当前位置: 仪器信息网 > 行业主题 > >

智能印控仪

仪器信息网智能印控仪专题为您提供2024年最新智能印控仪价格报价、厂家品牌的相关信息, 包括智能印控仪参数、型号等,不管是国产,还是进口品牌的智能印控仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能印控仪相关的耗材配件、试剂标物,还有智能印控仪相关的最新资讯、资料,以及智能印控仪相关的解决方案。

智能印控仪相关的论坛

  • 智能阴保的应用

    [align=center][font=宋体]智能阴保[/font][/align][align=left][font=宋体]智能阴极保护系统基于物联网平台,依托[/font]GIS[font=宋体]地理信息系统,采用低功耗芯片处理器,充分结合现场各种恶劣使用环境,开发的专用的数据采集仪,并配合长效极化探头,实现对管道测试桩的参数采集。[/font][/align][font=宋体]该系统是基于目前较为成熟的物联网技术、结合用户对阴极保护智能管理信息系统的实际需求情况,进行整体方案设计、软硬件产品选型、现场设备改造、网络通信建设、智能管理平台建设以及长期运行维护。[/font][font=宋体]该系统通过全方位的数据监控、智能分析、设备管理,在原人工桩的基础上通过改造实现智能桩,摸清管道真实保护电位,评判阴极保护系统保护状态,并据此来实现对恒电位仪的输出参数合理化调整,从而提升整个管道防腐状态。[/font][font=宋体]系统总体建设可分为三个层次,即数据采集层、网络通信层和管理应用层[/font]1) [font=宋体]数据采集层[/font][font=宋体]包括恒电仪的主要参数采集,具体到输出电压、输出电流、参比电位。对于智能型的设备,既可以获取仪器的各种状态数据也可以实现远程控制;对于人工桩改造后的智能桩,可以实现对管道通电、断电电位;交直流干扰电压;杂散电流以及管床温度等参数的采集。[/font]2) [font=宋体]网络通信层[/font][font=宋体]网络通信包括中心端服务器的网络接入方式,服务器端需要有一个固定[/font]IP[font=宋体]地址,可以选择购买运营商的专线[/font]IP[font=宋体],也可以通过购买主流云服务器的方式获得较为稳定的[/font]IP[font=宋体]地址。现场设备端主要基于[/font]4G[font=宋体]通讯,应用物联网无线模组实现与中心服务器的连接建立、数据收发。在信号覆盖比较差的地区可以用[/font]Lora[font=宋体]技术实现数据的中转传输。[/font]3) [font=宋体]平台层[/font][font=宋体]平台层包括中心系统的服务器平台、移动终端[/font]APP[font=宋体]、物联网平台三个关键支撑平台。中心服务器采用[/font]windows2012[font=宋体]服务器操作系统,数据库应用[/font]SQL2008[font=宋体]企业版,除此之外,还需要在服务器端部署[/font]MQTT[font=宋体]服务器。软件支撑环境是[/font].net framework 4.0[font=宋体]。[/font][font=宋体]移动终端采用**小程序实现页面展示,物联网平台是保障通讯传输的枢纽。每个设备都需要一张独立的物联网通讯卡,卡的停开、流量使用情况、流量预警分析均可以在物联网平台进行查询和设定。为确保网络的安全性,我们应用物联网的卡应是采用具有定向白名单的卡片。[/font]4) [font=宋体]管理应用层[/font][font=宋体]数据管理与应用是本系统建设的核心,通过在服务器部署实时数据库、[/font]WEB[font=宋体]管理相关系统服务,确保使用者在任意可以联网的[/font]PC[font=宋体]机都可以轻松的登录系统,实现上传数据的监控、趋势曲线的分析查询、报表统计与分析、阴极保护状态分析与建议、设备故障报警与查询、设备信息管、操作日志管理等功能。[/font][align=left][font=宋体][color=blue]获取更多技术资料,欢迎来电咨询18611102176 [/color][/font][/align][align=left][/align][align=left][font=宋体][color=blue]公司网站:http://hkh.net.cn[/color][/font][/align]

  • 人工智能下的智能温压双控微波消解仪好与坏

    在人工智能加速发展的今天,人工智能给人们带来了全新的变革,在这样的情况下,给仪器制造带来什么好于坏呢?就拿[url=http://www.xo-china.com]智能温压双控微波消解仪[/url]来说,人工智能带来的利与弊。人工智能带来的好处:1人工智能变得越来越广泛,使得人类解放了很多;2、人工智能可以帮助人类繁荣;3、人工智能可以给人带来方便;那么人工智能带来的弊端呢?1、人工智能为了你的工作而来,让你从此失业变成终生假期;2、机器没智商,不能完成所有人类可以完成的事;3、人工智能使得人类远远落后,在智慧上大大超越人类;4、人工智能安全性,因为今天的计算机漏洞百出,使得人工智能安全让人怀疑。这些的这些都说明了虽然人工智能给人类带来很多的便利,但是还是有着很多问题,在未来的人工智能更加成熟的情况下,这些的问题一定会很好的解决的。

  • AI智能视频识别技术如何实现电网可视化智能安防监控?

    [size=18px][color=#333333]巡查使智能巡查安全管理系统中[/color][font='Arial',sans-serif][color=#333333]AI[/color][/font][color=#333333]智能功能的应用,不仅能为核心厂站各业务流程安全防范提供保障,而且在输电线路部署、电网状态监测、视频移动监控管理、重要廊道监视巡检,实时可视化、精益化用电及作业管理互动等方面,都将起到重要作用。[/color]众寻“巡查使”智能AI视觉算法赋能制造百业,以高清摄像头为前端、图像算法为核心,具备丰富的行业场景与应用落地,“巡查使”AI智能具备100多种视觉算法技术,[color=#333333][back=white]能够根据客户所需场景自由组合。[/back][/color]可在视频监控区域有效识别出设备、人员、车辆等违规行为,并自动拍照上传至管理端。“巡查使”AI智能视频检测或识别到违规行为时会实时进行告警,以语音、报警灯等形式进行提醒,能及时发现并制止违规现象,消除安全隐患,[color=#333333][back=white]以标准化的系统架构赋予企业轻松部署[/back][/color][font='Arial',sans-serif][color=#333333]AI[/color][/font][color=#333333][back=white]算法的能力。[/back][/color][/size]

  • 无线遥控智能LED,wifi智能LED开发实例

    简介 无线遥控智能LED,wifi智能LED开发实例 无线遥控智能LED,wifi智能LED开发实例 21世纪科技不断的发展LED照明业已经被誉为最节能、最环保的绿色光源,人们高品质的生活追求越来越高,普通的LED照明业也越来越不能满足用户的需求,现今智能手机的发展已经是走向人性化非常方便,在生活当中只需一根手指触碰一下智能手机就可以完成很多事情。 深圳远嘉科技为满足客户需求研发出WIFI无线LED智能控制技术解决方案,在原有的LED灯、LED广告屏上嵌入WiFi模块TLG10UA03即可以实现对LED灯控制,通过WiFi信号将 LED灯、广告屏与智能WiFi终端连接,在智能手机或者平板电脑控制终端上就可以实现WIFI无线控制LED灯光的色彩和亮度,也可以改变LED广告屏的广告内容,让你的LED灯、LED广告屏操作变得更加便捷。 功能 按照客户的需求我们会定制开发出一套无线LED智能控制方案。 包含两种控制模式: 第一种:是点对点控制,使各种WiFi终端直接连接到WiFi LED灯、LED广告屏。 第二种:随时随地远程控制,LED灯、LED广告屏和WiFi智能终端同时连接到AP上,形成网络连接,在这样的情况下可以通过AP 连接控制多个LED灯、LED广告屏。 嵌入式开发 Wi-Fi智能LED控制方案中嵌入式开发是比较重要的一步,这样才能在硬件上实现无线数据转换以及无线控制。我司主要采用的串口wifi模块TLN13UA06,它是新一代嵌入式Wi-Fi模块产品,软、硬件接口全面兼容 TLG10UA03,体积小,功耗低。 嵌入式wifi模块采用UART接口,内置IEEE802.11协议栈以及TCP/IP协议栈,能够实现用户串口到无线网络之间的转换。支持串口透明数据传输模式,可以使传统的串口设备可轻松接入无线网络。http://i02.c.aliimg.com/img/ibank/2013/696/749/1115947696_799152390.jpg 部分APP无线遥控智能LED,wifi智能LED开发实例http://i01.c.aliimg.com/img/ibank/2013/251/379/1125973152_799152390.jpg 定制开发 深圳市远嘉科技有限公司,十年的研发经验,拥有一支独立的研发能力的开发团队,具备丰富的软硬件项目设计开发经验,WI-FI智能家电研发、智能医疗、WI-FI遥控玩具、WI-FI工业设备等,强大的技术支持与用心服务,竭诚为您提供各类基于WIFI智能控制系统开发服务。无线遥控智能LED,wifi智能LED开发实例无线遥控智能LED,wifi智能LED开发实例本文来自WiFi无线LED控制方案:http://www.wifitop.com/jiejuefangan/gongyeshebeijiejuefangan/286.html

  • 智能温压双控微波消解仪购买上的常识

    随着现在的现在化互联网经济的发展,在[url=http://www.xo-china.com]智能温压双控微波消解仪[/url]等产品的销售上越来月火爆了,但是随着销售的增多,在产品的服务上应该注意那些事项呢? 在现在的智能温压双控微波消解仪的购买上,一定要看清销售的合同,因为在其他行业中,很多合同上都有文字游戏,再次提醒广大用户在产品的购买上一定要看清销售合同避免这些文字游戏。不仅仅如此,在购买产品上还有注意产品服务的类型,不能仅仅保修一项,在仪器上会面临着很多的问题困难,在购买时一定要确定厂家对这些问题等负责。还有就是产品售后质量,很多厂商因为业务多,在售后上做的比较迟,用户在购买时一定要增加一条售后时间,这样才能更好保护自己的权益。 在这样服务上一定要注意好这些,避免自己的权益得不到保障,只有做好这些才能有着很好的服务。

