导电胶分析

仪器信息网导电胶分析专题为您提供2024年最新导电胶分析价格报价、厂家品牌的相关信息, 包括导电胶分析参数、型号等,不管是国产,还是进口品牌的导电胶分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导电胶分析相关的耗材配件、试剂标物,还有导电胶分析相关的最新资讯、资料,以及导电胶分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

导电胶分析相关的厂商

  • 钜合(上海)新材料科技有限公司是一家专注于电子材料的高科技企业,总部及研发中心位于上海。公司创始人团队均来自海内外著名高校或研究所并拥有博士及以上学位,且均在电子材料行业拥有多年的从业经验,公司拥有多名研究生以上研发人员,拥有极为强大的研发能力。同时公司聘请复旦大学、上海交通大学、华东理工大学的专家教授担任公司的技术顾问,致力于为客户提供专业、高效的解决方案,为客户创造价值。公司产品主要包括电子半导体行业用导电胶、显示屏触摸屏用导电浆料、物联网用导电浆料、LED与芯片导热导电胶、UV光固化导电胶、电磁屏蔽导电涂料、光伏太阳能用导电浆料、界面导热材料、光通信用胶、特种胶粘剂、纳米材料及其功能涂料等。
    留言咨询
  • 善仁新材料科技有限公司成立于2012年,公司源于2005年成立的上海常祥实业有限公司导电材料事业部,公司下设善仁(浙江)新材,善仁(上海)新材,善仁(深圳)新材,上海安巅新材料等公司。“成为世界电子浆料头部品牌”为奋斗目标。公司是集研发,生产,销售为一体的高新技术企业。公司拥有由著名科学家领衔的,十多名海内外博士后,博士,硕士组成的研发团队,研发团队100%具有硕士以上。 公司开发出了纳米颗粒技术平台,金属技术平台、树脂合成技术平台、同位合成技术平台,粘结技术平台等。在以上技术平台上开发出了导电银胶、导电银浆,纳米银墨水,纳米银浆,纳米银胶,纳米银膏,可焊接低温银浆,异方性导电胶,电磁屏蔽胶,导热胶等产品。
    留言咨询
  • 北京裕隆时代科技有限公司,是专业致力于材料显微观测及微区分析的科学仪器、实验室设备及实验耗材供应商。我们拥有以台式电镜和TEM样品杆为主的一系列分析仪器,包括荷兰PHENOM台式扫描电镜(SEM)、DELONG台式透射电镜(TEM)、TEM原位加热系统(加热杆)、原位电学系统样品杆、原位力学系统等等,全面满足科研人员对材料的微观观测及分析需求。 作为生产厂商,我们还为客户提供实验室常用设备(LJ-16小型离子溅射仪、QT/QR精密镀膜机、临界点干燥仪、生物液氮罐、自动压力研磨抛光机、冷水机...)和实验耗材(导电胶、微栅铜网、载网、金靶、铂靶、原装进口预对中钨灯丝、包埋树脂、电镜样品载物台...),全面满足科研人员对材料的微观观测及分析需求。其应用领域包括工业和理论材料研究、生命科学、半导体、数据存储、自然资源等等诸多领域。我们致力于分析仪器的小型化、集成化和可拓展性,帮助客户快速便捷地获取高质量的微观型貌图像、可靠的分析数据,同时充分节约实验室空间,提高客户的投资回报。 我们拥有一支涉及众多领域高素质的应用支持团队,向客户提供完整的实验室解决方案和良好的售后服务,助力您的事业强劲发展。 衷心希望以我们最优秀的仪器和服务,和您建立长期互惠的合作关系! 品质优秀的仪器,热情愉快的服务! 裕隆时代,和您一起携手,共创美好未来!
    留言咨询

