当前位置: 仪器信息网 > 行业主题 > >

导线驰量仪

仪器信息网导线驰量仪专题为您提供2024年最新导线驰量仪价格报价、厂家品牌的相关信息, 包括导线驰量仪参数、型号等,不管是国产,还是进口品牌的导线驰量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导线驰量仪相关的耗材配件、试剂标物,还有导线驰量仪相关的最新资讯、资料,以及导线驰量仪相关的解决方案。

导线驰量仪相关的论坛

  • 大家对尺寸测量仪有没有什么好的建议?

    现在市面上的尺寸测量仪挺多的,基本工能及原理都差不多,所以就不知道如何挑选,我想请问大家,如果是3C行业,应该怎么选购一个高精度的尺寸测量仪呢?欢迎大家讨论

  • 【原创】齿轮测量仪器的发展初步汇总

    齿轮测量仪器,它不仅包括检测各种齿轮的仪器,也将检测蜗轮、蜗杆、齿轮刀具、传动链的仪器附属在其中。齿轮种类繁多,几何形状复杂,表征其误差的参数众多。所以,齿轮量仪的品种也很多。齿轮测量技术及其仪器的研究已有近百年的历史,有6件标志性事件: 1.1923年,德国Zeiss公司在世界上首次研究成功一种称为"Toooth Surface Tester"的仪器。在此基础上经过改进,Zeiss于1925年推出了实用性仪器,并投放市场。该仪器的长度基准采用了光学玻璃线纹尺,其线距为1微米。该仪器的问世,标志着齿轮精密测量的开始,在我国得到广泛使用的VG450就是该仪器的改进型。 2.50年代初,机械展成式万能螺旋线标准仪的出现,标志着全面控制齿轮质量成为现实。 3.1965年,英国的R·Munro博士研制成功光栅式单啮仪,标志着高精度测量齿轮动态性能成为可能。 4.1970年,中国工程技术人员研制开发的齿轮整体误差测量技术,标志着运动几何法测量齿轮的开始。 5.1970年,美国Fellow公司在芝加哥博览会展出Microlog50,标志着数控齿轮测量中心的开始。 6.80年代末,日本大阪精机推出了基于光学全息原理的非接触齿面分析机PS-35,标志着齿轮非接触测量法的开始。

  • 什么是补偿导线法?

    [size=14px][font=宋体]在热电偶参考端温度波动变化情况下,参考端的温度[/font][i][font=&]T[/font][/i][font=宋体]是不稳定的,此时,无法对参考端的温度[/font][i][font=&]T[/font][/i][font=宋体]进行修正,即无法对工作对象进行测量,补偿导线法就是在[/font][/size][font=宋体][size=14px][color=#0080ff]热电偶参考端外接一热电偶补偿导线,将热电偶的参考端延伸至温度稳定的环境中,使波动变化较大的参考端处于温度稳定的环境下,再用计算法进行修正,以达到测量目的。[/color][/size][/font][size=14px][font=宋体]热电偶的补偿导线的特性作用和连接方法如下。[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]1[/font][font=宋体])热电偶的补偿导线是指在对定温度范围内和所连接热电偶的热电极具有相同热电特性的廉金属导线。[/font][/size][font=宋体][size=14px]([/size][/font][font=&][size=14px]2[/size][/font][font=宋体][size=14px])热电偶的补偿导线一般分为两种:[/size][/font][font=&][size=14px]a.[/size][/font][font=宋体][size=14px][color=#ff0000]延伸型补偿导线[/color][/size][/font][size=14px][font=宋体],是指与所配用的热电偶的热电极化学成分相同的导线。这种导线仅起着延伸热电偶参考端的作用。[/font][font=&][/font][/size][font=&][size=14px]b.[/size][/font][font=宋体][size=14px][color=#ff0000]补偿型补偿导线[/color][/size][/font][size=14px][font=宋体],是指与所配用的热电偶的热电极化学成分不相同的导线,但在参考端温度可能的变化范围内如([/font][font=&]0~100[/font][font=宋体])℃或([/font][font=&]0~200[/font][font=宋体])℃,其电热特性与所匹配热电偶特性相同。[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]3[/font][font=宋体])补偿导线的连接方法,[font=宋体]这里要说明的是[/font][font=system-ui, -apple-system, BlinkMacSystemFont, &]补偿导线法的补偿导线作用,只是延长热电极,它并不能消除参考端不为0℃时的影响[/font][font=宋体],还必须用电势修正法对测量的热电势进行计算处理。[/font][font=宋体]注:使用分类中,G为一般用,H为耐热用[/font][/font][/size][font=宋体][size=12px]参考资料[/size][/font][font=宋体][size=12px][1]GB∕T 16839.1-2018 热电偶 第1部分:电动势规范和允差[/size][/font][font=宋体][size=12px][2]马恒儒.热学计量基础知识,2002年[/size][/font][font=宋体][size=12px][3] ANSI and IEC Color Codes for Thermocouples Wire and Connectors[/size][/font]

