方案 点击“阅读原文”,了解更多产品信息~阅读原文
  • 美谷分子:提高细胞株开发效率是抗体药企提升竞争力的要素
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 目前,抗体药物已成为全球生物制药的重点。抗体药物开发也逐步成为中国制药行业关注的热点,国家十二五规划中明确提出,增强新药创制能力,加快单克隆抗体药物的研究,重点开发治疗恶性肿瘤的抗体药物,突破生物技术药物产业化的技术瓶颈,开发自主知识产权产品,抢占世界生物技术制药的制高点。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 近日,仪器信息网特别策划了“ strong 抗体发现及细胞株开发的高通量自动化解决方案 /strong ”专题,以期能够帮助生物制药领域用户了解抗体药物开发过程中的相关技术方法。并邀请美谷分子仪器(上海)有限公司技术主管徐孟杰分享了他的观点。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " & nbsp /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/fb48c2e2-8422-4ec0-b8c4-d001eb137308.jpg" title=" 图片1.png" alt=" 图片1.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " 徐孟杰& nbsp 技术主管 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 仪器信息网:请您谈谈目前抗体药物开发整体现状以及细胞株开发的现状。 /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 徐孟杰 /strong :从产品角度来看,抗体药物开发的重心在于结构创新和改造,比如双特异性抗体,以及scFv、纳米单抗等抗体片段。此外还有研究的靶点从前期的热门靶点,延伸到“相对冷门”的靶点上,一些认知相对较少的靶点。从抗体药物开发的技术角度,很多大公司都在加强或完善抗体发现平台,提高自动化程度,从而有助于发现更多优质候选分子。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 细胞株开发上,由于宿主细胞、质粒结构、筛选方法以及培养基等优化,单抗产量已经比较容易达到5& nbsp g/L及以上,因此产量已经不是最大的瓶颈。随着药企间竞争的加剧,缩短细胞株开发工作流程时间、减少人工操作、提高效率并更好地满足法规的要求,尤其是细胞株单克隆性的要求,是当下更为关注的要素。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 仪器信息网:在目前的抗体发现及细胞株开发过程中,相关方法的技术难点主要是什么?如何突破? /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 徐孟杰 /strong :抗体发现技术包括杂交瘤筛选技术,噬菌体展示技术和单个B细胞技术等。作为筛选平台,最重要的还是筛选的通量和效率,从而找到更多特异性的抗体或抗体片段。目前越来越多的平台借助高通量自动化的系统来实现通量和效率的提升。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 细胞株开发阶段,产量和时间是两个重要的指标,涉及的因素比较多,包括宿主细胞,筛选体系,以及单细胞克隆等。单细胞克隆技术的选择,极大影响实验流程的时间和筛选的通量,最终也会影响到细胞株产量,因此是非常关键的一个技术环节。一轮有限稀释结合孔板成像是目前较为常见的方法,不过有限稀释的操作存在低效和人工操作时间长的不足。因此,越来越多的公司采用单细胞分离系统代替有限稀释,这不仅可以提高筛选的通量和工作效率,还可以加强细胞株单克隆性的可信度,因此单细胞分离系统加孔板成像是当下热门的技术组合。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 仪器信息网:请介绍目前在抗体发现及细胞株开发过程中,科学仪器市场对应开发产品的现状及发展趋势如何? /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 徐孟杰 /strong :对于抗体发现,主要的需求在于自动化高通量的设备,市场上既有针对各个阶段的自动化设备,也有全流程的自动化解决方案。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 细胞株开发的新技术更是精彩纷呈,近几年快速孔板成像设备已成为细胞株开发的“标配”,结合一轮有限稀释,就可以达到足够的单克隆性可信度,取代了原先的两轮有限稀释,缩短了整个流程的时间。最近一两年,又出现了许多基于微流控芯片技术的产品,取代手工有限稀释或流式分选,提高单细胞接种的效率,是时下的热点。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 仪器信息网:请介绍贵公司在抗体发现及细胞株开发方面有哪些仪器产品和解决方案?请介绍相关产品的技术特点和优势? /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 徐孟杰 /strong :针对噬菌体展示的抗体发现,我们公司有挑大肠杆菌克隆的QPix微生物克隆筛选系统,代替人工挑取,实现3000个克隆/小时的高速挑取,以及& gt 98%的挑取成功率,是这个领域的标杆产品。此外,我们还可以整合上下游的设备,实现整个噬菌体展示流程的全自动化,从而进一步提高筛选的通量和效率。 span style=" text-align: center text-indent: 0em " & nbsp /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 367px " src=" https://img1.17img.cn/17img/images/202010/uepic/dc8f9846-1f44-4787-8582-d85307b91c16.jpg" title=" 22.png" alt=" 22.png" width=" 550" height=" 367" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " QPix微生物克隆筛选系统 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 对于杂交瘤筛选,我们公司有ClonePix2细胞克隆筛选系统,结合半固体培养基,可以获得高密度的杂交瘤细胞克隆,相比传统铺板的方法,不仅可以减少孔板数量及人工操作量,还可以发现更多特异性的杂交瘤细胞克隆,且后续的亚克隆时间亦可以缩短。ClonePix2系统通过白光成像和荧光成像,可以筛选出抗原特异性或者IgG阳性的杂交瘤细胞克隆,并自动精确地转移至微孔板,可用于初筛或者后续的亚克隆,提高工作效率。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 400px height: 550px " src=" https://img1.17img.cn/17img/images/202010/uepic/98dd2921-940d-45df-8136-459023c59578.jpg" title=" 图片3.png" alt=" 图片3.png" width=" 400" height=" 550" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " ClonePix2细胞克隆筛选系统 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 对于细胞株开发,上面提到的ClonePix2系统也可以用于细胞株开发,借助半固体培养基的高克隆密度和ClonePix2系统的强大筛选功能与自动化挑取,可以轻松筛选上万个克隆并挑取出其中的高表达克隆。此外,我们还有CloneSelect高通量单细胞分离系统,这是一款新的设备。该系统基于微流控芯片技术和智能图像分析,可以实现& gt 80%的单细胞接种效率和& gt 75%的细胞活率,从而实现& gt 60%的单克隆率。相比有限稀释,可以将每块96孔板或384孔板的克隆数量提高3倍及以上,从而扩大筛选通量。同时,单细胞分离过程采集的图像,与后续的全孔成像的图像互相佐证,可以提高单克隆性的保证。在全孔成像方面,我们有CloneSelect Imager细胞生长分析系统,专门用于细胞株单克隆性验证。该系统可以在90s内完成一块96孔板的高质量图像的采集,配套的分析软件可以出具单克隆性报告,因此可以高效地完成图像的采集、分析和报告出具。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 332px " src=" https://img1.17img.cn/17img/images/202010/uepic/d33451b0-26f4-41ad-9e84-dc73f63151c8.jpg" title=" 图片4.png" alt=" 图片4.png" width=" 550" height=" 332" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 409px " src=" https://img1.17img.cn/17img/images/202010/uepic/11a5f221-c6e1-4727-bc61-64a62a93ccd2.jpg" title=" 33.png" alt=" 33.png" width=" 550" height=" 409" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " CloneSelect高通量单细胞分离系统 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " & nbsp /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " & nbsp /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/88c8c151-5f32-4977-b969-adce4e69dc32.jpg" title=" 图片6.png" alt=" 图片6.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " CloneSelect& nbsp Imager细胞生长分析系统 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 仪器信息网:请您介绍一下用于细胞株开发的新产品与传统方法以及同类型产品之间的差异。 /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 徐孟杰 /strong :我们的新产品叫CloneSelect高通量单细胞分离系统,它的核心在于微流控芯片和智能图像分析。第一个特点是获得更多的单个活细胞最终生长成细胞克隆,细胞克隆数目是有限稀释的4倍及以上。它利用微流控芯片柔和地产生细胞液滴,通过实时地图像分析判断细胞数目,将空的液滴或者多个细胞的液滴真空吸走,从而只接种单个细胞的液滴,以达到更高的单细胞接种效率。第二个特点是处理速度快,提高工作效率和筛选通量。单细胞分离系统只需要简单的准备就可以使用,接种一块96孔板的时间不到5min,从而提高整体的工作效率。第三个特点是记录的单细胞分离图像,可以与后续的孔板成像的数据相互补充,提高单克隆性的可信度。第四个特点是采用一次性的分离槽,细胞样品加到分离槽中,离开后直接进入微孔板,正式样品不流经其他的管路,因此省去了清洗和验证系统的麻烦。第五个特点是兼容一系列细胞,且具有荧光分选功能,可以拓展应用。除了分离CHO细胞外 ,还可以用于HEK细胞、干细胞、昆虫细胞、各种肿瘤细胞及原代细胞。绿色荧光可以用于筛选出基因编辑成功的活细胞、高表达的细胞以及高活率的细胞,拓展应用范围,配合一次性分离槽,使得不同项目之间的切换会非常方便。 /p
  • Molecular Devices 错过了快速筛选哺乳动物细胞株的网络研讨会?下载研讨会录音和课件!
    错过了快速筛选哺乳动物细胞株的网络研讨会?下载研讨会录音和课件! 网络研讨会: 我们很荣幸的宣布,您已经可以下载&ldquo 快速筛选哺乳动物细胞株的最新技术&rdquo 网络研讨会的录音和课件了! 录音 课件 录音播放器主讲人: Chris Zhang, Ph.D., Research Scientist, Genetix, Molecular Devices. 张骁博士是分子仪器公司R&D部门的研发科学家;张博士在英国谢菲尔德大学攻读的生物化学;并在医学院获得了研究免疫,感染和炎症方面的博士学位。同年在皇家哈勒内姆医院的心血管部门从事研究工作。张博士于2009年加入分子仪器公司。至今,他成功的推动了很多跨平台应用的研发,热衷致力于细胞信号通路的分析和干细胞筛选技术应用的研发。摘要:随着药物供给需求的快速增长,和生物制药企业的快速发展,对快速开发出高效稳定的生产系统的需求已经越来越高。依靠试验员手工操作,在传统细胞株的生产制作工艺上占据了极大的比例。这部分传统工艺需要大量人力做重负冗繁的工作,致使产量低而且很容易受到人为错误的影响。我将在这里为您介绍新的ClonePix系统会充分填补传统工艺上的不足。ClonePix系统是一个将高通量筛选和自动化系统整合为一体,专为生物制药企业设计的,适用于快速开发,筛选,生产大分子细胞株的平台。如果您有任何问题,请联系MD中国:info.china@moldev.com获得更多Molecular Devices的活动和新闻信息,请访问我们的网站:moleculardevices.com
  • Molecular Devices 网络研讨会:快速筛选哺乳动物细胞株的最新技术
    网络研讨会:快速筛选哺乳动物细胞株的最新技术Tuesday, June 26, 20124:00 PM Beijing TimeTuesday, June 26, 2012 | 4 pm Beijing Time 主讲人:Chris Zhang, Ph.D., Research Scientist, Genetix, Molecular Devices. 张骁博士是分子仪器公司R&D部门的研发科学家;张博士在英国谢菲尔德大学攻读的生物化学;并在医学院获得了研究免疫,感染和炎症方面的博士学位。同年在皇家哈勒内姆医院的心血管部门从事研究工作。张博士于2009年加入分子仪器公司。至今,他成功的推动了很多跨平台应用的研发,热衷致力于细胞信号通路的分析和干细胞筛选技术应用的研发。 摘要: 随着药物供给需求的快速增长,和生物制药企业的快速发展,对快速开发出高效稳定的生产系统的需求已经越来越高。依靠试验员手工操作,在传统细胞株的生产制作工艺上占据了极大的比例。这部分传统工艺需要大量人力做重负冗繁的工作,致使产量低而且很容易受到人为错误的影响。我将在这里为您介绍新的ClonePix系统会充分填补传统工艺上的不足。ClonePix系统是一个将高通量筛选和自动化系统整合为一体,专为生物制药企业设计的,适用于快速开发,筛选,生产大分子细胞株的平台。如果您有任何问题,请联系MD中国:info.china@moldev.com详情请联系:美谷分子仪器(上海)有限公司E-mail: Info.china@moldev.com上海:86-21-33721088 北京:86-10-64108669台北:886-2-26567581 香港:852-81252509www.moleculardevices.com.cn | www.moleculardevices.com
  • 岛津应用:利用LC-MS/MS 考察不同培养基对 CHO 细胞株培养的影响