导电胶分析相关的仪器

  • 汉高芯片封装导电胶LOCTITE ABLESTIK 84-1LMI产品说明LOCTITE ABLESTIK 84-1LMI提供以下产品特性:技术:环氧树脂外观:银色固化:热固化产品优点:导电性强低渗漏低放气性应用:芯片粘接pH值:5.5填充物类型:银LOCTITE ABLESTIK 84-1LMI 芯片粘接剂用于微电子芯片粘接 汉高芯片封装导电胶LOCTITE ABLESTIK 84-1LMI
    留言咨询
  • 环氧导电银胶 400-860-5168转2205
    产品名称:环氧导电银胶产品简介:该胶为改性环氧、改性胺类和银粉组成双组份银胶。按比例配制的导电胶性能稳定,粘结强度较高,工艺简便,室温成形,也可加温固化。体积电阻率10-3~10-4Ωcm。广泛用于电子电器工业中金属、陶瓷、玻璃、电极、薄膜电阻间的导电性能粘接。产品特点:技术指标:固化条件:25℃×12h 或者 60℃×2h 或者 90℃×30min抗剪Al-Al:>50kg/cm2 >80kg/cm2 >80kg/cm2 体积电阻率:5.0*10-3Ωcm 3.0*10-4Ωcm 3.0*10-4Ωcm工作温度:-55℃~200℃操作工艺:1.将A组分搅拌3-5min,使其为均匀粘稠体。2.按比例A:B=10:1(重量)混合均匀。3.将上述胶体涂在需要胶合的两个部件上,厚度0.1~0.2mm。然后两个部件合拢,用夹具夹紧。室温下固化12h即可或60℃×2h或90℃×30min也可。 标准包装:本品包装为 55g/套(A组分50克、B组分5克)110g/套(A组分100克、B组分10克) 550g/套(A组分500克、B组分50克)1.1kg/套(A组分1000克、B组分100克) 温馨提示:本品储存期为6个月,阴凉干燥处储存,避免阳光直射。本品为非危险品,可按一般化学品储存运输。 相关产品:A-Z系列晶体 A-Z系列靶材 加热平台系列
    留言咨询
  • 上海塑料所固晶导电银胶电达DAD-87产品名称:合成树脂所塑料研究所固晶导电银胶IC封装芯片粘接银胶DAD-87应用点: 芯片粘接产品特点:DAD-87导电胶是溶剂型单组分银环氧导电胶,该胶固化后具有良好的粘结性、导电性及耐热性、杂质离子含量低等特点。适用于塑料封装集成电路、中小功率晶体管、发光二极管的装片、PTC陶瓷发热元件等粘结。应用点图片:技术参数:产品图片:上海塑料所固晶导电银胶电达DAD-87
    留言咨询