  • 【原创大赛】【仪器故事】实验室智能化应用实践(之三)——天猫精灵X1+智能设备,实现语音控制电器仪表

    【原创大赛】【仪器故事】实验室智能化应用实践(之三)——天猫精灵X1+智能设备,实现语音控制电器仪表

    阿里巴巴人工智能实验室于2017年7月5日发布AI智能天猫精灵(TmallGenie)品牌,并同步发布天猫精灵的首款硬件产品——AI智能语音终端设备天猫精灵X1。 天猫精灵X1内置云端AliGenie操作系统,它能够听懂中文普通话语音指令,可实现智能家居控制、语音购物、手机充值、叫外卖、音频音乐播放等功能,带来人机交互新体验。[b]一、实验目的[/b] 将具有AI智能的天猫精灵X1与两种最常见的智能设备(智能红外控制器、智能插座)进行配置,实验语音控制实验室空调器运行及控制实验室PH计预热。[b]二、实验设备[/b]天猫精灵X1智能音箱、博联RMmini 3智能红外控制器、灵感WIFI智能插座、无线路由器;美的分体挂式空调器(1.5匹)、雷磁PHS-3C酸度计。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2018/10/201810240936551589_8599_1807987_3.jpg!w690x517.jpg[/img][b]三、实验过程[/b] 前期,已经分别成功实践了手机APP独立控制实验室空调器运行及控制实验室PH计预热,具体可见:实验室智能化应用实践(之一)——黑豆RM mini 3远程控制房间空调 https://bbs.instrument.com.cn/topic/6997698;实验室智能化应用实践(之二)——智能插座远程控制PH计预热 https://bbs.instrument.com.cn/topic/6997699 现在,只需将控制空调器的博联RM mini 3智能红外控制器和控制PH计预热的WIFI智能插座与天猫精灵X1智能音箱进行配置,实现语音控制,手机APP控制仍然保留。互联控制示意图如下:[img=,576,567]https://ng1.17img.cn/bbsfiles/images/2018/10/201810240936563245_9962_1807987_3.jpg!w576x567.jpg[/img]1、设备安放位置电化学分析室内:空调器,PH计,智能红外控制器RM mini 3,智能插座。空调器接通电源;智能红外控制器RM mini 3使用手机电源适配器,插在室内的电源插座上;智能插座插在室内市电插座上,PH计的电源插头插在智能插座上。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2018/10/201810240936573482_8111_1807987_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2018/10/201810240936584265_8701_1807987_3.jpg!w690x517.jpg[/img]办公室(电化学分析室隔壁)内:无线路由器,天猫精灵X1智能音箱。都接通电源。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2018/10/201810240936593384_6134_1807987_3.jpg!w690x517.jpg[/img]2、按照说明书,对智能设备配网及登录 在手机上,扫描厂家二维码,分别对天猫精灵X1智能音箱配网及登录、对博联RM mini 3智能红外控制器配网及登录、对智能插座配网及登录。下图是手机已成功安装三家APP的截图:[img=,360,640]https://ng1.17img.cn/bbsfiles/images/2018/10/201810240936540658_4820_1807987_3.jpeg!w360x640.jpg[/img]3、天猫精灵X1分别与RM mini 3智能红外控制器和智能插座进行配置,使二者都能受到X1的控制。打开天猫APP,按照下图步骤操作:[img=,690,404]https://ng1.17img.cn/bbsfiles/images/2018/10/201810240937527545_4251_1807987_3.jpeg!w690x404.jpg[/img]下面以智能插座为例,进行绑定。它的平台是“灵动智慧”,翻动列表找到它,进行绑定操作:[img=,690,404]https://ng1.17img.cn/bbsfiles/images/2018/10/201810240937539128_4244_1807987_3.jpeg!w690x404.jpg[/img]绑定完所有设备后,回到“智能居家”页进行查看,有设备安装详情及控制命令标准语音的显示。在这里,天猫X1对这款智能插座的控制只有开关量,语句简单,但在智能插座APP中,要丰富一些:[img=,690,403]https://ng1.17img.cn/bbsfiles/images/2018/10/201810240937549405_1363_1807987_3.jpeg!w690x403.jpg[/img]查看空调的详情,控制空调的标准语音要多一些,有三组:[img=,690,403]https://ng1.17img.cn/bbsfiles/images/2018/10/201810240937558000_1287_1807987_3.jpeg!w690x403.jpg[/img][b]4、实验效果[/b] 在房间内,距离7米,用正常语音量(普通话、四川话)发出指令,天猫精灵都能接收识别并进行准确控制操作,被控设备运行正常。语句不一定完全标准,X1的人工智能识别很强大,只要判断出你的意思就可以控制设备。如果无法理解判断,会告诉你,重述一遍或不能理解你说的什么。在有嘈杂背景下,优秀的算法,也使得X1可以对语音命令较准确识别。 语音控制与APP控制,可以分别使用,互相之间没有干扰。 离开了办公室,任何地点只要能够上网,手机APP都可以远程控制实验室的空调及PH计,能反映出它们目前的状态。下图设置空调为加热、20℃、风速自动,实际运行数据完全相同:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2018/10/201810240937571825_1524_1807987_3.jpg!w690x517.jpg[/img]PH计预热待机(天猫X1目前对这款智能插座仅支持开关,智能插座的APP支持倒计时、定时)没问题。PH计使用完毕,不必关闭背后的电源开关,由智能插座进行开关控制,便于下一次远程控制预热操作:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241034084609_5844_1807987_3.jpg!w690x517.jpg[/img][b]四、实验体会[/b] 人工智能用于电器仪表的控制,节约时间能源,提高了效率,方便了工作。可以结合仪器特点,有更多的灵活应用。天猫精灵X1智能音箱放在办公室内,还可以充分发挥它的人机交互功能,查一下天气、叫个外卖、听一听音乐、给手机充值等等,体验很丰富。 使用中,X1与红外控制器、智能插座都应在路由器的WIFI信号良好覆盖范围之内,才能保证它们之间的通讯良好。由于应用的时间较短,在稳定性、抗干扰、安全保密方面有待进一步观察。 人工智能的应用,在家用电器领域如火如荼,在仪器行业步伐较慢。相信许多仪器也会与时俱进,植入AI功能,更好地为检测分析服务。

  • 通过测量劳易测传感器实现智能监控

    通过测量劳易测传感器实现智能监控测量劳易测传感器能够主动检测距离,定位系统部件,并监控其他参数,以便可以智能、独立地采取行动,如在工艺过程中进行控制性干预。在此区域,您可以找到各种技术和设计,使您的系统尽可能高效、无故障地运行。劳易测致力于成为测量传感器技术驱动力之一,并以完善齐全的杰出产品功能为基础,包括...广泛的集成接口,通过这些接口,劳易测的设备可毫无问题地与各种常用现场总线系统通信。工作范围高达10,000米的创新型条码定位系统,可以毫米级的精度绝对定位移动对象。激光距离测量系统,按照PTB校准标准,最高可以毫米级的精度测量300米。测量劳易测传感器十分适合各种复杂检测任务。除了典型的功能(例如,高精度、高分辨率或大检测距离)之外,[url=http://www.china-leuze.com/]劳易测传感器[/url]还具有如集成智能数据评估和各种接口技术、运行轻松、安装简单等多种特性。这使得劳易测电子传感器对于特定的任务特别有吸引力。”

  • HZD-Z型智能轴振动监控仪

    HZD-Z型智能轴振动监控仪是风机、压缩机、汽轮机等各种旋转机械装置不可缺少的检测、保护设备。旋转机械转子径向的振幅以及径向位置,是衡量其全面机械状况最基本的指标,很多的机械故障,包括转子不对中,不平衡,轴承磨损,轴裂纹以及发生动静摩擦,都能通过该监控仪来测量。 HZD-Z型智能轴振动监控仪与WT型电涡流传感器相配套使用,可对各种旋转机械进行轴承相对振动的连续监控和测量。该装置具有精度高、性能稳定、抗干扰能力强、可靠性高等特点。 HZD-Z型智能轴振动监控仪性能特点:  ◆实现智能处理:报警I值、II值可通过面板按键任意设置  ◆面板按键可调整量程值,无需电位器调整,方便现场调试  ◆一分钟不按操作键,可自行回到运行状态  ◆报警延时调整范围0.1~3秒,以防止现场干扰引起误报警  ◆具有上、掉电检测功能,同时切断报警、停机输出回路,能有效抑制仪表误报警  ◆后面板上有与轴振动值成正比的电流输出端子,供记录输出

  • 智能温压双控微波消解仪发展的新方向

    [url=http://www.xo-china.com]智能温压双控微波消解仪[/url]是一款智能化的仪器产品,但是随着现在的科技的发展,渐渐地我们会发展现在的科技发展趋势是人工智能、物联网技术这样的方向,那么智能温压双控微波消解仪在未来发展的趋势将是什么呢?随着大数据时代的到来,现在的越来越多的产品都开始智能化发展,然而智能化发展只是其中的一步,如何实现大数据呢?物联网技术来解决这些的问题。在现在的发展中,物联网技术将物体和网络连接起来,这样产品可以通过网络就可以实现操作了,这是科技发展的最终趋势。像在仪器上,可以远程操作仪器工作,把实验的数据保存起来,传到网络,这样数据可以更好的分享,也你更好的把实验数据做对比。这样既方便了人的操作,也方便了数据的比较。不仅仅是产品本身的发展,在未来人工智能技术的成熟,在未来产品是制造也无需人工制造,像现在的机器人制造,3D技术打印等等这些技术可以更好的解放了人类。虽然现在的科技还没有完全达到,但是在不久的将来,世界将会变得更加智能化,人类将会被解放,这是发展的趋势。

  • HZD-L智能振动烈度监控仪

    HZD-L智能振动烈度监控仪主要用于对转速600~6000转/分旋转机械的振动烈度进行长期监测,与ST系列磁电式振动速度传感器配套,可以监测旋转机械的垂直,水平方向的振动,振动烈度值大小由仪器前面板的表头显示,同时具有标准的电流输出,可与各种DCS,PLC系统配接,当振动值超限时,本仪器可外接声光报警器以提示现场操作人员采取防范措施,并有报警,危险开关量输出,保护机器安全可靠运行HZD-L型智能振动烈度监控仪配接速度式振动传感器,对振动信号进行放大、整型、滤波、经积分电路把振动信号转换为振动位移信号,再经检波器将振动位移峰-峰值送表头显示。可广泛应用于发电、石油、炼钢、航空、航天等行业作为旋转机械的轴承振动监测与保护。HZD-L型智能振动烈度监控仪测量参数放置机械的轴承振动。机组类型:各种旋转机械,如汽轮机、大型风机、压缩机、电机、泵等。HZD-L型智能振动烈度监控仪安装要求:配接两支TRLV-8速度式振动传感器,任意安装在轴承的垂直、水平两个方向上,设置报警、危险点即可,用户选用其它公司传感器请在合同中注明型号及参数。HZD-L型智能振动烈度监控仪主要技术指标:测量范围 由用户确定(峰-峰值)HZD-L型智能振动烈度监控仪分辨率 0.1%(FS)显示精度 ≤±2%输出信号 电源1~5V,负载≥1KΩ;电流4~20mA,测量信号灵敏度 200mV/CM/S频率响应 10~1kHz(-3dB)HZD-L型智能振动烈度监控仪显示方式:三位半LED数显报警停机 两级,设定范围为满量程的5%~100%,误差<2%,延时1s~3s可选,继电器触点容量28VDC×5A或115VAC×0.5A电源 220VAC±10%HZD-L型智能振动烈度监控仪使用环境 温度-10℃~50℃ 湿度<90%重量 2kg外形尺寸 160(宽)×80(高)×270(深)mm安装尺寸 150+1(宽)×74+1(高)mm HZD-L型智能振动烈度监控仪HN-8热膨胀监测仪,HN-7油箱油位监测仪,HN-5油动机行程监测仪,HN-6型智能转速监测仪,HN-4轴向位移/胀差监测仪,HN-2风机轴承振动监测仪,HN-3轴振动监测仪DF9012转速监测仪,DF9002轴向位移监测仪,DF9011精密瞬态转速仪,DF9032热膨胀监测仪,DF9052轴承振动监测仪,DF2000系列系统仪表(TSI)CZ700转速监测仪,CZ750轴振动监测仪,CZ780轴位移、胀差监测仪,CZ670轴承振动监测仪HZ-847正反转速监测仪,HZ-843振动监测仪,HZ-3双通道轴振动监测仪,HZ-841轴位移监测仪,HY-504数显转速KR-939B型风机安全运行监控器,KR-939B3型风机安全监控器,KR-939B4型风机安全监控器,KR-939B4-4型设备安全监控器,KR-32型双通道设备安全监控器,KR-34四通道设备安全监控器,KR-939NCS型风机转速频率表VB-Z500B 旋转机械状态监测保护表,VB-Z412双通道轴位移/胀差监测仪,VB-Z410/410A轴位移/差胀监测仪,VB-Z430F双通道轴承振动监测仪,VB-Z430 双通道轴承振动监测仪VB-Z720 双通道水机摆度监测仪,VB -Z730 双通道水机振动监测仪,VB-Z420双通道轴振动监测仪,VB-Z470B壁挂式正反转监视仪,VB-Z470正反转监测仪,VB-Z440转速监测仪XZD-LG型壁挂式振动烈度监控仪,XZD-L型振动烈度监控仪,XZD-4型四通道振动监控仪,XZW-D型轴向位移、胀差监控仪,XZS-04型智能转速监控仪,XZD-Z型轴振动监控仪,XCW-R型热膨胀行程监控仪,XCW-U型油箱油位监控仪,XCW-Y油动机行程监控仪,XZD-W型振动监控仪WB8100E旋转机械监测仪表.