    细胞培养基是人工模拟细胞在体内生长的营养环境,为促进细胞生长增殖提供物质基础,是培养细胞生长和繁殖的生存环境。合成细胞培养基是用化学成分明确的试剂配制的培养基,是目前常用的一类培养基,其组分稳定,主要包括糖类、必需氨基酸、维生素、无机盐类等。培养基组分的变化,对细胞生长会产生一定影响,如细胞生长形态、分裂速度等。同时,适宜的培养基组成与优选的细胞培养工艺对于提高蛋白类药物的产率,保证细胞培养批次之间的一致性、稳定关键质量属性等因素至关重要。因此,寻求一类合适的培养基组成,对细胞培养具有重大意义。细胞生长状态的分析,除形态学观察外,还可对细胞培养上清液中细胞代谢物进行分析,通过考察细胞上清液中营养物和代谢物的变化,判断细胞在生长增殖过程中状态的优劣。鉴于此,我们开发了“细胞培养上清液方法包”,该技术可在 17 分钟内同时分析 95 种细胞培养上清液营养成份和代谢物的相对丰度变化。本文使用岛津超高效液相色谱仪 LC-30A 和三重四极杆质谱 LCMS-8060 联用,结合“细胞培养上清液方法包”建立了细胞培养上清液中营养物质和细胞代谢物的液相色谱-串联质谱的同时分析方法,为相关研究人员评估细胞生长状态、改进培养基组分提供参考。岛津三重四极杆质谱 LCMS-8060 了解详情,敬请点击《利用LC-MS/MS 考察不同培养基对 CHO 细胞株培养的影响》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 单克隆高表达细胞株筛选新探索---第五届抗体药物创新及产业化论坛Namocell演讲报告
    9月18日至21日,美国Namocell公司参加了第五届抗体药物创新及产业化论坛,并且做了精彩报告。报告中不但介绍了单抗药物开发过程中的关键步骤---细胞系构建问题,提出了新的单克隆铺板方案,而且对于如何挑选高表达细胞株做了新的探索。报告受到了与会专家的一直好评。 美国Namocell公司,作为一家专注于单细胞分离技术的生物仪器公司,一直致力于打造高效、准确、便捷的单细胞分离平台。在此基础上,Namocell在单细胞分离平台上也在不断开发更多新的应用。近年来,单抗药物的开发领域又被推上了一个新的高度,越来越多的公司都纷纷投入到这个热潮当中,随之而来的相关法规的要求也是越来越严格。在众多的要求当中,FDA对药物来源的单克隆源性的要求非常严格,这就要求生产和研发的企业在细胞株开发阶段做到严格的单克隆验证。目前市面上已经有几款孔板扫描设备能够得到FDA的认可,他们的数据可以用来作为单克隆源性的证明。在这里我们要讨论的是在验证前的分离阶段,如何快速、准确、高效的获得单细胞。除了上面提到的有限稀释法之外,昂贵的流式细胞分选仪也可以用来作为单细胞铺板工具之一,当然流式除了操作复杂,需要专人维护之外,分选得到的细胞常常复苏比例比较低。在流式分选中,细胞受到较大的鞘液压力的影响,会有一定程度的损伤,导致后期单细胞克隆率低。Namocell单细胞分离仪为细胞铺板提供了全新解决方案。该设备采用新的微流体技术能够实现快速,高效,准确的细胞铺板工作。分离过程轻柔,不会影响细胞的后续生长。能广泛应用于单抗开发中的CLD环节,以及单细胞测序等。最后,在本次报告中,Namocell还介绍了公司新的应用开发进展,向与会者分享了高表达细胞株筛选的全新方案,引起了很大的反响。
  • 专注于单细胞技术|Berkeley Lights收购IsoPlexis达成最终协议
    Berkeley Lights公布近期与IsoPlexis就Berkeley Lights收购IsoPlexis达成最终协议(Definitive agreement)。IsoPlexis是一家拥有前沿技术的生命科学公司,为科研人员提供强大的细胞及蛋白组分析工具深入研究细胞功能,从而为人类的健康做出积极的贡献。IsoPlexis以其领先的IsoCode多重细胞行为分析平台而闻名,因其取得的科学成果和易于使用的软件和硬件系统而备受研究人员和临床医生的推崇。IsoPlexis拥有独特的具有蛋白质组学活性的细胞库,是单细胞蛋白质组学领域新兴的免疫分析领导者,其靶向蛋白质组学平台和单细胞多组学平台正在积极地开发中。收购完成后,Berkeley Lights与IsoPlexis将合并成为一家公司,并正式更名为 PhenomeX。PhenomeX旨在成为一家超一流的功能性细胞生物学公司,为研究人员提供革新性的活细胞生物学研究工具,以深刻理解细胞的功能及表型背后的原因。我们作为PhenomeX的使命是释放研究人员利用功能性细胞生物学的全部潜力,推动下一次科学革命的到来。根据最终协议,Berkeley Lights计划在2023年第一季度完成收购交易。在交易完成前,Berkeley Lights和IsoPlexis将继续作为独立的公司运营。我们与您的合作不会因此发生任何变化,并将一如既往地为您提供优质的服务和创新的产品。Berkeley Lights(NASDAQ:BLI)总部位于美国加州的埃默里维尔,是一家专注于单细胞功能表征解决方案的领先数字细胞生物学公司。基于专有的光导技术和纳米微流控技术,BLI为广大科学家提供了最先进的研究环境,对数以万计单细胞的基因信息、功能等进行深入表征,以筛选出满足用户需求的目的细胞。Berkeley Lights的单细胞光导平台自2016年问世以来,在全球已经拥有超过百家用户,应用场景涵盖传染病研究、应急医学、细胞株开发、疫苗生产、免疫学研究和细胞疗法开发、基因编辑、肿瘤生物学研究、干细胞功能表征、基因治疗开发、合成生物学及农业科学等多个领域,为从事尖端的科研项目及加速企业生物产品的开发提供了前所未有的机遇。
  • Namocell:关注单细胞测序以及单抗药物的开发领域
    p    span style=" color: rgb(0, 112, 192) font-family: 楷体, 楷体_GB2312, SimKai font-size: 14px " 近年来,流式细胞仪市场“动作”频繁。2018年9月,安捷伦以2.5亿美元收购国产流式制造商ACEA,被业内称“靠谱国产品牌又少一个”。2018年10月,Luminex同意以7500万美元收购默克的流式细胞仪部门(于2019年1月完成此项收购),将Amnis和Guava品牌收入囊中,从而扩大了Luminex在生命科学研究中的领域。2019年1月,中生苏州自主研制的流式细胞仪已在吉大一院投入临床使用。2019年2月,达科为与必达科共同推出Exflow品牌流式细胞仪。2019年2月,国产厂商赛雷纳也推出流式细胞仪新品。2019年,唯公科技研发的Easycell系列流式细胞仪也将获证上市。此外,博奥生物、竞天生物等国产厂商也于近年纷纷发布流式细胞仪产品。 /span br/ /p p span style=" color: rgb(0, 112, 192) font-family: 楷体, 楷体_GB2312, SimKai font-size: 14px "   目前国内流式细胞仪厂商已达20余家,流式细胞仪技术不断发展,仪器不断小型化, 融合微流控、显微成像技术,未来应用前景十分广阔。流式细胞仪的发展已有数十年,为何各厂商近年纷纷选择布局流式细胞仪市场?流式细胞仪市场有什么样的特点?为了对我国流式细胞仪市场发展情况作必要解读和评价,仪器信息网邀请 strong Namocell中国地区负责人陈科立 /strong 谈一谈对流式细胞仪的看法。 /span /p p a href=" https://www.instrument.com.cn/zt/liushixibaoyi" target=" _blank" span style=" font-family: 宋体,SimSun text-decoration: underline " strong span style=" color: rgb(0, 112, 192) font-size: 14px text-decoration: underline " 点击进入 span style=" color: rgb(255, 0, 0) font-size: 14px text-decoration: underline " “进击的”流式细胞仪 /span 专题,解锁更多流式行业信息! /span /strong /span /a /p p style=" text-align: center " img width=" 474" height=" 355" title=" 24138c9caa723496bb2962246374e2e.jpg" style=" width: 474px height: 355px " alt=" 24138c9caa723496bb2962246374e2e.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/c67d8283-ac6d-479b-aeb7-ff3d2f7ccb9b.jpg" / /p p style=" text-align: center " strong Namocell中国地区负责人陈科立 /strong /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:您认为流式细胞仪的中国市场与全球市场有哪些不同?请您谈谈流式细胞仪在中国的市场前景以及未来机遇。 /strong /span /p p    strong 陈科立: /strong 流式细胞仪在中国的市场潜力是非常大的,从一个侧面也可以反应出来,那就是多个国产的品牌都开始进入这个市场,与国外品牌竞争市场份额。未来在中国的流式市场还是有比较大的增长空间。在科研领域,国家每年投入的科研经费依旧维持在一个比较大的体量,并且稳步增长,尤其已生物医药作为发展重点 在临床方面,随着相应试剂盒的不断丰富,临床检测项目不断向二级医院扩展,市场对流式仪器的需求量大大增加 在工业领域,生物医药行业的不断发展,新公司不断增多,对很多具备研发能力的公司来说,流式也成为“标配”项目。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:贵公司的流式细胞仪技术特点是什么?看好的细分市场领域哪些? /strong /span /p p    strong 陈科立: /strong Namocell的仪器结合了流式细胞术的经典原理以及微流控芯片的技术优势,使得仪器的操作更加简便,分离的细胞具有更好的活性。相比于传统的流式分选仪,Namocell采用更小的鞘液压力(不到2 psi),这样在分选的过程中对细胞的损伤极小,分选出来的细胞具有非常好的活性,可进行单细胞培养 Namocell采用了一次性分离芯片,从加样、检测、分离都在这个芯片上完成,可以完全避免样品间交叉污染 操作简便,只要半小时培训即可上机熟练操作,相比传统流式分选仪,无需专人维护。 /p p   目前Namocell主要关注的细分市场集中在单细胞测序领域以及单抗药物的开发领域。在单细胞测序领域,Namocell可以很好的作为例如10X等高通量单细胞测序的一个技术补充,在样品数量极少或者长片段DNA测序的情况下,能够发挥出极大的作用 在单抗开发领域,Namocell可以在前期抗体筛选,中期细胞株构建等环节给用户带来非常大的帮助。目前在这两个领域已经有了一些重量级用户,例如:哈佛、斯坦福、麻省理工、Genentech、FivePrime、上海交大、中科院上海生科院等。 /p p style=" text-align: center " img width=" 495" height=" 233" title=" 30019f47a85ce53560d19a1201fec99.png" style=" width: 495px height: 233px " alt=" 30019f47a85ce53560d19a1201fec99.png" src=" https://img1.17img.cn/17img/images/201904/uepic/1fdb6ebb-b71a-49f2-b1e0-e0172d33e4ee.jpg" / /p p style=" text-align: center " strong Namocell流式细胞仪 /strong /p p strong    span style=" color: rgb(0, 112, 192) " 仪器信息网:请介绍贵公司流式细胞仪技术的发展历史。 /span /strong /p p strong   陈科立: /strong Namocell是一个非常年轻的公司,2010年成立于美国的硅谷,借助与斯坦福的密切合作发展至今。公司自主研发的微流体单细胞分选平台,使复杂的单细胞分选变得极其简单快速,极大地推动了单细胞分析在基础研究和临床的上应用。我们的产品已在细胞株的选育,单克隆抗体的筛选,细胞基因编辑,癌症液体活检,癌症免疫治疗,产前基因筛查,噬菌体展示,单细胞基因组等多方面得到广泛的应用。目前Namocell已经与美国哈佛大学、斯坦福大学、马萨诸塞州总医院癌症研究中心等科研院所以及Genentech、Five Prime Therapeutics、Juno等生物公司有着广泛合作。 /p p style=" text-align: center " span style=" text-decoration: underline " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span & nbsp & nbsp & nbsp strong 欢迎广大流式圈内人士加入 span style=" color: rgb(0, 112, 192) " “流式细胞仪用户交流群” /span 。在群里你可以和各路大神零距离沟通,不定期会有福利! /strong span style=" color: rgb(192, 0, 0) " (若二维码过期,请添加小编微信拉你进群) /span /p p style=" text-align: center " img width=" 189" height=" 252" title=" 微信图片_20190402101139.jpg" style=" width: 189px height: 252px " alt=" 微信图片_20190402101139.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/ac3190fd-d59c-45af-80b6-00ad93785913.jpg" / /p p 以下是小编微信二维码,添加小编微信好友,备注上单位及姓名,小编会拉你进交流群的哦~心动不如行动,快快加入吧! /p p br/ /p p style=" text-align: center " strong /strong /p p style=" text-align: center " img width=" 162" height=" 162" title=" 群主二维码.jpg" style=" width: 162px height: 162px " src=" https://img1.17img.cn/17img/images/201904/uepic/13c13f39-6e9a-44fc-aef0-4e4747a0f0a8.jpg" / br/ /p p style=" text-align: center " strong 仪器信息网生命科学官微 span style=" color: rgb(0, 112, 192) " “3i生仪社” /span 上线啦!关注了解更多生命科学干货资讯! /strong /p p style=" text-align: center " img width=" 160" height=" 160" title=" 新 公号icon.jpg" style=" width: 160px height: 160px " alt=" 新 公号icon.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/d0de24d5-b7a9-442b-8c79-a168d5938257.jpg" / /p
  • 哺乳动物细胞培养过程 & 培养条件
    哺乳动物细胞培养过程哺乳动物细胞在培养过程中会经过组织提取,原代培养,传代培养等过程。传代培养会根据具体情况分为细胞株培养和细胞系培养。如下对各个过程进行简述:原代培养:从动物机体取出组织后切碎,经过各种酶(常用胰蛋白酶),螯合剂(常用EDTA)结合机械方法(吸液管反复吸吹)处理,分散成单细胞,置于合适的培养基中培养,使细胞得以生存、生长和繁殖。一般把从动物有机体内取出细胞开始培养,到繁殖十代以内的细胞培养称为原代细胞培养。经过原代细胞培养,细胞分裂繁殖,培养物逐渐增多长满培养空间,继而相互之间接触,发生接触抑制现象,生长速度逐渐减慢甚至停止。需要重新接种到新的培养瓶内进行传(继)代培养。传(继)代培养:将原代细胞从培养瓶中取出,配制成细胞悬浮液,分装到两个或两个以上的培养瓶中继续培养,称为传(继)代培养。细胞系:初代培养物开始第一次传代培养后的细胞,即称之为细胞系。如果细胞系的生存期有限,则称为有限细胞系。已获得无限繁殖能力,能持续生存的细胞系称为连续细胞系或无限细胞系。细胞株:从一个经过生物学鉴定的细胞系,用单细胞分离培养或通过筛选的方法,由单细胞增值形成的细胞群,称为细胞株。再由原细胞株进一步分离培养出与原珠形状不同的细胞群,成为亚株。哺乳动物细胞培养条件不同哺乳动物细胞在各个阶段的培养,都需要有基础的培养条件,归纳如下:1、无菌无毒的环境:对培养液和所有培养用具无菌处理;培养液中添加抗生素防止培养过程中污染;定期更换培养液以清除代谢产物,防止对培养细胞造成危害。2、营养:液体合成培养基包含糖、氨基酸、促生长因子、水、无机盐、微量元素等;通常还需加入血浆、血清等天然成分3、适宜的温度和pH:人和哺乳动物细胞最适宜温度大多为36±0.5℃。适宜的酸碱度为pH 7.2-7.4。4、气体环境:气体环境一般为“95% 空气+5% CO2”混合气体。氧气是细胞代谢必须气体,CO2维持培养液pH。德国WIGGENS CO2培养箱,为细胞生长提供最佳环境,为您的细胞培养保驾护航。