导电胶分析相关的资讯

  • 低电压下纳米颗粒的能谱EDS元素分析方案
    低电压下纳米颗粒的能谱EDS元素分析方案传统的能谱EDS分析通常要求较大的工作距离和较高的电压,而利用扫描电镜对样品进行图像观察时,可能会根据观察目的来选择更短的工作距离及更小的加速电压。 日本钢铁工程控股公司佐藤博士对钢中细小夹杂物的分析工作很好地展示了不同扫描电镜SEM成像条件对电子图像的影响。图1所示为2.25Cr-1 Mo钢在不同加速电压及工作距离下所观测到的不同碳化物的衬度。图1中的i,ii,iii箭头所指(i代表M23C6,ii代表M6C,iii代表AlN)及圆圈内的位置(M2C)是不同种类的碳化物,总体而言,随着电压的降低和工作距离的缩短表面的碳化物逐渐显现其清晰的形貌及分布位置。 那么,EDS是否也可以去表征这些表面的结构呢? 传统能谱EDS分析需要在高电压、长工作距离下进行,为了获得好的电子图像而选择的工作条件(低电压、短工作距离)对于EDS采集来说就不甚友好,通常接收到的信号过低,传统能谱几乎采集不到过多有效的信息。牛津仪器Ultim Extreme采用了不同于传统EDS的设计,将接收特征X-Ray光子信号的晶体大幅前移使之更加靠近样品,因而大大提高了信号量;Ultim Extreme的几何设计也有利于在短工作距离下的EDS分析。图2所示为传统EDS及Ultim Extreme与电子束和样品的相对几何关系的示意图,Ultim Extreme的WD和DD(探测器至样品的距离)都更短。此外,Ultim Extreme采用了无窗设计,大幅提升了低能特征X-Ray的检测率。综合以上特性,牛津仪器Ultim Extreme对低电压、短工作距离下的EDS采集效率及效果有了显著的提升。 图3所示为一离子抛光后的样品的电子图像(左)及元素分布图(右),工作电压为3kV,工作距离为4mm,元素分布图使用牛津仪器Ultim Extreme采集。从右侧的元素分布图可以轻易区分出红色的基底(不锈钢)和至少3种第二相,它们分别为粉红色的富Ni相,绿色的富Cr相及蓝色的富Mo相。在左侧的电子图像中,由于抛光的缘故,富Cr相并不清晰,EDS可以帮助快速定位、区分不同的第二相,提供形貌之外的元素信息。 在实际样品分析中,除了参数设置及电镜和EDS探头的性能之外,样品的表面状态和样品漂移也会影响低电压下能谱元素分析的结果。 1. 表面的碳(C)沉积 样品的积碳效应在低电压下尤为明显,表面沉积的无定型碳或碳氢化合物会对样品的特征X光子有强烈的吸收效应,进而影响EDS效果。通过等离子清洗可减弱样品表面的C沉积现象,进而改善EDS分析的效果。 图4所示为对样品进行等离子清洗前后经过相同电压相同剂量电子辐照后的表面状态。经过等离子清洗后的样品(右图)经过电子辐照C沉积明显减少,此时进行低电压EDS分析将更有利于Ultim Extreme能谱仪接收低能端光子信号,改善结果。 2. 样品漂移 样品漂移会造成细微结构展宽甚至畸变,对于含量很少或者尺寸很小的结构也可能因为样品的漂移而不能检出或检出结果与真实结构偏差较大。通常引起样品漂移的原因及解决方案如下: 碳导电胶坍塌所引起的物理漂移 常用的导电胶带内有大量气孔,在真空中这些气孔坍塌胶带发生变化,粘在其上的样品也会跟着移动。使用液体碳浆可解决此类问题。图5所示为10kV下含Bi粉末撒在碳胶带上和用液体碳浆进行固定的EDS分析结果,结果表明,即使是导电的大尺寸样品,使用C胶带进行固定(图5ab)也会发生颗粒的形状变化或者展宽等,而固化后的C浆(图5cd)则具有很高的稳定性,EDS元素面分布结果与电子图像完全匹配(碳浆选购网站www.51haocai.cn)。 样品导电性较差导致放电 使用低电压或低束流使样品表面达到电中性即可解决部分样品的放电漂移现象。但有的不导电样品难以通过此方法完全消除放电,此时可选择表面喷碳来解决。高倍下机台的稳定性 此类问题无法根除,只能通过跟踪样品的漂移来解决。牛津仪器AZtecLive能谱分析软件中提供了多种样品漂移矫正(Autolock)的模式来进行样品跟踪,以期获得理想的分析结果,如图6所示,高倍采集时,使用Autolock与否对颗粒物识别影响巨大。 图6. 高倍下采集EDS时,不使用AutoLock(左)和使用AutoLock(右)的比较 总结 通过扫描电镜及能谱仪,对10nm左右的纳米颗粒进行EDS分析时,推荐在低加速电压并配合牛津仪器大面积甚至无窗型Extreme的能谱采集,同时需要样品稳定性高并配合AutoLock功能,可以获得更好的空间分辨率结果。
