当前位置: 仪器信息网 > 行业主题 > >

导热调节仪

仪器信息网导热调节仪专题为您提供2024年最新导热调节仪价格报价、厂家品牌的相关信息, 包括导热调节仪参数、型号等,不管是国产,还是进口品牌的导热调节仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导热调节仪相关的耗材配件、试剂标物,还有导热调节仪相关的最新资讯、资料,以及导热调节仪相关的解决方案。

导热调节仪相关的仪器

  • TCT-S2导热系数测定仪材料的热导率是研究材料物理性能的一个重要参数指标,在航空、原子能、建筑材料、非金属材料等工业部分都要求对有关材料的热导率,进行预测或实际测定。该仪器基于瞬态平面热源法的原理,以及相关国标要求,并做出了相应的改进,由计算机自动完成测试工作。满足了材料检测部门对材料导热系数的高精度测试要求。仪器参考标准:ISO 22007-2 2008一、仪器简介TCT-S2是利用瞬态平面热源技术(TPS)开发的导热系数测定仪,可用于各种不同类型材料的热传导性能的测试。瞬态平面热源法是研究热传导性能中精确、方便、快速的一种方法。它是一种新技术,在研究材料时能够快速准确的测量热导率。该方法采用双螺旋结构的平面探头(如下图),用合金薄片刻蚀而成。测量时,平面探头要放置在两个样品之间(如下图),探头既是热源,又是传感器。测量样品时,利用惠斯通电桥的原理来检测探头上电压的变化,然后把采集的数据送给上位机软件分析处理,最后得到导热系数。 主要技术参数和测试要求1、测试范围:0.005—300 W/(m*K)2、探头直径:7.5mm和15mm3、测试精度:±5%4、重复性误差:≤5%5、测试时间:5~160秒6、电源电压:AC 220V7、整机消耗功率:﹤500W8、测量温度范围:室温~130℃(可以根据需求选配最低达-20℃的低温系统)测试要求:1、样品制样 要求平整光滑,样品直径大于3cm;2、样品放在夹具并夹紧,探头处在中间位置;3、如果有标准样品可进行仪器系数的校准,然后再测试;4、每次试验最好设置相同的功率和基准;5、每次实验最好间隔20分钟以上;相同测试条件下记录5组数据,去掉最大和最小值,剩下3组取平均值测得样品的导热系数。三、仪器特点1:测试材料范围广泛,可用于固体、液体、膏体等材料的测定,测试性能稳定;2:无须特别的样品制备,对样品形状并无特殊要求,只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可,至于单片样品的厚度可以参考表2;3:先进的控制系统。内部采用ARM微处理器对系统进行控制,仪器工作效率更加高效。四、仪器界面功能键说明触摸键设置,为客户提供更方便的操作方式。开机进入操作界面,在主界面下有【设定时间】【调节功率】【调节基准】【环境温度】等显示。点击【设定时间】,进入子界面可以设定测量时间,该仪器可设定的测量时间为5S、10S、40S和160S,设置结束后点击【OK】,(不同待测材料的时间选择可参考表格)。点击【选择探头】,进入子界面可以看见【探头型号】【探头阻值】栏,该界面下,可以选择探头型号,计算所使用的探头阻值,使用功率旋钮调节实验所需的功率,设置结束后点击【确定】,进入主界面(不同待测材料的功率选择可参考表格)。【设定时间】和【调节功率】设置完毕后,点击 主界面下的【调节基准】,根据实验要求使用基准旋钮调节即可,该功能主要是防止上位机软件显示曲线时溢出。【环境温度】显示当前仪器内的温度。主界面设置完成后,打开上位机软件,此时即可进行材料的热导率测量,点击【开始Run】进行测量,主机数据采集完成后,主机会把数据自动传送给上位机的软件,伴随着主机中蜂鸣器的响声,此时上传数据完毕。利用上位机软件进行数据的分析处理,得到待测材料的导热系数。测试完毕后,关闭上位机软件,关闭主机电源。五、软件安装操作说明1、软件安装双击出现如下界面,单击下一步。选择同意许可协议的条款,点击下一步。输入名称,点击下一步。选择安装路径,点击下一步。创建快捷方式文件夹,点击下一步。确认信息,点击下一步。安装成功,点击完成。安装结束,桌面自动出现快捷方式。2、软件卸载选择开始 — 程序 — 导热系数测定仪—卸载。卸载界面出现,点击下一步卸载结束,点击完成。卸载完成后,桌面快捷方式自动删除。3、软件使用打开软件,进入主界面。主界面如下图所示:打开设备,并插上数据线,选择菜单栏中的“设置”-“通信连接”,如下图所示联接成功,状态栏会显示:此时设备已经联接到计算机,可用软件接收对其进行控制和数据处理。如果设备未连接,则会弹出联接失败对话框:请检查设备是否连接到计算机。开始实验前,请填好以下信息。输出功率、探头电阻值见主机。选择菜单栏中的“绘图”——“开始绘图”,或者点击图标进行试验,如下图所示:此时在设备上选择测量时间、功率,点击开始。测量完成时,设备向PC机发送数据,软件接收数据,如下图所示此时实验信息中会显示测量时间、采样间隔等实验数据,如图所示:试验数据显示在“记录数据”区。“平均数据”区显示试验数据的平均值。选择菜单栏中的“绘图”——“结束绘图”,或者点击图标停止试验,如图所示:软件停止测试。状态栏显示如图所示此时点击“数据分析”---“导热系数”软件自动计算材料的导热系数。显示在“实验信息”---“导热系数”一栏中。计算时间从几秒钟到几分钟不等,请耐心等待。分析数据时请不要进行其他相关操作,可使分析过程快速完成。计算完成后,弹出下图窗体,点击确定按钮。实验信息中显示计算结果。点击“数据分析”——“仪器系数”弹出如图所示: 输入理论和实测导热系数,点击“计算”,得到仪器系数。结果同时出现在实验信息栏中。选择菜单栏中的“绘图”——“清空绘图”,或者点击图标清空绘图。如图所示:4、数据保存选择菜单栏中的“文件”——“保存” ,或者点击图标保存绘图。如图所示:选择保存后,会弹出保存界面,用户可以根据自己需要在输入保存的文件名,选择保存地址,数据会以txt文本格式保存,同时保存一同名的excel文件。如图所示:数据保存成功完成后,会弹出对话框提示保存成功,如图所示:5、打开数据文件选择菜单栏中的“文件”——“打开” ,或者点击图标打开文件。如图所示:选择打开后,会弹出打开界面,用户可以选择要进行的数据处理的文件打开,如图所示:6、退出程序选择菜单栏中的“文件” ——“ 退出” ,或者点击图标,会弹出是否退出程序的对话框,点是则退出程序,对话框如图所示:选择“是”后将会退出程序。表1:(实验参数设置条件)金属合金致密陶瓷不锈钢陶瓷聚合物绝缘材料导热系数[w/(mk)]17040141.50.190.028温升△T(K)1.02471012实验时间(s)5101040160160测试功率(w)10751.20.20.023探头型号1号××××√√2号√√√√√√表2:(导热仪探头型号适用条件参考)时间(S)导热系数[w/(mk)] (注3)探头型号0<d<r1r1≤d≤r2r2<d(注2)温升△T(K) (注4)160≤0.2*1号√√√√10~152号××√>0.2*0.2~0.42号(注1)√√√√√8~10400.4~25~8102~1002~55>1001~2注:1、导热系数>0.2此栏,探头型号只能选择2号探头2、d是单片样品的厚度;r1是1号探头半径(3.75mm);r2是2号探头半径(7.5mm);“√”代表可以测试;“√√”代表样品叠加测试,“×”代表不可以测试,“*”代表经验值,该值由实验试测分析得到。3、该导热系数为经验值;4、具体温升根据实际测试状态选定,包括探头、仪器等因素。六、实验步骤1、预热首先观察拿到的样品,要使被测样品的表面保持平整光滑。预热过程:把探头放置在两个待测样品之间,利用弹簧架将探头压紧,且确保探头置于样品中心位置。将主机的电源线和与电脑之间的连接线接好。把功率旋钮逆时针旋到底,然后打开主机电源通电30分钟,在软件中设置与仪器的通信连接,并连接成功。 这段时间内不作任何操作;2、预测试预测过程:预热过程结束以后,可先对样品进行预测,从而确定样品导热系数的大致范围。首先用2号探头对被测样品进行预测。测量时间设置为160S,然后单击OK,时间设置完成;设置计算探头电阻,然后把功率调到最小,再调节曲线基准(测试时间为160S时,调至0.02-0.03之间;测试时间为40S时,调至0.03-0.05之间;测试时间为10S时,调至0.05-0.07之间;测试时间为5S时,调至0.07-0.10之间;)待主机参数设置后,不断点击探头阻值后的计算按钮直至探头阻值不发生变化并保持稳定为止;(设置样品的测试参数)在计算机软件中将仪器设置的数据输入进计算机中。根据预测的实验数据确定所用探头型号,如果样品大致的导热系数小于0.2就用1号探头进行测试,如果样品的导热系数大于0.2可以使用2号探头进行测试。用1号探头测试的样品其测试软件中的TCR设置为0.009,用2号探头测试的样品其测试软件中的TCR设置为0.005。为保证探头的安全性,1号探头的功率不能超过0.4W,2号探头的功率不能超过14W。按主机上功能键设置的参数填写软件,;然后开始测量,等到主机的蜂鸣器响起,此时主机上传数据结束;测试结束静置10分钟以后,即可进行正常的实验测试;3、测试预测试结束后,多次重复上述测试步骤,得出有关结果。注:在软件设置中1号探头设置TCR为0.009;2号探头设置TCR为0.005。4、结果根据要求操作上位机软件,分析得到待测材料的导热系数。探头使用注意事项:1、探头不能在没有接触样品的情况下测试,以免造成探头永久性损坏;2、测试中功率不能无限加大,否则会有烧毁探头的风险。3、仪器在使用前和结束后都应当将功率调节最小,防止仪器开启时功率过大损伤探头注 1、多次实验时,前后时间间隔不少于5分钟;2、实验开始前功率旋钮一定要逆时针旋到底,遵循功率由低到高进行调节;3、由于上位机软件自身算法的需要,建议软件连续运行不超过3小时,如超过需关闭软件然后重新打开运行。七、系统配置1、测试主机一台2、测试探头一号、二号各一个3、样品支架一台4、电源线一根5、保险丝5只6、测试软件(含专用数据线,数据U盘一张)7、仪器说明书,实验案例、出厂合格证、保修卡各一份(客户自配计算机(USB插头))