  • 中国农业大学吴晓蒙等:融合人工智能的智慧餐饮

    餐饮业在我国经济社会具有重要地位,随着社会的发展及人工智能的应用,餐饮业正向着多元化、专业化、智能化的方向发展。中国农业大学食品科学与营养工程学院和四川成都中农大现代农业产业研究院的吴晓蒙,中国农业大学食品科学与营养工程学院的褚泽军,沈群,胡小松,四川旅游学院烹饪学院的李想,中国人民解放军陆军勤务学院军需采购系的刘楠梳理了我国餐饮行业的发展历程,分析了智慧餐饮4.0的内涵和外延,并系统阐述了相关新型食品科学技术与人工智能技术在该领域的应用趋势。计算机视觉等技术结合深度学习算法等手段实现了原料的品质分级 数字孪生技术不仅可以将上千种电子菜谱转化为工艺参数,而且可模拟烹饪大师烹饪技艺,将中国特色烹饪技法用于机器人烹饪 协同过滤推荐算法、自然语言处理、人脸识别等技术的应用,可对顾客身份信息快速识别,实现个性化膳食推荐。总结了智慧餐饮的现状和主要技术手段,并展望了未来发展方向,即以健康为导向、以美味为基础、以文化为内核,以期为餐饮行业的进一步发展提供参考。[align=center][img=吴晓蒙.jpg,500,619]https://img1.17img.cn/17img/images/202403/uepic/bce0f3b1-ddc6-46f2-9653-db70955c357e.jpg[/img][/align][align=center]吴晓蒙[/align]餐饮业是拉动经济增长和提高人民生活水平的重要行业,数据显示,2023年1~4月全国餐饮收入15 888亿元,同比增长19.8%。我国餐饮业发展至今经历了4个典型阶段,一是高度依赖人工的传统餐饮1.0阶段,二是基于单机操作的机械化餐饮2.0阶段,三是以标准化和数字化为代表的工业化餐饮3.0阶段,四是融合了新型食品科学技术与人工智能技术的智慧餐饮4.0阶段。我国目前已经步入老龄化社会,餐饮相关的公共卫生服务的进一步完善和老年营养餐服务市场的发展已成为亟待关注的问题 因此,多元化、专业化、智能化的智慧餐饮4.0是行业发展的必然趋势。[size=18px][b]1 餐饮业的发展与食品工业息息相关[/b][/size]餐饮业是指通过即时加工制作、商业销售和服务性劳动等手段,向消费者提供食品、消费场所和设施的食品生产经营行业。餐饮业是促进我国经济发展、增加就业机会和提高人民生活水平的重要领域。国家统计局数据显示,2022年全国餐饮收入47 645亿元,同比增长1.6%。食品工业是餐饮行业的上游支柱产业,不仅可为餐饮业提供成品、半成品原料,更为其提供了必不可少的技术支撑。2017—2021年间,我国食品工业及餐饮业产值见图1。2021年我国规模以上食品工业企业总收入10.35万亿元,餐饮业总收入4.68万亿元,两者共计占国内生产总值的13.14%。食品工业的发展不断推动餐饮业的转型升级,二者已深度融合。[align=center][img=图片,500,307]https://img1.17img.cn/17img/images/202403/uepic/79ffc750-3bdd-46d5-86a7-b6bca5b0537f.jpg[/img][/align][align=center]图1 我国食品工业及餐饮业产值Fig.1 Output value of China’s food industry and catering industry[/align]食品工业推动餐饮业的转型,集中体现在烹饪装备和相关技术的迭代升级上。我国餐饮业的发展历程及阶段划分见图2。传统餐饮1.0以手工操作为主,全部依靠人工经验,效率低、劳动强度大、工作环境恶劣、品质不稳定、安全问题频发。随着经济社会的发展及科学技术的进步,20世纪后期,切菜机、和面机等简单的食品加工机械设备在餐饮行业应用和普及,使我们进入了机械化餐饮2.0时代,提升了部分工作效率,同时也降低了部分劳动强度。随着中央厨房的出现,建成了集中规模采购、安全生产的综合系统工程,机械化餐饮2.0完成了向以标准化和数字化为代表的工业化餐饮3.0的跃升。如全自动的包饺子生产线,从和面到包饺子再到入库全部自动化控制,极大地提高了工作效率和食品安全水平。工业化餐饮3.0原料标准化、生产程式化,满足了人民群众对日常饮食的基本需求。随着生活水平的提高,消费者对饮食个性化需求不断增强,并且由于中餐的独特性,工业化餐饮3.0已无法满足行业进一步发展的需求,尤其是无法解决食品安全、个性化膳食方面的瓶颈问题,因此行业向着智慧餐饮4.0的转型升级迫在眉睫。[align=center][img=图片,500,292]https://img1.17img.cn/17img/images/202403/uepic/e82a557a-2df9-4896-9ce1-31272d846517.jpg[/img][/align][align=center]图2 我国餐饮业的发展历程Fig.2 Development history of catering industry[/align][size=18px][b]2 智慧餐饮4.0的内涵、构架与外延[/b][/size]智慧餐饮是伴随新一代信息技术发展而产生的新概念,目前仍在不断探索发展中,学术界尚无准确定义。本研究认为智慧餐饮概念的内涵应是以满足餐饮监管者、操作者和消费者三者的需求为主要目标,充分运用信息技术手段,通过体系化设计和集成化部署软硬件设备,改造完善基础设施条件,将食品科学技术和人工智能技术运用于餐饮活动的全过程和供应的全链条,以达到降低操作者劳动强度、改善消费者就餐体验、提升监管者管理水平的目的。智慧餐饮4.0的内涵构架与外延见图3。[align=center][img=图片,500,479]https://img1.17img.cn/17img/images/202403/uepic/8c0013a4-9c71-4c1b-93d2-1daccab8eba8.jpg[/img][/align][align=center]图3 智慧餐饮4.0的内涵、构架与外延Fig.3 Connotation, structure and extension of Smart Catering 4.0[/align]作为餐饮发展的4.0版本,智慧餐饮的核心有三层构架:一是决策层,需要利用配餐调度、烹饪专家、营养专家等管理系统针对不同用户、不同场景对餐饮过程进行自学习、自决策 二是功能层,需要对烹饪过程中视觉、触觉、成熟度等多维信息进行自感知,并利用多功能一体化烹饪装备针对非标食材、个性需求的复杂烹饪任务进行自适应,实现加工过程柔性调整 三是应用层,需要消费终端具备点餐、取餐、送餐、支付等核心功能,并可以对设备的异常状态实现自愈合和产供销一体化的智运维。此外,还可将智慧餐饮外延出“六化”:1)个性化膳食制作,在中餐标准化技术基础上,结合数字孪生、人脸识别等技术快速分析顾客历史行为和个人偏好等信息,推荐并制作符合消费者喜好的个性菜品。2)精准化营养配餐,通过制订食谱提高配餐的计划性,对菜肴营养成分进行分析。应用称重取餐等个体数据采集手段,提高膳食摄入数据采集的精准度并进行智能化评估。3)柔性化烹饪加工,针对非标食材、个性需求的复杂烹饪任务进行分析,并根据食材特征差异进行工艺参数的柔性与自适应调整。4)人性化就餐服务,通过就餐环节人机交互,提高选餐、配餐速度,减少就餐者等待时间,以菜肴评价、点赞等方式收集就餐人员意见,反馈给管理端以便进一步改进。5)可视化运营监管,应用计算机视觉识别、物联网、传感器等技术,自动采集餐饮过程信息,建立后厨“明厨亮灶”,实现设备自动化控制,为开展精细管理提供技术手段。6)智能化分析决策,记录分析餐饮环境数据和运营过程数据,实现集体配餐方案、物料消耗预测、监管重点预警等辅助决策功能。[size=18px][b]3 智慧餐饮技术的应用[/b][/size][b]3.1 智慧餐饮技术在食材智能预处理方面的应用[/b]运用食品科学技术与人工智能技术对食物原料进行预制是提高原料利用率和加工自动化程度的关键一步。现今国内外一般采用多光谱成像技术、[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术和计算机视觉技术等技术结合深度学习算法、经典图像处理等手段,进行原料的品质分级、安全控制和标准化切割。3.1.1 食品原料品质智能分级对食品原料的品质信息进行快速无损获取,是保证食品品质、满足消费者需要的前提条件。Zhang等将近红外高光谱成像技术与深度卷积生成对抗神经网络(DCGAN)结合,对玉米籽粒含油量进行预测,利用DCGAN可以同时对光谱数据和含油量数据进行扩展,增加模型的准确度。Momeny等使用基于深度学习的机器视觉系统检测藏红花品质,开发了一种包含Inception-v4卷积神经网络(LAⅡ-v4 CNN)的学习增强技术,可以非常有效地对藏红花进行品质分级。孙潇鹏等使用近红外透射光谱与机器视觉相结合的方法对蜜柚进行分级检测。3.1.2 食品原料安全智能控制在食品加工前对食品原料进行严格的把控,是食品安全控制的重要手段。然而传统技术需要的时间长、费用昂贵、对操作人员要求高,利用了人工智能技术的智慧餐饮可以有效解决这些问题。刘翠玲等建立了基于云计算的食品品质实时在线光谱检测系统,保障食品安全。此外,周向阳等利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]倍频区的特征信息,结合差谱及导数处理,对20余种叶菜类蔬菜中有机磷农药残留的鉴别进行了系统研究,吻合率高达97.50%。房俊龙等采用计算机视觉技术获取番茄图像,并利用遗传算法的人工神经网络技术实现番茄生理病害果的自动识别,准确率可达100%。3.1.3 食品原料智能切分对食品原料进行品质分级与安全控制后,分割也是关键的一环。目前,食品切割装置中的刀片易携带腐败和致病微生物,容易导致交叉污染。中国科学院广州能源研究所发明的一种利用水射流清洗和切割果蔬的机电设备,利用脉冲水射流冲洗掉果蔬表面的灰尘、泥土等,与使用新锐化的刀片切割相比,水刀切割不会改变鲜切菊苣的生理状况和微生物质量。Wang等利用盐颗粒作为磨料,采用超高压磨料水刀切割纯肉和骨头,其效果更优于普通水刀切割。孙鑫基于计算机视觉技术、机器人、运动控制等关键技术,构建了面向猪肉胴体自动分割的6-DOF混联机器人机构,实现了畜禽原料的智能切分。[b]3.2 智慧餐饮技术在智能烹饪方面的应用[/b]烹饪是餐饮行业中最为重要的环节,是复杂而有规律地将食材转化为食物的加工过程。智能烹饪能够实现菜肴的自动制作,提高烹饪效率,降低制作成本,同时确保食品的安全、质量和品质。智能加工技术和设备的搭配组合,可以实现食物的标准化生产,重构餐饮产业生态,达到快速、标准化运营的目的,对整个餐饮业的发展有重大影响。3.2.1 数字化烹饪关键技术中餐的烹饪过程涉及炒、煎、煮、烤、蒸等多元化的烹饪技艺。