  • 低电压下纳米颗粒的能谱EDS元素分析方案
    传统的能谱EDS分析通常要求较大的工作距离和较高的电压,而利用扫描电镜对样品进行图像观察时,可能会根据观察目的来选择更短的工作距离及更小的加速电压。 日本钢铁工程控股公司佐藤博士对钢中细小夹杂物的分析工作很好地展示了不同扫描电镜SEM成像条件对电子图像的影响。图1所示为2.25Cr-1 Mo钢在不同加速电压及工作距离下所观测到的不同碳化物的衬度。图1中的i,ii,iii箭头所指(i代表M23C6,ii代表M6C,iii代表AlN)及圆圈内的位置(M2C)是不同种类的碳化物,总体而言,随着电压的降低和工作距离的缩短表面的碳化物逐渐显现其清晰的形貌及分布位置。 那么,EDS是否也可以去表征这些表面的结构呢? 传统能谱EDS分析需要在高电压、长工作距离下进行,为了获得好的电子图像而选择的工作条件(低电压、短工作距离)对于EDS采集来说就不甚友好,通常接收到的信号过低,传统能谱几乎采集不到过多有效的信息。牛津仪器Ultim Extreme采用了不同于传统EDS的设计,将接收特征X-Ray光子信号的晶体大幅前移使之更加靠近样品,因而大大提高了信号量;Ultim Extreme的几何设计也有利于在短工作距离下的EDS分析。图2所示为传统EDS及Ultim Extreme与电子束和样品的相对几何关系的示意图,Ultim Extreme的WD和DD(探测器至样品的距离)都更短。此外,Ultim Extreme采用了无窗设计,大幅提升了低能特征X-Ray的检测率。综合以上特性,牛津仪器Ultim Extreme对低电压、短工作距离下的EDS采集效率及效果有了显著的提升。 图3所示为一离子抛光后的样品的电子图像(左)及元素分布图(右),工作电压为3kV,工作距离为4mm,元素分布图使用牛津仪器Ultim Extreme采集。从右侧的元素分布图可以轻易区分出红色的基底(不锈钢)和至少3种第二相,它们分别为粉红色的富Ni相,绿色的富Cr相及蓝色的富Mo相。在左侧的电子图像中,由于抛光的缘故,富Cr相并不清晰,EDS可以帮助快速定位、区分不同的第二相,提供形貌之外的元素信息。 在实际样品分析中,除了参数设置及电镜和EDS探头的性能之外,样品的表面状态和样品漂移也会影响低电压下能谱元素分析的结果。 1. 表面的碳(C)沉积 样品的积碳效应在低电压下尤为明显,表面沉积的无定型碳或碳氢化合物会对样品的特征X光子有强烈的吸收效应,进而影响EDS效果。通过等离子清洗可减弱样品表面的C沉积现象,进而改善EDS分析的效果。 图4所示为对样品进行等离子清洗前后经过相同电压相同剂量电子辐照后的表面状态。经过等离子清洗后的样品(右图)经过电子辐照C沉积明显减少,此时进行低电压EDS分析将更有利于Ultim Extreme能谱仪接收低能端光子信号,改善结果。 2. 样品漂移 样品漂移会造成细微结构展宽甚至畸变,对于含量很少或者尺寸很小的结构也可能因为样品的漂移而不能检出或检出结果与真实结构偏差较大。通常引起样品漂移的原因及解决方案如下: 碳导电胶坍塌所引起的物理漂移 常用的导电胶带内有大量气孔,在真空中这些气孔坍塌胶带发生变化,粘在其上的样品也会跟着移动。使用液体碳浆可解决此类问题。图5所示为10kV下含Bi粉末撒在碳胶带上和用液体碳浆进行固定的EDS分析结果,结果表明,即使是导电的大尺寸样品,使用C胶带进行固定(图5ab)也会发生颗粒的形状变化或者展宽等,而固化后的C浆(图5cd)则具有很高的稳定性,EDS元素面分布结果与电子图像完全匹配(碳浆选购网站www.51haocai.cn)。 样品导电性较差导致放电 使用低电压或低束流使样品表面达到电中性即可解决部分样品的放电漂移现象。但有的不导电样品难以通过此方法完全消除放电,此时可选择表面喷碳来解决。