    留言咨询
  • 仪器简介:该隔热材料热线法导热系数测试仪、高温导热仪用于测试定形隔热耐火制品,粉状料等材料的导热系数,非金属固体材料导热系数,参考标准:GB5990-86《定形隔热耐火制品导热系数试验方法(热线法)》。GB/T 10297-1998《非金属固体材料导热系数的测定(热线法)》,GB/T 17106-1997《耐火材料导热系数试验方法(平行热线法)》。技术参数:1.导热系数测试范围:交叉热线0.015~1.7w/m.k。平行热线:0.015~20w/m.k; 2.准确度:5%; 3.测试温度1000℃,1400℃,1600℃。(可供选择); 4.试样尺寸要求:Max230*114*65(mm); 5.计量加热功率可调节,也可有计算机控制; 6.同时实现交叉热线和平行热线法测试; 7.连接计算机实现全自动测试分析,windows 7/xp中文操作热分析应用软件; 8.在同一机器配比热容测试模块,可测定固体,粉体材料的比热容。比热容测试精度:7%到10%。 根据用户的测试要求可配置热带法测试和探针法测试方法的仪器。主要特点:仪器集交叉热线和平行热线于一体,合理的设计,由计算机实现全自动测试分析。广泛应用于科研教学,工矿企业质量检测,新材料热物性检测等。
    留言咨询
  • 一、导热系数测定仪DR3030荣计达仪器产品概述:导热系数是用来衡量耐热材料的导热特性和保温性能的重要参数,导热系数测定仪用于测定材料在不同温度状态下的导热系数。二、导热系数测定仪DR3030荣计达仪器适用标准:GB/T 10294-2008 《绝热材料稳态热阻及有关特性的测定》GB/T 3399-1982 《塑料导热系数试验方法—护热平板法》GB/T 10801.1-2002 《绝热用模塑聚苯乙烯泡沫塑料》GB/T 10801.2-2002 《绝热用挤塑聚苯乙烯泡沫塑料(XPS)》GB/T 3139-2005 《纤维增强塑料导热系数试验方法》GB/T 17794-2008 《柔性泡沫橡塑绝热制品》三、智能型导热系数测定仪型设计原理:在冷板、热板和护板达到稳态热平衡的条件下,按照一维稳态传热方程, 热板加热器产生的热量通过试件传递到冷板,并由冷板的循环水等介质传递到系统外,形成了一个热力循环。 该循环的热力方程式如下:式中: ——加热单元计量部分的平均加热功率,单位为瓦(W);d ——试件平均厚度,单位为米(m); ——试件热面温度平均值,单位为开(K); ——试件冷面温度平均值,单位为开(K); A ——计量面积,单位为平方米(m2)。导热系数测定仪校准规范四、应用领域:该仪器属于建筑材料节能检测类仪器。该仪器可以广泛用于耐热和保温材料的生产企业、相关质量检验部门和单位、高等院校和研究所等科研单位。主要测试的材料有:1、外墙保温材料:硅酸盐保温材料、陶瓷保温材料、胶粉聚苯颗粒、挤塑板XPS、硬泡聚氨酯保温板、发泡水泥板和A级无机防火保温砂浆等。2、屋面材料:陶瓷保温板、XPS挤塑板、EPS泡沫板、珍珠岩及珍珠岩砖、蛭石及蛭石砖和发泡水泥等。3、热力、空调材料:酚醛树脂、聚氨酯防水保温一体化、橡塑海绵、聚乙烯、聚苯乙烯泡沫、玻璃棉和岩棉等。4、钢构材料:聚苯乙烯、挤塑板、聚氨酯板和玻璃棉卷毡等。5、无机保温材料:发泡水泥等。选配仪器:制样机 养护箱 干燥箱 绝热材料导热系数参比板 电子天平导热系数测定仪操作规程五、产品特点:机械结构部分箱体外观:外观质量优异,机械强度高,耐腐蚀。测量准确度高:双试件式设计,避免因系统的误差导致材料的导热系数的偏差。设备灵活性高:箱体底部采用脚轮设计。电子硬件部分控制核心采用进口OMRON(欧姆龙)可编程逻辑控制器CPU单元及其配套温度扩展模块,抗干扰能力强,稳定性高。执行器采用施耐德新型固态无触点开关器件隔离控制,可靠性高、噪音低、开关速度快。数据接口采用计算机标准RS-232串行端口,数据稳定,可靠性高,使用方便。控制方法为PID控制,通过软件自整定调节PID参数,保障了控温精度。软件部分软件界面友好,操作方便。软件控制系统包括自动控制和手动控制两种方式。自动控制方式可以自动控制设备运行、自动检测、自动采集、自动显示试验曲线、自动完成试验,同时还可以自动生成测试结果、自动生成检测报告等。手动控制方式有助于设备的调试功能。应用部分测试主机与制冷设备的独立分离设计,减少干扰,便于维护。在线测量厚度,在恒定的压力状态下,其数值在数显表上直接显示。测试时间短,常规的测量时间为(120-150)min。测量的范围大,量程(0.001-2.000)W/(mK)。全温度测量,可以自行测试温度范围内的任一点温度的导热系数。在线计量校准程序-我公司采用独有的技术,可同时标定温度、标定系统误差,准确、快速,方便计量检定。六、技术参数:试件标准尺寸:300mm×300mm×H(5~40) mm;2、试件平整度:0.1mm;3、导热系数测量范围:(0.001—2.000)W/ (m&bull K);4、热阻测量范围:≥0.02 m2K/W;5、导热系数测量精度:±3%;6、导热系数测量重复性:±1%;7、温度分辨率:0.01℃;8、试验室温度:(15—30)℃,标准温度(23±2)℃;9、试验室湿度:(20—80)%RH,标准(40—60)%RH;10、电源电压:AC 220V±10%, 2.5KW;11、标准厚度:25mm;12、夹紧力:≤2.5kPa;13.常规测试时间:(120-150)min;14.控制核心采用进口欧姆龙PLC;15.控温范围:-5℃—95℃;*16.触摸屏工控机嵌入在仪器上,节省空间。*17.冷板控温采用自制恒温槽,软件自动控制。*18.制冷核心部件采用进口丹弗斯压缩机。*19.电子尺自动读取试件厚度到软件。*20.电路部分控制器采用日本欧姆龙PLC。*21.温度采集模块采用24位高精度模块。*22.热板控温电源功率精度0.00001w。试验室环境要求电源电压:AC 220V±10%, >2.5KW,安全接地线;试验室温度:(15—30)℃,推荐温度(23±2)℃;试验室湿度:(20—80)%RH,推荐(40—60)%RH;试验设备占地空间:2.3m×1m×1.2m;试验室门尺寸:>0.9m。
    留言咨询
  • 岩石导热系数测试仪 400-860-5168转1840
    HPA-300岩石导热系数测试仪采用先进的瞬变热流法及纵向热流技术,具有方便、快捷、精确的特点,适用的热导系数范围0.015-100W/MK之间,该仪器可自动测试导热材料的热阻抗与热导率参数。仪器通常可以适应测定热导率范围从高到中等的材料,样品温度范围为室温-300℃。所有数据通过计算机测试软件采集并分析输出结果。HPA-300岩石导热系数测试仪主要技术参数:1:本设备采用立式结构,自动加载,压力自动控制。2:该装置测试最高温度300度。3:计量功率:60W4:全自动测试分析软件,智能触屏控制。5:侧向温度分布四个点。6:轴向温度:4点,侧向温度分布按梯度:3--6点。7:冷端冷却恒定温度:20度。自带恒温水浴。8:加压最大:1000N,可调节压力。9:测量试件:尺寸φ50×100和φ37.5×100。10:系统测量精度:3%,重复性精度:1%。11: 在试样另一段安装一点加热器,通过加热时间在侧向上分布函数确定径向传热性能。HPA-300岩石导热系数测试仪设备配置: 1、测试主机 一台2、电器控制柜 一台3、测试软件 一套(主机一体)4、说明书 一份5、合格证 一份
    留言咨询
  • DRX-II-SPB 碳毡高温导热系数测定仪碳毡高温导热系数测定仪主要测试含碳耐火材料,耐火陶瓷纤维制品,复合材料,隔热砖及隔热板,碳毡等低导热系数材料的导热系数。该仪器基于热流计法的原理,兼配GB/T10295等相关国标要求,并作出了相应的改进,由计算机自动完成测试工作,并对各状态点进行数字化显示。亦以可人工完成测试,满足了材料检测研究部门对材料导热系数的高精度测试要求。仪器参考标准:GB/T 17911.8-2002耐火陶瓷纤维制品 导热系数实验方法 和YB/T 4130-2005耐火材料 导热系数实验方法(热流计法)。主要技术参数: 1.使用温度范围:600℃~1600℃。试样尺寸:φ120×(30-50)mm热导率测试范围:0.03~2W/m.k准确度:≤3%,重复性:≤3%全自动测试分析软件。加热方式:1600℃采用钼棒加热(钼棒为易损件)。试验腔内可充气氛和抽真空。冷极热流采用热流传感器测量。实现压力可调节:0-0.1MPa,炉体用冷却水冷却; 9.可连接上位机,全自动分析测试软件。 10.真空度:≤1000Pa;产品配置:DRX-II-SPB导热仪主机 一台控制柜数据采集器 一台冷却恒温槽 一台测试分析软件 一套高温进口热流传感器装置 一套台式计算机 一套(用户自备或代购)设备安装要求1:电源为三相四线,功率为12KW,2:试验室需要提供系统3:场地要求湿度小于80%RH4:占地面积为15平方
    留言咨询