  • 新品发布!亲眼见证单克隆性——CloneSelect高通量单细胞分离系统
    众所周知,细胞株开发在单抗领域是一个至关重要的环节。现有的细胞株开发流程存在很多弊端,如单细胞分离效率低下、单细胞存活率低以及缺乏单克隆性证据等。近日,Molecular Devices推出了新品CloneSelect高通量单细胞分离系统c.sight及f.sight两款仪器,它们能提高单细胞分离的效率及活率,且增加单克隆性的可信度。系统采用一次性分离槽设计,省却清洗验证程序,降低交叉污染的风险。此外,系统具备除静电装置,保证高精度的接种,尤其是针对PCR孔板。CloneSelect高通量单细胞分离系统高效接种单个活细胞至微孔板后,用CloneSelect Imager细胞生长分析系统对孔板进行成像记录单个细胞及后续的细胞分离过程。结合单细胞接种前后的图像,以及单细胞在微孔内增殖最终形成细胞团的序列图像,可以为细胞株的单克隆性提供更高的可信度保证。CloneSelect高通量单细胞分离系统的高效率和高活率,可以在不增加工作量的前提下提升细胞筛选的通量,从而有助于发现更多更优质的细胞株或者稀有细胞。主要特点: • 单细胞分离、成像并接种至96或384孔板 • 克隆成活率提高至最多8倍 • 一次性无菌微流控分离槽确保细胞健康无污染 • 明场或荧光分离细胞 工作原理: 使用专有的喷墨式单向分离槽及微流控技术和智能图像分析技术将单个活细胞高效地接种至微孔板或PCR板,轻柔而高效地分离单个细胞。使用高分辨率的明场或荧光成像对细胞进行成像和分析,记录细胞分离过程的连续5张图像,用于增加单克隆性的可信度。应用领域:单细胞分离/分选,用于细胞株开发 单个B细胞技术,用于抗体发现 筛选稀有活细胞,如干细胞、基因编辑的细胞等 单细胞测序,尤其是转录组测序。 下载产品资料请联系美谷分子仪器
  • 深度了解Namocell单细胞分离仪
    公司简介:Namocell是一家总部位于美国硅谷的专注于世界先进的单细胞分选技术的生物仪器公司。该公司自主研发的微流体单细胞分选平台,使复杂的单细胞分选变得极其简单快速,极大地推动了单细胞分析在基础研究和临床的上应用。我们的产品已在细胞株的构建,单克隆抗体的筛选,细胞基因编辑,癌症液体活检,癌症免疫治疗,产前基因筛查,噬菌体展示,单细胞基因组等多方面得到广泛的应用。目前Namocell单细胞分离仪已经被世界各大知名研究机构及生物制药公司广泛应用于生命科学研究的各个领域,例如美国国家卫生研究院(NIH),斯坦福大学,麻省理工大学,Genentech,Merck,Biogen等。在国内,目前也已经有多家高校、科研院所和生物公司采用Namocell的产品进行单细胞方面的工作。一、技术原理:美国Namocell公司的单细胞分离仪(NamocellSingleCellDispensers)采用先进的微流体技术以及灵敏的光学检测系统,在精确地鉴别细胞的同时又能对目的细胞进行单细胞的分离分选,最终在96孔板或者384孔板中得到结果。Namocell单细胞分离仪完美结合了三种重要技术,实现快速、高效、准确地分离并获取单细胞:1.流式细胞术:细胞检测方式采用流式细胞术,利用激光激发,荧光和散射光的接收来判断细胞特性,检测精度高;2.微流控技术:采用微流控芯片检测分离细胞,在极低的鞘液压力下()进行分选,如手工般轻柔,保持细胞活性,零损伤;3.液滴分配技术:可以让筛选得到的所需细胞,从微流控芯片中将含有单个细胞的液滴直接滴至96孔板或384孔板。二、产品特性特性1.轻柔---保护细胞活性Namocell单细胞分离仪发挥微流体技术的低鞘液压力优势,在整个分离过程中系统给流体的加压小于2psi,对细胞极其轻柔,保护细胞活性,促进细胞后续生长。以下是Namocell与两款传统的FACS流式细胞仪进行细胞铺板生长情况对比,结果显示,用Namocell单细胞分离仪进行单细胞铺板的结果普遍优于用FACS铺板的结果。特性2.灵活---适用各种样本浓度Namocell采用微流控芯片进行细胞分选,系统死体积小,样本浪费少。因此对于少量珍贵细胞样本,比如细胞数量少于一百个,也可轻松完成单细胞分离。Namocell独创的富集分选模式,可以在细胞密度很高的状态下进行(2x108cells/mL)挑选含量极低的()目标细胞。特性3.快速---96孔板只需1分钟Namocell单细胞分离仪是目前市场上最快速的单细胞分离系统:1.分选速度快:可在1分钟内完成96孔板分选,6分钟内完成384孔板分选。2.整体流程速度快:开机无需任何调试,无需微球进行复杂的dropdelay校准,一键即可在2分钟内自动完成初始化,开始进行细胞分选,更换样本只需1分钟,分选结束后关机只需2分钟。特性4.轻巧---整机小巧,方便移动整机体积小巧,轻便。尺寸是50×36×20cm,重量9kg,相当于小型家用微波炉的体积与重量,不占实验室空间,方便移动。尤其对于无菌要求高的实验,可以将Namocell单细胞分离仪放进超净台中使用。特性5:无菌---一次性芯片,杜绝交叉污染细胞分选的实验绝大多数需要无菌环境,Namocell单细胞分离仪在设计上为无菌要求做到了三重保护:1.体积小巧:方便整机置于超净台中进行细胞分选操作;2.一次性芯片,零污染:从根本上杜绝了样本之间相互污染的可能性,用户可在同一台仪器上分离细胞、细菌、酵母等生物样本,而无需为样本交叉污染而担忧;3.专属管路,无残留,无堵塞:Namocell采用的专属管路设计,确保样本在检测前不会流经共用通道。完全杜绝了FACS常见的系统堵塞以及样本残留在管路中的现象。特性6:轻松---使用简单,无需专人维护Namocell单细胞分离仪只有一个硬件开关,是真正的“一键启动”,并且启动后无需预热,无需调校,开机后可立即使用。使用极其简便,每一步都有软件自动提示,无需特殊培训,也无需流式经验,能够让每个人都成为细胞分选高手。三、应用领域Namocell单细胞分离仪已经广泛应用于生命科学的各个领域。在生物制药领域,用于细胞株构建、抗体药物开发;在肿瘤医学方面,用于稀有循环肿瘤细胞的分离;在植物学领域,用于原生质体的分离;在CRISPR基因编辑领域,用于工程细胞株的开发以及iPSCs的单克隆细胞培养;在单细胞分析方面,用于单细胞测序和单细胞质谱的前处理过程等等。了解更多内容,请关注Namocell官网。
  • 生物制药市场高速增长下,批量细胞系构建实验室的自动化探索
    远高于国民经济整体增速,中国单抗市场增长迅速生物制药是利用生物活体来生产药物的方法。如利用转基因玉米生产人源抗体、转基因牛乳腺表达人α1抗胰蛋白酶等。生物制药行业前景广阔,全世界的医药品已有一半是生物合成的,它将广泛用于治疗癌症、艾滋病、冠心病、贫血、发育不良、糖尿病等多种疾病。医药上已应用的抗生素绝大多数来自微生物,如红霉素、注射用的青霉素、链霉素、庆大霉素等。2016-2020年期间我国生物医药产值规模高速增长,中国单抗市场将以16% CAGR增长,其中单抗在未来4年将以43% CAGR增长,远高于同期国民经济整体增速。2021年,中国生物医药产值规模突破3.2万亿元。(数据来源: Frost & Sullivan, 财通证券)体外培养细胞的种类和命名体外培养细胞的名称,随培养细胞技术的发展和细胞种类的增多而演变。最早采用的名称为细胞株(Cell strain),以后又出现细胞系(Cell Line)一词,两者曾一度混用致概念不明确,导致文献中也很混乱。我国也曾有类似情况,在我国尚未制定出统一名词前,本书用的名词基本参考 Schaeffer,W.I.(1979)和国内有关会议、以及国内外杂志常用名词为准。各种已被命名和经过细胞生物学鉴定的细胞系或细胞株 ,都是一些形态比较均一、生长增殖比较稳定的和生物 性状清楚的细胞群。因此凡符合上述情况的细胞群也可 给以相应的名称,即文献中常称之为已鉴定的细胞(Certified Cells)。已鉴定的细胞可用于各种实验研究和生产生物制品。当前世界上已建的各种细胞系(株)已难胜数,我国也建有百种以上,并在不断增长中。①细胞系(Cell Line):原代培养物经首次传代成功即成细胞系,由原先存在于原代培养物中的细胞世系(Lineage of Cells)所组成。②细胞株(Cell Strain):通过选择法或克隆形成法从原代培养物或细胞系中获得具有特殊性质或标志物称为细胞株。细胞株的特殊性质或标志必须在整个培养期间始终存在。如果不能继续传代或传代数有限,称为有限细胞株(finitecell strain);如果可以连续传代,称为连续细胞株(continuous cell strain)。对于人类肿瘤细胞,在体外培养半年以上,生长稳定,并连续传代的即可称为连续性株或系。批量细胞系构建是生物制药的核心(单抗生产工艺流程)(CAR-T细胞治疗工艺流程)数据来源:Current Opinion in Biotechnology 2018, 53:164–181. A guide to manufacturing CAR T cell therapies• 批量细胞系开发的主要目的是通过高通量筛选的手段获得数株高产稳定表达的细胞系,为后续的工艺开发及优化提供基础。• 批量细胞系开发的主要实验其中涉及到的实验内容包括细胞培养及转染,单克隆化及单克隆源性鉴定,多维度表征鉴定。• 批量细胞系开发实验室建议根据实验内容划分为高通量克隆筛选实验室和表征实验室,前者专注于高通量筛选,后者专注于表征鉴定。批量细胞系构建实验室的自动化探索常规细胞培养流程从细胞计数开始,经历细胞传代,转染,到转染条件及培养基优化为止,期间需要实验室配置全套的细胞操作相关设备。高通量克隆筛选实验室,由于其高通量及重复性的特征,可将实验过程中需要使用的设备整合起来形成自动化实验室,具体的搭配根据实验设备的不同可进行定制化。细胞培养模式的探索数据来源:Adv Biochem Eng Biotechnol DOI: 10.1007/10_2017_14. Platforms for Manufacturing Allogeneic, Autologous and iPSC Cell Therapy Products: An Industry Perspective [作者简介]程小卫,工商管理学硕士(MBA),现就职上海汉赞迪生命科技有限公司副总裁。曾任依利特分析仪器营销总监, ThermoFisher东区销售经理,并在Agilent、Shimadzu等跨国科学仪器公司就职多年,具有丰富的市场营销经验,擅长商业模式的创新和营销管理。获得上海市注册紧缺人才“高级企业管理师”殊荣,《千万不要学销售》的作者。(本文编辑:刘立东)相关推荐:这场疫情后,生命科学仪器行业的未来趋势在哪里?——汉赞迪生命科技副总裁程小卫【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn 微信:JaysonXY
  • 单细胞分离的特点应用以及小技巧
    单细胞分离采用类似喷墨打印机以及一次性分配分离槽,温和高效地接种单细胞,使用明场高分辨率成像或可选荧光分选细胞,每个单细胞分离捕获 5张图像,单克隆性,提高工作效率,保持并增强细胞活率,且防止交叉污染。  采集单细胞分离的证据,在接种细胞时记录5张连续图像,以96或384孔板的形式提供直接的单克隆性图像证据,提高克隆形成率,与传统方法相比,在克隆形成率上可实现高达8倍的提升。  保持细胞健康和无菌,正如克隆生长实验所见,通过温和的分离维持细胞活性,并使用无菌的一次性单向分离槽防止交叉污染,简便、快速、可选择以及无损分离单细胞,简化遗传和克隆培养、分析中分离过程。快速高效接种单个活细胞至微孔板分离系统的主要功能为高效柔和地分离或分选活的单细胞。该系统通过微流控技术柔和地形成细胞液滴,同时利用白光和荧光成像实时分析细胞数量和荧光强度,将符合要求的单细胞液滴准确接种至96孔板。  主要特点  1.分离效率85%,单细胞活率75%;  2.记录分离前后的连续5张图像,用于支持细胞株的单克隆性;  3.采用一次性分离槽,省却系统的清洗验证,减小交叉污染的风险;  4.采用白光成像和荧光成像,可根据细胞直径、圆度以及荧光强度筛选出感兴趣的细胞;  5.内置除静电装置,消除微孔板静电,确保细胞液滴接种至微孔正中间,尤其是PCR板。  单细胞分离系统可代替传统的有限稀释法,高效地将单个活细胞接种至微孔板中。得益于分离系统的高效率和高活率,可以将每块微孔板中可获得的单克隆细胞团提高至多8块,从而在相同的工作量下可筛选更多的细胞克隆,从中发现更多更优质的细胞株。分离过程中记录的连续5张图像,可以与后续的孔板成像的图像证据互相补充,从而提高单克隆性的可信度。  应用范围:连接不同管径大小的毛细玻璃针,可分离捕获各种非贴壁状态的单细胞和微粒等,如细菌、酵母、藻类细胞、植物花粉、原生动物单细胞、悬浮细胞、血液细胞、免疫细胞、卵细胞、各种悬液中单细胞及特殊标记的单细胞等。  单细胞分离的小技巧  1. 缩短制备单细胞悬液的时间,以保留细胞活力  2. 考虑使用细胞筛来过滤出细胞团块或双细胞  3. 注意缓冲液的选择,包括分选和收集溶液  4. 如果您打算在分选后培养细胞,请使用对数生长期的细胞,并确定最佳培养条件  5. 在分选转染后的细胞时,通常在转染后72小时进行,以提高细胞群的生存能力  6. 如果采用荧光抗体来分离稀有细胞,请在染色前离心抗体,以便去除任何可能被误认为是靶细胞的荧光颗粒  7. 对于单细胞基因组学应用,在分选后别忘了离心平板,以确保细胞在孔的底部  8. 选择一种可靠的分析技术来评估分选细胞的数量和质量
  • 美谷分子发布DispenCell 单细胞分离系统新品
    DispenCell专为快速、简单、温和地分离单细胞而开发,可应用于细胞株开发、CRISPR编辑的细胞筛选、稀有细胞分离、单克隆抗体筛选和单细胞基因组学等多种单细胞分离场景。基于阻抗技术的分离方式可以更加温和的处理细胞样品,小于0.1psi的分离压力让自动分离也能拥有高细胞活率。DispenSoft软件可提供即时可追溯的克隆性证明图谱,搭配CloneSelect Imager FL高通量单克隆验证系统,在第0天即可准确检测到单细胞并验证单克隆性。DispenCell主机紧凑小巧,可放置在生物安全柜等无菌环境中,软件操作界面简单直观,易于学习和使用。1. 温和高效DispenCell可实现对细胞样品更加轻柔的处理,小于0.1psi的分离压力与手动移液相当,但效率更高(~5min/96孔板)。分离过程无激光照射,保证细胞的完整性,因此,细胞活性和生长得以保持。2. 克隆性证明DispenSoft单细胞分析软件可提供即时和可追溯的克隆性证明图谱,允许用户在细胞分配后立即检查克隆性。3. 基于阻抗的分离吸头DispenCell 配有一个检测细胞通过的感应吸头,随着每个细胞的通过将触发一个独特的信号并被软件记录。无菌一次性分离吸头可确保清洁的单细胞分离,且无交叉污染,经认证不含动物源产品和细胞毒性材料。4. 小巧、简单、易用DispenCell体积小巧,可放置在生物安全柜等无菌环境中工作。仪器和软件操作简单,易于设置,无需清洁和校准,样品制备简单,易于学习和快速上手使用。简化工作流程的组合解决方案单细胞分离和单克隆验证在很多应用中都至关重要!例如细胞株开发过程,不仅需要分离和处理大量的单细胞,还需要验证单克隆性并形成证据来用于最终申报。CloneSelect Imager FL 和 DispenCell 的组合,能够提供高效的过程以及可信的证据,在第 0 天即可自信地验证单克隆性。CloneSelect Imager FL 单克隆验证系统全新的 CloneSelect Imager FL,在标准白光成像基础上,增加了高对比度多通道荧光技术,可在第 0 天准确的检测到单细胞并验证单克隆性。通过比较汇合度分析来识别和验证基因编辑。• 数字化记录单细胞证据,以便提交给监管机构• 在多个时间点对细胞进行非侵入式成像,以监测克隆形成• 使用高分辨率白光成像进行筛选• 通过动态分析提供实时结果• 可进行自动化整合
  • 大鼠甲状腺滤泡上皮细胞的培养操作与应用!