高倍下机台的稳定性 此类问题无法根除,只能通过跟踪样品的漂移来解决。牛津仪器AZtecLive能谱分析软件中提供了多种样品漂移矫正(Autolock)的模式来进行样品跟踪,以期获得理想的分析结果,如图6所示,高倍采集时,使用Autolock与否对颗粒物识别影响巨大。 图6. 高倍下采集EDS时,不使用AutoLock(左)和使用AutoLock(右)的比较 总结 通过扫描电镜及能谱仪,对10nm左右的纳米颗粒进行EDS分析时,推荐在低加速电压并配合牛津仪器大面积甚至无窗型Extreme的能谱采集,同时需要样品稳定性高并配合AutoLock功能,可以获得更好的空间分辨率结果。
  • 岛津原子力显微镜——锂电池导电性分析(联用元素分析工具)
    锂离子电池是一种可充电蓄电池,其通过从活性材料的结构中解吸/插入Li+来充电/放电。从制作工艺而言,锂电池正极由活性材料、导电剂、粘结剂、增稠剂及溶剂去离子水等多相物质混合制成。这其中,对于提高性能和质量控制,最重要的是活性材料、粘合剂和导电添加剂的工作状态和分布状态。图1 锂电池充放电示意图目前应用最为广泛的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂和镍钴铝酸锂等。其中高镍三元锂离子电池正极材料NCM(锂镍锰钴氧化物;Li(Ni-Co-Mn)O2)凭借比容量高、成本较低和安全性优良等优势,成为研究的热点,被认为是极具应用前景的锂离子动力电池正极材料。为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。导电剂的材料、形貌、粒径及含量对电池都有着不同的影响,碳系导电剂从类型上可以分为导电石墨、导电炭黑、导电碳纤维和石墨烯。常用的锂电池导电剂可以分为传统导电剂(如炭黑、导电石墨、碳纤维等)和新型导电剂(如碳纳米管、石墨烯及其混合导电浆料等)。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。聚偏氟乙烯(PVDF)是一种具有高介电常数的聚合物材料,具有良好的化学稳定性和温度特性,具有优良的机械性能和加工性,对提高粘结性能有积极的作用,被广泛应用于锂离子电池中,作为正负极粘结剂。另一方面,正极中的这三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。图2 正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。传统上,SEM+EDS可以对正极表面形貌和元素分布。但是局限性也很大,首先,EDS仅是一种定性分析工具,不能对元素进行定量分析,需要更精确的方法;另一方面,SEM仅能观察形貌,无法观测正极的工作状态,需要一种表面电学性能观测的方法。因此本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图3至图5示出了EPMA数据,图6至图8示出了SPM数据。在EPMA结果中,图3是成分图像(COMPO),图4是C和F分析的叠加图像,图5是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图4中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图5中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图6是用电流模式下的SPM获得的表面形貌图像,图7是低偏压激励下小电流分布图像,图8是高偏压激励下大电流分布图像。结合图6和图5,对比可知道活性材料的分布与形貌;结合图2,可认为图8中电流区域为为导电剂;同时对比图7和图8,从图7中扣除图8的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图7和图5 ,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。本文内容非商业广告,仅供专业人士参考。