  • 一、设备简介 TC2120 热流法导热系数仪,采用激光位移传感器可精准测量样品的厚度,适用于样品厚度低至 0.1 mm 的界面材料的导热系数与热阻测量。压力设计采用自动加压保护功能,可实现 10 MPa 的加压,有效减小接触热阻,同时可自动控制压力,实现样品在不同压力下的导热系数测量。设备具有温度自动调节控制功能,控温波动优于 0.05℃,保证测量结果的高准确性。二、主要特点自动压力控制:采用电机自动加压,压力可定制到 10 MPa,自带保压功能; 自动厚度测量:采用光栅或激光式位移传感器自动测量样品厚度; 控温精准:控温精度优于±0.05 ℃; 适用广泛:可测量导热胶片、导热脂、基板、陶瓷片、橡胶等各种热界面材料; 操作简单:自动测厚、自动控温、自动数据处理、自动生成测试报告等功能,测试结果可实时查看; 参考标准: ASTM D5470三、技术参数
    留言咨询
  • GHR-3K圆管法保温绝热管壳导热系数测试仪概述:本仪器依据GB/T 10296-2008 《绝热层稳态传热性质的测定 圆管法》及ISO 8497:1994《绝热——圆管绝热层的稳态传热特性的测定》适用于各种橡朔管,挤朔管,岩棉、玻璃棉、玻璃纤维管及各种保温管壳类材料。该仪器用于测试圆管表面的换热系数,导热系数,热传导分析,采用虚拟仪器技术进行检测分析。主要参数:1. 导热系数测试范围: 0.015~10W/m&bull k2. 准确度±3%3:温度范围: 室温--350℃。4:根据测试管的大小设计专用测试装置。管壳外径 25mm,取样长度500mm5: 计量段长度为200mm,两端防护段分别为150mm,采用低导热系数的绝热材料隔热。6:计量功率可调节:0-500W,恒流源加热。加热功率准确度小于:±0.5%7:功率发热元件采用发热效率高的材料(定制加热器)。8:环境温度控制精度小于±1℃ 9: 多路温度信号采集卡,A/D转换16位10:防护段控温精度小于±1℃11:主控方式采用计算机控制,数据采集分析处理。12:简易中文操作系统,使用快捷明了。13:报告输出存储,可查询。15:可测试分析:导热系数,面热阻等热传递特性参数。圆管法保温绝热管导热系数测试仪主要配置:1、测试主机 一台2、电控箱 一台(含于主机)4、测试软件 一套5、数据采集系统 一套6、计算机 一套
    留言咨询
  • 热流法导热仪-热阻仪-导热系数测定仪一、设备特点这台采用高精度控制电机自动精准加压,自动测厚装置,并连计算机实现全自动控制。仪器采用6点温度梯度检测,提高了测试精度。可检测不同压力下热阻曲线,采用优化的数学模型,可测量材料导热系数和热阻以及界面处接触热阻等多个参数。 广泛应用在高等院校,科研单位,质检部门和生产厂的材料导热分析检测。二、设备用途主要用于测试薄的热导体、固体电绝缘材料、导热硅脂、树脂、橡胶、氧化铍瓷、氧化铝瓷等材料的热阻以及固体界面处的接触热阻和材料的导热系数。检测材料为固态片状,加围框可检测粉状态材料及膏状材料。 仪器参考标准: GB 5598(氧化铍瓷导热系数测定方法);ASTM D5470-2012(薄的热导性固体电绝缘材料传热性能的测试标准)等三、测试说明测试对象: 薄的热导体、固体电绝缘材料、导热硅脂、树脂、橡胶、氧化铍瓷、氧化铝瓷等材料的热阻以及固体界面处的接触热阻和材料四、技术参数1、控制系统:自主研发PLC控制系统。具有高效、可靠、适应性强、数据处理能力强、通信能力强、可扩展性高、稳定性高等特点1.1可靠性高:PLC控制系统采用了大规模集成电路技术,并采用了相应的硬件和软件抗干扰措施,具有很强的抗干扰能力,被公认为最可靠的工业控制设备之一。1.2适应性广:PLC系统已经标准化、系列化、模块化,配备有品种齐全的各种硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。硬件配置确定后,可以通过修改用户程序,方便快速地适应工艺条件的变化。1.3数据处理能力强:PLC控制系统可以完成数据采集、传输、处理等复杂的控制任务,实现工业自动化控制。1.4通信能力强:PLC控制系统可以通过各种通信协议和网络连接远程控制、监控和数据交换。1.5可扩展性:PLC控制系统可以通过添加I/O模块、通信模块等实现系统功能的扩展。1.6稳定性高:PLC控制系统采用工业级的高可靠性硬件和软件设计,能够稳定地运行于恶劣的工业环境中。2、操作界面:彩色7寸触摸屏、界面注重易用性、图形化、实时监控、数据记录与分析、多语言支持、安全性和自定义设置等,以满足不同用户的需求和提高工作效率2.1简单易用:操作界面通常设计得简单易用,用户只需要通过少量的操作步骤就能够完成试验。这有助于用户快速掌握操作方法,提高工作效率。2.2图形化界面:操作界面通常配备有图形化界面,以图形的方式展示试验过程和结果。这使得用户可以更直观地了解设备的运行状态和测试结果,便于分析和评估。2.3实时监控:操作界面通常提供实时监控功能,用户可以实时查看试验过程中的各项参数,如摩擦力、磨损量、试验时间等。这有助于用户及时发现和解决问题,保证试验的准确性。2.4数据记录与分析:操作界面通常配备有数据记录和分析功能,用户可以记录每次试验的数据,并对其进行统计和分析。这有助于用户了解材料的耐磨性能,为产品开发和改进提供依据。2.5多语言支持:为了满足不同国家和地区的需求,操作界面通常支持多种语言,用户可以根据需要选择适合自己的语言进行操作。2.6安全性高:操作界面还注重安全性设计,通常配备有紧急停止按钮和安全防护装置,以保障用户的安全操作。2.7自定义设置:操作界面通常还支持自定义设置,用户可以根据自己的需求和偏好设置试验参数、数据记录方式等,提高试验的灵活性和效率。3、 试样大小:Φ30mm。4、 试样厚度: 0.001-50mm(标准配置),典型厚度:0.02-20mm。5、 热极控温范围:室温-100℃(标准配置),室温-299.99℃,控温精度0.01℃。6、 冷极控温范围:0-99.00℃,控温精度0.01℃。7、 导热系数测试范围:0.01~50W/m.k8、 热阻测试范围:0.02~0.000005m2.K/W。9、 压力测量范围:0~1000N,采用控制电机控制,可精准设置保压的压力值,控制精度1N。10、位移测量范围:0~50.00mm,精度0.1um。11、试样数量 : 1块(薄膜多片)。12、测试精度:优于3%。11、实验方式:试样不同压力下热阻测试、材料导热系数测试、接触热阻测试。13、全自动测试,并实现数据打印输出。14、电源: 220V;50Hz;1KW。
    留言咨询
  • HFM 446系列可以直接测量绝热材料和建筑材料的导热系数/热阻。应用领域包括:纤维板、纤维片、疏松填充的玻璃纤维、矿棉、 横长纤维、陶瓷纤维、泡沫塑料(PUR,EPS,XPS,polyimide)、粉末、泡沫(玻璃,橡胶)、真空绝热板(VIP)、多层复合板、 石膏板、木材、纤维板、水泥、砂、土壤等。 NETZSCH HFM 特性:• 热流计法,完全符合 ISO 8301,ASTM C 518,GB 10295 等 国际国内标准• 高精度,超稳定测量系统• 独有双传感器技术,测量速度快• 自动调整冷热板位置• 专利控温技术• 独有压力控制系统,可调节施加于样品上的压力改变样本密 度从而测量软质样品(例如纤维棉)在不同工作状态下的导 热性能• 特殊附件,适用于导热系数较高的硬质样品,或者表面较粗 糙的样品• 接入电源就能使用,无需其他设备或水管• 基于 Windows 的自动控制软件(可选)• 可测量大型非均质样品的比热技术参数仪器型号HFM 446 SHFM 446 MHFM 446 L冷/热板温度范围-20 … 90°C-20 … 90°C-20 … 90°C温度点数101010样品尺寸200 x 200 x 50mm3300 x 300 x 100mm3600 x 600 x 200mm3热阻范围0.05 ... 8.0m2K/W2%导热系数范围0.002 ... 2.0W/mK重复性0.5%精确度± 1%样品压力控制最大850N最大850N最大850NSMART MODE选配选配选配比热选配选配选配HFM 446 Lambda Small - 软件特性• 智能模式:包括自动校正、自动创建报告、数据导出、向导、用户方法、预定义的仪器参数、用户定义的参数、比热测量等功能。• 校正与测量文件的保存与恢复• 显示板温/平均温度与导热系数值相关图谱• 热流传感器信号监控HFM 446 应用实例 膨胀聚苯乙烯膨胀聚苯乙烯是在绝热建筑材料领域使用得最多的材料之一。例中显示了对一种商业化的膨胀聚苯乙烯材料(EPS 040)的质量检测结果。在 24°C 、以及按照 DIN EN 13163 标准在 10°C 下测量了同一批号中的十个样品。可以清晰地看到不同样品之间的测量偏差小于 1%。根据 DIN 13163 计算得到的导热系数 λ 90/90 为 0.03808 W/(m*K)。纳米多孔气凝胶为了验证热流法与其他标准导热测试方法(如作为绝对法的保护热板法 GHP)的测量结果的可比性,进行了一系列的测试,图中显示了对其中一种纳米多孔气凝胶板使用两台热流法导热仪(HFM)与一台保护热板法导热仪(GHP)的测量结果比较。由不同仪器获得的数据在各对应温度内偏差均小于 2.5%。这清楚地证明了 HFM 系列仪器的优异性能。绝热玻璃纤维 -- 不同载荷下的测试因为 Netzsch HFM 具有可变载荷的功能,特别适合于测量可压缩材料(导热性能和密度有关),这里介绍的案例展示了绝热玻璃纤维的热传导测量结果。当载荷(载荷表示为表面压力)增加时,试样逐步被压缩,由于热辐射的减少而导致综合的热导率下降,随着压力进一步增大,由于试样自身的热传导增加而使热导率又有所上升。混凝土 -- 高导热材料测试Netzsch HFM 测试较高导热系数材料的关键是配备扩展配件(Instrumentation kit)。下图对三种类型的混凝土样品进行测试,得到的热导率结果与保护热板法(GHP)测得的热导率结果十分吻合。矿物纤维绝缘材料—导热系数矿棉是一种用途广泛的材料,主要用于住宅建筑的保温。本例使用保护热板法(GHP 456 Titan)和热流法(HFM 436 series),对矿物纤维在 10℃ 到30℃ 之间进行循环测试,研究其导热性能。和其他大多数保温材料类似,矿物纤维在室温附近的导热系数随着温度的升高呈线性增加。用不同的测试仪器得到的结果有很好的一致性。通过循环测试进一步证明,保护热板法的测试精度可以达到 2 %。