  • 一键式测量仪如何提升零件尺寸的测量效率?

    随着科学技术的不断进步,工业现代化不断朝着自动化、智能化、数字化方向发展,传统测量仪器如投影仪、影像测量仪、工具显微镜、轮廓仪、游标卡尺、千分尺等,在尺寸轮廓测量时面临着诸多如“测量对象需要定位或原点定位费时、批量测量操作时间长、不同测量人员导致测量结果不同、数据统计管理繁杂等”一系列的弊端,已经难以满足现代工业生产过程中有关高精度、高效率、高可靠性的测量需求。为满足现代化工业测量需求,中图仪器[b][color=#333333]VX3000系列一键式测量仪[/color][/b]顺势而生![align=center][img]http://www.chotest.com/Upload/2019/5/201905091406645.png[/img][/align]一键式测量仪相对于传统测量仪器,具有以下显著优势:[b]快速[/b]  可自动跟踪识别产品位置和方向,自动捕捉点、线、圆、弧等元素,支持重新编辑测量程序,自动刷新测量结果。在大视野模式下,多个产品可同时检测,速度极快,能在2秒内完成最多512个尺寸测量及公差评价,一键式测量仪尤其适合产品批量检测。[b]准确[/b]  一键式测量仪配置亚像素工业级相机、双倍率双远心镜头以及高亮度照明系统,使得被测工件成像更清晰,同一产品重复测量精度高。专业测量软件具有影像特征自动判定、寻边,自动对焦、识别边缘部以及影像难点自动过滤等优势,有效消除了人为操作误差,测量结果更准确。[b]简单[/b]  凭借软件自动定位功能,工件可随意放置,一键按下即可完成视野范围内所有元素测量,即使初学者也能轻松上手。测量完成后自动输出尺寸数据及多种样式的评测报告,测量者可在现场实时分析误差值及趋势走向。一键式影像测量,一键闪测,实至名归。[b]多元[/b]  一键式测量仪的大视野镜头搭载可移动工作平台,可多元应用到手机外壳、手机玻璃、光学元器件、电路板、无线充电器模组、五金配件、金属机加件、精密模具、刀具、螺丝、弹簧、齿轮等中小型产品及零部件批量检测。适用于科研院所、大专院校、计量机构和企业计量室、车间。[align=center][img]http://www.chotest.com/Upload/2018/11/201811140412801.jpg[/img][/align]