导电胶分析相关的方案

导电胶分析相关的资料

导电胶分析相关的试剂

导电胶分析相关的论坛

  • 【讨论】导电银胶和导电胶带

    最近发现从SPI买的导电银胶和导电胶带都不合格,电阻都大的吓人,均超过50M欧姆,整个就一大电阻不知道大家有没有注意这个问题?记得几年前用的碳导电胶带,导电性能很好,电阻不超过10欧姆的,现在质量怎么这么差呢?

  • 【求助】导电胶带导电性

    SEM里面用的导电胶带,一般用 的是碳导电胶带,但我测了下,它的导电性很差,万用表测得相隔1cm电阻值竟然1MΩ。 谁用过其他的导电胶带,导电性一定要好的。

  • 【分享】UV紫外线光固化导电胶、光固化导电胶简介和应用

    UV紫外线光固化导电胶、光固化导电胶简介和应用一、UV紫外线光固化导电胶简介 Uninwell国际的UV紫外线光固化导电胶是是由光敏高分子聚合物、反应性稀释单体、导电粒子、光和热引发剂、抗氧剂经混合、研磨制成。其中光敏高分子聚合物为环氧丙烯酸树脂或/和聚氨酯丙烯酸酯;反应性稀释单体为丙烯酸的单、双、多关能团单体;导电粒子为银粉、铜粉或镀银铜粉;光引发剂为α-胺烷基丙酮、安息香(或取代安息香)醚或酰基膦化物;热引发基为偶氮化合物或过氧化合物;抗氧基为对苯二酚、对羟基苯甲醚、2、6-二叔丁基-4-甲基酚等。可以广泛用于触摸屏、CSP、FPC、FPC/ITO glass、PET/ITOglass、PET/PET、倒装芯片(Flipchip)、液晶显示(LCD)、TP、射频识别(RFID)、薄膜开关、EL backlight terminals等领域的快速粘结导电。也可以满足聚酯、薄膜电路、PCB电路板等微电子封装技术的需要。由于UV紫外线光固化导电胶具有光化学敏感性, 可以极大提高生产效率;施工安全:没有溶剂参与,有利环境;产品固化温度低,尤以对热敏材料使用为优,且能解决深层固化;固化能耗低,节省成本;固化后有良好的粘着性、耐溶剂性;粘接强度高、电阻率低;并且适于自动化流水线大规模生产。Uninwell国际的光敏导电胶、FPD感光银浆、FPD光刻浆料、LCD导电银浆、PDP导电银浆、触摸屏导电胶、TP银胶在LCM模组、PFD(平板显示器)、液晶显示(LCD)、等离子显示(PDP)、电致发光显示(ELD)、有机电致发光显示(OLED)、场发射显示(FED)、投影显示等领域都有成功的案例。二、在平面显示领域中的应用 在平板显示器(FPD)技术中的应用近几年FPD技术发展迅猛,尤其是液晶显示器(LCD)具有低电压、低功耗的优点,应用几乎覆盖所有显示应用领域,已开始取代阴极射线管,成为FPD中的主导产品。 LCD由8大类材料组成,即透明电极玻璃、液晶、取向剂、光刻胶、偏振片、导电胶、粘合剂及清洗剂。其中,光刻胶在FPD加工技术中主要用于制作显示器像素、电极、障壁、荧光粉点阵等。早先,制作FPD的液晶滤色器、像素、电极、障壁、荧光粉点阵等都采用厚膜印刷工艺,即将印有液晶滤色器或像素、电极、障壁、荧光粉点阵的图形先复印在丝网漏模上,然后将所需浆料丝网印刷至玻璃基板上,无论是制液晶滤色器、像素、电极,还是障壁、荧光粉点阵,都需要重复丝印十多次才能达到几十微米至一百微米以上的厚度。由于丝网漏模是由金属细丝网状编织而成,其尺寸愈大,则愈易弯曲或扭曲,精度误差大,制成的液晶滤色器、像素、电极、障壁、荧光粉点阵表面粗糙、边缘不整,图形精度和定位精度差。因此,为了制做大屏幕、高分辨率平板显示器,必须通过采用光刻加工技术来实现。近年来,业界针对平面显示器的快速发展需求,已经研制并规模生产出TN/STN LCD专用正型光刻胶。 在平板显示器中,除LCD之外,近年了PDP(等离子显示器)和EL(电致发光)也发展很快。业界专家预测,在15吋以下的FPD中,液晶技术将受到有机EL、FED(场致发光显示)等技术的严重挑战,但仍可望继续占据主导地位;而在60吋以上大屏幕显示领域,目前仍以PDP优势明显。  随着FPD行业的迅速发展,大屏幕显示屏制作要求越来越高。由于在显示大幅面细腻的彩色图像时,需要具备高达数十万的像素,因而要求FPD的加工过程必须运用光刻技术来完成液晶滤色器、像素、电极、障壁、荧光粉点阵等具有高、精、细线条的图形制作,专用光刻胶(或光刻浆料)的研制开发已经迫在眉睫,如用于TFT-LCD加工技术的彩色液晶三色感光剂,用于彩色PDP加工技术的彩色PDP专用光刻浆料(制作电极的黑色光刻银浆和光刻导电银浆、制作障壁的耐喷砂光致抗蚀剂、制作荧光粉点阵的三基色荧光粉光刻浆料)等等。 [em0808]