    大鼠甲状腺滤泡上皮细胞的培养操作与应用! 一、背景 大鼠甲状腺滤泡上皮细胞分离自甲状腺组织;甲状腺是脊椎动物非常重要的腺体,属于内分泌器官。在哺乳动物身体中,它位于颈部甲状软骨下方,气管两旁。甲状腺表面有结缔组织被膜,表面结缔组织深入到腺实质,将实质分为许多不明显的小叶,小叶内有很多甲状腺滤泡和滤泡旁细胞。甲状腺控制使用能量的速度、制造蛋白质、调节机体对其他贺尔蒙的敏感性。 甲状腺依靠制造甲状腺素来调整这些反应,有T3和T4。这两者调控代谢、生长速率还有调解其他的身体系统。T3和T4由碘和酪胺酸合成。甲状腺也生产降钙素,调节体内钙的平衡。其中,甲状腺滤泡上皮细胞(也称为滤泡细胞或主要细胞)是在甲状腺细胞是负责生产和分泌甲状腺激素,甲状腺素(T4)和三碘甲状腺原氨酸(T3)。 二、培养操作 1)复苏细胞:将含有1mL细胞悬液的冻存管在37℃水浴中迅速摇晃解冻,加入4mL培养基混合均匀。在1000RPM条件下离心4分钟,弃去上清液,补加1-2mL培养基后吹匀。然后将所有细胞悬液加入培养瓶中培养过夜(或将细胞悬液加入10cm皿中,加入约8ml培养基,培养过夜)。第二天换液并检查细胞密度。 2)细胞传代:如果细胞密度达80%-90%,即可进行传代培养。 1.弃去培养上清,用不含钙、镁离子的PBS润洗细胞1-2次。 2.加1ml消化液(0.25%Trypsin-0.53mM EDTA)于培养瓶中,置于37℃培养箱中消化1-2分钟,然后在显微镜下观察细胞消化情况,若细胞大部分变圆并脱落,迅速拿回操作台,轻敲几下培养瓶后加少量培养基终止消化。 3.按6-8ml/瓶补加培养基,轻轻打匀后吸出,在1000RPM条件下离心4分钟,弃去上清液,补加1-2mL培养液后吹匀。 4.将细胞悬液按1:2比例分到新的含8ml培养基的新皿中或者瓶中。 3)细胞冻存:待细胞生长状态良好时,可进行细胞冻存。下面T25瓶为类; 1.细胞冻存时,弃去培养基后,PBS清洗一遍后加入1ml胰酶,细胞变圆脱落后,加入1ml含血清的培养基终止消化,可使用血球计数板计数。 2.4 min 1000rpm离心去掉上清。加1ml血清重悬细胞,根据细胞数量加入血清和DMSO,轻轻混匀,DMSO终浓度为10%,细胞密度不低于1x106/ml,每支冻存管冻存1ml细胞悬液,注意冻存管做好标识。 3.将冻存管置于程序降温盒中,放入-80度冰箱,2个小时以后转入液氮灌储存。记录冻存管位置以便下次拿取。 三、应用 用于RCCS模拟微重力影响大鼠甲状腺滤泡上皮细胞生长特性和分泌功能的研究: 釆用微重力细胞培养系统(the rotary cell culture system,RCCS),研究模拟微重力对大鼠甲状腺滤泡上皮细胞生长特性和相关分泌功能的影响,为航天员在失重环境中甲状腺应激和病理性改变的防治提供理论依据。 研究方法应用RCCS技术构建FRTL-5细胞模拟微重力培养系统。将大鼠甲状腺滤泡上皮细胞FRTL-5细胞株随机分为模拟微重力组(simulated microgravity group,SMG)和正常重力对照组(normal gravity group,NG),分别于培养第6h、12 h、24 h、36 h取细胞及上清液,MTT检测细胞增殖,流式细胞仪检测细胞周期,化学发光免疫分析法检测T3、T4、FT3、FT4,ELISA检测上清液中Tg和TPO水平 应用倒置相差显微镜观察培养第6 h、12 h、24 h、36 h后细胞表面形态 透射电镜观察培养12 h和36 h的细胞超微结构 激光共聚焦显微镜观察培养36 h的细胞微丝骨架荧光强度变化。 结果:(1)MTT结果显示,SMG组FRTL-5细胞经6 h、12 h、24 h、36 h培养后,各时相细胞增殖均较NG组受到明显抑制(P0.05),其中24 h最为明显(P0.01) 36 h表现为两种情况,一是SMG组的细胞增殖恢复,二是NG组的细胞增殖速度快速提升。 (2)流式细胞仪测细胞周期显示,与NG相比,FRTL-5细胞微重力培养6 h、12 h、24 h、36 h后G1期细胞比例显著增高 除6 h外,S期细胞比例明显降低 而各时相的G2/M期细胞比例表现为模拟失重早期(6-12 h)降低,其中12 h出现低谷值,24 h一过性显著增高,36 h回落。研究结果提示,SMG组FRTL-5细胞培养6-12 h阶段DNA合成下降,24 h的DNA合成趋活跃,而36 h的DNA合成后期比例又呈现下降趋势并向NG组的比例靠近。 (3)化学发光免疫分析法检测结果显示,RCCS培养6 h组FRTL-5细胞上清液中FT3、T4和FT4水平显著降低(P(4)ELISA测细胞上清液结果显示,与NG相比,SMG组FRTL-5细胞Tg和TPO分泌均明显升高(P0.01),表现为6 h即显著升高,随后呈下降趋势,24-36 h阶段又趋上升,其中SMG组的6 h与24 h以及24 h与36 h之间有显著差异(P0.01)。 (5)倒置相差显微镜观察结果显示,模拟失重环境下FRTL-5细胞形态发生显著变化,实验早期细胞逐渐趋于死亡状态,24 h后细胞数量又有所增长。 (6)透射电镜结果显示,模拟失重第12 h,36 h的FRTL-5细胞超微结构发生显著变化。 (7)模拟微重力培养36 h后,激光共聚焦显微镜观察荧光素FITC标记的FRTL-5细胞,发现细胞微丝骨架局部解聚,张力纤维减少,结构和排列紊乱,细胞伪足少见,细胞形状呈不规则。 微生物菌种查询网自设细胞系板块,是细胞株提供中心,专业提供代次低、周期短、活性好的细胞株。与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 技术线上论坛| 9月28日《单细胞基因工程——FluidFM® 单细胞技术与CRISPR的完美结合》
    报告简介: 随着CRISPR/Cas技术的发展,将突变的引入基因组并获得细胞系的技术路线已经成为现代生物医学研究的重中之重。然而,要将这种基因编辑的能力转化为疾病治疗的能力,必须跨越几个障碍。先基因组编辑递送效率仍然较低;其次仍然存在非特异基因组区域突变的风险;另外同源重组编辑效率仍较低。为了跨越这些障碍,我们将FluidFM® 技术与CRISPR相结合,将基因编辑复合物直接注射到目标细胞的细胞核中,从而我们成功跨越了基因组递送的障碍。此外,将CRISPR核糖核酸蛋白复合物受控地传递到靶细胞的细胞核,也将大限度地减少脱靶编辑的可能性,并通过共注射HDR模板增强同源重组。另外,我们的单细胞方法避免了繁琐的选择过程,并将材料成本降至低。综上所述,利用FluidFM® 技术进行单细胞基因组工程将提高科研领域和工业领域中生物医学研究中细胞系开发项目的质量和速度,并降低成本。报告重点:☛ FluidFM® 技术是什么?它如何应用于CRISPR和细胞系构建;☛ 真正的单细胞基因组工程:自下而上方法的优势;☛ 通过减少脱靶编辑和避免繁琐的克隆挑选过程,获得高质量的单克隆细胞株;☛ 通过降低试剂和细胞使用量来进一步降低成本;☛ 真正的从单个细胞开始,加速了细胞系构建过程;报名注册:您可以通过点击此处或扫描下方二维码进入报名注册页面。扫码即刻注册!报告时间:2021年9月28日 21:00 - 22:00 (北京时间) 主讲人:▪ Dr. Tobias Beyer▪ CSO / 高细胞生物学家,Cytosurge AG公司▪ Dr. Tobias Beyer在苏黎世联邦理工学院获得细胞生物学博士学位。在多伦多LTRI完成博士后研究,随后他加入苏黎世联邦理工学院担任组长(Prof. Wutz and Prof. Corn组)。本次讲座,他将整合他在细胞生物学、细胞信号转导和胚胎干细胞方面的专业知识,将CRISPR/Cas9和FluidFM® 技术结合起来阐述其在单细胞基因工程中的应用。在Cytosurge公司, Dr. Tobias Beyer负责对FluidFM OMNIUM应用方向的把关,并不断拓展FluidFM OMNIUM的应用。技术线上论坛:https://qd-china.com/zh/n/2004111065734
  • 生物反应器在细胞培养中的应用与产品设计(上)
    生物反应器的应用生物反应器在生物技术,工艺开发和研究中发挥着至关重要的作用,其主要应用包括:1. 细胞株开发:台式生物反应器可用于评估各个细胞株的性能,包括生长和表达效率,这有助于确定最适合进行进一步工艺开发和放大的候选细胞株。2. 工艺开发:台式生物反应器广泛应用于工艺开发的早期阶段,包括了参数优化和工艺放大两方面,首先在较小规模上优化温度,pH,DO等工艺控制参数,然后再进行工艺放大研究,降低放大至较大体积的生物反应器中可能存在的成本和风险。更复杂的工艺开发包括了增强型工艺,例如灌流培养和连续培养。3. 培养基优化:台式生物反应器可以用于优化培养基和补料策略,以改善细胞生长、活力和蛋白质表达,有助于实现高效,稳定且成本可控的大规模细胞培养。4. 工艺表征:台式生物反应器可进行工艺缩小研究,在较小规模上模拟较大生物反应器的条件,有助于了解和解决工艺放大过程中可能出现的限制性因素,如氧气传质、混合效率、CO2分压和剪切力。5. 质量源于设计(QbD):可以在台式生物反应器规模实施QbD开发原则,系统地研究和优化关键工艺参数,以确保产品质量的一致性。6. 临床样品制备:符合GMP要求的台式生物反应器系统,可用于临床前研究或早期临床试验中的小规模生产,以快速、经济地生产小批量的治疗性产品。Reference:cell culture bioprocess engineering, second edition细胞生长所处的生理压力生物制药中,CHO细胞作为常用的重组蛋白的表达体系,优化其生长和产物表达效率至关重要,然而生物反应器中CHO细胞却面临着多方面的生理压力,包括培养条件、营养供应和环境参数有关的各种因素,因此需要反应器提供良好的工艺参数控制,以维持合适的细胞生长微环境。 营养限制:CHO细胞的能量和生物合成严重依赖葡萄糖,葡萄糖浓度过低会导致细胞新陈代谢压力和活力降低;氨基酸是蛋白质合成所必需的,特定氨基酸含量不足会影响细胞生长和蛋白表达;细胞培养基中的生长因子、维生素和微量元素的不足也会影响 CHO 细胞的生理机能。 温度:温度波动会影响细胞的新陈代谢,对于细胞生长和蛋白表达通常所需最适温度不同,需要制定针对性控制策略。 pH值波动:pH 值的变化会导致培养基的酸化,影响分子的电离状态,并影响细胞的新陈代谢,维持pH值在最佳范围内对细胞活力和表达至关重要。 溶解氧浓度:溶解氧浓度过低会导致供氧不足,造成细胞应激,影响细胞生长和蛋白质表达。 二氧化碳分压:二氧化碳分压影响了pH控制,细胞代谢和生理功能,需要加以及时的检测和有效的控制策略。 渗透压:代谢物积累或营养浓度过高导致的高渗透压会对细胞造成压力,这会影响细胞体积大小调节和整体细胞功能。 剪切力:生物反应器中的搅拌和通气产生的能量耗散会对细胞造成剪切应力,过大的剪切应力会损伤细胞结构并影响其生产率。 代谢副产物:细胞新陈代谢产生的有毒副产物(如乳酸、氨)的积累会对细胞活力和蛋白表达产生不利影响。 细胞密度:高细胞密度和细胞聚集会导致营养和氧气的限制,造成压力,有效的混合和充分的氧气供应对防止这些问题至关重要。理解细胞所处的生理压力环境对于工艺条件优化,增强细胞活率,获得高表达产物和目标质量属性非常关键。工艺过程参数的控制在了解了细胞所处的生理压力之后,遵循质量源于设计(QbD)的指导原则,通过风险评估的方式确定关键工艺过程参数(CPP), 重要工艺过程参数(KPP)及非重要过程控制参数(Non-KPP),制定参数各自的设定空间(DS),并在操作范围内进行控制,这整体上需要工艺过程分析技术(PAT)及生物反应器所配置过程控制策略,以提供一致的工艺性能和产品质量(CQA)。图片来源于网络生物反应器常用控制策略 开环控制:开环控制系统应用一组预定义的控制输入或设定点,而不连续测量实际输出,系统假定输入将实现所需的输出,而无需实时反馈。该控制策略的准确度依赖于高精度及快速响应的硬件配置。 闭环(反馈)控制:闭环控制使用传感器持续监测系统输出,将其与所需设定点进行比较,并实时调整控制输入以保持所需的条件。这种方法能更好地适应过程中的变化和干扰。该控制策略的准确度依赖于控制器模式,参数的预设和调节。 前馈控制:前馈控制可预测系统中的干扰,并在干扰影响输出之前调整控制输入。它是对反馈控制策略的补充。生物反应器控制器策略的应用 PID控制:PID 控制是一种闭环控制策略的实现形式,通过比较设定值和实际值(误差),使用比例、积分和微分项来计算控制输出。比例部分使用增益(Gain)乘以误差进行输出;积分部分累积 CV(控制输出)随时间变化的程度,以纠正误差;微分部分分析参数过去的变化率,并将其推断到未来,其动作单位为秒(你想推断多远),可以让回路在发生突发事件时迅速做出反应,但很容易受到测量噪音的影响。 PID同时可以结合死区(DB, Dead Band)来使用,例如pH的PID控制,细胞对于pH有一个适应范围,设定合适的DB值,避免酸,碱的反复添加和渗透压的升高。 级联控制:级联控制涉及主控制器与子控制器,主控制器的输出作为子控制器的设定值,从而更好地抑制干扰;子控制器可以为一个或多个,通过顺序级联或同时级联,以满足不同复杂程度工艺的需求。例如DO控制中,主控制器为DO PID控制器,子控制器为Air,O2,搅拌等控制器。 Profile控制:为控制器的设定值设定随时间变化的程序,控制器接受该设定值进行开环或闭环控制。例如补料泵的控制中,根据预测的细胞密度增加情况调整补料速度供给率,从而实现对营养物质浓度的前瞻性控制。复杂工艺应用需求常见的细胞培养方式为补料分批工艺(Fed Batch),需要多级的种子扩增步骤,主反应器中也需生长至稳定期进行蛋白表达,因此所需设备成本高,占地空间大,生产效率较低且产品质量一致性存在差异。随着灌流培养基,细胞截留设备及PAT技术等方面的发展,增强型工艺(Process Intensification)在生物制药中逐渐得以应用。根据对细胞和蛋白的截留,增强型工艺分为Concentrate Fed Batch, Dynamic perfusion及Continuous Perfusion等不同形式。