  • 【资料】温度测量仪

    温度测量仪表是测量物体冷热程度的工业自动化仪表。最早的温度测量仪表,是意大利人伽利略于1592年创造的。它是一个带细长颈的大玻璃泡,倒置在一个盛有葡萄酒的容器中,从其中抽出一部分空气,酒面就上升到细颈内。当外界温度改变时,细颈内的酒面因玻璃泡内的空气热胀冷缩而随之升降,因而酒面的高低就可以表示温度的高低,实际上这是一个没有刻度的指示器。1709年,德国的华伦海特于荷兰首次创立温标,随后他又经过多年的分度研究,到1714年制成了以水的冰点为32度、沸点为212度、中间分为180度的水银温度计,即至今仍沿用的华氏温度计。1742年,瑞典的摄尔西乌斯制成另一种水银温度计,它以水的冰点为100度、沸点作为 0度。到1745年,瑞典的林奈将这两个固定点颠倒过来,这种温度计就是至今仍沿用的摄氏温度计。早在1735年,就有人尝试利用金属棒受热膨胀的原理,制造温度计,到18世纪末,出现了双金属温度计;1802年,查理斯定律确立之后,气体温度计也随之得到改进和发展,其精确度和测温范围都超过了水银温度计。1821年,德国的塞贝克发现热电效应;同年,英国的戴维发现金属电阻随温度变化的规律,这以后就出现了热电偶温度计和热电阻温度计。1876年,德国的西门子制造出第一支铂电阻温度计。很早以前,人们在烧窑和冶锻时,通常是凭借火焰和被加热物体的颜色来判断温度的高低。据记载,1780年韦奇伍德根据瓷珠在高温下颜色的变化,来识别烧制陶瓷的温度,后来又有人根据陶土制的熔锥在高温下弯曲变形的程度,来识别温度。辐射温度计和光学高温计是20世纪初,维思定律和普朗克定律出现以后,才真正得到实用。从60年代开始,由于红外技术和电子技术的发展,出现了利用各种新型光敏或热敏检测元件的辐射温度计(包括红外辐射温度计),从而扩大了它的应用领域。各种温度计产生的同时就规定了各自的分度方法,也就出现了各种温标,如原始的摄氏温标、华氏温标、气体温度计温标和铂电阻温标等 。为了统一温度的量值,以达到国际通用的目的,国际权度局最早规定以玻璃水银温度计为基准仪表,统一用摄氏温标。后经数次改革,到1927年改用以热力学温度为基础、以纯物质的相变点为定义固定点的国际温标 ,以后又经多次修改完善。国际现代通用的温标是1967年第13次国际权度大会通过的 ,1968年国际实用温标。它以13个纯物质的相变点,如氢三相点,即氢的固、液、气三态共存点(-259.34℃);水三相点(0.01℃)和金凝固点(1064.43℃)等,作为定义固定点来复现热力学温度的。中间插值在-259.34~630.74℃之间 ,用基准铂电阻;在630.74~1064.43℃之间,用基准铂铑-铂热电偶;在1064.43℃以上用普朗克公式复现。一般的温度测量仪表都有检测和显示两个部分。在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。按测量方式,温度测量仪表可分为接触式和非接触式两大类。测量时,其检测部分直接与被测介质相接触的为接触式温度测量仪表;非接触温度测量仪表在测量时,温度测量仪表的检测部分不必与被测介质直接接触,因此可测运动物体的温度。例如常用的光学高温计、辐射温度计和比色温度计,都是利用物体发射的热辐射能随温度变化的原理制成的辐射式温度计。由于电子器件的发展,便携式数字温度计已逐渐得到应用。它配有各种样式的热电偶和热电阻探头,使用比较方便灵活。便携式红外辐射温度计的发展也很迅速,装有微处理器的便携式红外辐射温度计具有存贮计算功能,能显示一个被测表面的多处温度 ,或一个点温度的多次测量的平均温度、最高温度和最低温度等。此外,现代还研制出多种其他类型的温度测量仪表,如用晶体管测温元件和光导纤维测温元件构成的仪表;采用热象扫描方式的热象仪,可直接显示和拍摄被测物体温度场的热象图, 可用于检查大型炉体、发动机等的表面温度分布,对于节能非常有益;另外还有利用激光,测量物体温度分布的温度测量仪器等。