导电胶分析相关的耗材

  • 导电胶垫
    双面碳导电胶垫l 标准碳导电胶垫:导电芯膜(厚35 μm)两侧的导电胶均厚45 μm,整个厚度达到125 μm,胶垫有白色衬层,当安装样本时衬层可以不用去除。不泄漏气体。粘胶层由碳颗粒填充丙烯酸树脂胶组成。无溶剂型。粘胶可用乙酸乙酯,乙醇,异丙醇乙醇或者酒精去除。工作温度可达60oC。l 厚碳导电胶垫(Thick Carbon Conductive Tabs):具有坚硬光滑的表面,总厚度260 μm,包括近200 μm厚的导电碳酸盐基质,及其两面各30 μm厚的导电胶,因导电性能和粘附性能比不上标准的,故其一般用做照相的背景,用完可以很快的揭去。l 超薄碳导电胶垫:这种胶垫的芯材是不导电布(70 μm),两面碳导电胶(2 x 45μm),总厚度160 μm。l 光学级别碳导电胶垫:高纯度的导电碳,产生很少的干涉信号,接近光谱分析仪(如:清洁的EDS谱)纯度。例如进行X射线分析可用。l 超平碳导电胶垫:标准胶垫已经非常平滑,可以满足大多数用户的要求,但是仍然有客户希望可以购买到更为平滑的胶垫。现在,我们可以为您提供此种产品了。这种碳导电胶垫解决了EDS下胶垫表面不平整、粘附性不足等问题。美国生产,广泛应用于各种领域:倒置电镜、场发射电镜、法医实验室的弹痕研究等等。这种胶垫具有强粘附性薄膜。有少量的镍(0.6%) 和铜( 0.3%),对于EDS有超过99%的通透性。 产品信息:货号产品名称规格77825-06标准双面碳导电胶垫,直径6mm100/pk77825-09标准双面碳导电胶垫,直径9mm98/pk77825-12标准碳导电胶垫,直径12mm100/pk77825-25标准碳导电胶垫,直径25mm54/pk77825-12-sp超薄碳导电胶垫,直径12mm200/pk77824-12厚碳导电胶垫,直径12mm100/pk77826-12光学级别碳导电胶垫,直径12mm120/pk77827-12超平碳导电胶垫,直径12mm100/pk77827-25超平碳导电胶垫,直径25mm50/pk
  • 导电胶稀释液
    电胶稀释液主要用于稀释导电胶。导电胶启封后,溶剂容易挥发,粘稠度上升,甚至结块。导电胶稀释液可调整导电胶的粘稠度。导电胶干燥后,可使用稀释剂在超声波清洁器下进行稀释。注意:不同导电胶稀释液使用方法相同,但不能混用。 产品编号产品名称规格YL-6008-AL银导电胶稀释液30mlYL-6008-C碳导电胶稀释液30ml
  • 双面碳导电胶垫
    双面碳导电胶垫l 标准碳导电胶垫:导电芯膜(厚35 μm)两侧的导电胶均厚45 μm,整个厚度达到125 μm,胶垫有白色衬层,当安装样本时衬层可以不用去除。不泄漏气体。粘胶层由碳颗粒填充丙烯酸树脂胶组成。无溶剂型。粘胶可用乙酸乙酯,乙醇,异丙醇乙醇或者酒精去除。工作温度可达60oC。l 厚碳导电胶垫(Thick Carbon Conductive Tabs):具有坚硬光滑的表面,总厚度260 μm,包括近200 μm厚的导电碳酸盐基质,及其两面各30 μm厚的导电胶,因导电性能和粘附性能比不上标准的,故其一般用做照相的背景,用完可以很快的揭去。l 超薄碳导电胶垫:这种胶垫的芯材是不导电布(70 μm),两面碳导电胶(2 x 45μm),总厚度160 μm。l 光学级别碳导电胶垫:高纯度的导电碳,产生很少的干涉信号,接近光谱分析仪(如:清洁的EDS谱)纯度。例如进行X射线分析可用。l 超平碳导电胶垫:标准胶垫已经非常平滑,可以满足大多数用户的要求,但是仍然有客户希望可以购买到更为平滑的胶垫。现在,我们可以为您提供此种产品了。这种碳导电胶垫解决了EDS下胶垫表面不平整、粘附性不足等问题。美国生产,广泛应用于各种领域:倒置电镜、场发射电镜、法医实验室的弹痕研究等等。这种胶垫具有强粘附性薄膜。有少量的镍(0.6%) 和铜( 0.3%),对于EDS有超过99%的通透性。 产品信息:货号产品名称规格77825-06标准双面碳导电胶垫,直径6mm100/pk77825-09标准双面碳导电胶垫,直径9mm98/pk77825-12标准碳导电胶垫,直径12mm100/pk77825-25标准碳导电胶垫,直径25mm54/pk77825-12-sp超薄碳导电胶垫,直径12mm200/pk77824-12厚碳导电胶垫,直径12mm100/pk77826-12光学级别碳导电胶垫,直径12mm120/pk77827-12超平碳导电胶垫,直径12mm100/pk77827-25超平碳导电胶垫,直径25mm50/pk
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制