    留言咨询
  • 导热系数仪 400-801-8116
    产品介绍:DZDR-S导热系数仪是南京大展检测仪器生产一款瞬态热源法导热仪,是一种测量样品(固体、液体或粉末)的导热系数随温度的函数关系的仪器。采用全新的外形设计,简约小巧,具有测量速度快,操作简单,应用范围广等优势。测试方法:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。在研究材料时能够快速准确的测量导热系数,为企业质量监控、材料生产以及实验室研究提供了很大的方便,可以选配有粉末测试容器、液体杯。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间。2.不会和静态法一样受到接触热阻的影响。3.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;4.对样品实行无损检测,意味着样品可以重复使用。5.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算。6.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;7.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠。8.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确。9.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 产品名称:平板导热仪产品型号:SK-DR300A+型、SK-DR300B+型、SK-DR600 B+型关键词:平板导热仪,导热系数测定仪,导热系数,材料导热产品用途:用于测量各种均质绝热保温材料及复合板材的导热系数,完全符合并满足国家标准要求。检测标准:GB/T 10294-2008《绝热材料稳态热阻及有关特性的测定 防护热板法》产品优势:1、电动升降玻璃检测仓,密封性能良好,操作方便。2、自动对材料导热系数进行热稳定判断,快速检测出材料导热系数值。3、自动压力恒定系统,可根据材料标准压力值自动压紧试件。4、仪表采用彩色液晶触摸大屏,各路温度及导热系数直观清晰显示且操作简便,可靠性高。5、节能检测系统可单独运行,大容量储存器可储存12个月的检测数据,支持网络及电脑连接,可通过计算机远程操控及监测。6、强大的计算机软件系统支持检测报告直接打印。7、无线WIFI网络服务器系统,实时数据可实时上传保存至云端服务器。8、实时数据和历史数据全互联网可实时查询,无限期保存。技术参数:1、设备尺寸:1070×620×1720mm2、热板max设定温度:100℃3、温度控制精度:热板±0.1℃,冷板±0.1℃4、仪器的测量精度:2%5、电源:220V,50HZ6、进口压力传感器7、可自动测量试件厚度8、主机自带打印功能9、自动升降玻璃,气动锁紧装置设计10、工控机控制,断电自动保存数据,彩色液晶触摸屏操作。11、支持网络及电脑连接功能,可通过计算机远程操控及监测12、PID温控系统【SK-DR300 A+型】13、试件规格:300mm×300mm×37.5mm14、冷板最小设定温度:-20℃15、进口低温循环机组:低温与常温可切换【SK-DR300B+型】13、试件规格:300mm×300mm×37.5mm14、冷板最小设定温度:0℃15、进口常温循环机组【SK-DR600 B+型】13、试件规格:600mm×600mm×75mm14、冷板最小设定温度:0℃15、进口常温循环机组
    留言咨询
  • NETZSCH耐驰LFA447闪光法导热分析仪NETZSCH 公司 LFA 447 Nanoflash® 闪光导热仪,在材料热扩散与导热性能测量方面又一有力的工具。遵照 ASTM E1461 标准,Nanoflash® 使用氙灯作为加热源加热样品表面,使用红外探测器读取样品温升,减少了潜在的表面热阻,可以精确测量薄的样品如基质上的涂层、薄膜材料或多层样品。Nanoflash® 的操作实现高度自动化:由软件控制测试温度与闪光灯启闭,并进行数据分析。自动进样系统允许仪器在一次测试过程中测量多个样品。在炉体到达设定温度后,每一数据点的采集通常短于五分钟。仪器可以为每一样品单独设置闪光能量等级、脉冲宽度与温度。其所测量的热扩散系数范围十分宽广,覆盖从聚合物到金刚石各类材料领域。测量原理:作为加热源的氙灯发射一束脉冲,打在样品的下表面,由红外探测器测量样品上表面的相应温升,并由软件计算出样品的热扩散系数。仪器可以同步测量热扩散系数(α)与比热(Cp)。比热的测量是通过比较样品的实际温升与已知比热的参比样的温升求得。若已知样品的密度(ρ),则按照下式可计算出样品的导热系数(λ):λ(T) = α(T) * Cp(T) * ρ(T)使用内置的 2 或 4 样品位的自动进样器,可以同时自动进行多个样品的测量。样品托盘操作容易,制样快,测样周期短。提供独特的矩阵扫描(MTX)选件,用于最大 50 mm × 50 mm 的平板状样品,在整个样品表面测定热扩散系数的差别,x 方向与 y 方向上的分辨率为 100 μm。
    留言咨询
  • 导热仪 400-860-5168转0314
    仪器简介:Mathis仪器TC-30是一款灵活的,高性能的,快速的,无破坏性的,高度敏感但是又是低成本的实验仪器,它可以直接测量广泛的不同种类的样品的导热性和热效应。 样本下载地址:http://www.instrument.com.cn/download.asp?url=%2FShow%2FLiterature%2FC10469%2Epdf技术参数:实验设置时间:5分钟 实验时间:1到60秒 实验之间的时间:0到10分钟,典型的是2分钟 实验温度:外部传感器-20到60度 自动实验?是的主要特点:高速,高品质和低成本。没有其它的导热仪/热效应仪能够与TC-30的性能相比。这款TC-30在实验室或者在生产线上用几秒钟,而不是几分钟或者几个小时就提供了高准确性,高精度,无破坏性的导热性和热效应,并且与其它的方法相比使用很少劳动力和费用。这个数据能够很容易地为任何有QC,R&D或者生产的水平的人所获得,理解和使用。这款TC-30是表面感光的,而不是大小感光的。所以,在一个样品的特别区域测量导热性是很有可能的。随着时间的逝去,深度-压型和测量热性能上的这种变化作为物理的或者化学的过程发生在样品上。在市场上没有其它的仪器有这样的性能的
    留言咨询
  • 1、产品介绍 TC3300低温导热系数仪可以准确测量材料在-150℃下的导热系数、测量快速、操作简单、适用广泛等优点,为科研领域中的材料研究、导热性能改进以及工业中的产品质量检验、生产控制提供了便利。 2、产品主要特点 测温范围宽:最低可以实现-150℃下的测量;测量准确:准确度可达1 %,全量程范围内优于5%;测量快速:1~20 s内采集数据,同时可自动连续多次测量,节省了用户时间;样品要求低:对形状无特殊要求,不规则形状的样品也可直接测量;无损检测:测量速度快、加热功率低,对于成分不稳定材料的导热系数测量具有明显的优势;适用广泛:各种块状、片状、粉末、颗粒、胶体、膏体、液体均可适用,且无需更换探头;符合ASTM C1113 ASTM D5930 GB/T 10297 GB/T 11205标准。 3、适用范围 TC3300低温导热系数仪(-150℃)适用于不同温度条件下保温材料、塑料、橡胶、导热硅脂、岩石土壤、相变材料、动植物体、金属合金等样品的测试,可测试的样品形态包括块状、片状、粉末、膏体、胶体以及不规则形状等。4、主要技术指标 测量原理:热线法 温度范围:-150℃~室温 准 确 度: ±3~5% 重 复 性: ±3% 样品形状:圆形、方形、不规则形均可 样品状态:片状、块状、膏状、颗粒、粉末、胶体、液体 样品尺寸:固体边长>2.5cm
    留言咨询