其中,炒是中餐最具代表性的特征烹饪技术,但是炒菜过程异常复杂,因此传统烹饪中菜肴的质量主要取决于厨师的技艺水平。烹饪数字化是通过邀请各菜系烹饪大师为烹饪机器人提供菜肴烹饪样本,将他们的烹饪经验数据化,扩建数据库,完善机器人菜谱,以实现烹饪品种多样化。张贵元等采用了闭环设计方案,设计了一种应用于烹饪机器人的液态调料自动添加系统,实现液态调料的快速精确添加,减少了掀盖时锅内热量的散失以及温度控制的误差。赵庭霞构建了烹饪爆炒过程热/质传递全局数学模型并对猪里脊肉爆炒过程开展数值模拟,研究了爆炒过程中烹饪品质随传递特征的变化规律,实现了同时模拟温度及各组分全局变化。在传感器-算法系统基础上采集手工烹饪数据,可构建出能够映射手工烹饪数据的烹饪机器人实体装备及控制软件,完成广谱的烹饪厨艺数字孪生和烹饪程序信息数据库建立。3.2.2 菜肴品质智能感知与拟人控制尽管智能烹饪机器人已经能够利用烹饪数字化制备标准化的菜肴,但是由于烹饪数据库来自经验数据,且中餐具有食材广泛性以及烹饪复杂性的特点,设备对烹饪过程中火候、产品品质等关键指标的控制仍旧不足,无法实现实时动态和智能化调整。因此,需要更多基于多维传感和控制的技术来实现智能感知与拟人控制。He等[26]发明了一种结合了红外阵列传感器与湿度传感器的智能微波炉,具备除霜和再热的智能控制功能,可以一键加热或解冻不同食物。Abdanan[27]设计了基于图像处理的智能烤箱,可以通过实时监测烘焙产品的颜色和纹理特征,动态调节和优化烹饪温度和时间,大大节约了能耗并提高了产品质量。3.2.3 烹饪设备自主清洁烹饪后的自主清洁是最后一个关键步骤,有利于菜肴连续加工过程中的品质控制。Vong将食品进料、食品放置和设备清洁集成于一个加工系统,在菜肴烹饪完成后,机器会自动将烹饪容器旋转至清洗室进行清洗,最终实现高效烹饪。李东炜等也设计了采用可编程逻辑控制器(programmable logic controller,PLC)控制的清洗烹饪机器人内腔的壁面自动清洗机构,具有高可靠性、强抗干扰、安装简单、维修扩展方便等优点。[b]3.3 智慧餐饮技术在消费端的应用[/b]智慧餐饮技术在消费端的应用主要有3个方面:餐厅智能管理、就餐体验数字化及智能售卖终端应用(图4)。[align=center][img=图片]https://img1.17img.cn/17img/images/202403/uepic/dace2ca8-6c0f-44c3-82d9-a3a33c0ebb1b.jpg[/img][/align][align=center]图4 智慧餐饮技术实现智能就餐Fig.4 Smart catering technologies for smart dining experience[/align]3.3.1 智能点餐、取餐、送餐关键技术智慧餐饮4.0在消费端的应用主要体现在餐厅的智能管理中,具体分为智能点餐、智能送餐和智能取餐3个环节。智慧餐厅通过SAAS(software as a service)模式,将用户浏览、预订、预点餐、就餐和支付的整个餐饮流程一体化,并可采用协同过滤推荐算法、自然语言处理、人脸识别等技术,实现对顾客身份信息的快速识别,以及对历史行为和个人偏好等信息的精准分析,不仅可以推荐最合适的餐厅,还可以帮助顾客更快速地找到自己喜欢的菜品或推荐相似的菜品,进而为用户提供个性化的产品或向顾客服务推荐。而对于诸如老年人等特殊人群,智慧餐饮系统能够从饮食管理、营养评估与健康管理等方面,全方位进行膳食结构优化,引导老年人合理膳食。在中国农业大学改造升级的智慧餐厅,师生进门取托盘后进行标识与信息绑定,便可根据自己需求,自由搭配菜品,使摄入的营养物质更加多样、均衡,取餐过程中,屏幕实时显示取餐分量与金额,取餐结束后的云端无感支付提高了就餐整体体验。智能点餐系统可实现消费者的自助点餐,如冯毅基于机器学习有机融入关联度预测算法、协同过滤推荐算法等设计了一套智能点餐系统,并可根据消费者口味推荐针对性菜品。智能送餐需要使用送餐机器人接收用户给予的目标指令,快速高效做出反应,规划合理路径,到达送餐地点。武启明通过对路径规划算法进行分析,并融合优化A*算法和并行TEB算法进行路径规划,实现了送餐机器人的合理路径规划。智能取餐主要是使用取餐机器人代替人眼实现菜品的识别和选取。汪聪基于机器视觉技术结合传统图像识别技术与深度学习图像识别技术,设计了一种菜品智能识别系统,通过对工业相机拍摄的图片进行处理,利用图像处理技术对菜品区域进行检测定位,实现了菜品种类及所在区域的有效识别,提升了机器人取餐的准确性。此外,智慧餐厅还可根据就餐数据,进行就餐人数的预测,及时补充菜品、调整食谱等,提升就餐人员的就餐体验,降低餐厅的管理成本,促进餐饮企业提高销售量和客户满意度。3.3.2 数字化就餐体验随着互联网和大数据的发展,服务行业与移动网络的联系更加紧密,智慧餐厅逐渐发展壮大。在传统的就餐方式以外,还可以采用多感官协同的方式丰富顾客的用餐体验,提高过程的趣味性。智慧餐厅可以通过VR(virtual reality)、AR(augmented reality)等技术将交互性嵌入就餐环境中,将气、声、景融入用餐过程,从视觉、听觉、触觉等多个感官层面提升空间的环境氛围,满足消费者的用餐审美体验与情感需求。例如在智慧餐厅的就餐区被360度环绕立体投影包围,在白云蓝天中吃着热乎的火锅,耳边回荡着舒缓的音乐,通过声光电科技带来“沉浸式”火锅就餐新体验。采用VR技术,通过虚拟点餐、多元环境模拟、厨房模拟等功能,在丰富用户用餐体验的同时,提高餐厅的运营效率。在点餐系统中设计AR交互点餐、用户口碑评价,可以更直观地呈现餐品,并为顾客和餐厅提供更具参考价值的餐品评价体系。3.3.3 智能售卖终端技术升级智能售卖终端作为新型售卖方式,正在成为一种蓬勃发展的新兴服务方式,在人们的生活中占据越来越重要的地位,也是未来智能化生活的潮流。相较于传统的人工服务就餐店,智能售卖终端无就餐时间限制。此外,智能售卖终端体积较小,可安置在任何有电力供应的地点,扩大了服务区域。一般来讲,智能售卖终端应包含以下7个模块:1)储存[冷藏(冻)] 2)加工(复热) 3)包装 4)递送 5)人机交互界面 6)远程通信 7)自洁杀菌。陈付磊等基于STM32单片机控制,使煎饼馃子机器实现从原料面糊到加热至熟,加蛋、加调料,放置油条或者馃子,最后折叠装袋的全自动化过程。使用ESP8266物联网链接云服务器,实现煎饼馃子机器从制作到贩售的一体化过程。张坦通过研究面条成型方式、设计关键机构型式,对面条售卖机内部机械结构进行方案创新与设计,实现面条的自动定量制作与煮制捞取。张操等研制了一种新型三明治自动制作与售卖系统,融合PLC、多电机协同、WiFi通信、多点通信总线(multi-drop bus,MDB)等技术,实现触摸屏自助选餐、自动投币找零及移动支付、温湿度控制、传动机构故障诊断、上位机和手机App远程监控等功能,完成自动点餐及售卖。智能售卖作为传统餐厅堂食模式的重要补充,迎合了新时代人们零散化的就餐时间、多样化的就餐模式、快节奏的就餐需求,具有良好的发展前景。[b]3.4 智慧餐饮技术在管理系统方面的应用[/b]机关、高校食堂等集体膳食单位通常采用餐饮管理信息系统制订食谱,通过就餐人数计算用料量,生成采购计划,提升膳食计划性,控制成本。基于大数据和人工智能算法的智慧餐饮管理信息可以综合膳食营养知识、个人点菜信息和就餐评价信息,提高食谱的适用性 也可将就餐记录和个人健康档案相结合,提高配餐的科学性和针对性。大数据智能引擎产品基于用户属性数据、口味偏好数据、行为轨迹数据等建立综合概率匹配算法,对海量数据进行多维度交互式异构分析,动态建立餐饮场景下的用户行为预测模型及产品倾向性数据模型,实现知识图谱和用户画像标签,为大型餐厅实现智慧管理提供技术支撑。智能配餐系统采用了改进的加权随机抽样算法智能化选取不同种类的食物,利用多元线性回归模型及优化求解算法,通过反馈机制自动判别配餐结果的合理性并进行修正,保证了配餐质量和饮食的均衡性。结合多目标规划模型和改进遗传算法设计的新型智能化营养配餐系统,做到了多营养平衡。此外,在原料供应环节,通过专业采购网络平台组织采购,实时掌握物资供应状态。在物资验收和出入库环节,多采用电子秤称重记录方式,以拍照、视频方式记录验收过程,运用二维码、视觉识别等技术自动获取物资信息,提高物资管理的准确性。通过在餐厅、后厨、库房等区域建立网络化视频监控系统,掌握运行过程信息,并运用物联网传感器监控水、电、燃气、温湿度等环境状态。食品药品监管部门也建立了餐饮监管平台,采用传感器、物联网等手段将食品留样、餐具消毒等食品安全记录纳入管理,提升餐饮业整体质量及安全水平。[b][size=18px]4 总结与展望[/size][/b]当今食品工业与餐饮业的深度融合,促进了传统餐饮1.0向基于单元操作的机械化餐饮2.0和基于标准化、数字化的工业化餐饮3.0升级。近年来,随着人工智能等技术在食品生产及餐饮业中的应用,餐饮业向着多元化、专业化、智能化的方向发展,为向智慧餐饮4.0转型奠定了基础。智慧餐饮4.0相关的智慧餐饮技术见图5。例如采用协同过滤推荐算法、自然语言处理、人脸识别等技术,可以对消费者身份信息快速识别,提供个性化的产品或服务推荐 通过VR、AR等技术,提升了空间的环境氛围,建立了多感官的用户体验。全面推进我国智慧餐饮4.0发展,促进现代农业、先进制造业、现代服务业深度融合,推动一二三产业协同发展,助力乡村振兴,是时代发展的必然趋势。[align=center][img=图片]https://img1.17img.cn/17img/images/202403/uepic/3c1c2311-520e-42cd-a2db-cd98c9959b44.jpg[/img][/align][align=center]图5 基于智慧餐饮技术的智慧餐饮4.0的转型升级Fig.5 Transformation and upgrading of Smart Catering 4.0 based on technology smart catering[/align]餐饮转型升级的背后是相关科学技术的发展与进步,同时也是中华饮食文化的传承与创新。五千年的中华文明产生了底蕴深厚的中国饮食文化,国人对美食有着极高的要求,因此餐饮业的转型升级还应满足饮食文化的需求。打造具有我国特色的智慧餐饮4.0,不仅是满足人民群众对于美食的高要求和对美好生活的向往的重要手段,更是传承并弘扬中华优秀传统文化、助力“健康中国2030”战略实施的重要抓手。未来餐饮的发展方向一定是以健康为导向、以美味为基础、以文化为内核。食品科技工作者以及餐饮行业从业者要“树立大食物观”,积极探索智慧餐饮4.0的科学发展途径,担负起时代赋予的神圣使命。[来源:食品科学技术学报][align=right][/align]

  • 智能温压双控微波消解仪购买上注意什么?