  • 【转帖】温度测量仪

    温度测量仪表是测量物体冷热程度的工业自动化仪表。最早的温度测量仪表,是意大利人伽利略于1592年创造的。它是一个带细长颈的大玻璃泡,倒置在一个盛有葡萄酒的容器中,从其中抽出一部分空气,酒面就上升到细颈内。当外界温度改变时,细颈内的酒面因玻璃泡内的空气热胀冷缩而随之升降,因而酒面的高低就可以表示温度的高低,实际上这是一个没有刻度的指示器。1709年,德国的华伦海特于荷兰首次创立温标,随后他又经过多年的分度研究,到1714年制成了以水的冰点为32度、沸点为212度、中间分为180度的水银温度计,即至今仍沿用的华氏温度计。1742年,瑞典的摄尔西乌斯制成另一种水银温度计,它以水的冰点为100度、沸点作为 0度。到1745年,瑞典的林奈将这两个固定点颠倒过来,这种温度计就是至今仍沿用的摄氏温度计。早在1735年,就有人尝试利用金属棒受热膨胀的原理,制造温度计,到18世纪末,出现了双金属温度计;1802年,查理斯定律确立之后,气体温度计也随之得到改进和发展,其精确度和测温范围都超过了水银温度计。1821年,德国的塞贝克发现热电效应;同年,英国的戴维发现金属电阻随温度变化的规律,这以后就出现了热电偶温度计和热电阻温度计。1876年,德国的西门子制造出第一支铂电阻温度计。很早以前,人们在烧窑和冶锻时,通常是凭借火焰和被加热物体的颜色来判断温度的高低。据记载,1780年韦奇伍德根据瓷珠在高温下颜色的变化,来识别烧制陶瓷的温度,后来又有人根据陶土制的熔锥在高温下弯曲变形的程度,来识别温度。辐射温度计和光学高温计是20世纪初,维思定律和普朗克定律出现以后,才真正得到实用。从60年代开始,由于红外技术和电子技术的发展,出现了利用各种新型光敏或热敏检测元件的辐射温度计(包括红外辐射温度计),从而扩大了它的应用领域。各种温度计产生的同时就规定了各自的分度方法,也就出现了各种温标,如原始的摄氏温标、华氏温标、气体温度计温标和铂电阻温标等 。为了统一温度的量值,以达到国际通用的目的,国际权度局最早规定以玻璃水银温度计为基准仪表,统一用摄氏温标。后经数次改革,到1927年改用以热力学温度为基础、以纯物质的相变点为定义固定点的国际温标 ,以后又经多次修改完善。国际现代通用的温标是1967年第13次国际权度大会通过的 ,1968年国际实用温标。它以13个纯物质的相变点,如氢三相点,即氢的固、液、气三态共存点(-259.34℃);水三相点(0.01℃)和金凝固点(1064.43℃)等,作为定义固定点来复现热力学温度的。中间插值在-259.34~630.74℃之间 ,用基准铂电阻;在630.74~1064.43℃之间,用基准铂铑-铂热电偶;在1064.43℃以上用普朗克公式复现。一般的温度测量仪表都有检测和显示两个部分。在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。按测量方式,温度测量仪表可分为接触式和非接触式两大类。测量时,其检测部分直接与被测介质相接触的为接触式温度测量仪表;非接触温度测量仪表在测量时,温度测量仪表的检测部分不必与被测介质直接接触,因此可测运动物体的温度。例如常用的光学高温计、辐射温度计和比色温度计,都是利用物体发射的热辐射能随温度变化的原理制成的辐射式温度计。由于电子器件的发展,便携式数字温度计已逐渐得到应用。它配有各种样式的热电偶和热电阻探头,使用比较方便灵活。便携式红外辐射温度计的发展也很迅速,装有微处理器的便携式红外辐射温度计具有存贮计算功能,能显示一个被测表面的多处温度 ,或一个点温度的多次测量的平均温度、最高温度和最低温度等。此外,现代还研制出多种其他类型的温度测量仪表,如用晶体管测温元件和光导纤维测温元件构成的仪表;采用热象扫描方式的热象仪,可直接显示和拍摄被测物体温度场的热象图, 可用于检查大型炉体、发动机等的表面温度分布,对于节能非常有益;另外还有利用激光,测量物体温度分布的温度测量仪器等。

  • 便携式测量仪器(工业)、实验室测量仪器及便携式电动工具使用的锂离子电池组,市场监管总局回复

    关于2024年8月1日起强制纳入 CCC 认证管控范围的锂离子电池及电池组,是否包含 便携式测量仪器(工业)、实验室测量仪器或便携式电动工具使用的锂离子电池组?这些用途的锂离子电池组是否需要申请 CCC 认证?[align=center][img]https://xgzlyhd.samr.gov.cn/gjjly/img/fd-a-avator.png[/img][/align][b]回复部门: 认证监督管理司[/b][color=#999999][back=transparent]时间:2024-06-04[/back][/color]你好,你所述的便携式测量仪器、实验室测量仪器或便携式电动工具的锂离子电池组不在CCC认证范围内,不需要获得CCC认证。(但不免除其应当符合其他法律法规和监管要求的质量义务)

  • 【求助】求助导线方面的标准,谢谢!