  • 对于材料或组分的热传导性能描述,导热系数与热扩散系数是最为重要的热物性参数。激光闪射法是导热测试领域最为广泛使用的一种方法,用于精确测量材料的热扩散系数并计算导热系数。而耐驰公司推出的激光导热仪 LFA 427 则代表了世界范围内同类产品的最高水平。LFA 427 具有高精度、高重复性、测量快速、样品支架种类丰富、测试气氛可自由设定等突出优点,其总的测量温度范围为 -120°C ... 2800°C。LFA 427 最新推出带高温计的特别配置版,可在室温至 2800°C 的宽广温度范围内进行测量。LFA 427 的样品适应面极广,包括陶瓷、玻璃、金属、熔融物、液体、粉末、纤维与多层材料等各种材料,从低导热材料直至最高导热系数的金刚石,都可在相同的速度与精度下进行测量。仪器直接测试的是随温度而变的热扩散系数,若结合比热值(通常使用 DSC 404 F1 Pegasus 进行测试,也可在 LFA 427 上使用比较法测得)与密度(密度随温度的变化使用热膨胀仪 DIL 402 Expedis 测量计算),则可进一步计算导热系数。测量所使用的激光能量、脉冲宽度、气氛与真空均可自由选择,可以针对不同的样品性质设定最佳的测量条件。本仪器拥有完全密封的系统,设计上注重节省空间,其安全等级达到了最高级(1级),操作时不需要任何特殊的安全措施。软件功能先进,允许仪器工作于手动或全自动模式。并提供特殊支架,用于测试粉末,液体,矿渣,纤维和夹层样品。LFA 427 是最强大与灵活的 LFA 系统,适用于包括汽车制造、航空航天与能源技术在内的各种领域的常规材料与新型高性能材料的表征。 LFA 427 - 技术参数• 温度范围: -120 … 2800°C(不同炉体) • 激光源:Nd:Glass 激光,能量可调 • 导热系数: 0.1 ... 2000W/mK• 真空度: 10-5 mbar• 样品尺寸:方形 8 x 8mm,10 x 10mm 圆形 ?6mm,?10mm,?12.7mm,?20mm 厚度 0.1 … 6mm• 测试气氛: 真空、惰性或反应气体• 支架类型: 石墨、氧化铝、碳化硅• 样品形态: 固体、液体、粉末、薄膜LFA 427 - 软件功能LFA 427 的测量与分析软件是基于 MicroSoft Windows 系统的 Proteus 软件包,它包含了所有必要的测量功能和数据分析功能。这一软件包具有极其友善的用户界面,包括易于理解的菜单操作和自动操作流程,并且适用于各种复杂的分析。Proteus 软件既可安装在仪器的控制电脑上联机工作,也可安装在其他电脑上脱机使用。LFA 部分软件功能:精确的脉冲宽度修正与脉冲能量积分。热损耗修正。集成了所有传统模型。使用非线性回归进行 Cowan 拟合。改进的 Cape-Lehmann 模型,使用非线性回归,将多维热损耗纳入计算。对于半透明样品的辐射修正。二层与三层结构样品:通过非线性回归方式进行拟合,并将热损耗纳入计算。计算多层样品的接触热阻。比热测量:使用已知比热的标样、通过比较法进行计算。内置数据库。LFA 427 - 应用实例Bio-氧化铝图中显示了对于某表面涂覆石墨的 Bio-氧化铝样品的 LFA 热扩散系数测试结果。从两个不同实验室(KfK x Research Center Karlsruhe, IMF1 与 LFA 427 + NETZSCH Applications laboratory)得到的测量结果非常吻合。 纯铜图中对纯铜分别在升温与降温条件下进行了热扩散系数的测试。在约 1080°C 的热扩散系数的突变由材料的熔化/凝固所致。由于升降温两种方式下测得的热扩散系数几乎没有任何差别,表明材料在升降温循环后没有发生明显的微观结构的变化。固相与液相区域的热扩散系数的测量值与文献值之间的偏差小于 2.5%。利用金属在熔点(纯铜熔点为 1083°C)的热扩散系数的突变,可对 LFA 仪器作温度校正。LFA 427 - 相关附件LFA 427 配有恒温水浴,以保证温度与长时间工作的稳定性。包括涡轮分子泵在内的多种类型的真空泵,可以使得测试在高真空或纯净无氧的惰性气氛下进行。流量计,用于调节吹扫气体的流量。由铝,SiC 或石墨制成的样品支架与样品罩,适用于标准样品尺寸。提供由氧化铝、铂金、铝、蓝宝石等材料制成的多种类型不同尺寸的样品支架或样品容器,用于测量液体样品、熔融金属、矿渣与纤维等特殊样品。提供用于热扩散系数验证的标准样品。提供用于比热测试的参比样品。制样设备。
    留言咨询
  • 产品介绍:DZDR-S导热系数测试仪是南京大展仪器推广一款采用瞬态热源法的热分析仪器,具有测量速度快,能够在5~160s计算出导热系数,并且测量范围广泛,可对液体、固体、金属、粉末、薄膜、膏体和胶体等样品进行测量,双向控制系统,仪器与计算机双向操作,触摸屏显示,清晰度高。测试方法:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中最新型的一种,它使测量技术达到了一个全新的水平。在研究材料时能够快速准确的测量导热系数,为企业质量监控、材料生产以及实验室研究提供了极大的方便,可以选配有粉末测试容器、液体杯。测试范围:瞬态法(非稳态法)是一种可测试固体,粉末和流体的导热系数测试方法,金属、陶瓷、合金、矿石、聚合物、复合材料等都是瞬态法的可测试范围。性能优势:1.测试范围广泛,测试性能稳定;2.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3.不会和静态法一样受到接触热阻的影响;4.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5.对样品实行无损检测,意味着样品可以重复使用;6.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;7.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;10.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11.智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;12.强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。DZDR-S 导热系数测试仪的技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可定制)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套DZDR-S 导热系数测试仪的操作步骤:
    留言咨询
  • 产品介绍:DZDR-S导热性能测试仪是南京大展仪器推出一款采用非稳态法的瞬态热源法,具有测量速度快、测量范围广的优势,可测液体、固体、粉末、薄膜、涂层、胶体、膏体等,软件直接计算导热系数,操作便捷。应用范围:DZDR-S导热性能测试仪是一款用于测量材料导热系数的仪器,应用范围广泛,包括:各种工业材料、橡胶轮胎,建筑材料、耐火材料、工艺材料、陶瓷材料、食品等。1、材料科学:可以通过导热系数仪测量新材料的导热性能,以评估其在新产品设计中的可行性和应用价值。2、能源领域:导热系数仪主要用于测量各种保温材料和冷却系统的导热性能。这些设备可以帮助工程师优化系统设计,提高能源利用效率。例如,在空调和冰箱等家用电器中,通过改进材料的导热系数,可以降低能耗,提高产品的环保性能。3、建筑工程:导热系数仪用于测量各种建筑材料的导热性能,以指导建筑的设计和施工。4、环境科学:导热系数仪常被用于测量土壤和建筑材料的导热性能。测量方法:DZDR-S导热性能测试仪测试原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应,利用热阻性材料做成一个平面探头,同时作为热源和温度传感器,通过自然加热功能产生热量,并通过测量电阻的变化来了解热量的损失,从而反应样品的导热性能。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;3.对样品实行无损检测,意味着样品可以重复使用;4.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;5.智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;6.强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可拓展到-40~300℃)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套案例分享:厦门大学中国科学技术大学西安交通大学香港城市大学东北电力大学安徽理工大学北京工业大学北京理工大学长安大学盐龙湖先进技术研究所湘潭大学
    留言咨询