Reference:Perfusion Cell Culture Processes for Biopharmaceuticals灌流工艺的开发通常在台式反应器中进行,相比Fed Batch系统具有如下组成及特点: 反应器从结构设计到工艺验证上应能支持系统长时间无菌培养的要求。 反应器的通气及搅拌系统配置应当满足高细胞密度培养对于传质和混合的要求,并进行充分的表征,以评估放大过程中的限制性因素。 细胞截留装置:支持切向流或声学细胞截留装置的无菌连接,截留装置控制器可选择接受生物反应器控制,细胞在截留装置中所受的生理压力(剪切力,温度变化,溶解氧浓度等)应当加以控制。 PAT整合:系统应当支持额外的电极整合,实时监控细胞密度、活力、二氧化碳分压等关键参数。 外置设备的拓展:可拓展外置天平等设备。 自动化控制系统:系统应配置自动化灌流程序或配方,实现高精度自动化的灌流速率,反应器液位及细胞密度控制,减少灌流工艺长时间培养过程中复杂的人为操作所带来的风险。英赛斯NestoBR台式生物反应器NestoBR是一款基于生物工艺进行设计和研发的先进型台式生物反应器系统,应用于生物制药及生物技术等方向的工艺研究和开发,系统设计满足生物行业对于反应器的高性能及法规方面的要求,可降低用户实验的批次失败风险,提高工艺开发能力,加速生命科学的研究发现,实现稳健化的技术转移。NestoBR产品特点紧凑化的结构设计:集成式工业控制器,直观的用户界面与交互;减少设备空间需求,易于使用。严格的材料选择及处理:高硼硅玻璃,耐高温,耐腐蚀;316L不锈钢,表面抛光及钝化处理,,易清洗,易清洁;垫圈采用EPDM材质,符合cGMP要求。基于工艺理解的产品设计:从细胞生所处的生长微环境出发,进行功能设计,拓展工艺可操作空间,保障批次稳定。丰富的高性能硬件配置:灵活的硬件配置方案,满足不同细胞或工艺在培养体积、温度控制、搅拌控制、通气控制等工艺方面的差异化要求。高级自动化软件架构:ISA88批处理控制高级自动化软件架构,将物理硬件、操作程序和个性化工艺的紧密的结合,为控制系统提供安全性,稳定性保障。符合cGMP法规要求: 根据用户需求,提供从设计、测试、验证、文件等一系列技术服务;系统设计与验证遵循ISPE GAMP5。快速稳定的自动化参数控制:控制系统配置不同的控制策略,实现快速,稳定,灵活的工艺过程参数自动化控制完善的批次过程监控与管理:系统配置趋势图,批次报告,用户管理,审计追踪功能满足复杂工艺应用需求:NestoBR提供长时间运行的无菌保障,完善的设备表征数据,可集成PAT,外置设备与灌流装置,可新增控制回路实现自动化灌流工艺操作。全面的安全性保障:提供生物反应器在使用,批次,软件,数据,工艺等方面全方位的安全保障。
  • Molecular Devices 高内涵成像分析技术在干细胞研究中的应用
    前言 随着人类对生物学领域深入探索和科技创新的不断发展,目前越来越多的研究院所和生物制药公司将细胞水平的功能性研究、模型建立及药物筛选做为一个重要的研究/研发手段。而高内涵成像分析系统就为这种细胞水平的研究提供了集高分辨率、自动化、智能化及海量信息为一体的新的检测平台。干细胞(stem cells)是一类具有自我更新、高度增殖和多向分化潜能的细胞群体干细胞。正是干细胞的这种特性,为细胞生物学的研究提供了更有力的永生化的稳定细胞株。干细胞水平的研究比在普通的细胞株提供了更接近临床相关性的生理学信息;并且比原代细胞相比更容易获得,且具有更好的实验重复性。 干细胞的研究与其他细胞水平的研究有一些相似之处,但其关键的不同点在于在干细胞的研究过程中干细胞的分化。干细胞水平的实验比传统的单线性/单参数的实验具有更多的检测目标,包括其分化能力、分化过程、分化类型及不同类型的量化分析统计等。高内涵成像分析系统以其自身的高分辨率、多参数及智能化分析的特性,恰如其分的满足了干细胞研究的以上需求,而高内涵成像系统的自动化和高通量的特点又以海量的有效数据加速了该研究的过程。 利用高内涵成像分析系统可完成干细胞研究的自动化图像获取及多参数分析,目前常用的全能性干细胞分化研究主要有三类:造血细胞、神经细胞和诱导型多能干细胞(induced pluripotent stem cell, iPS)来源的心肌细胞(图1)。图1:全能干细胞分化层次图应用实例1. 神经祖细胞向神经球分化研究冷藏保存的神经祖细胞(StemCell Technologies, mouse Cells)培养在6孔板内,在培养基中加入不同的生长因子,培养6天后通过ImageXpress Micro对每孔内神经球进行无标记相差成像,并对的神经球的面积进行自动化定量分析。结果如下(图2): 图2:神经球无标记检测及分析(ImageXpress Micro 20X 相差物镜)2. 神经干细胞向神经元及胶质细胞分化研究神经干细胞在加有EGF(表皮生长因子)和bFGF(成纤维细胞生长因子)的培养基中培养1-2天,然后在分化培养基中培养12-14天。加入EPO(促红细胞生成素)后,检测为神经球向神经元及胶质细胞的分化情况。ImageXpress Micro进行自动化图像获取,运用细胞分类(Cell Scoring)模块进行神经元/胶质细胞阳性率分析,运用神经生长(Neurite Outgrowth)模块进行神经元突触长度及数量分析。结果如下(图3):图3:神经干细胞分化检测及分析。图(上)表示加入(左)及不加(右)神经细胞的分化图片;图(下)表示不同条件下神经元细胞的阳性率(左)及神经元突出的长度(右)。(ImageXpress Micro 20X物镜)3. 造血祖细胞向骨髓细胞及血细胞分化研究人源CD34+造血祖细胞培养在96孔板中,加入多种不同的造血细胞因子组合(SCF+Flk3+TPO/SCF+IL-3+GM-SCF)后,通过检测CD45和CD15两种标记物在细胞内的表达量,统计分析不同造血细胞因子组合对造血祖细胞的自我更新能力及骨髓细胞分化能力的变化。结果如下(图4):图4:检测细胞内CD45和CD15的阳性率,评价造血祖细胞在不同条件下的自我更新能力及定向分化能力4. 诱导型多能干细胞(induced pluripotent stem cell, iPS)向心肌细胞分化研究iPS细胞(Celprogen)在专用培养基中培养3-7天,同时检测7种不同标志物的表达量,以判断心肌细胞分化及成熟的状态。下图(图5)中显示Oct4(干细胞标记物)和a-Actinin(心肌细胞标志物)在细胞内的表达情况:图5:iPS细胞分化情况(ImageXpress Micro 20X 物镜)5. iPS细胞来源的心肌细胞跳动实验临床前安全性评价是药物研发过程中非常重要的环节,早期的心脏毒理学研究将会大大降低在进入临床研究阶段后因药物毒性带来的投入风险。iPS细胞来源的心肌细胞跳动实验为药物心脏毒性评价提供了一个高效的体外细胞水平的检测方法。心脏跳动可通过传统电生理的方法来检测,用高内涵成像分析系统来进行检测及分析是一个全新的挑战。Molecular Devices公司最近一代的高内涵成像分析系统ImageXpress Micro XL以其最新一代的检测器sCMOS(采样频率可达100pfs)和自定义模块分析功能,完全可出色完成心肌细胞跳动实验的快速检测及分析要求。iPS细胞来源的心肌细胞单层培养在96或384孔板中,心肌细胞会自发跳动同步收缩。加入Calcein-AM染料孵育10min后,撤掉培养基,再加入不同浓度的化合物,置于ImageXpress Micro XL活细胞培养装置中,检测心肌细胞跳动频率的变化。结果如下(图6):图6:iPS细胞来源的心肌细胞跳动实验(ImageXpress Micro XL 20X 物镜)总结 干细胞研究作为一种复杂的细胞水平检测模型,需对干细胞的生长、增殖、分化能力、分化类型及状态等多种参数进行检测及定量分析,为疾病治疗研究及药物研发提供了更有效的研究手段。Molecular Devices公司的ImageXpress高内涵系统提供了集高分辨率、自动化、智能化及海量信息为一体高内涵成像分析系统完全解决方案,可满足以上研究需求(图7)。图7:Molecular Devices公司针对干细胞研究的高内涵成像系统完全解决方案
  • 珀金埃尔默参加细胞命运决定与人类疾病国际研讨会
    2019年10月12-14日,细胞命运决定与人类疾病国际研讨会在上海交通大学医学院东院懿德楼顺利召开, 本次会议由上海交通大学医学院联合上海交通大学医学院联合细胞分化与凋亡教育部重点实验室、癌基因与相关基因国家重点实验室和《NEJM医学前沿》(《新英格兰医学杂志》中文版)共同主办。大会现场细胞命运决定是生命个体的生死决定,对所有的生命个体都至关重要。神经细胞的过早衰亡导致神经退化性疾病,肿瘤细胞的死亡逃逸奠定了肿瘤的发生发展。研究细胞的生死决定几乎涵盖了所有的重要生命活动和人类重大疾病。为进一步凝练科研方向,聚焦国际前沿科学问题,本届会议邀请了国内外顶尖的大咖学者们齐聚一堂,共襄盛会。会议期间,珀金埃尔默的市场开发经理张薇做了题为“Help you to understand cell destiny more deeply in phenotypics 3.0 era ”的精彩报告,她介绍了与大会主题非常相关的细胞和3D细胞,细胞的研究要借助于更先进的技术,如高内涵显微成像分析仪器。只有利用更先进的技术,才能看的更深,了解到更多的信息,有更多的科研突破。她在报告期间展现了多个从基因型到表型在细胞水平进行功能性验证的实例,都是用标记的方法或者是间接的方法进行成像或检测,从而会产生脱靶效应。而脱靶效应无论对基础研究,还是药物研发都会产生非常负面的影响。新的无标记检测方法CETSA,可以在无标记的状态下研究细胞内蛋白和小分子的相互作用。小分子会帮助蛋白稳定其构象,在通过Alpha检测方法检测区别正常构象蛋白和变性蛋白。最后,她提到珀金埃尔默还有定制化的细胞自动化实验室可用作靶点筛选、细胞株筛选和表型筛选。可以根据具体的实验需求,配置高内涵,酶标仪,移液工作站,机械手臂,样本储存和处理系统等。我们希望可以帮您在Phenotypics 3.0 时代,更快更深入发现细胞秘密。珀金埃尔默市场开发经理张薇关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 提高贴壁能力的Eppendorf细胞成像耗材全新上市
    作为世界领先的高品质耗材供应商,Eppendorf的产品已扩展到细胞培养领域。Eppendorf用于细胞成像、检测与显微分析新品的推出将为客户提供更为优化的解决方案。 新上市的细胞成像耗材包括细胞成像玻底培养皿、细胞成像板、以及载玻片和盖玻片培养系统,均具有创新的TC处理表面,提高细胞贴壁能力,并通过多种细胞株测试验证。培养表面高度平坦光滑,确保最佳显微检测及分析结果。Eppendorf细胞成像玻底培养皿中间玻璃底低于周边的设计,帮助节省珍贵细胞和试剂。载玻片和盖玻片培养系统具有两种厚度的高透光性玻璃底,满足多种实验需求。 Eppendorf细胞成像耗材作为Eppendorf高品质耗材产品线的延伸,将是您荧光标记显微检测、活细胞成像及高内涵分析的理想之选。 更多产品信息 Eppendorf官方微博:http://weibo.com/eppendorfchina Eppendorf中文官网:http://www.eppendorf.cn Eppendorf China十周年庆官网:http://tenyears.eppendorf.cn 关于艾本德(Eppendorf) 德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机,以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA扩增的全套仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年Eppendorf收购美国New Brunswick Scientific(NBS)公司,2011年收购德国DASGIP公司,拓展了其细胞培养领域的产品线。 关于艾本德中国(Eppendorf China Ltd.) 2003年Eppendorf正式进入中国,分别在上海、北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量200多名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • 大规模设备更新,不断升级的Vi-CELL细胞计数仪来助力
    早在2002年贝克曼库尔特生命科学便在全球推出了第一款Vi-CELL细胞计数仪,当时一次只能测试一个样品,但仪器是全自动的,相比同期大家经常使用的显微镜+血球计数板的计数方法,操作更加简便,并且避免了样品混匀和染色方面的人为操作误差,因此测试结果的重复性更好。 血球计数板手动数细胞单通道Vi-CELL细胞计数仪随着生物医药的蓬勃发展,越来越多的细胞培养用于研发和生产各类生物制品,包括:各类疫苗、重组蛋白药物、单克隆抗体、基因治疗和细胞治疗药物等。因此,各个生物医药企业和研究机构对高通量细胞计数仪的需求也在不断增加。所以,带有12位上样转盘的Vi-CELL XR全自动细胞计数仪也应运而生(如下图所示)Vi-CELL XR计数仪保留了自动检测功能,同时上样通量从1位扩大到了12位,针对实验室中多位老师需要同时检测细胞样品的情况,12位转盘可以实现无需在旁等待的不间断上样检测。相比插板/片式半自动细胞计数仪,节省了老师在旁等待的时间,大大提高工作效率。因此,Vi-CELL XR细胞计数仪推出后受到广大使用客户的好评。随后的十几年间,生物制药的研发和生产各项技术日趋完善和成熟,对细胞计数仪的要求也越来越高。譬如工艺开发和细胞株开发部门需要更高的上样通量,更快的检测速度和更少的检测样品体积,而质量控制和生产部门则更看重仪器的重复性、稳定性和法规的符合度。根据Vi-CELL XR客户反馈的这些新需求,2019年新一代Vi-CELL BLU全自动细胞计数仪诞生。这款新型的Vi-CELL细胞计数仪,相比老款Vi-CELL XR在客户所提的需求,以及其他多个方面都做了较大的升级。具体可参照以下Vi-CELL新老仪器各项性能对比表(一些相同功能未列其中)。若将新老仪器间的主要升级点做个小结,可以概括为下面这张在设计和测试性能方面的对比图。如您希望了解更多新品Vi-CELL BLU细胞计数仪信息,请联系我们。