    ASTM B857-02 包钢加强的(ACSS/TW)成型密实同心绞捻铝导线的技术规范 ASTMB609-B609M-99(2004) 电气用退火和中度回火1350铝圆导线标准规范ASTM WK6283 - New Specification for Fiber Reinforced Aluminum Matrix Composite (AMC) Core Wire for Aluminum Conductors, Composite Reinforced (ACCR)

  • 【原创大赛】铜电缆导线发黄原因分析

    【原创大赛】铜电缆导线发黄原因分析

    铜电缆导线发黄原因分析1.概况 材料为聚氯乙烯绝缘控制电缆,生产工艺如下图:铜导线原材料为纯铜,线皮为PVC材质。http://ng1.17img.cn/bbsfiles/images/2015/08/201508131300_560437_2042772_3.png 根据客户反馈,聚氯乙烯绝缘控制电缆在仓库放置一段时间后,在使用时发现里面铜丝发黄。其他批次未发现发黄、色泽暗淡现象。为分析发黄、色泽暗淡产生原因,对正常不正常电缆线铜丝及PVC外皮进行分析,分析结果如下:2.宏观观察 如图下图所示:正常良品导线芯部铜丝,具金属光泽;不正常导线芯部铜丝色泽暗淡。http://ng1.17img.cn/bbsfiles/images/2015/08/201508131300_560438_2042772_3.png3、形貌观察及能谱分析 用扫描电子显微镜及X射线能谱仪对样品表面进行微观形貌观察和能谱半定量成分分析,结果见图2~15。http://ng1.17img.cn/bbsfiles/images/2015/08/201508131310_560444_2042772_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508131310_560445_2042772_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508131310_560446_2042772_3.png4、检测结果汇总4.1 正常线缆上导线铜丝具金属光泽,表面成分为C、Cu,符合客户给的材质要求为纯铜,碳可能是空气中吸附,未考虑。正常线缆上PVC线皮成分为C、O、Cl、Ca,符合客户给的PVC材质要求。并初步判断PVC塑料线皮中添加了碳酸钙。不正常线缆上导线铜丝色泽暗淡,其表面成分为C、O、Cl、Cu,说明表面已氧化,不正常线缆上PVC线皮成分为C、O、Cl、Ca,符合客户给的PVC材质要求。并初步判断PVC塑料线皮中添加了碳酸钙。内壁与铜丝接触处测出Cu元素,可以看出铜丝与PVC线皮之间发生化学反应。4.2 两种PVC线皮成分虽然基本相同,但生产原料的来源不同而生产的PVC质量差异较大。如果是再生料,在潮湿空气中放置较长时间,其表面容易分解出游离的Cl离子,电线氧化正是在带有Cl离子的介质中发生。5、初步汇总根据检测结果分析初步认为,铜丝氧化是由于PVC胶粒质量较差引起。

  • 一种三腔室流通池浊度测量仪及其控制方法

    【作者】: 【题名】: 一种三腔室流通池浊度测量仪及其控制方法【期刊】:【年、卷、期、起止页码】:【全文链接】:https://xueshu.baidu.com/usercenter/paper/show?paperid=1y4100v0p52d0tg03r020pm0t1755435

  • 【分享】电气线路火灾中铜导线一次短路与二次短路的显微组织特征

    [color=#DC143C][size=6]电气线路火灾中铜导线一次短路与二次短路的显微组织特征[/size][/color]摘 要:对电气线路火灾中铜导线的一次短路与二次短路的显微组织特性进行了对比分析,利用二者之间微结构形态上的差异来分析鉴定火灾的起因,为公安消防部门侦破火灾案件提供了有利的科学证据,可使案件侦破率及破案速度大大提高。因而,将此项工作加以推广有十分重要的意义。与金相显微镜比较,用电镜进行观察分析具有放大倍数连续调节范围大,景深大,分辨率高,同时具有图象更清晰,立体感更明显的特点。关键词:一次短路 二次短路 熔珠 熔痕 柱状晶 等轴晶电镜观察分析是研究金属材料,半导体材料及一切固体材料和生物医学材料的表面形态,内部组织及其结构的一门科学。在上述学科中电镜已得到了广泛的应用。而将它的科学理论,技术方法和仪器设备应用到消防部门,用于电气火灾原因分析中,则是一种比较新的方法。通常,火灾现场的金属残留物很多,在什么部位取样是很重要的。取样部位的恰当与否,直接影响到检查结果的准确性。因而,必须提取带有融化痕迹的物证。由电气线路、设备故障引起的火灾,在故障点高温作用下,绝大多数的铜、铝甚至钢铁及其它合金等,都会出现熔化现象。分析这些金属或导线残留物熔痕的表面形态和其内部的组织结构,对于认定火灾起因才有意义。本文仅对电气线路火灾中铜导线的一次短路与二次短路的显微特征进行比较分析。1 实验部分1.1 导线短路痕迹的形成及其表现形式电气线路中的不同相或不同电位的两根或两根以上的导线不经负载直接接触称为短路。由于短路的瞬时温度可达2000℃以上,而常用的铜导线的熔点为1083℃,因此,短路强烈的电弧高温作用可使铜导线局部金属迅速熔融,气化,甚至造成金属熔滴的飞溅,从而产生了导线短路熔化的痕迹。导线短路形成的熔痕可分为两种:一种是发生在火灾之前的短路,称为一次短路熔痕:另一种是着火后,火灾火焰或火灾热使导线绝缘破坏而形成的短路,称之为二次短路熔痕。由于短路电流的大小及作用时间的不同,因而短路熔痕的外观状态相当复杂,常见的有以下几种:(1)短路熔珠 (2)尖状熔痕 (3)凹坑状熔痕 (4)喷溅熔珠。