  • 激光闪射法用于测量固体、粉末与液体样品的热扩散系数与导热系数。该方法使用一束短促的激光脉冲加热样品正面,通过红外 检测器测量样品背面温度升高与时间的关系,得到样品的热扩散系数与导热系数。这一非接触式与非破坏式的测量技术具有样品 制备简易,所需样品体积小,测量速度快,测量精度高等众多优点。 NETZSCH LFA 457 MicroFlash 代表了当代激光闪射测量技术的最新进展。仪器为桌上型,温度范围 -125 ... 1100°C。为了覆盖这一温度范围,提供了两种可自由切换的炉体。系统所使用的全新的红外传感器技术使得用户甚至可以在 -125°C 的低温下测量样品背部的温升曲线。仪器既可使用内置的自动样品切换器在一次升温中对多个较小的样品进行测量,也可单独测量较大的样品(最大直径 25.4mm)。真空密闭系统使得仪器可以在多种用户可选的气氛中进行测量。样品支架、炉体与检测器的垂直式排布方便了样品的放置与更换,同时使得检测信号拥有最佳的信噪比。LFA 457 是最强大与灵活的 LFA 系统,适用于包括汽车制造、航空航天与能源技术在内的各种领域的常规材料与新型高性能材料的表征。LFA 457 MicroFlash - 技术参数• 温度范围: -125 … 1100°C(不同炉体) • 激光源:Nd:Glass 激光,能量可调 • 导热系数: 0.1 ... 2000W/mK• 真空度: 10-2 mbar• 样品尺寸:方形 8 x 8mm,10 x 10mm 圆形 ?6mm,?10mm,?12.7mm,?25.4mm 厚度 0.1 … 6mm• 测试气氛: 真空、惰性或反应气体• 支架类型: 石墨、氧化铝、碳化硅• 样品形态: 固体、液体、粉末、薄膜• 自动进样器:1 或 3 个样品位LFA 457 MicroFlash - 软件功能LFA 457 MicroFlash 的测量与分析软件是基于 MicroSoft Windows 系统的 Proteus 软件包,它包含了所有必要的测量功能和数据分析功能。这一软件包具有极其友善的用户界面,包括易于理解的菜单操作和自动操作流程,并且适用于各种复杂的分析。Proteus 软件既可安装在仪器的控制电脑上联机工作,也可安装在其他电脑上脱机使用。LFA 部分软件功能:• 精确的脉冲宽度修正与脉冲能量积分。• 热损耗修正。• 集成了所有传统模型。• 使用非线性回归进行 Cowan 拟合。• 改进的 Cape-Lehmann 模型,使用非线性回归,将多维热损耗纳入计算。• 对于半透明样品的辐射修正。• 二层与三层结构样品:通过非线性回归方式进行拟合,并将热损耗纳入计算。• 计算多层样品的接触热阻。• 比热测量:使用已知比热的标样、通过比较法进行计算。• 内置数据库。LFA 457 MicroFlash - 应用实例多晶石墨使用配有低温系统的 LFA 457 对多晶石墨进行了测试,测试曲线上材料在室温附近导热系数达到最大,一般解释为由于该材料的 Debye 温度较高( 1000 K)所致。在峰值右侧的高温区域,热扩散系数随温度上升而下降得比较快,主导了该区域的导热系数变化的趋势。峰值左侧的低温区则比热下降的非常快,这主导了低温下该材料的导热系数随温度变化的趋势。聚碳酸酯聚碳酸酯(PC)是一种非常常见的聚合物材料,常用于电动工具包装。为了通过有限元素模拟的方法以优化生产/模制工艺,需要知道它的热物性参数。如果使用 LFA 457 的熔融样品容器,则不仅能测得固态下、也能测得玻璃化转变温度以上( 140°C)的材料的热扩散系数。若已知密度与比热数据(可用 DSC 测试),则可计算得到导热系数。此外,在比热曲线与热扩散曲线上还可以看到玻璃化转变(在导热系数曲线上则无法看到这一类似于二级相变的转变过程)。硅片-热物理性质本例中,硅片的物理性质由 LFA 457 MicroFlash 测试。从 -100℃ 到 500℃,导热性能和热扩散系数持续降低。比热值用 DSC 204 F1 Phoenix 测定。数据点的标准偏差小于 1 %。Ag1-xPb18MTe20 - 导热系数下图为 AgPb18Te20 150 oC到370 oC温度范围内的导热系数测试结果。晶格导热系数可以根据测试得到的导热系数计算得到。AgPb18Te20的总导热系数(λtot) 和晶格导热系数(λlatt) 呈现出温度依赖性。插图为 Ag1-xPb18BiTe20 (x = 0, 0.3) 和 AgPb18BiTe20 (用 + 表示) 的导热系数温度依赖性比较。PbTe-Ge 和 PbTe-Ge1-xSix 合金导热系数在碲化铅材料 PbTe-Ge 和 PbTe-Ge1-xSix 中,通过调整 Ge 和 Si 的含量可以很容易调节合金的导热系数。下图结果是在 25℃ 到 320℃ 温度范围内获得。图A 显示 Ge 不同的含量对 PbTe 的晶格导热系数有很大的影响。在整个温度范围内,随着 Ge 含量的降低,晶格导热系数降低。另外,在上述体系加入 Si 元素后,晶格导热系数进一步降低(图B)。当 Ge 和 Si 的混合比例不变,将 Ge0.8Si0.2 含量降低时,可以看到类似的行为(图C)。图D 显示当Ge-/Ge-si 的比例为 5% 时能够得到最佳晶格导热系数。LFA 457 MicroFlash - 相关附件LFA 457 MicroFlash 配有恒温水浴,以保证温度与长时间工作的稳定性。提供多种类型的真空泵,可以使得测试在真空或纯净无氧的惰性气氛下进行。流量计,用于调节吹扫气体的流量。由 SiC 或石墨制成的样品支架与样品罩,适用于标准样品尺寸。提供由铂金、铝、蓝宝石等材料制成的多种类型不同尺寸的样品支架或样品容器,用于测量液体样品、熔融金属、矿渣与纤维等特殊样品。提供用于热扩散系数验证的标准样品。提供用于比热测试的参比样品。制样设备。
    留言咨询
  • Tci导热系数仪 400-860-5168转3842
    Tci导热系数仪C-therm公司新代专利技术产品TCi将测量热导率和蓄热系数的功能提高了更高水平。它可以简便、精确、无损地进行热物性测试,为实验室研究、工厂质量控制及生产监测提供了极大的方便。该测试仪使用前不需要标定,并且对试样没有严格的要求,测试时间仅需5秒,不仅具备宽广的温度适用范围( -50℃-200℃),同时具备极大的测试量程( 0-220W/mK)。 Tci导热系数仪可配备1或2个探头,以提高用户的测式效率。仅5秒,就可以实现固体、液体、粉体和胶体的精准测试,这是其他产品无可比拟的。由于测试过程中样品不造成任何损坏,样品在测试后仍旧完好无损且可重复使用。测试环境不受任何限制,可在热处理室、高压容器及手套箱内操作。 工作原理:给仪器的传感器探头一个既定的电流,会产生微小的热量变化。这将会使样品与传感器界面处的温度开高,从而导致传感器元件的电压降出现变化。根据传感器电压升高的速率即可判断样品的热物性。其热物性与电压变化成反比。即样品材料的绝缘性能越好(比如泡沫),电压的升高速率越快。测试结果将在系统自带的牧件上实时展现出来。 工作方法:TCi导热系数仪的应用原理为革新的瞬态平面热源法。其使用一个与样品界面接触的单面热反射探头为样品提供一个瞬态的热源, 然后用其配备的数据模型对样品的热导率及器热系数进行直接的测量和分析,使样品的热物性实现直观的,全面的呈现。 技术参数:导热系数测量范围0 to 500 W/mK测量时间0.8 到 3 秒最小测试样品尺寸0.67" (17mm) 直径最大测试样品尺寸不限最小测试样品厚度通常0.02" (0.5mm),取决于测试物体的热传导性最大测试样品厚度不限温度范围-58o到 392oF (-50oC到 200oC),可拓展至500oC精确度一般优于1%准确度优于 5%额外安装要求无软件Windows环境下直观简易的软件操作界面。测试结果可导入Microsoft Excel。附加功能可提供间接测量如下材料属性:热扩散值比热容密度电源110-230 VAC 50-60 Hz质量认证FCC,CE,CSAASTM标准ASTM D7984-16(改良的瞬态平面热源法-MTPS)
    留言咨询
  • 产品介绍:DZDR-S导热率测试仪是南京大展仪器生产,采用瞬态热源法,其特点示测量速度快,能够在5~160s内计算出导热系数,测试范围广,可对液体、粉末、固体、膏体和薄膜等进行测试,全新的外形设计,简约小巧,双向操作简单,应用范围广等优势。测试范围:DZDR-S导热系数测试仪可测量块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。测试方法:DZDR-S导热率测试仪仪采用的是瞬态平面热源技术(TPS),可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.不会和静态法一样受到接触热阻的影响;3.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;4.对样品实行无损检测,意味着样品可以重复使用;5.探头采用双螺旋线的结构进行设计,结合属数学模型,利用核心算法对探头上采集的数据进行分析计算;6.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;7.探头上的数据采集使用了数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;8.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 导热系数测试仪 400-860-5168转1840
    技术参数:DRX-II-RL系列导热系数测试仪(热流法) 该导热系数仪采用热流法测量不同类型材料的热导率、热扩散率以及热熔。测量参照标准 MIL-I-49456A薄的热导性固体电绝缘材料传热性能的测试标准,D5470-06,ASTM E1530 ,ASTM C 518, ISO 8301, JIS A 1412, DIN EN 12939, DIN EN 13163 与 DIN EN 12667 等相关国际标准。能够测量 Ф10~30mm 的样品,厚度范围可从0.02~20mm。全部测试功能自动完成;马达控制的平板移动;样品夹在两个热流传感器中间测试,温度梯度固定或可调。使用内嵌的控制器或外部电脑测得样品的导热系数与热阻。自动上板移动与样品厚度测量,所有测试参数与校正数据可存于电脑内。对校正测试与样品测试进行温度程序编制、数据查看与储存。该仪器用于测试高分子材料,陶瓷,复合材料,玻璃,橡胶,一些金属,及其他的具有低、中等导热系数的材料。仅需要比较小的样品。非固体材料,如糊状材料或液体,也可以通过使用特殊的容器得到测量。薄膜也可以使用多层技术准确的得到测量。 主要技术参数: 1:平均温度范围: 0 ~ 40℃, 0 ~ 100℃, -30℃到 90℃, -20 ~ 70℃,-196℃-室温(多项供选择)。测温分辨率0.01℃ 2:冷却系统:强制空气冷却,外部水浴,液氮冷却 3:平板温控系统:自动控制可编程数据点1-10, 4:样品直径:Ф10~30mm,厚0.02-50mm(定货时说明参数要求你) 5:热阻范围:0.1 ~ 8.0 m2&bull K/W 6:导热系数适应范围:0.015-100W/MK和0.015-40W/MK, 精度&le ± 3% 7:热扩散率测量精度:5%,8:比热测量精度:7%,9:重复性:0.5 %--0.3 %,精确度:± 1 ~3 % 10:要求配有完整的测试系统及软件平台。 11:操作采用全自动热分析测试软件,快速准确对样品进行试验过程参数分析和报告输出。 12:可配接不同的探头满足多种环境下的检测。