  • CPDQA将举办公益无血清细胞培养技术应用培训
    p   生物医药产业是高新科技产业,随着生物医药产业的快速发展,我国生物制药产业也进入了快速上升期,而单克隆抗体药物和细胞免疫治疗技术在整个产业中无疑是最为重要的组成部分。目前生物制药产业发展面临人才短缺的挑战,而我国高等专业教育尚不能满足生物制药产业发展的需求,大部分生物医药相关专业毕业生缺乏该产业急需知识和技能而面临就业难。在职职工专业教育是生物医药产业正常运营的基础保障,更是各国药政机构监管的重点。中国蛋白药物质量联盟将针对我国生物医药产业发展现状和国际产业技术的发展进步,特别是各国药政监管要求,推出生物制药产业技术系列职业培训。本期设为无血清细胞培养技术应用培训。 /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 无血清细胞培养技术应用培训 /span /strong /p p   无血清培养技术的出现是生物制药发展历程上的一个里程碑,其培养基一般是在合成培养基的基础上,引入成分完全明确的或部分明确的血清替代成分,使培养基能满足动物细胞培养的要求,又可有效的克服因使用血清所引发的问题,保证了产品质量,降低了细胞培养成本,对推动细胞生物学发展有着重大的意义。无血清培养是生物制药产业和细胞免疫治疗技术发展的方向。无血清培养技术也将成为生物制药产业和细胞治疗技术中的基本技能之一。 /p p   strong  一、主办单位 /strong /p p   中国蛋白药物质量联盟 /p p    strong 二、培训时间 /strong /p p   时 间:2017年09月15日 PM 1:30-5:00 /p p   地 点:北京兴基伯尔曼饭店,北京亦庄荣华南路12号(三楼巴黎厅 ) /p p   (晚餐:下午5:00-8:00 北京兴基伯尔曼饭店 四楼明熙餐厅) /p p    strong 三、培训目标人群 /strong /p p   本次培训旨为生物医药产业和精准医疗/细胞免疫治疗的技术研发负责人、细胞培养业务骨干温故知新 为职场新人、在校大学生以及对细胞培养感兴趣的相关人员夯实基础。 /p p    strong 四、培训内容 /strong /p p   李荣皓博士从1984年开始使用无血清细胞培养技术,曾涉足CHO细胞培养及重组蛋白生产工艺优化、多种原代细胞及干细胞等无血清细胞培养,在无血清细胞培养技术应用方面具有很深的造诣。 /p p   此次培训班李博士将重点介绍其在美国Genentech等公司工作期间所积累的CHO细胞培养液开发以及其它细胞无血清培养技术的应用经验,并与听众互动,共同探讨听众有关重组蛋白表达细胞、干细胞、T细胞、疫苗生产细胞以及原代细胞等多种类型细胞的无血清培养技术问题。和大家一起分析和讨论技术细节。 /p p    strong 五、嘉宾简介 /strong /p p   主讲嘉宾:李荣皓博士,上世纪80年代师从于中国无血清细胞培养技术鼻祖庄临之研究员,其间利用无血清细胞培养技术建立了国际首例人胎盘滋养层细胞株以及国际首个无血清细胞培养麝香蛋白表达细胞株。1992年李博士加入美国Genentech公司Jennie Mather博士研究组,先后从事过细胞培养工艺开发以及蛋白新药研发工作。1996年李博士加入 Signal Pharmaceutical, Inc. (现Celgene公司),成为该公司资深新药研发科学家,利用其无血清细胞培养技术为公司建立了数个高难度原代细胞药物筛选实验模型。数年之后李博士应Mather博士邀请,加盟Mather博士创建的Raven Biotechnologies公司,全面负责公司新药研发包括从早期的实验研究到临床试验抗体药生产的各个重要技术环节,并发明了国际首个细胞蛋白标记物高通量筛选(cell array)技术专利,为公司研发项目的顺利进行做出了杰出的贡献。 /p p   2006年李博士与另外两位旅美中国科学家在北京共同创办了Autekbio公司,成为中国第一家从事抗体药生产的服务公司。李博士作为公司的技术主管,负责为公司客户开发抗体生产细胞株,并为客户设计国产化的高密度无血清细胞培养基,使得抗体生产成本大为降低。2010年李博士应邀加入恒瑞,在短暂担任公司首任抗体部技术负责人职务之后离职回美,随后与Jennie Mather博士及武军先生共同创建了珠海恺瑞生物科技有限公司。 /p p   主持人:杭海英博士,中科院生物物理所流式平台首席科学家、抗体药研发专家,1994年于美国科罗拉多州立大学获博士学位,1994年始在哥伦比亚大学医学中心做博士后,2000年任中心助理教授(tenure track),2004年入选中国科学院& quot 百人计划& quot 。多年来从事肿瘤分子生物学研究和流式开发与应用研究。2008-2009年到德克萨斯大学奥斯汀分校国际著名抗体专家、美国三院院士George Georgiou实验室做访问教授,从事抗体研究。多年来一直从事肿瘤发生机理、抗体和流式技术研究。 /p p   1.建立了生物物理所流式平台,一直任该平台首席科学家至今。开发了多种流式技术及应用。 /p p   2.发展抗体/蛋白质设计、人工进化技术,开发了多个抗肿瘤融合蛋白和人源化抗体和试剂抗体。 /p p   3.发现Rad9参与多个途径的DNA损伤修复。 /p p   4.与生物物理所研究员梁伟研究员开发成功纳米胶束输送肿瘤药物,该工作发表在JNCI,被科学和工程院士会评为“2007年中国十大科技进展”之一。 /p p   5.参加航天返回式卫星 “实践十号”项目,担任其中“微重力对基因组遗传效应的研究”课题组长,直接指挥空间细胞培养器研发、实验设计、空间飞行 /p p   中国蛋白药物质量联盟China Protein Drug Quality Alliance /p p   调控和回收样本分析。2016年圆满完成“实践十号”卫星升空、飞行实验操作和样本回收分析。 /p p    strong 六、会议议程: /strong /p p /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/39dcb1a3-cdc6-4082-b7f7-7e1f9a998c1f.jpg" title=" 无标题_副本.jpg" / /p p    strong 七、注册事宜 /strong /p p   培训说明:本次培训免费,中国蛋白药物质量联盟证书(自愿)500元/人。获取更多资讯,敬请联系中国蛋白药物质量联盟秘书处: /p p   联系人:蔡老师 /p p   手 机:+86-18702257197 邮 箱:18702257197@163.com /p p br/ /p
  • Science│ 沈炳辉团队揭示细胞如何在DNA复制压力下求生存
    复制压力是DNA复制过程中的障碍, 可以减慢或者停止复制叉的行进过程。这些压力主要来自以下四个方面:DNA复制机制自身缺陷, DNA序列中自身难以复制区域包括端粒和中心粒区域的重复序列, 变异细胞 (肿瘤) 中基因组复制的高度需求, 和外部压力包括高温或药物处理。DNA复制缺陷的细胞如何获得突变, 从而逃逸在DNA复制压力下的细胞凋亡, 是一个生物学界长期未解的问题。2021年12月2日, 美国希望城国家医学中心 (City of Hope) 沈炳辉 (Binghui Shen) 实验室在Science杂志发表题为 Error-prone, stress-induced 3' flap-based Okazaki fragment maturation supports cell survival 的文章。该研究报道了敲除结构特异性内切酶FEN1/RAD27基因的酵母细胞在限制性温度下激活一条新的易错的冈崎片段成熟通路 (Okazaki fragment maturation)。限制性温度压力激活Dun1, 促进未加工的5' flap转变为3' flap, 进而被Pol δ等3' 核酸酶去除。然而, 3' flap在某些区域并不被降解, 而是形成二级结构, 促进3' 端延伸, 产生在两个重复序列之间与模板序列反相的小片段。这样一种新的重复序列突变称为非典型的重复序列突变(alternative duplication mutation)。一旦DNA复制酶Pol δ基因内出现这种重复序列, 细胞会失去形成5' flap的能力, 而是以高突变率为代价, 抑制rad27Δ细胞在限制性温度下的死亡。这一研究揭示了一种全新的应激诱导的、易错的冈崎片段成熟途径, 解释了突变细胞株产生突变, 抵消复制缺陷, 促进细胞进化和生存的过程。在DNA复制过程中, 后随链的复制是不连续的, 由冈崎片段连接而成。在冈崎片段成熟过程中, RNA片段和由Pol α合成的DNA片段会形成5' flap, 进而由FEN1或DNA2和FEN1合作切除。FEN1的缺失会积累未加工的5' flap, 阻止冈崎片段的连接, 导致复制叉的坍塌和DNA双链断裂。缺失FEN1同源蛋白Rad27的酵母细胞在许可温度 (30℃) 下生长缓慢, 在限制性温度 (37℃) 下致死。这种表型称为条件致死。长时间培养后, 有极少部分细胞在37℃条件下幸存。这类细胞株称之为回复突变体 (Revertant)。通过单克隆的全基因组测序, 发现在回复突变体中21个基因发生了突变, 但其中只有Pol δ的催化亚基Pol3的突变率为100%。后续的Sanger测序发现, 31个独立的回复突变体中都含有Pol3的突变。敲入 (knock-in) Pol3的突变至rad27Δ细胞中, 细胞生长速率、突变率、突变图谱都和野生型相似。有趣的是, 全基因组测序在回复突变体细胞中发现了非典型的重复序列突变图谱, 这些序列可以形成三种类型的发卡结构 (图1)。在此模型中, 5' flap首先转变为3' flap, 3' flap退火形成互补序列, 3' flap延伸继而连接成非典型的重复序列突变。图1. 三种类型的非典型重复序列突变的形成原理基于对非典型重复序列突变形成机制的了解, 作者相信3' flap在体内的存在。运用作者新研发的检测基因组3' flap的方法 (图2) 发现, rad27Δ细胞基因组只有在37℃条件下形成大量的3' flap。而rad27Δ细胞在30℃条件下或野生型细胞在任何温度下都只有极少量的3' flap。图2. 基因组DNA中3' flap检测方法和结果A. 绿色点表示在双链DNA中的3' 端被封闭。红色星号表示单链DNA中3' 端被放射性标记。B. 3' flap只出现在高温培养条件下的rad27细胞中。这样一种从分子水平上像火山爆发型的基因组重组事件, 必须把rad27Δ突变细胞的细胞周期停止在S期的后期。高通量基因表达组学研究发现在37℃条件下rad27Δ细胞的中的Mec1, Rad53和Dun1转录水平明显升高。敲除DUN1基因导致rad27Δ细胞在37℃条件下3' flap的形成、突变率和回复突变子的形成频率大幅下降。基于以上结果, 作者提出了细胞在遗传缺失和高度DNA复制压力下冈崎片段成熟的易错加工的新型模型 (图3)。当细胞缺失结构特异性内切酶FEN1/RAD27时, 残留的5' flap可以转化为更具活性的3' flap。一旦单链的3' flap形成二级结构, Pol δ便以此为引物, 补齐空缺序列, 并把重复序列连接起来, 形成非典型的重复序列突变子。细胞用突变作为代价, 求得了生存。这些发现为新型的抗癌药物开发提供了重要的理论基础和崭新的方向。图3. 冈崎片段成熟的易错加工新型模型City of Hope 博士后孙海涛为该文章第一作者, 沈炳辉教授和郑力教授为该论文的共同通讯作者。加州理工大学的Judith L. Campbell教授, 加州大学圣塔芭芭拉分校的Eric Zheng, 沈郑团队的Amanpreet Singh, 周亚竟, 路兆宁, 周棉博士为本文的共同作者。希望城国家医学中心的顾朝辉和吴锡伟团队提供了高通量测序数据分析, 为本文共同作者。中国农业大学的楼慧强教授及实验室的刘路, 邹友龙, 李晓丽和张晶晶博士, 加州理工大学的Martin E. Budd博士为本研究提供了酵母遗传学的实验技术指导。加州大学圣地亚哥分校的Richard Kolodner教授, 华盛顿大学医学院的Peter M.J. Burgers教授, 德克萨斯大学的Satya Prakash和Louis Prakash教授, 加州大学的Wolf-Dietrich Heyer教授和爱荷华大学的Marc S. Wold教授为本研究提供了重要的实验材料。南京师范大学郭志刚教授团队, 浙江大学医学院夏大静教授团队, 澳门大学沈汉明教授团队在本课题前期探索性阶段给予了大力支持。上述工作为沈郑团队在过去二十五年来, 在冈崎片段成熟和DNA损伤应答机制研究工作的积累。欢迎生物信息学, 分子细胞生物学和生物化学等相关专业的有志青年加入团队, 开展进一步的合作研究。原文链接:http://doi.og/10.1126/science.abj1013
  • 活体成像中荧光色素标记细胞的方法举例