  • 精密测量仪器热卖

    本公司专门供应各种精密测量仪器: 工量具包括:进口/国产游标卡尺、数显/带表卡尺、高度尺、千分尺、标准量块。 光学测量仪器包括:投影仪、影像二维、三坐标测量设备、显微镜等。 各种硬度计:进口/国产洛氏硬度计、维氏硬度计、邵氏硬度计。可测量各种材料的硬度值,可打印测量数据。 另有各种进口测高仪、其它各类仪器。 联系人:柴小姐 13916024531 cdyoyh@sina.com

  • 目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别?

    随着中国市场的科技技术日新月异,制造业对产品的精度要求越来越高,人为测量已无法满足客户要求,大家都开始借助仪器测量。目前市面上对于尺寸的测量主要是有二次元及三次元等。那么这些测量仪的区别在哪儿呢?目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别??? 现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。

  • 大电流接地测量仪检测方法解析

    目前用于安全防护检测的大电流接地电阻测量仪已越来越广泛地运用于家用电器、绝缘材料、电动电热器具等产品的质量检测中,而此种仪器本身的量值传递却由于其大电流的限制,存在许多问题。普通的接地电阻测量仪检定装置不能用于这种仪器的检测,下面百检检测介绍两种检测方法。 1 直接法 这里所谓的直接法就是电阻法,利用大功率标准电阻直接接于被测大电流接地电阻测量仪的测量端,原理框图如图1所示,用标准电阻值与测量仪表头所显示的电阻值作比较。 设标准电阻值为RN,即实际值,被检表显示读数为RX,则被检表的绝对误差为: Δ=RX-RN 被检表的相对误差为: r=[(RX-RN)/RN]×100% 用此方法检测时应注意测量仪恒流输出所限制的电阻范围,超出该范围,将不再恒流且测量不正确。由于所测均为小电阻,导线及接触电阻的消除、四端钮接线等都是必须注意的,同时注意不可引入别的哪怕是很微小的附加电阻。 用此方法检测,简单直观方便,测量准确,但应当具备一套不同阻值(并非均为十进制变化)的大功率标准电阻,由于它的特殊要求,这种电阻需由厂家定做。 2 间接法 所谓间接法就是利用电流电压的方法来进行测量。 2.1 用标准电压源法进行测量 接地电阻测量仪的基本原理为以已知恒定电流通过被测电阻RX的压降来代表所测电阻值。根据这一原理,可用标准电压源和标准电流表来检测接地电阻测量仪,检测框图如图2所示。 标准电压源输出一个标准电压UN,同时读出标准电流表显示的电流IN,此时被检测量仪表头显示值为RX值,则实际值为: R=UN/IN 绝对误差为: Δ=RX-R=RX-UN/IN 相对误差为: r=[(RX-UN/IN)/(UN/IN)]×100% 通过输出不同的标准电压值,便可测得一系列电阻值。用此方法检测时应注意测量仪在恒定电流下所限定的电阻范围对应的电压值范围,使标准源输出的电压在此范围内。 2.2 用标准电压表法进行测量 利用标准电压表、标准电流表以及大电流电阻对大电流接地电阻测量仪进行测量,其检测接线框图如图3所示。 测量时,接上一电阻值R,立即读取标准电流表和标准电压表的读数IN、VN,此时被检接地电阻测量仪表头也显示出所测电阻值RX。而标准电流表、标准电压表所测值对应的电阻值可认为是所测电阻的真值,即: R=VN/IN 绝对误差为 Δ=RX-R=RX-VN/IN 相对误差为 r=[(RX-VN/IN)/(VN/IN)]×100% 通过接入不同的电阻值,便可测得一系列的值。从而确定出被检接地电阻测量仪的误差情况。 用此方法检测时应注意接地电阻测量仪所能测量的电阻范围,接入的电阻不可超出此电阻范围 由于所测电阻均为小电阻,因此必须采用四端测量 因是大电流测量,测量时间应尽量短。 3 误差分析 3.1 直接法的误差 直接法测量时,误差的主要来源是标准电阻引入的。在消除了引线电阻的影响后,只要标准电阻的误差为被检表允许误差的1/3~1/5即可。 3.2 间接测量的误差 3.2.1 标准电压源法测量时的误差 装置的主要误差来源: (1)标准电流表引入的误差S1:由于被检电流最高精度为0.5%,因此选用0.1级标准电流表即可。 (2)标准电压源带来的误差S2:由于被检表精度不高,在选用标准电压源时,一般采用实验室现有的三用表校验仪D030的交流电压信号输出便可满足要求,考虑到所需电压较小,其输出值误差一般不超过±0.5%。 (3)标准电压源输出漂移带来的误差S3:一般D030稳定性误差为±0.05%,考虑小电压情况,其漂移误差一般也不会超过±0.1%。 装置的总误差为: 由于被测接地电阻测量仪电阻精度最高为2%读数±2个字,可见装置总误差能满足要求。 3.2.2 标准电压表法测量时的误差 (1)标准电流表引入的误差S1:由于被检电流最高精度为0.5%,因此选用0.1级标准电流表即可。 (2)标准电压表带来的误差S2:由于被检表精度不高,选用0.05级标准电压表即可满足要求。考虑到所测电压较小,其测量误差一般不超过±0.5%。 (3)标准电压表输入阻抗带来的误差S3:因所测电阻均为1Ω以下,相对而言,标准电压表输入阻抗带来的误差完全可以忽略不记。 (4)电阻引入的误差S4:用此法检测,接入的电阻并不作为标准,仅作为被检表与标准表测量的一个载体,因此该电阻的精度并不影响测量结果,影响测量结果的主要因素是电阻的稳定性,由于所接电阻大电流的要求,此电阻通常是由专门的材料和工艺定做而成,对其稳定性有一定的要求,加之被检表和标准表几乎是同时测量,因此电阻稳定性引入的误差可忽略不记。