    留言咨询
  • 热流法导热仪-绝热材料导热系数测试仪 HFM 510A /产品概述测试特性:导热系数适用领域:保温材料 | 隔热材料遵循GB/T 10295-2008、ASTM C518、ISO 8301等标准,其具备高精度、高效率和重复性好等特点,可实现对膨胀聚苯乙烯、挤出聚苯乙烯、PU坚硬泡沫、矿物棉、膨胀珍珠岩、泡沫玻璃、天然纤维材料、软木塞、羊毛、气凝胶、混凝土、石膏等多种低导热材料的测试。热流法导热仪-绝热材料导热系数测试仪 HFM 510A /产品特点高度自动化,自动升降热板、自动力载荷、自动测厚、自动控温、自动升降炉门测样快速高效,双热流传感器提高精度,上下板独立控温外部油浴冷却,氮气吹扫干燥试样,对环境依赖弱,温度范围宽,稳定性强自适应测量不平整表面样品,提供颗粒样品制作模具,制样要求低软件提供热导率扩展附件模式,支持脱机运行,保证实验灵活性全自动数据采集,实时数据监控显示,自动生成测试报告可选用户登录,支持历史记录查询,自定义数据存储与导出外设扩展性高,内置工控机,无需外接电脑,可接入鼠标键盘打印机等外设 优异的工业设计,高清触摸显示屏,智能化人机界面,外形美观大方测试标准:GB/T 10295-2008、ASTM C518、JIS A1412、DIN 12667、ISO 8301技术规格工作环境(-5~45)℃,95%RH板温范围(-30~90)℃冷却系统外部制冷加热控制帕尔贴数据采集点数>10样品尺寸长300mm,宽300mm,高≤100mm热阻范围(0.1~8)m2K/W导热系数范围(0.001~1)W/(mK),可扩展(1~2)W/(mK)准确性±(1~2)%重复性0.5%可调接触负载21kPa(1930N)厚度量程(0~100)mm厚度测量精度0.02mm尺寸750mm*650mm*600mm重量130kg
    留言咨询
  • 产品介绍:DZDR-S导热系数分析仪是南京大展检测仪器推出一款采用瞬态法的导热仪,测量速度快,能够在5~160s之内计算出结果,这对液体、固体、金属等材料进行材料,满足不同材料的测量,并且外形设计,简约小巧,操作简单优势。测试范围:DZDR-S导热系数测试仪可测量块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。测量方法:DZDR-S导热系数测试仪采用的是瞬态平面热源技术(TPS),可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。性能优势:1、快速准确。导热系数测定仪通过测量材料两侧的温度差和传热面积,结合精温度传感器和数据采集系统,可以快速准确地计算出材料的导热系数。2、操作简便。采用的是双向操作的系统,配有分析软件,可以在实验的过程中,采集数据处理功能,操作简单方便。3、测试范围广泛。可以适应不同性质和种类的材料测试,包括金属、液体、膏体、胶体、复合材料等。4、无损检测。导热系数测定仪对样品实行无损检测,不会对样品造成损伤,可以重复使用样品。5、良好的耐用性和稳定性:导热系数测定仪采用高品质的材料和制造工艺,具有较长的使用寿命和良好的稳定性,可以满足长期使用的需求。6、广泛的应用领域。这款导热仪的应用范围广,在如材料科学、物理学、化学、机械工程等。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可拓展到-40~300℃)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 产品介绍:DZDR-S瞬态法导热系数测试仪是南京大展仪器生产的一款热分析仪器,采用瞬态热源法,具有测量速度快,测试广泛广,采用双向的控制系统,操作便捷,并且配有软件分析,可以直接出数据报告,采用全新的外形设计,简约小巧。测试方法:DZDR-S瞬态法导热系数测试仪采用的是瞬态平面热源技术(TPS),可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。测试范围:DZDR-S瞬态法导热系数测试仪可测量块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。性能优势:1、测量方法。DZDR-S瞬态法导热系数测试仪采用非稳态法中的瞬态热源法,与其他测试方法相比,测量速度更快,准确性高。2、测量速度快。DZDR-S瞬态法导热系数测试仪能够在5~160s内测量出导热系数,提升实验的效率。3、多功能性。DZDR-S瞬态法导热系数测试仪适用于不同类型材料的导热系数测试,其中包括:液体、固体、金属、膏体、胶体、薄膜、粉末和复合材料等等,适用性广泛。4、易用性。DZDR-S瞬态法导热系数测试仪采用双向操作控制系统,仪器和计算机同时操作,彩色触摸屏操作,使得使用和操作设备变得简单和便捷。5、数据准确性。DZDR-S瞬态法导热系数测试仪拥有配套的分析软件,能够提供准确可靠的导热系数测试数据,可直接提供数据报告。6、重复性。DZDR-S瞬态法导热系数测试仪对样品实行无损检测,样品可以重复使用。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可拓展到-40~300℃)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 仪器简介:改良的瞬态平面热源(MTPS)测试方法导热系数仪,加拿大C-therm公司荣誉出品. 适用固体,液体,粉末,胶体的快速精确非破坏性测试. 其技术荣获R&D100大奖. 主要用户有美国海军弹药研究中心,美国陆军弹药研究所,加拿大自然资源协会, 澳大利亚国部, 中科院, 上海交大, Philip Morris,柯达等 。TCI适用于航空航天材料,能源及含能材料,聚合物,烟草,地矿,半导体材,制药等领域的热导率的快速精准测试。技术参数:技术参数:导热系数范围:0-500W/mK 温度范围: -50°C – 200°C 精度: 优于5% 尺寸:17mm直径 厚度:0.02mm 主要特点:主要特点: -简便,快速,用户界面友好,通用性强的导热系数仪 -产品获得著名全球"研发百强"奖,获得该殊荣产品包括了宝利来胶片,汽车ABS系统及银行ATM机等卓越的发明和创新的产品。 -适用范围:固体,液体,粉末,胶体。适应场合包括野外,室内,在线 -模块化结构可根据用户的需求自由扩充量程和测试条件 -测试不需特别样品制备,不破坏样品完整性 -可配备双探测传感器,多点测试-材料类型: 金属、陶瓷、矿石、复合材料、半导体、聚合物、胶体、 纸张、织物、印刷电路板、药剂, …… -耗材配件 :可选配SVTK(小体积样品支架)用于小剂量粉末,液体等样品的测试。 -双探头功能
    留言咨询
  • 导热系数仪 400-860-5168转0758
    LAMBDA 导热系数仪基于热线法,符合ASTM D7896-19,是一种紧凑的测量装置,用于确定(纳米级)液体、胶体和粉末的热导率。广泛应用于世界各地实验室和工程或流体开发领域。由于其紧凑的设计,该系统适用于实验室研究以及其他测试领域应用。 该系统可在很宽的温度范围(最高300°C)和压力范围(0至35 bar标准状态)下可以获得以下参数:l 热导率l 温度 固体、流体或气体的热导率LAMBDA(λ)基本上可以理解为一定量的热量通过特定物质时的传播速度。λ值越低意味着导热性越低。 对于液体和气体,热导率λ数值依赖于温度,而压力依赖性程度相对较低。λ的计量单位是W/(m*K)(瓦特每米开每尔文)。 设备特点:热导率测试范围宽(10~2000W/mk)热导率和温度可以同时显示符合热线法标准(ASTM D7896-19)温度范围广(-50~300摄氏度)无需考虑对流的影响适合于任何液体、粉末或胶体只需要40ml样品量,特殊情况只需要10ml操作简单,测试时间短可自动控制样品温度测量过程:仅需要将很少的样品量(约40毫升)装入随附的不锈钢容器中,通过恒温器(可选配恒温器)将样品加热至所需温度。根据所做的设置,系统还可以根据您的阈值自动运行温度曲线。间隔时间较短(大约每隔30秒),测试液体的温度和导热系数就都会被确定并显示出来。技术参数:
    留言咨询