    活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究成为现实。而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记,利用荧光蛋白在外源光源或是内源发光照射下被激发产生的荧光作为检测信号。研究人员能够利用一套非常灵敏的光学检测仪器直接监控活体生物体内的细胞活动和基因行为。 该技术可被广泛应用于标记细胞或基因的示踪及检测;基因治疗在活体动物体内直接的观察和检测;基因组、蛋白组学、药学及生物技术在活体动物内的研究;药物及化学合成药物的药物代谢及毒理学监测;食品菌落生长成像;皮肤医学中皮肤疾病的体内成像;法医鉴定;微孔板成像,例如:免疫分析、报告基因、基因探针和嗜菌作用分析等;荧光团的体内成像,例如:Alzheimer疾病研究中结合嗪的β-淀粉沉淀物分析;转基因植物中通过报告基因对生理周期节奏的研究;凝胶成像分析等等。 但在研究过程中,研究者们必须事先用基因技术进行荧光素酶基因标记,或者某种荧光报告基团标记。目前活体光学成像系统的知名制造商,如Berthold、GE、Xenogen、Photometrics、Carestream Health等,不仅为客户提供先进的仪器,也提供具体实验所需的整套解决方案,包括试剂、实验手册、特殊用途的质粒、细胞株、转基因动物、细胞处理和动物处理设施等配套技术支持。出色的多任务处理能力,人性化的整体设计,便捷精确的操作系统,使实验室影像分析领域进入了一个全新的时代。 下面以研究干细胞活体移植后的存活率为例,简介一两种内源性荧光色素标记的实验方法,供专业人士参考。 用荧光色素DiD标记 间充质干细胞 1. 先用胰蛋白酶消化待标记材料,使之成为一定密度的悬浮液; 2. 从细胞培养箱中取出间充质干细胞,吸取含原有培养基的细胞悬浮液进行标记; 3. 用10 ml Mg/Ca-free PBS (不含钙镁离子的磷酸缓冲液)清洗细胞,吸去PBS, 钙镁离子会影响胰蛋白酶的活性,必须小心; 4. 加入预热的0.05% 胰蛋白酶液,加液量以T75型瓶为例,每瓶加5ml, 确保瓶的表面被完全覆盖; 5. 在细胞培养箱中37° C 孵育约 5 分钟; 6. 然后在显微镜下确认细胞已经完全分散,如果有细胞贴壁情况,轻拍若干次或延长孵育时间直至酶解消化完全成功; 7. 加入等量含 10% FCS的培养基中和胰蛋白酶; 8. 用移液器反复吸取几次确保细胞均匀分散; 9. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 10. 400 RCF离心5 分钟; 11. 小心移去上清液,不要扰动细胞; 12. 将细胞重新悬浮于DMEM 并进行计数; 13. 需要待标记细胞在无血清DMEM溶液中的密度应为1x106 /ml ; 14. 每ml细胞悬浮液加入5 ?L DiD 染色液; 15. 用移液器将染色液与细胞悬浮液混合均匀; 16. 在6孔低附着性细胞板上37 °C 孵育20分钟; 17. 孵育完全后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 18. 400 RCF离心5 分钟; 19. 小心移去染色液,不要扰动细胞; 20. 用PBS清洗细胞,用移液器反复吸取几次确保细胞均匀分散; 21. 重复洗三次; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可以进行活细胞成像了! 用荧光色素ICG标记 人胚胎干细胞 1. 必须先准备好吲哚菁绿溶液(血容量、心输出量、肝功能测定剂)作为对照品 ,然后使之与转染试剂鱼精蛋白(抗凝血作用)混合; 2. 测出1ml吲哚菁绿溶液的活力,然后在100 ?L DMSO中溶解ICG; 3. 向混合物中加入 400 ?L Dulbecco的改良Eagles 培养基 (DMEM + 10% 胎牛血清), 震荡均匀,吲哚菁绿溶液终浓度为2mg/ml; 4. 加入转染试剂鱼精蛋白,鱼精蛋白作为对照品的载体,使之能够有效进入细胞; 5. 在300 ?L ICG 和 300 ?L 无血清Dulbecco改良 Eagles 培养基中混入 5 ?L 硫酸鱼精蛋白溶液, 使之终浓度为 10mg/ml,; 6. 震荡5分钟使之形成复合物,标记溶液制备完毕; 7. 从 hESC 10mm Petri 培养皿中移去原有培养基; 8. 加入5ml预热的 DMEM; 9. 加入制备好的鱼精蛋白/ICG 溶液, 37 °C下孵育1h; 10. 孵育完全后移去染色液; 11. 用5 ml PBS漂洗培养皿以清除染色液; 12. 移去 PBS 再加入 5ml 0.25 % 胰蛋白酶液,37 °C下孵育5分钟使之酶解,适当震摇培养皿效果会更好; 13. 用移液器反复吸取几次确保细胞均匀分散; 14. 加入等量含 10% KSR的培养基中和胰蛋白酶; 15. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中,400 RCF离心5 分钟; 16. 在全培养基中悬浮细胞; 17. 如果还有细胞团块,可以移去原有培养基用10ml预热的全ESC培养基重新悬浮细胞,重复酶解再离心; 18. 在这一点上,鼠源饲喂细胞需从hESCs中分离; 19. 然后将细胞悬浮液移至涂布琼脂的10 cm 培养皿中; 20. 37 °C 孵育 45 分钟,注意不要晃动培养皿,如此鼠源饲喂细胞会贴壁而干细胞保持悬浮; 21. 从Petri 培养皿中移出已标记的单细胞人胚胎干细胞悬浮液; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可进行活细胞成像了!
  • 如何拯救你 那些被污染的细胞
    污染是细胞培养的大敌。预防和避免污染是细胞培养成功的关键之一。一开始就要十分重视,防止污染,否则会前功尽弃,不仅浪费时间,而且浪费人力、物力,甚至造成无法弥补的损失。   (一)污染的类型   细胞培养过程中的污染不仅仅指微生物,而且还包括所有混入培养环境中的、对细胞生存有害或造成细胞不纯的物质,包括生物和化学物质。   1、细菌污染   细菌污染是实验室细胞培养中常见的污染,即使在细胞培养液中加入了抗菌素,也可能因为操作不慎而引起污染。最常见的有革兰氏阳性菌,如枯草杆菌以及大肠杆菌、假单胞菌等革兰氏阴性菌,其中又以白色葡萄球菌较常见。   培养细胞受细菌污染后,会出现培养液变混浊,pH改变。污染后细胞发生病理改变,胞内颗粒增多、增粗,最后变圆脱落死亡。   2、真菌污染   真菌污染是细胞培养过程中最常见的一种,最常见的真菌有烟曲霉、黑曲菌、孔子霉、毛霉菌、白色念珠菌和酵母菌。   培养细胞受真菌污染后,可见培养液中漂浮着白色或浅黄色的小点,有的散在生长,培养液一般不发生混浊 倒置显微镜下可见丝状、管状或树枝状的菌丝纵横交错在细胞之间或培养基中,有的呈链状排列。   真菌污染后,细胞生长变慢,但最后由于营养耗尽及毒性作用而使细胞脱落死亡。    丝状菌污染   3、支原体污染   支原体是介于细菌与病毒之间能独立生活的最小微生物,最小直径0.2&mu m,一般过滤除菌无法去除它,光镜下难以看清它的形态结构。开始不易发现,能在偏碱条件下生存,对青霉素有抗药性。多吸附于细胞表面或散在于细胞之间。   培养细胞受支原体污染后,部分敏感细胞可见细胞生长增殖变慢,部分细胞变圆,从瓶壁脱落。但多数细胞污染后无明显变化,或略有变化,若不及时处理,还会产生交叉污染。 阳性 阴性   4、病毒污染   组织细胞培养过程中,如果没有除去潜在的病毒,就会产生病毒污染。目前,从原代猴肾细胞的培养中已发现不少于20种血清性病毒。   尽管病毒污染的细胞不影响原代培养,但生产疫苗是不安全的。因此,潜在病毒是细胞大量生产和疫苗、干扰素等生物制品制作中的难题。   5、非同种细胞污染   由于细胞培养操作时各细胞株所需的器材和溶液没有严格分开,往往会使一种细胞被另一种细胞污染。目前,世界上已有几十种细胞都被HeLa细胞所污染,致使许多实验宣告无效。   非细胞培养物所造成的化学成分的污染也偶有发生,大多是由于细胞培养所需物品清洗消毒不彻底而带入一些有毒化学物质所致。   (二)污染的鉴别   1、细菌、真菌污染的检测  (1)肉眼观察   细菌、真菌污染常在传代、换液、加样等开放性操作之后发生,而且增生迅速,若有污染,在48小时内可明显观察到,例如培养液变混浊,或略加振荡有很多漂浮物漂起。   (2)接种观察   采用普通肉汤接种或用未加双抗药物的培养液接种,也可发现是否有污染。   (3)镜下观察   在倒置显微镜的高倍镜下可见培养液中有大量圆球状颗粒漂浮,即为细菌污染。   若细胞之间有丝状、管状、树枝状或卵形的物质常为真菌污染。   2、支原体污染的检测   (1)相差显微镜观察   直接取少许培养液滴在载物片上,再盖上盖片观察,支原体在镜下呈暗色微小颗粒,多位于细胞与细胞之间,有时可见类似于布朗运动的表现。应注意与细胞破碎溢出的内容物如线粒体等相区别。   (2)荧光染色法观察   用荧光染料Hoechst33258,此染料能与DNA特异地结合,可使支原体内的DNA着色,荧光显微镜下支原体呈绿色小点,散在于细胞周围或附于细胞表面。   (3)电镜检测   若条件许可,可用扫描电镜或透射电镜观察。一般在细胞培养48~72小时,细胞接近汇合前,用胰酶消化细胞制成细胞悬液后进行固定、包埋、切片后才能进行观察。    支原体扫描电镜图片   (4)培养检测   将细胞悬液5mL加入45mL支原体肉汤培养基,培养14天后观察肉汤培养有无雾状沉淀,然后取0.5ml加入已冷却到50℃的培养基中,再用琼脂培养基做分离培养,37℃培养3天观察有无&ldquo 荷包蛋&rdquo 菌落出现。   3 、病毒的检测   1) 应用电镜技术快速诊断动物病毒病    冠状病毒电镜图   2) 逆转录_聚合酶链反应RT_PCR检测病毒   (三)污染的清除   培养细胞一经污染,多数较难处理。如果污染细胞价值不大,宜弃之 在寻找原因后彻底消毒操作室,复苏或重新购置细胞,再培养。   若污染细胞价值较大,又难于重新得到,可采取以下办法清除。   一、细菌和真菌的清除   1、使用抗生素   抗生素对杀灭细菌较有效。联合用药比单独用药效果好。预防用药比污染后再用药效果好。预防用药一般用双抗生素,污染后清除用药需采用大于常用量5~10倍的冲洗法,于加药后作用24~48小时,再换常规培养液。此法在污染早期有效。   二、支原体的清除   1、用MRA处理   用MRA(Mycoplasma Removal Agent)处理细胞,每4天换一次液,连续处理15天以确保细胞纯洁健康,效果好.   2、用清洗纯化法清除支原体污染的方法   细胞营养驯化&rarr 优质细胞群的筛选&rarr 细胞清洗&rarr 反复离心洗涤   其原理是利用离心力、细胞、微生物质量和悬液的浮力差达到清除支原体的目的。由于支原体个体小且除发酵支原体外多为细胞外寄生,所以通过反复洗涤细胞和低速离心换液使其中潜在的支原体数量降低至极限。   如结合敏感抗生素的抑杀作用,可达到更好的效果。   3、药物辅助加温处理   先用药物处理后,再将污染的组织培养物放在41℃培养18小时,可杀死支原体,但对细胞有不良影响。   4、使用支原体特异性血清   用5%的兔支原体免疫血清可去除支原体污染,因特异抗体可抑制支原体生长,故经抗血清处理后11天即转为阴性,并且5个月后仍为阴性。但此法比较麻烦,不如用抗生素方便、经济。   (四)、污染的预防   预防是防止细胞培养过程中发生污染的最好办法。只有预防工作做在前,才能将发生污染的可能性降到最小程度。   一般预防可从以下几方面着手:   1、添加抗生素   2、从物品、用品消毒灭菌着手   细胞培养所用物品清洗、消毒要彻底,各种溶液灭菌除菌要仔细,并在无菌试验阴性后才能使用。   操作室及剩余的无菌器材要定期清洁消毒灭菌。   3、从操作者做起   (1)进无菌室前要用肥皂洗手,按规定穿隔离衣。工作开始要先用75%酒精棉球擦手、擦瓶口和烧灼瓶口。   (2)操作者动作要轻,必须在火焰周围无菌区内打开瓶口,并将瓶口转动烧灼。操作时尽量不要谈话,若打喷嚏或咳嗽应转向背面。   (3)操作时要常更换吸管,一旦发现吸管口接触了手和其他污染物品应弃去。实验完毕用消毒水浸泡的纱布擦台面。   4、防止细胞交叉污染   在进行多种细胞培养操作时,所用器具要严格区分。   在进行换液或传代操作时,注射器和滴管不要触及细胞培养瓶瓶口,以免把细胞带到培养液中污染其他细胞。   细胞一旦购置或从别处引入,均应及早留种冻存,一旦发生污染可重新复苏培养。   5、无菌室的彻底消毒   1) 0.1%新洁尔灭全面彻底擦洗无菌室   2)甲醛熏蒸法:甲醛是一种广谱灭菌剂菌,其水溶液和气休对各种细菌、芽孢及真菌等微生物均有杀灭作用。
  • FluidFM BOT单细胞显微操作赋能CRISPR基因编辑取得重大突破——加速细胞系的开发进程,实现单个细胞多基因编辑