    在仪器的应用越来越广泛,在购买上也是越来越多,那么想要购买[url=http://www.xo-china.com]智能温压双控微波消解仪[/url]要做好哪些功课呢?一、了解自己对产品的需求在购买智能温压双控微波消解仪时,先要提前将自己的需求、产品性能等方面确定好,这样才好更方便的去选择自己需求的产品。二、根据需求计划好预算在计划好自己产品的需求,在计划好自己的产品预算,这样可以根据预算先选好进口、国产的区别,在进口与国产之间在选择好产品的价位。三、货比三家在选择好上述的问题,再去找好商家,将产品做对比,知道货比三家,这样更好的选择性价比高的产品,这样才能更好的买到心仪的产品。四、产品服务在仁鼎好产品之后,一定注意好产品的服务,注意好产品售后,问好产品售后上会出现的问题和解决方案。

  • 高低温冲击试验机的智能化控制

    从当前的形势来说,智能化控制是现在最为热门的控制系统,智能控制技术包括仿人的特征提取技术、目标自动化辨识技术、知识的自学习技术、环境的自适应技术、最佳决策技术等。 现代化的高低温冲击试验机经过不断的创新、研究、改革,以最新、最高档的智能化控制面向大家,其中的智能化控制包括各种最佳方式监控智能化工具、装备、系统以达到既定目标的技术,是直接涉及测控系统效益发挥的技术,是从信息技术向知识经济技术发展的关键。智能控制技术可以说是测控系统中最重要和最关键的软件资源。 最重要的就属于高低温冲击试验机的仪表控制显示器部分了,采用的是可编程控制为基础的开放式控制系统及先进控制技术,特种测控装备和测控技术,系统成套集成技术,操作起来简捷、快速、方便。

  • HZD-L智能振动烈度监控仪

    HZD-L智能振动烈度监控仪功能说明(智能型)1、实现智能处理:报警Ⅰ值、Ⅱ值可通过面板按键任意设置2、面板按键可调整量程值,无需电位器调整,方便现场调试 3、一分钟不按操作键,可自行回到运行状态4、报警延时调整范围0.1~3秒,以防止现场干扰引起误报5、具有上、掉电检测功能,同时切断报警、停机输出回路,能有效抑制仪表误报警6、后面板上有与振动烈度值成正比的电流输出端子,供记录输出HZD-L智能振动烈度监控仪电气指标:1、 外接电源:220VAC 50Hz 0.5A2、 输入信号:接受一个ST系列磁电式速度传感器的信号 灵敏度:20 mV/mm/s±5%频响:10~300Hz输入阻抗:100KΩ3、量程:0~50.0mm/s(真有效值)4、显示显示方式:三位0.5英寸LED数字显示显示精度:±1%满量程光电管LED指示:报警Ⅰ值、报警Ⅱ值红色LED5、输出电流输出:4~20mA 有源输出负载:≤500Ω6、报警点设置范围:0~100%满量程 精确度:±0.5%7、继电器密封:环氧树脂节点容量:2A/220VAC或1A/28VDC节点输出:常开触点8、RS485通讯接口:用于参数编程组合波特率:9.6K~38.4Kbps环境指标:温度范围运行时:0℃~+65℃储存时:-30℃~+80℃相对湿度:至95%,不冷凝物理指标:单/双通道外形尺寸:160×80×250mm 开孔尺寸:152+1×74+1 mm重 量:2KgHZD-L智能振动烈度监控仪订货指南 振动烈度监控仪必须配置 ST 系列振动速度传感器形成系统 1 、普通型 HZD - L - A □ - B □ - C □ - D □ 2 、智能型 HZD - L - B - A □ - B □ - C □ - D □ -E □ 选型说明 量程范围 A □: 1 —— 0 ~ 10.0mm/S ; 2* —— 0 ~ 20.0mm/S ; 3 —— 0 ~ 50.0mm/S 通道选择 B □: 1 ——单通道; 2* ——双通道; 传感器选择 C □: 1 —— ST-2 ; 2* —— ST-3 报警延时 D □: 1 —— 0.1 秒; 2* —— 1 秒; 3 —— 3 秒 通讯接口 E □ : 1 ——有 485 通讯接口; 2* ——无通讯接口

  • 物流园区容易出现什么隐患?如何利用智能巡检系统解决园区隐患?

    1.物流园流动人员多、车辆运输物资多、货物性质杂乱,不可控因素多2.覆盖面积大,监控巡查不到位,无充足人员值守,发生事件无法快速通知3.人员对消防器材、设施使用不熟悉,用电系统多,但无监控4.设备运行情况未知,起不到报警效果,建成时间长,线路、设备年久老化5.日常巡检、隐患排查纯靠人监管,易发生漏检、不专业等情况。针对物流园区的易发生的火灾特点,结合“人防+智防“的新管理模式,众寻“巡查使”智能巡查安全管理系统运用物联网、AI智能、数字孪生等高新技术手段,将消防设施、社会化消防监督管理、灭火救援等各类要素,通过物联网信息传感与通讯等技术有机链接,实现实时、动态、互动、融合的消防信息采集、传递和处理。通过物联网技术实现消防水、电、烟、视频、消火栓、人员等的互联互通管理,有效的监测物流园消防整体情况,保障园区的安全生产。

  • 一种智能温湿度控制器的设计

    一种智能温湿度控制器的设计蔡昀羲 (上海安科瑞电气有限公司 上海嘉定 201801)摘 要:介绍了一种智能温湿度控制器的设计方法及应用,最多实现三路温湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。关键字:SHT11,STC89C58RD+,温湿度控制,RS4850  引言  随着电力系统规模越来越大、电压等级越来越高,供电可靠性也要求更加严格。供配电设备环境的温度、湿度是影响设备运行的重要因素。温度过高会加速仪器设备元器件老化,缩短其使用寿命,甚至直接导致设备损坏;低温、潮湿,设备表面产生凝露则有可能发生爬电、闪络等事故。  基于以上考虑,在中高压开关柜、箱变、端子箱等供配电设备中进行温度、湿度控制是十分必要的。本文将介绍一种WHD型智能温湿度控制器的设计方法,最多实现三路温度、湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。1  硬件电路设计1.1 硬件设计的总体思路  硬件系统以单片机为核心,按功能可划分为:电源供电、温湿度测量、控制输出、人机对话以及通讯五个部分,如图1所示。  电源供电电路将AC220V或其他类型辅助电源转化为系统工作所需的直流电源。单片机将传感器测得的温湿度值进行比较、处理,确定输出控制部分继电器的工作状态,并显示和发送温湿度数值及输出控制部分的工作状态信息。人机对话部分具有按键信息录入功能,用户可根据实际情况,通过按键编程设置系统的工作参数。http://www.acrel.cn/cn/download/common/upload/2011/02/21/93834hw.jpg1.2 硬件的具体电路及原理  核心器件单片机选用STC公司的STC89C58RD+型单片机,它是一款兼容51内核的增强型8位机,片上资源丰富,抗干扰能力突出。STC89C58RD+(D版本)支持6时钟/机器周期,内含32K字节用户程序空间,片上集成1280字节RAM,16K字节EEPROM空间;支持ISP/IAP功能,无须专用编程器;片上还集成了看门狗电路及MAX810专用复位电路。  温湿度的测量选用SENSIRION公司开发的数字式温湿度一体传感器芯片SHT11。该传感器可同时测温度、湿度,并提供全程标定的数据输出,所以使用该传感器既可以降低硬件成本,又方便了整机测试。其技术参数如下表所示:  温度参数:   参数条件典型单位分辨率0.01℃精度0~60±1℃量程范围-40~120℃  湿度参数: 参数条件典型单位分辨率0.03%RH精度20%~80%±3%RH量程范围0~100%RH  该传感器与CPU之间的通讯采用二线制方式,即DATA(数据)线和CLK(同步时钟脉冲)线。测量三路温度、湿度时,CPU与传感器的连接电路如图2所示。CPU通用I/O口中的P1.0和P1.1,P1.2和P1.3,P1.4和P1.5分别与三路温湿度传感器SHT11连接,其中P1.0、P1.2、P1.4分别作为各路通讯的DATA(数据)线,P1.1、P1.3、P1.5分别作为各路通讯的CLK(同步时钟)线,DATA线需外加10KΩ的上拉电阻将信号提高至高电平(详情请参考SHT11数据手册)。实际使用时,传感器与控制器之间(即图中虚线部分)以屏蔽线连接,经验证,CPU与传感器之间的最大通讯距离为10米。如果使用74HC245或其他芯片提高I/O口的驱动能力,可增加通讯距离,但会降低系统的抗干扰性能,因此不予采纳。 http://www.acrel.cn/cn/download/common/upload/2011/02/11/151636j0.jpghttp://www.acrel.cn/cn/download/common/upload/2011/02/11/152021lg.jpg  系统采用LED数码管显示温度、湿度值,界面简洁明了。三路传感器测得的温度、湿度值以循环方式依次显示,显示部分共有7位数码管,其中4位用于显示温度值(显示范围:-40.0~100.0),并在编程状态下显示菜单及参数,2位用于显示湿度值(显示范围:0~99),1位用于显示当前显示或操作对应的传感器的编号(1~3)。数码管显示采用动态扫描方式,其驱动电路由集成电路74HC595及74HC164构成。74HC595是一款带有输出门锁功能的8位串行输入、并行输出(或串行输出)的移位寄存器,用于数码管的段驱动;74HC164的串行输入、并行输出功能用于扫描显示每一位数码管,如图3所示。  系统采用继电器或可控硅作为控制输出,电源部分采用开关电源方案,通讯部分采用RS485接口,具体电路设计请参考相关书籍,此处不予赘述。2  软件设计方法  系统软件设计包括以下四个部分:主程序、测量控制模块、显示模块及通讯模块。  主程序完成上电或复位初始化,复位看门狗,查询按键信息等功能,程序设计流程如图4所示。 http://www.acrel.cn/cn/download/common/upload/2011/02/11/15341zh.jpg  程序初始化包括配置CPU的SFR,设置I/O口初始状态,从EEPROM读取工作参数,设置看门狗定时器的复位时间等。需要注意的是,一般只在主程序中喂狗,看门狗的复位时间时要设置的比测量程序中可能出现的最长等待时间还要长。以下给出主程序的部