  • 闪射法导热仪LFA 467 HyperFlash 系列热扩散系数与导热系数的测量方法,技术,应用导热系数/热扩散系数多少热量被传递?传递速度多快?一直以来,研究人员和工程师都在寻找一种最佳的测试方法,这种方法可精确测定高导热材料在中低温下,陶瓷和耐火材料在高温下的热物性。解决这些问题的关键其实只需要精确地得到两个参数:热扩散系数和导热系数,而这两个参数都可使用激光闪射法仪器测得。激光闪射法操作简便,测试结果精确可靠。此类方法可满足研究热传导过程中遇到的典型问题,例如:&bull 铝锭凝固有多快?&bull 催化转化器中的陶瓷部件传热有多快?&bull 陶瓷刹车片在使用过程中的温度分布是怎样的?&bull 对于处理器,如何选择合适的热交换材料?多年来,耐驰公司一直是激光闪射导热测量技术的引领者,已成功地将此技术的应用温度范围扩展至-125°C…2800°C。我们从不停止技术创新和应用拓展。LFA 467 Hyperflash和LFA 467 HT Hyperflash继承了耐驰的卓越传统,再一次成为业界标杆之作LFA 467 HyperFlash优化结构设置与闪射光源LFA 467 HyperFlash仪器整体设计为垂直式结构。其中,激光源位于仪器底部,样品置于中间部位,检测器在顶部。脉冲能量可通过软件自动调节,亦可通过选配的滤光片转盘进一步优化;脉冲宽度可在10µ s至1500µ s范围内调节。16位自动进样器,极高的测量效率LFA 467 HyperFlash可配备高达16位的自动进样器。其中可放置4个支架,每个支架内最多可容纳4个样品;样品的形状可自由选择圆形或方形。仪器配备大容量的液氮杜瓦瓶,保证检测器长时间正常工作。宽广的温度范围无需更换炉体和检测器,LFA 467 HyperFlash的检测温度即可覆盖-100°C(低于橡胶材料的玻璃化转变温度)至高温500°C。用户可根据需求配备不同冷却设备,大大减少测量时间。该仪器加热速率最高可达50K/min,且保证控温的高稳定性灵活配备冷却系统该仪器可配备液氮制冷系统,测试温度最低至-100°C。如配备真空系统,使得样品处于低压气氛中,可进一步减少热损耗的影响,得到更加精确的结果。此外,也可选配压缩空气装置。所有冷却设备使用时均可同时吹扫惰性气氛。设计独特,性能优异配备氙灯光源的高温测试系统LFA 467 HT HyperFlash的诞生基于LFA 467 HyperFlash的成熟技术,拥有创新的光源系统。长寿命的氙灯可在1250°C范围内提供高性价比的测试,没有任何昂贵的耗材宽广的温度范围LFA 467 HT HyperFlash是市面上第一台配置氙灯光源、且最高温度可达到1250°C的激光导热仪。结合集成的自动进样器,可以覆盖整个温度范围,同时保持LFA 467HyperFlash系列一贯的测量准确性。外部的循环水浴可有效保护炉体周围的部件,即使炉体在高温下,其周围的部件仍处于安全的温度范围,进而提高测量可靠性,并降低检测器的液氮消耗量。真空密闭炉体,确保气氛纯净,防止氧化仪器可配备真空泵,支持每一次测试开始前自动抽真空,以确保气氛纯净。仪器也可连接外部真空泵。真空密闭的铂炉支持最大50K/min升温速率。内置微型管式炉,更高的测量效率仪器配备四个独立的微型管式炉。高速加热炉体使得LFA的测试效率非常高。仪器配备四个样品位,每一个下方都配备有单独的热电偶,使得控温稳定时间大大缩短。您可以在一个小时以内完成全温度范围内十个温度步阶测量。仪器配备有自动进样系统,可适用于Ø 12.7 mm的圆形样品支架和Ø 10mm的圆形或方形样品支架。高数据采集速率- 用于薄膜与高导热材料的解决方案LFA 467 HyperFlash系列的数据采集速率提高到了2MHz(包括IR检测器和pulse mapping通道)。因此,仪器可以可靠地测试传热时间极短的一些样品,如高导热材料、薄膜材料等。在测试金属(0.3mm)与聚合物薄膜(30µ m)时,可以选择最优的采样速率与脉冲宽度。结合专利的pulse mapping系统(专利号:US7038209 B2US20040079886DE10242741),可对脉冲宽度效应与热损耗进行有效修正。
    留言咨询
  • 产品介绍:DZDR-S导热率测试仪是由南京大展仪器生产,采用的是瞬态热源法,测量速度快,对于测试样品无特殊要求,可测液体、固体、粉末、薄膜和金属等,仪器和软件双向操作,软件进行计算导热系数,操作简单,应用范围广等优势。测试范围:DZDR-S导热率测试仪可测量块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。测试方法:DZDR-S导热率测试仪采用是瞬态平面热源法,瞬态平面热源法热导率测量原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。探头的温度和电阻关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映样品的导热性能。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;3.对样品实行无损检测,意味着样品可以重复使用;4.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;5.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;6.探头上的数据采集使用了数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;7.智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • Trident 导热仪 400-860-5168转0702
    加拿大C-Therm的创新传感器技术赢得过Manning Innovation Awards和R&D100创新奖,为全球诸多国际知名企业、科研机构和院校所采用。 C-Therm的Trident导热系数仪是三合一导热测试系统,与其他仪器相比,Trident的测试能力更强、更全面。Trident可配备瞬态平面热源法(TPS)、改良瞬态平面热源法(MTPS)和探针法(TLS)三种测试方法,在同一平台和测试软件上运行,实现不同样品和测试间的轻松转换。仪器可快速、精确地测定聚合物、各向异性材料、相变材料、粉末材料、热界面材料、薄膜、传热流体、隔热材料、热电材料等等的导热系数、热扩散系数、比热以及吸热系数,并可方便地同控温箱、高压仓和手套箱等设备连用,满足不同环境条件下的测试需求。 Trident导热仪,一台仪器,三种方法,是导热系数测试的设备,符合ISO 22007-2,GB/T 32064,ASTM D7984,D5334,D5930等标准。 技术参数:可选测试方法: 瞬态平面热源法(Flex TPS)、改良瞬态平面热源法(MTPS)和探针法(TLS Needle)导热系数:0-2000 W/mK热扩散系数:0-1200 mm2/s比热:0-5 MJ/m3K吸热系数:0 - 40,000 Ws?/m2K精确度:优于5%重复性:优于1%测试时间:0.8 – 180秒 如想了解更多关于应用、参数和报价的信息,欢迎来电或留言咨询。
    留言咨询
  • HDRX-RL03 导热系数测试仪(热流法)主要技术参数1、仪器功能要求可用于测试高分子材料,如陶瓷、绝缘材料、复合材料、非金属材料等其他材料导热系数。同时,还可实现对不同类型材料的比热容进行测试。同时可扩展热扩散系数,建立多参数测试模型。2、主要技术参数2.1. 测量原理:导热系数参考热流计法;同一平台扩展了多种数学模型。2.2. 导热系数主要参考标准:ASTMD5470,ASTME1530,ISO2007-2等;2.3.导热系数测量范围:0.01—50W/(M.K);或0.1—50W/(M.K);可自动标定量程2.4.导热系数准确度误差:≤±3~5%,重复性:≤3%; 2.5. 导热系数分辨率:0.001W/(mK);2.6. 比热容测试准确度:±3~5%,重复性:±3~5%;2.7. 导热系数和比热容测试样品为圆柱体或立方体,厚度范围在(0.5~60)mm;自动测量样品厚度,厚度测试;误差±0.01mm,分辨率1um,精度误差:0.1%FS;薄膜样品可特殊方式叠加测试热阻曲线,自动计算测量结果。2.8. 加压方式:自动加压(设定需要压力值);(另外还可实现点动方式的手动加压)2.9.压力范围:0—3.0MPa,压力精度小于0.5%;2.10. 压力测量:自动测压,软件直接读取压力数据;伺服系统控制加压,压力精度小于0.5%,自动校正功能配置 2.11.导热系数和比热容测试温度范围:室温+10℃----300℃;(特殊范围可定制到500℃)2.12. 温度控制:设备具有智能PID自动温度控制功能,程序设定恒温控制,控温波动不大于0.5℃;2.13. 美国热流传感器灵敏度:优于0.47μVW/M2,热流量范围:50~3000W/m2;2.14. 仪器采用模块化设计,32位高精度AD采样,可扩展比热测试模块,实现对热扩散率、比热容、导热系数等材料热物性关键指标的评价;2.15. 配置软件,实时数据采集存储,数据导出,历史数据查询,报告输出打印等;2.16. 冷极冷却方式:采用10L高精度循环水浴-5-80℃,分辨率0.01℃。2.17. 热极加热控制采用经典PID 程控模式,热极温度实时多点检测。2.18. 提供供货前用户测试样品验证准确度和仪器功能。(见质量承诺书)2.19.系统总功率:不大于10KW2.20.供电方式:220V/50HZ交流供电2.21.工作环境要求:环境温度:-20—40℃,环境湿度:小于40%RH 3、配置明细3.1.测试主机:1套;3.2.高精度循环浴:1台;3.3.比热容测试模块1套;3.4.测试分析软件:1套;3.5.参考样品1组;3.6.附件资料1份,详细操作视频,说明书,出厂检测报告
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制