    Jennifer Rottenberger1, Paul Monnier2, Maria Milla2, Tobias Beyer2, Dario Ossola2, Justin S Antony1 and Markus Mezger11 University Children' s Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany2 Cytosurge AG, Saegereistrasse 25, 8152 Glattbrugg, Switzerland生物制药和生物学研究以及生物制品的生产制造都依赖于基因修饰的细胞系,这些细胞系的基因被修饰,以诱导所需的表现型。随着CRISPR等基因编辑技术的发现和发展,多位点编辑的越来越引起了研究者的重视,但实际研究表明,整个实验进程是冗长而复杂的过程。近期,来自德国图宾根大学附属儿童医院的学者和来自瑞士Cytosurge公司工程师合作,通过FluidFM BOT技术手段,在不到三周的时间内完成了多基因敲除的单克隆细胞系。 FluidFM BOT助力CRISPR实现新突破自CRISPR作为一种基因编辑技术被发现和发展以来,它已经彻底改变了许多生命科学的研究领域。它为科学家提供了一种高度通用的基因工程工具,已经应用于各种广泛的生物体。科学家们对多基因位点编辑的多重策略的兴趣也正在急剧的增加:多重gRNAs的使用可以大大的增强CRISPR的应用范围。如多位点基因编辑,基因失调,细胞凋亡等。用传统技术手段包括转染等方法将多个gRNAs传递到细胞中具挑战。除了由几次DNA双链断裂引起的DNA损伤反应外,细胞活力也可能因物理损伤和化合物进入细胞核所引起的毒性而大大降低。所有这些都大地限制了CRISPR多位点编辑的潜力和效率。FluidFM BOT技术具,可将化合物直接的输送到任何细胞的细胞核中(图1)。因此,所有的试剂可以调整为佳的配比剂量进行注射,这样的话就很大程度上提高了效率,降低了细胞所受的物理压力,同时也减少了脱靶效应。FluidFM BOT技术完全屏蔽了常规基因递送方法的障碍,甚至CRISPR RNP复合物可以与数十甚至数百种不同的gRNAs共同注射。此外,FluidFM BOT的注射物不依赖于待注射物本身的特性,对于难以转染的细胞(如原代细胞)或需要大量的基因插入和沉默时候更具特优势。图1:FluidFM BOT技术可以温和地操作单个细胞。 在传统的细胞系发展系统实验中,为了得到稳定转染的细胞系,候选细胞系在增殖过程中被反复评估。目前需要的时间是12到14周。相比之下,通过FluidFM BOT技术可以挑选一个BOT注射编辑过的单个细胞,并从中产生克隆体——从转染之日起直到克隆体被鉴定出来,不到三周的时间。大大提高了细胞系构建的时间。 FluidFM BOT技术进行多基因敲除构建细胞系接下来,我们将展示了如何使用FluidFM BOT技术在不到三周的时间内生成单克隆多敲除细胞系(图2)。先,通过FluidFM BOT技术将外源物注射到CHO细胞中,同时靶向几个不同基因的基因组位点,直接将gRNA/Cas9 RNP复合物导入细胞核。纳米注射后,记录每个转染细胞的位置,这样以便在注射24小时后使用FluidFM BOT探针进一步分离成功转染的细胞。然后将这些细胞扩展成单克隆细胞系。接下来对细胞进行测序,以确定基因编辑是否成功。图2:FluidFM BOT技术进行细胞株开发流程:1天,细胞经FluidFM BOT注射转染。2天,选择成功转染的细胞,通过FluidFM BOT系统进一步进行单细胞分离。从3天到14天,分离的单细胞扩展成稳定的单克隆细胞系,并对其基因组进行分析。 1天:FluidFM BOT单细胞注射转染通过FluidFM BOT技术进行纳米注射,简单的点击鼠标即可完成对几十个CHO细胞的细胞核进行注射,以大约5个细胞/分钟的速度自动完成注射。荧光标记物与所有不同的gRNA/Cas9 RNP复合物共注射,以方便监测注射过程并识别佳候选复合物(图3)。图3:FluidFM BOT注射CRISPR/Cas9复合物和荧光标记物的CHO细胞的荧光图像。 2天:FluidFM BOT进行单细胞分离和分选FluidFM BOT对细胞进行了注射转染24小时后,使用集成FluidFM BIO系列操作软件(ARYA)可以再次的找到所有目标细胞。进而,进行FluidFM BOT进行单细胞分离和分选,将目标单细胞采用孔径为4 μm的FluidFM探针进行单分离,放入空的孔板中(图4)。从视觉角度可以完全确保细胞系的单克隆性。图4:明场成像可以完全确保细胞系的单克隆性。 3 - 14天:单克隆细胞的扩增和突变分析分离后培养克隆,并在3天和6天后监测其生长情况(图5.1和5.2)。90%以上的分离细胞发育成一个细胞群落。转染后14天,收集克隆并对目标基因进行测序分析。50%的克隆在靶向位点上显示突变。图5.1:分离3天后的12组CHO细胞集落。图5.2:单克隆细胞群落生长6天后 结论结果表明,通过FluidFM BOT技术对单个细胞进行注射,完成了多个gRNAs同时递送到选定的单个细胞中这一艰难的任务。采用FluidFM BOT技术方法进行的CRISPR细胞编辑技术,同时共注入几十种gRNAs所获得的细胞系可以进一步扩增。此外,我们在这里证明了FluidFM BOT技术的使用大大减少了多表型单克隆细胞系的开发时间,从数月减少到三周。 展望FluidFM BOT技术为单细胞基因工程领域带来了全新的突破,有潜力解决科学家目前面临的一些艰巨的挑战,尤其是在他们需要快速和有效地开发单克隆细胞系时。传统的方法完全适用于常见的细胞系和基因工程策略,但当处理不常见的、罕见的或脆弱的、和已知难以转染的原代细胞类型,或者需要复杂的实验设计——例如CRISPR多基因编辑时,传统的方案就非常受限制。在这些特殊情况下,FluidFM BOT技术可能是可用的解决方案。
  • GE医疗携手华大基因开展干细胞研究项目
    6月12日,深圳 &mdash &mdash 全球领先的医疗技术和服务提供商GE医疗集团宣布与全球卓越的基因组学研究机构华大基因(BGI)在干细胞学研究建立长期的战略合作关系。此次合作旨在更好地了解及发现不同种族的人类干细胞系的基本遗传变异,进一步推进干细胞检测方法在药物发现和毒性测试中的应用。GE医疗生命科学部细胞技术总经理Amr Abid博士、华大基因副院长方林、华大基因助理院长尹烨、华大基因助理院长杜玉涛等领导出席了此次签约仪式,并宣布双方正式展开合作。 GE医疗生命科学部细胞技术总经理Amr Abid博士、 华大基因助理院长杜玉涛博士作为双方代表签署协议 在合作初期,双方将主要开展两个具有突破性意义的项目。第一,华大基因主要对由GE医疗集团提供的心肌细胞和肝细胞进行基因测序和表观遗传分析。双方希望通过本研究可以构建出不同种群的干细胞系之间的遗传变异图谱,并通过检测出具体细胞类型变异过程中的变化,提高对用于药物发现研究的细胞模型的了解。第二,GE医疗集团将为华大基因提供IN Cell Analyzer 2000细胞分析仪,为一系列已测试过的细胞类型进行细胞功能方面的高内涵细胞成像分析。同时,他们还将为华大基因的科研人员提供IN Cell Analyzer培训,使其能够通过cDNA表达和siRNA敲除来研究基因功能。 GE医疗生命科学部细胞技术总经理Amr Abid博士致辞 GE医疗生命科学部细胞技术总经理Amr Abid博士说:&ldquo 由于制药业希望降低药物开发成本,为市场上提供更加安全有效的药物,拥有密切生物相关和可预测的细胞模型将变得更加重要。我们的长期使命是通过开发广泛的Cytiva&trade 干细胞来源细胞株实现以上目标,包括各种遗传背景的细胞类型。这是一个很大的挑战。华大基因拥有重要资源以及世界级基因组学和表观遗传学研究的能力, 我们很高兴能与之携手合作,共同提高对不同干细胞系的了解, 从而在未来推动全球范围内进行新的、更安全和有效的药物的开发。&rdquo 华大基因助理院长尹烨发言 华大基因助理院长杜玉涛表示:&ldquo 目前,高通量测序已广泛应用于农业、人类健康和环境保护等研究领域。通过基因测序和表观遗传学分析,可以深入了解胚胎干细胞来源的功能性细胞亚群的变异性情况,从而为开发更多适合药物研发和细胞治疗等研究的新型、安全细胞模型奠定重要的分子基础。我们很高兴能有机会同GE医疗集团为共同推动干细胞研究领域的发展而努力。&rdquo 合照 关于GE医疗集团 GE医疗集团通过提供革新性的医疗技术和服务,开创医疗护理的新时代。我们在医学成像、信息技术、医疗诊断、患者监护系统、药物研发、生物制药技术、卓越运营和整体运营解决方案等领域拥有广泛的专业技术,能够帮助客户以更低的成本为全世界更多的人提供更优质的服务。此外,我们还和医疗行业领袖一道,正努力通过全球政策,打造成功的、可持续的医疗体系。 我们的&ldquo 健康创想&rdquo 愿景普及全球。我们不断通过创新在世界范围内推动降低医疗成本、增加医疗机会、提高医疗质量。GE医疗集团总部设在英国,是通用电气公司(纽约证券交易所:GE)下属的业务集团之一。GE医疗集团的员工分布于全球100多个国家和地区,致力于为医疗专业人士和患者服务。欲了解更多有关GE医疗集团信息,请访问公司网站www.gehealthcare.com。有关更多近期新闻,请访问http://newsroom.gehealthcare.com。 关于华大基因 华大基因自1999年成立以来,坚持"以任务带学科、带产业、带人才",先后完成了国际人类基因组计划"中国部分"(1%,承担其中绝大部分工作)、国际人类单体型图计划(10%)、水稻基因组计划、家蚕基因组计划、家鸡基因组计划、抗SARS研究、"炎黄一号"(100%)、大熊猫等多项具有国际先进水平的基因组科研工作,在Nature和Science等国际一流的学术杂志上发表多篇论文,奠定了中国基因组科学在国际上的领先地位。同时,建立了大规模测序、生物信息、克隆、健康、农业基因组等技术平台,其测序能力及生物信息分析能力世界领先。华大基因已形成科学、技术、产业相互促进的发展模式,建成一支具有世界一流水平的产学研队伍,开展一系列的重要动植物、人类健康、生物能源等基因组的研究,致力于人类健康服务事业和科技应用领域的发展。 在未来发展中,华大基因将依托先进的测序和检测技术、高效的信息分析能力、丰富的生物资源,以多学科结合的新型生物科研体系为基础,致力搭建核酸研究平台、蛋白研究平台、生物信息平台,并作为核心单位参与国家基因库的建立,为全球的科研工作者提供创新型生物研究的科技服务,推动基因组学研究、分子育种、医疗健康、环境能源等领域的科研发展。同时,为广大普通民众提供前沿生物科技在医疗、农业、环境及能源等领域的应用服务,真正做到科技惠民,为我国生物经济产业的战略发展奠定基础。更多详细信息,请见:www.genomics.cn。
  • 2021年 3D细胞与类器官研讨会(上海迹亚)邀请函
    展会名称:3D细胞培养与类器官研讨会参展时间:2021年5月28日-29日地点:上海虹桥万豪大酒店展位:20号2021年3D细胞培养与类器官研讨会将于5月28-29日在上海召开。本次会议由生物谷与复旦大学遗传工程国家重点实验室类器官中心联合主办,大会主委会将充分撬动领域内专业资源,共同搭建高水平交流平台,期待各位老师共襄盛会!会议亮点聚焦前沿进展:国内外类器官在生物学及医学研究最新热点、难点等问题的深入探讨,助力多方合作与研究开拓创新思路:开拓精准医疗新思路,创新发展类器官技术在生物医药领域的应用强大嘉宾阵容:力邀20+从事类器官研究与发展的产学研专家,交流分析当前研究难题参展主要产品CELLINK诞生于瑞典,是一家全球领先的生物融合公司,专注于生物打印、多层组学、细胞株开发和诊断等应用领域。赋能研究人员以3D方式培养细胞,进行高通量药物筛选,以及为医学,医药和化妆品行业打印人体组织和器官。CELLINK的产品得到了2000多家实验室的信任,包括全国20强制药公司的实验室,已有超过65个国家使用,并被1700多份出版物引用。在致力于“创造医学的未来”的同时,我们专注于细胞培养必不可少的三个应用领域:生物印刷,生物科学和工业解决方案。同时,我们在研发方面取得了重大进展,并获得了这些领域的互补技术,从而为科学家提供了由我们敬业的科学家和技 术人员支持的完整工作流程。韩国Curiosis的专家团队由世界科学家和工程师组成,致力于利用生物物理学和电子工程学的核心技术提供最佳的研究和诊断解决方案。提供最先进的技术和优化的平台使研究人员可以挑战他们的工作进度改进。活细胞自动成像系统细胞自动计数仪血细胞计数板OZ Biosciences是一家法国的新兴生物技术公司,其成立宗旨是帮助药物公司研发和生产新型的药物导入系统。研究方向主要集中在生物活性材料导入活体组织新技术的研发。研发目标是建立新一代的核酸、蛋白、多肽和其它生物分子的转染导入系统,为广大科研工作者服务。该公司与许多国际知名企业、大学和科研机构有合作往来。OZ Biosciences公司产品极具特色,主打产品是基于纳米技术和生物技术的基础上发展起来的磁转染试剂,相对常规商业化转染试剂,其转染效率更高。资料索取:info@gaiasciencechina.com联系人:王燕/吴万丹电 话:86-21-6877 9823 地 址:上海市浦东新区张江高科技园区海趣路236号1221室
  • 贝克曼推出流式细胞仪新品,应用领域再次扩大
    2014年10月中国首发CytoFLEX流式细胞仪,首次将先进的性能卓越的现代光通技术应用于流式细胞仪中。目前,全球销量已超越600台,中国已超150台,获得了用户的认可和支持。   CytoFLEX S系列流式细胞仪是CytoFLEX平台的延伸产品。CytoFLEX 流式细胞仪配备三色激光选项,波长分别为488nm、638nm 和405nm。CytoFLEX S系统能够预置多达四种激光,包括波长为561nm、375nm 或原有平台中的激光,以及最高13色荧光通道,从而拓展研究的可能性。  561nm激光  流式细胞仪平台新增561nm 的激光后,即可进行额外的多色检测,而且用户可以将成像检测结果转移到流式细胞仪上,从而轻松实现检测结果的定量分析。此外,相比488nm激光,561nm激光对于红色荧光蛋白的激发更加有效。利用561nm 激光检测红色荧光蛋白您可以实现动态范围和灵敏度的提升。  特殊应用:荧光蛋白检测(mCherry)  分别运用配备561nm激光的PE通道以及 595/20 BP 滤光片的 CytoFLEX S 流式细胞仪,以及配备 488nm 激光的 ECD 通道和标准 595/20 BP滤光片的CytoFLEX流式细胞仪,对 mCherry 表达细胞株进行分析。  375nm激光  CytoFLEX S 375 nm 激光是 CytoFLEX 系列桌面型流式细胞仪的新增选项。新增的 375 nm 波长激光,在空间分离光束点中,能够实现对 Hoechst、DAPI 和亮紫外(BUV)染料的出色激发。这样能够确保无需使用真正的紫外光即可通过上述染料/荧光染料进行试验,从而避免了相应的费用,降低研究成本。  特殊应用:  运用 Hoechst 和 DAPI 进行分析   利用Hoechst 33342外排,鉴别129/C57B/6鼠骨髓中的侧群细胞。适用于sca-1和 c-kit的阴性和双阳性细胞系。  通过近紫外线激光对亮紫外(BUV)染料激发进行分析  通过 BUV 661、BUV737 和 BUV 805 进行 CD3 抗体染色的全血。  根据规定,利用不同的带通滤波器对各种亮紫外染料进行检测。通过所有 BUV 染料观察阳性和阴性样本之间的良好分离度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制