  • 数控技术应用使机械产品向智能化发展

    数控技术应用使机械产品向智能化发展

    经济在不断地发展,科技技术不断创新,各行各业都在随之升级转型,制造业也是一样。但大都认为在过去的几十年里中国制造业取得的重大成就是人们的手工劳作创造的,而在技术迅猛发展的今天,制造业的发展仅依靠劳作是不可行的,只有过硬的技术在未来的制造业中才能站稳脚步。 3D打印、机器换人、大数据制造,这些频繁出现的数据无一不在提醒我们,当下科技界三种飞速发展的技术——“人工智能、机器人和数字制造”,这些将重新构筑制造业的竞争格局,而如果将人工智能、机器人和数字制造技术综合集成应用于制造业,那将绝对是一场真正意义上的“制造业改革”。数控机床应为典范 提到数控机床,可能很多人都不是特别了解,可它却是众多工业生产行业的基础支柱。作为典型的机电一体化产品,数控机床可以解决复杂、精密、小批量、多品种的零件加工问题,是一种柔性的、高效能的自动化机床,代表了现代机床控制技术的发展方向。 中国目前一些行业的劳动力成本的不断上升,随之出现的“用工荒”为数控机床提供了又一具有潜力的应用领域——智能制造。中国企业越来越多地向智能制造转型以减轻人力短缺的影响,企业需要能够720小时连续不断高质量运转的机床设备,这就使得机床设备的可靠性变得尤其重要。 特别是近来,数控机床与工业机器人的配合使用更使得智能生产或者“无人化”工厂成为发展趋势。数控一代和智能一代是信息化和工业化深度融合的产物,可以看到机械产品的数控化和智能化创新具有鲜明的特征、本质的规律,可以普遍运用于各种机械产品创新,可以引起机械产品的升级换代,引起机械工业的深刻变革。这也是现在提出“数控一代”和“智能一代”概念的缘由和根据。http://ng1.17img.cn/bbsfiles/images/2016/12/201612231437_01_3169645_3.jpg二次开发是瓶颈 所谓智能制造就是数控机床产品除了完成直接加工任务之外,更应提升产品工艺适应性,能够适应不同行业、不同产品的加工特点,这是智能制造必不可少的,而要达到这些要求就需要机床设备拥有一个足够开放的数控系统平台,只有在一个开放性的系统上,用户才有机会把各种最新的创意和想法融到机床设计制造中。 然而目前的普遍情况是产品同质化泛滥,出现这一情况的原因在于,很多制造商在使用上过于追求简便、省事,采用一些进入中国市场较早的封闭性极强的数控系统,最终导致装备极为标准化,工艺适应性差,产品雷同,最终成为低端产能的推手。 “这就如同傻瓜相机和智能相机。”许政顺表示,“傻瓜式”的CNC产品,用户调整的内容很少,使用方便,但系统开放程度不足,许多核心和关键功能的使用受到限制,不利于进一步研发和扩大使用范围,最终也只能导致低产能的市场现象。 然而数控平台二次开发并非易事。据了解,数控系统硬件部分的核心是高效的运算平台和一组控制设备的接口,也就是说,数控硬件部分可以看做是一台工业计算机。从这方面来看,无论是工业控制电源、工业控制计算机主板、还是其他嵌入式设备,我国的产业化水平都很高。 而问题在于数控系统的另一组成部分——软件。数控系统技术方案中软件承载着数控系统的运动控制、逻辑控制和人机交互等主要功能。同时,在数控系统硬件趋同化的趋势下,软件正在成为系统中重要的价值构成部分。因此,软件产业化的问题已经成为数控系统产业化的关键。 由于我国数控产业技术开发源于某个技术关键点的突破,缺乏系统的需求分析,没有很好的进行抽象和概念、逻辑设计,造成的结果是很难从以往的产品中提取出一些有用的、共性的技术为后来的产品所使用。加之,国内很多公司的产品很少具有连续性,往往是新的一个产品完全重起炉灶,和老的产品没有半点关系,在这种开发模式下,软件功能完善程度,软件产品的可靠性,可持续发展能力都受到很大的局限。在整个产业发展过程中,低水平的重复研发的现象也较为普遍,使得技术积累缓慢。(来源:脉搏制造网)

  • 智能补水装置——水位控制设备

    智能补水装置——水位控制设备

    [size=24px][font=宋体]智能补水装置(自动补水器)采用的是光学原理,主要用于检测缺水和满水状态,控制水泵和电磁阀。通常用在鱼缸、水族馆等需要自动补水换水设备。[/font][font=宋体]智能补水器是由控制器和磁性吸盘组成,将磁性吸盘部分安装在内侧,控制器部分安装于外侧,对准安装在需要检测的水位线上,然后将电源插入控制器通电,即可检测。[/font][font=宋体]智能补水器检测原理是:当水位下降到低于补水器检测点时,补水器接收到无水信号时,则会自动控制水泵抽水,当水位升到设定位置时,补水器就会自动停止加水。[/font][font=宋体]智能补水器稳定性高、光学感应原理、免调试、安装方便(磁铁吸附安装)、可供定制服务。[img=,682,440]https://ng1.17img.cn/bbsfiles/images/2022/11/202211110938197388_4044_4008598_3.png!w682x440.jpg[/img][/font][/size]

  • 多回路监控单元在智能配电回路中的应用

    随着配电系统的发展,智能配电回路中各种仪表向集成化和网络化发展的方向是越来越清晰。目前单回路集成化的优势已经出现,但是对多个回路的集成还未产生。  本文将要介绍的是最新开发的AMC系列多回路智能监控单元在智能配电出线回路中的应用。该系列监控单元主要应用于多个配电出线回路的电参量的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视,一个AMC多回路监控单元就能实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本等优点,必将引领国内外智能配电领域的发展方向,成为智能配电中出线回路监控系统的发展主流。

  • 高智能食品安全检测仪控制食品风险的方式

    高智能食品安全检测仪控制食品风险的方式

    云唐高智能食品安全检测仪通过先进的技术和功能来控制食品风险,提高食品安全和质量的水平。以下是高智能食品安全检测仪如何控制食品风险的方式:  快速检测:高智能检测仪器能够快速检测食品中的各种污染物、有害微生物或其他风险因素,减少了食品在生产和供应链中的潜在暴露时间。  多元化的检测功能:这些仪器通常具备多种检测功能,可以检测食品中的农药残留、重金属、微生物、毒素、基因改造成分等多种因素,全面掌握食品的安全情况。  自动化和精确性:高智能检测仪器可以自动执行检测过程,减少了人为错误的风险,并提供更加精确和可重复的结果。  大数据和分析:这些仪器通常具有数据分析功能,可以将大量的检测数据进行分析,帮助食品生产者识别潜在的风险因素和趋势,采取及时的控制措施。  质量控制:高智能食品安全检测仪可以监测食品生产过程中的质量参数,确保食品符合质量标准和规定。  即时警报和通知:当检测结果显示潜在的风险时,这些仪器可以通过即时警报和通知系统通知相关的人员,以便采取紧急措施。  提高食品供应链的透明度:高智能检测仪器可以追踪食品供应链中的信息,从原材料到最终产品,提高食品供应链的透明度,帮助追溯食品问题的根本原因。  符合法规和标准:这些仪器通常设计为符合国际和国内的法规和标准,确保食品生产者遵守法规,降低法律责任风险。  通过使用高智能食品安全检测仪,食品生产者可以更好地管理和控制食品风险,提供更安全、更高质量的食品,保护消费者的健康,并增强企业的信誉。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309041654511162_7843_5604214_3.png!w690x690.jpg[/img]

  • 电力监控软件在智能配电系统中的应用

    0  引言  当前,国内很多建筑配电仍普遍采用干式变电器配以低压电缆分接箱实现分散供电,给整个系统的运行管理带来了很多的不便。计算机技术和网络通信技术的日趋成熟,配电系统测量、控制等功能智能化、网络化是发展的必然趋势,配电系统运行中的各种问题可以通过微机全面解决。  智能化配电系统由开关配以具有通信功能的智能化元件,经数字通信与计算机系统网络连接,实现对分散分布的低压电缆分接箱内开关设备运行进行自动化管理。系统可实现数据的实时采集、数字通信、远程操作与程序控制及设备维护信息管理等功能。1  项目概况  上海核工程研究设计院是隶属于中国核工业集团公司的重点研究设计单位,该院新建大楼系统分为配电室和楼层部分,配电室高压部分采用ACR330ELH采集谐波数据,WHD72采集温湿度数据;低压进线侧采用ACR320ELH采集谐波、功率因数等数据, ACR220EK网络电力仪表采集测量电流,开关状态由辅助触点接入ACR220EK仪表的DI(开关量输入)接口。楼层部分由ACR220E采集电能数据。所有电参量数据由仪表的通讯接口经RS-485总线传给上位机,实现遥测、遥控和遥信功能。 2  系统拓扑结构  上海核工院电力监控系统的拓扑结构如图1。系统多采用分布式结构,按功能或区域进行划分,模块化设计。整个系统一般分为三层,即现场层、中间层、主控层。  现场层主要任务是将现场的各种配电系统的运行参数进行采集和测量,并将采集和测量的各种数据传输给监控系统。其主要设备是:ACR330ELH、ACR320ELH谐波表,WHD72D温湿度仪表、 ACR220EK网络电力仪表,装设在现场的电缆分接箱内。上述设备均相互独立完成各自的功能,不依赖主控计算机运行,所有仪表都具备RS-485 通信接口,通过现场的RS-485总线将检测到的各项电参数和状态信号实时传输到中间层的数据处理单元。  中间层位于现场层与主控层之间,由光电隔离器、串口服务器构成,现场485总线通过光电隔离器串口服务器与交换机相连,完成现场层设备与主控计算机之间的网络通信联接、数据交换。  主控层位于中控室或值班室,配置高性能、高可靠性工业级计算机、UPS不间断电源、打印机、报警装置等。Acrel-3000电力监控软件安装在主控计算机上,通过软件的人机界面和各种管理功能实现对整个配电系统的实时监控。  上海核工院新建楼层监控中心位于1层消控室,配电室位于地下2层车库,距离不超过1200米,直接通过铺设RS-485总线进行通讯即可,考虑到现场地理位置及走线方便合理等问题,采用8路RS-485网络可将所有配电室监控点覆盖;楼层部分考虑到走线方便问题,采用3路RS-485网络,通过竖井、吊顶拉到消控室。3  Acrel-3000电力监控组态软件解决方案   Acrel-3000电力监控组态软件是对现场生产数据进行采集与过程控制的专用软件,最大的特点是能以灵活多样的“组态方式”而不是编程方式来进行系统集成,它提供了良好的用户开发界面和简捷的工程实现方法,只要将其预设置的各种软件模块进行简单的“组态”,便可以非常容易地实现和完成监控层的各项功能,比如在分布式网络应用中,所有应用(例如趋势曲线、报警等)对远程数据的引用方法与引用本地数据完全相同,通过“组态”的方式可以缩短自动化工程师的系统集成的时间,提高集成效率。  该系统实施后,实现了各类用电设备的电能报表,各用电回路的实时电参量遥测,重要回路的电能质量(含谐波)分析,以及重要回路的负荷用电趋势等功能,图表分别见图2、图3、图4。4  结束语  在电力监控系统中配置网络电力仪表,具有实施简明,投资少等显著优点,可以方便和实时地监控配电系统的运行状态,对现场的用电设备进行统一管理,免去工作人员到现场记录的繁琐工作,系统对各种用电设备的历史运行数据和状态进行管理分析,便于维护人员明确设备状况,制定详细的设备维护计划,减少工作人员,提高效率。同时,根据建立的电能计量体系,可以了解、分析建筑总体能耗,提出降耗计划,采取节能降耗措施,逐步提高用电效率。

  • 一种智能温湿度控制器的设计

    摘 要:介绍了一种智能温湿度控制器的设计方法及应用,最多实现三路温湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。关键字:SHT11,STC89C58RD+,温湿度控制,RS4850  引言  随着电力系统规模越来越大、电压等级越来越高,供电可靠性也要求更加严格。供配电设备环境的温度、湿度是影响设备运行的重要因素。温度过高会加速仪器设备元器件老化,缩短其使用寿命,甚至直接导致设备损坏;低温、潮湿,设备表面产生凝露则有可能发生爬电、闪络等事故。  基于以上考虑,在中高压开关柜、箱变、端子箱等供配电设备中进行温度、湿度控制是十分必要的。本文将介绍一种WHD型智能温湿度控制器的设计方法,最多实现三路温度、湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。1  硬件电路设计1.1 硬件设计的总体思路  硬件系统以单片机为核心,按功能可划分为:电源供电、温湿度测量、控制输出、人机对话以及通讯五个部分,如图1所示。  电源供电电路将AC220V或其他类型辅助电源转化为系统工作所需的直流电源。单片机将传感器测得的温湿度值进行比较、处理,确定输出控制部分继电器的工作状态,并显示和发送温湿度数值及输出控制部分的工作状态信息。人机对话部分具有按键信息录入功能,用户可根据实际情况,通过按键编程设置系统的工作参数。1.2 硬件的具体电路及原理  核心器件单片机选用STC公司的STC89C58RD+型单片机,它是一款兼容51内核的增强型8位机,片上资源丰富,抗干扰能力突出。STC89C58RD+(D版本)支持6时钟/机器周期,内含32K字节用户程序空间,片上集成1280字节RAM,16K字节EEPROM空间;支持ISP/IAP功能,无须专用编程器;片上还集成了看门狗电路及MAX810专用复位电路。  温湿度的测量选用SENSIRION公司开发的数字式温湿度一体传感器芯片SHT11。该传感器可同时测温度、湿度,并提供全程标定的数据输出,所以使用该传感器既可以降低硬件成本,又方便了整机测试。其技术参数如下表所示:  温度参数:   参数条件典型单位分辨率0.01℃精度0~60±1℃量程范围-40~120℃  湿度参数: 参数条件典型单位分辨率0.03%RH精度20%~80%±3%RH量程范围0~100%RH  该传感器与CPU之间的通讯采用二线制方式,即DATA(数据)线和CLK(同步时钟脉冲)线。测量三路温度、湿度时,CPU与传感器的连接电路如图2所示。CPU通用I/O口中的P1.0和P1.1,P1.2和P1.3,P1.4和P1.5分别与三路温湿度传感器SHT11连接,其中P1.0、P1.2、P1.4分别作为各路通讯的DATA(数据)线,P1.1、P1.3、P1.5分别作为各路通讯的CLK(同步时钟)线,DATA线需外加10KΩ的上拉电阻将信号提高至高电平(详情请参考SHT11数据手册)。实际使用时,传感器与控制器之间(即图中虚线部分)以屏蔽线连接,经验证,CPU与传感器之间的最大通讯距离为10米。如果使用74HC245或其他芯片提高I/O口的驱动能力,可增加通讯距离,但会降低系统的抗干扰性能,因此不予采纳。  系统采用LED数码管显示温度、湿度值,界面简洁明了。三路传感器测得的温度、湿度值以循环方式依次显示,显示部分共有7位数码管,其中4位用于显示温度值(显示范围:-40.0~100.0),并在编程状态下显示菜单及参数,2位用于显示湿度值(显示范围:0~99),1位用于显示当前显示或操作对应的传感器的编号(1~3)。数码管显示采用动态扫描方式,其驱动电路由集成电路74HC595及74HC164构成。74HC595是一款带有输出门锁功能的8位串行输入、并行输出(或串行输出)的移位寄存器,用于数码管的段驱动;74HC164的串行输入、并行输出功能用于扫描显示每一位数码管,如图3所示。  系统采用继电器或可控硅作为控制输出,电源部分采用开关电源方案,通讯部分采用RS485接口,具体电路设计请参考相关书籍,此处不予赘述。2  软件设计方法  系统软件设计包括以下四个部分:主程序、测量控制模块、显示模块及通讯模块。  主程序完成上电或复位初始化,复位看门狗,查询按键信息等功能,程序设计流程如图4所示。  程序初始化包括配置CPU的SFR,设置I/O口初始状态,从EEPROM读取工作参数,设置看门狗定时器的复位时间等。需要注意的是,一般只在主程序中喂狗,看门狗的复位时间时要设置的比测量程序中可能出现的最长等待时间还要长。以下给出主程序的部分C语言源代码。  void Main ()  {  WDT_CONTR = 0x00;//关闭看门狗  InitialEeprom();//读EEPROM  InitialIO();//初始化I/O状态  InitialSFR();//设置SFR

  • 干式运输型液氮罐的智能控制系统

    干式运输型液氮罐的智能控制系统

    干式运输型液氮罐在现代物流中扮演着重要的角色。这种特殊的液氮罐能够安全、高效地储存和运输液体氮气,被广泛应用于医疗、化工、半导体等领域。  然而,在使用过程中,液氮罐的温度和压力控制是至关重要的,这直接关系到液氮罐内液氮的稳定性和可靠性。为了提高效率和保障安全,智能控制系统成为必不可少的一部分。本文将探讨干式运输型液氮罐智能控制系统的设计与优化。  首先,我们需要了解液氮罐的基本工作原理。干式运输型液氮罐主要由罐体、内胆、真空绝热层和控制系统组成。当液体氮气进入储罐后,通过真空绝热层的保护,减少了热量的传输,从而保持液态状态。而控制系统则对液氮罐的温度和压力进行监测和控制,以确保液氮罐内的环境始终稳定。[img=液氮罐,400,372]https://ng1.17img.cn/bbsfiles/images/2023/11/202311301123439518_1703_3312634_3.jpg!w400x372.jpg[/img]  传统的液氮罐控制系统通常采用传感器和人工操作的方式来实现温度和压力的监测与调节。然而,这种方式存在着人工操作不准确、反应迟缓等问题,同时也增加了人工成本。因此,智能控制系统应运而生。  智能控制系统通过集成传感器、执行器、控制算法和通信技术,能够实时监测和控制液氮罐的温度和压力。首先,通过温度传感器和压力传感器采集罐内环境的数据,并将其传输给控制器。控制器根据预设的参数和算法进行数据处理,判断罐内环境的状态,并根据需要发送控制信号给执行器。  在控制信号的作用下,执行器可以自动调节液氮罐的温度和压力。例如,当温度过高时,控制系统可以启动冷却装置将温度降低 当压力过大时,控制系统可以通过排气阀门释放部分气体来降低压力。通过智能控制系统的优化和升级,液氮罐的温度和压力控制将更加准确和高效。  此外,智能控制系统还具有远程监控和故障诊断的功能。通过通信技术,控制系统可以与上位机或云平台进行数据交换和传输,实现远程监控。操作人员可以随时查看液氮罐的运行状态和数据,并根据需要进行调整和控制。同时,智能控制系统可以对液氮罐进行故障诊断,及时发现并报警故障,提高维护效率和减少停机时间。  总之,干式运输型液氮罐(www.cnpetjy.com)的智能控制系统在提高效率和保障安全方面具有重要作用。通过集成传感器、执行器、控制算法和通信技术,智能控制系统能够实时监测和控制液氮罐的温度和压力,实现自动化调节 同时,还能够实现远程监控和故障诊断,提高了运行效率和可靠性。未来,随着技术的不断进步,液氮罐智能控制系统的功能和性能还将进一步提升,为物流行业带来更多的便利和效益。

  • 基于FPGA智能变送器控制系统总体方案

    随着工业自动化控制技术的发展,自控水平越来越高,对过程参数控制精度要求越来越严,要求变送器表不仅精度高,而且要功能多、稳定可靠、能准确传送过程参数(压力、差压、绝压、流量)、抗干扰能力强、使用维护简单,并能与控制器、执行器等设备组成功能强大的控制系统,实现通讯和过程的自动控制。所以,过去的变送器由于受测量原理和通讯所限,很难实现这种高精度控制要求,因此,自然而然地产生了原理先进具有通讯功能的智能变送器。这类先进的智能变送器集现代科技与一身,是微电子技术、精密机械加工技术、计算机技术和现代通讯技术完美结合的产物,能实现过程控制的多种要求,推动了整个自控技术的向前发展。先进的智能变送器是工业过程控制技术发展的需要,也是工艺过程实现高精度控制的必须,具有很好的市场前景。    本文根据工业应用的实际需要以及网络通信发展的功能要求,提出了基于FPGA智能变送器控制系统的总体方案,硬件系统设计、软件设计。该设计实现了系统MCU主控模块、数据采集模块、电源控制模块、数据处理模块、数据通信模块等硬件电路,并给出了系统软件流程图,重点论述了数据采集和数据模拟输出控制电路的FPGA实现,详细阐述了系统各模块电路的组成原理和实现方法,给出了整个电路系统的原理图,并制作了印刷电路板。结合XILINX公司的ISE10.1设计软件给出了模/数转换、数/模转换的仿真结果,验证了系统功能。    1、智能变送器的总体设计    本智能变送器由前端信号调理电路、高速A/D采样电路、数字信号处理电路、模拟输出电路和数字输出电路组成。如图1所示。    分析不同类型的传感器,其输出信号可分为电流信号、电压信号和电荷信号3大类,相应地设计了3种信号调理电路。以大型设备振动监测项目为例,县体的传感器有加速度、速度和位移传感器。选择不同的前端信号调理电路,变成统一规格的电压信号供后面的A/D采样。    A/D采样部分对前端电路的输出电压信号进行采样。A/D采样芯片采用ADI公司的AD7264,AD7264是双通道同步采样、14-bit、高速、低功耗、逐次逼近型模数转换器,采用5V单电源供电,采样速率高达1MSPS。A/D采样电路与前端信号调理电路用同一隔离电源供电,与后级数字信号处理电路隔离。AD7264的数据接口为串行接口,便于隔离处理。    数字信号处理电路选择带有CPU软核的FPGA。FPGA是智能式变送器的核心,它不但能对采样数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节。在整个系统中,FPGA主要实现对系统的控制和数据的预处理。    智能式变送器有两种输出方式:模拟输出和数字输出。数字输出将处理后的信号直接输出,通过CAN接口、TCP/IP接口传给上位机。模拟输出通过DAC芯片将信号转换成标准电压电流信号输出。    2、系统硬件设计与实现    智能变送器具有采集、处理、指示、通讯等功能,其硬件设计围绕功能进行。整个智能变送器单元根据所完成的功能分为以下几个主要功能模块:信号采集模块(传感器放大电路)、信号转换模块(模/数转换和数/模转换电路)、FPGA控制模块、通信模块(以太网和CAN总线通信)以及为整个系统提供电源的电路部分等。其中FPGA系统为整个控制器单元的核心,是变送器实现数字智能化的标志。    智能变送器的硬件总体结构框图如图2所示。变送器工作时,由传感器把被测量转变为电信号,然后将信号作A/D转换,把模拟信号变换成数字信号,送入到FPGA(XC3S4005PQ205)控制模块,FIGA通过FIR滤波器核对信号进行滤波,并通过查表法对信号进行自动补偿,然后根据实际需要。经数/模转换后将数据传给下级电路,同时也可能通过以太网或CAN总线传给局域网,实现智能变送功能。系统PCB板实物图如图3所示。    3、系统软件设计与仿真    该系统以XILINX公司的XC3S4005PQ208C作为中央处理器,整个系统主要包括初始状态(Initialization)、数据采集状态(Data_Sample)、数据处理状态(Data_Processing)、以太网传输状态(Enet_Transfers)、CAN总线传输状态(CAN_Transfers)、和模拟输出状态(Analog_Transfers)等6种状态,因此,可以利用有限状态机的设计方案来实现。其状态转换图如图4所示,通过开发工具ISE10.1对各个模块的VHDL源程序及顶层电路进行编译、逻辑综合,电路的纠错、验证、自动布局布线及仿真等各种测试,最终将设计编译的数据下载到芯片中即可。    初始状态:实现系统初始化;数据采集状态:完成数据采集过程;数据处理状态:对采集的信号进行一系列的滤波处理,非线性校正等;以太网传输状态,CAN总线传输状态:根据实际需要将信号数字输出;模拟输出状态:进行数模转换,输出标准的电压电流信号。    3.1数据采集的FPGA设计    数据采集是工业测量和控制系统中的重要部分,它是测控现场的模拟信号源与上位机之间的接口,其任务是采集现场连续变化的被测信号。对数字系统来说,数据采集主要由传感器放大电路和A/D转换电路构成,由硬件电路可见,系统通过AD7264模/数转换器来实现模/数转换。AD7264内含6个寄存器,分别是A/D转换器的结果寄存器、控制寄存器、A/D转换器A和B的内部失调寄存器、A/D转换器A和B通道的外部增益寄存器。由于XC3S4005PQ208C和AD7264都兼容SPI接口,两者的编程只需按照时序图进行即可。AD7264与FPGA的接口主要包括PD0数据输入选择端:DoutA(DoutB)两路数据输出端;OUTa(OUTb)两路数据输入端;CoutA(CoutB、CoutC、CoutD)比较器输出;G3(G2、G1、G0)四路增益控制输入信号。增益由控制寄存器的低四位控制;ADSCLK时钟信号;ADCS片选信号,低电平有效。AD7264工作频率为20MHz,在CS下降沿,跟踪保持器处于保持模式。此时,采样、转换同时被初始化模拟输入。这需要至少19个SCLK周期。第19个SCLK的下降沿到来时。AD7262恢复至跟踪模式,并设置DOUTA、DOUTB为使能。数据流由14位组成,MSB在前。图5为AD7264读寄存器时序仿真图。    3.2数据输出的FPGA实现    智能化信号调理器的输出分为数字输出和模拟输出,数字输出通过CAN接口和TCP/IP输出到上位机,或者通过总线方式输出;模拟输出通过DA转换成标准的电压电流信号输出。系统选用ADI公司AD5422数/模转换器来实现数/模转换。AD5422通过数据移位寄存器输入数据,数据在串行时钟输入SCLK的控制下首先作为24位字载入器件MSB中。数据在SCLK的上升沿逐个输入。该24位字在LATCH引脚的上升沿无条件锁存,然后数据继续逐个输入,此时与LATCH的状态无关。图6为AD5422写操作时序仿真图。    4、结束语    采用XILINX公司的ISE10.1设计软件及MODELSIM软件对系统进行反复调试仿真,给出了试验结果,验证了系统功能。并运用美国PCB公司的608A11作为加速度传感器。对设备的振动进行监测,其模拟输出的测试结果如表1所示。    最终的调试结果表明,本文所设计的智能变送器器能够稳定的实现温度、压力等变量的变送,并且频率、幅值的调节精度等技术指标均达到了预期的设计要求。

  • AMC系列多回路监控单元在智能配电回路中的应用

    摘 要:介绍了AMC系列多回路智能监控单元在智能配电回路中的的应用,将众多配出回路的测量、计量、开关状态监测、控制和数字通讯等功能于一体,大大简化了系统的设计,降低了设备成本,简化了用户投资,方便了用户的使用和检修。具有功能强大、性价比高、方便用户使用、节约用户投资等优点关键字:AMC系列智能监控单元,简化系统,降低投资,性价比高0  引言  随着配电系统的发展,智能配电回路中各种仪表向集成化和网络化发展的方向是越来越清晰。目前单回路集成化的优势已经出现,但是对多个回路的集成还未产生。  本文将要介绍的是最新开发的AMC系列多回路智能监控单元在智能配电出线回路中的应用。该系列监控单元主要应用于多个配电出线回路的电参量的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视,一个AMC多回路监控单元就能实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本等优点,必将引领国内外智能配电领域的发展方向,成为智能配电中出线回路监控系统的发展主流。1  技术背景  在传统的智能配电出线回路中,要实现对回路中每个负载的各种电参量的全面监测,一般有以下2种组网方式(以三相为例):    该方案在三相智能配电出线回路中是比较常见的一种方案。在对配电出线回路负载的监控中,用户一般需要监控各路负载的各种电参量,包括每路负载的电流、电压、功率、电能、开关状态等。因此在设计方案时,针对每种电参量,用户需要单独配置可以测量各种电参量的仪表,由图1可以看到,为了监控每路负载,用户必须为每路负载配置1个电流表、1个电压表、1个功率表、1个电能表、1个I/O模块。而且为了实现网络化管理,每个仪表还必须是能够进行通讯的。由图1 可以看出,用于监测每路三相负载的电测仪表达到5个。采用该方案的缺点是需要多个仪表才能监控每路负载的各种电参量,监控路数越多,使用仪表越多,用户安装、维修、管理很不方便。且投资较大。优点是单个仪表出故障不影响对配电回路的其他电参量的监控,测量的精度较高,实时性较强。  方案2:(图2)  该方案在三相智能配电出线回路中也是比较常见的一个方案。该方案较上面方案的先进之处在于,用于监控每个回路电参量的仪表由1个多功能的智能仪表代替了多个仪表,1个多功能仪表集测量电流、电压、功率、电能和开关量输入输出于一体,并可进行组网通讯。该方案的优点是每路负载只需配置1个仪表即可实现对该路负载的所有电参量的测量和控制,组网方便,用户投资较方案1少,安装、维护、管理较为方便,测量的精度较高,实时性较强。缺点是一旦仪表出线故障则无法对该负载继续监控。  以上2中方案在智能配电出线回路中是常用的,但是,以上2中方案的缺点是显而易见的,投资成本太大是一个主要的缺点。且接线、安装、调试等都不方便。2  AMC系列智能监控单元技术指标  AMC系列智能监控单元是针对出线回路中一般回路的监控要求,经过充分调研并结合实际需求开发的多回路智能配电监控装置。该监控单元分为单相和三相2大系列,其型号分类见表1。其技术指标见表2。外型及安装尺寸见图3,一般安装在配电柜内。3  AMC系列智能监控单元的设计简介  AMC系列多回路智能监控单元的原理设计上,采用多个电子切换开关+1个电能计量芯片+1个CPU来实现对多个回路的监测。其原理框图见图4。  核心器件CPU选用飞思卡尔公司的MC9S08AW32型单片机,它是第一款基于高度节能型S08核的器件,片上资源丰富,抗干扰能力突出。内含32K字节用户程序空间,片上集成2048字节RAM,支持BDM片上调试功能,片内集成看门狗电路。  电能计量芯片采用ADI公司的高精度三相电能测量芯片ADE7758,适用于各种三相电路(不论三线制或者四线制)中测量有功功率、复功率、视在功率。该IC内嵌了高精度的模数转换器和固定模式的数字处理信号处理器(DSP),具有数字积分、数字滤波和具有众多实用电能监测、计量功能,是新一代高性能全数字电能表的理想芯片。  电子开关采用双四选一的CD4052高速电子开关。在单片机的控制下,实现在不同电流信号之间的高速切换。  多路电流信号经电子开关进入电能芯片,结合母线电压即可由电能芯片测得多个回路的各种电参量。4  AMC系列智能监控单元的应用4.1 典型应用  图5为AMC系列三相多回路智能监控单元的典型应用图。在应用中,出线回路中的3个三相负载的所有电参量测量都由1个AMC三相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。  图6为AMC系列单相多回路智能监控单元的典型应用图。在应用中,出线回路中的9个单相负载的所有电参量测量都由1个AMC单相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。4.2 应用案例  图7是江苏某广电大厦0.4kV低压配电出线图。在该设计图中,每个单相负载的电流测量采用CL72-AI(测量单相电流)表来实现,每个三相负载的电流测量由CL72-AI3来实现(测量三相电流)。由图可以看出,该出线回路总共要使用12个仪表。  图8是采用AMC多回路监控单元后,针对图7系统所做的修改。由图8可以看出,1个AMC16-1E9代替了9个CL72-AI,1个AMC16-3E3代替了3个CL72-AI3,大大简化了系统,并可同时检测母线电压、每个出线回路的电能,并可利用通讯接口,实现广电大厦的内部电能计量、考核、管理。5  结语  AMC系列产品的功能强大,单个仪表能够测量多个回路负载的多种电参量。对比图7和图8两种设计方案,采用AMC系列多回路智能监控单元,能够大大简化系统的设计方案,与传统方案相比,降低用户的投资成本,方便了系统的接线、安装、调试、维护等优点。

  • 如何正确的选择智能温压双控微波消解仪?

    想要购买到一件好的产品,那么在购买上就必须多了解产品信息。在购买仪器上面也同样如此,那么如何去购买[url=http://www.xo-china.com]智能温压双控微波消解仪[/url]这样的产品呢?其实在购买仪器上首先就要注意的就是自己对产品的需求,先制定好产品的需求,这样才能更好的去购买产品。其次要要根据产品的需求制定好几套产品的预算,这样可以更好的灵活操作,可以更好的去选择产品高中低档和进口国产的区别。做好这些只是在产品购买上的第一步。第二步就是根据产品制定的需求预算在去详细的去选择自己的产品。在产品上要求上考察个商家的产品质量性能,选择性价比高的产品。不仅这样更要了解产品的服务上的的详细规则,现在的产品不仅仅是买产品更重要的是产品的服务,服务就可以看出企业的好坏,所以在购买上更要注意产品的服务,没有好的服务产品再好也是得不到客户的认同。在现在的生活中,产品的服务更能看出企业的信誉好坏,好的服务就是企业的口碑,在购买产品上人们往往会选择口碑好的产品。

  • 淋雨试验箱背后:智能化控制的重要性

    淋雨试验箱背后:智能化控制的重要性

    智能化控制对于[b][url=http://www.linpin.com/]淋雨试验箱[/url][/b]来讲是很重要的,现在是人工智能的时代,试验箱智能化控制的应用可以降低人工成本,同时提升设备效率,在试验箱设备快速运行的背后,智能化控制有着至关重要的作用。[align=center][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2022/04/202204261615109696_1620_1037_3.jpg!w690x690.jpg[/img][/align]  淋雨试验箱智能化控制系统的流程是怎样的呢?该系统同时具有了自动组合加热还有制冷等子系统的工况,确保在整个温度范围之内的高精度控制,让设备更加节能、降低能耗,设备的检测装置也比较完善,可以自动进行故障显示、报警。一旦试验箱设备有异常了,试验设备的控制器会通过使用中文汉字来显示故障状态,还可以储存历史故障记录和历史数据表趋势图等,可以配上计算机通讯接口、计算机上、下机计算机机辅助控制系统装置等实现实现连机数据传输及远程控制功能。试验箱设备还可以通过配套记录仪来记录试验数据,该试验设备控制器使用了可编程逻辑控制器还有优质LCD彩色液晶触摸屏等双回路温度控制系统,该系统的控制显示器使用了液晶彩色触摸大屏幕来控制显示屏,这个控制装置同样是采用中文操作显示界面的。该控制系统可以设置、显示试验曲线、参数、段总运行时间、总运行时间、加热器工作状态还有日历时间等,控制程序的编制使用了人机对话的模式,显示界面也很友好,只需要设定温度就能够实现制冷机的自动运行功能。  现在人们选购设备也比较注重淋雨试验箱是否更加智能,大家应该了解淋雨试验箱智能化控制的重要性。智能化控制的应用让试验设备更加自动化,在提升效率的同时也稳定了设备试验的准确度。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制