  • 购买量具、测量仪器的请找我

    本公司专门供应各种精密测量仪器:工量具包括:进口/国产游标卡尺、数显/带表卡尺、高度尺、千分尺、标准量块。光学测量仪器包括:投影仪、二维影像式测量仪器、三坐标测量设备、显微镜等。各种硬度计:进口/国产洛氏硬度计、维氏硬度计、邵氏硬度计。可测量各种材料的硬度值,可打印测量数据。 另有各种进口测高仪、其它各类仪器。欢迎来电垂询,索取资料。 柴小姐13916024531cdyoyh@sina.com

  • 【分享】如何选配测量仪器

    [size=4][B][color=#DC143C]如何选配测量仪器[/color][/B][/size][center]重庆市计量测试学会主任 周兆丰[/center] 各单位在科研、生产、试验投入和提供用户服务前,依据需要对购入测量仪器进行策划和采购。目前,大多数单位购置测量仪器都严格遵守标准测量器具和被测量器具准确度比列关系(即三分之一原则),但在科研、生产和试验检测中使用的测量仪器大多数未进行测量、技术和经济特性评定,特别是有的单位仅仅满足测量仪器有无的问题,至于测量仪器是否满足预期使用要求,(如准确度、稳定性、量程和分辨力等)进行确认。因此,掌握测量仪器的选配原则、相关要求及评定方法是很有必要的,对确保测量质量、降低成本和提高效率都有好处。[B]一、测量仪器的选配原则[/B]选配时应坚持与本单位科研、生产、试验和经营相适应的原则,即要考虑仪器的先进性又不盲目追求高技术指标,还要注意经济实用,以达到“满足预期使用要求的目的”。选配决策时,应综合考虑企业、事业单位的规模、产品类型或服务对象、技术指标、工艺流程等特点。其具体原则是: 1.实用原则。坚持按被测对象的实际需要选配测量仪器,如:产品的结构、批量、技术性能参数;生产工艺过程中需要测量和监督的有关参数;化学分析中需要检测、控制和调节的参数;进料、出库、投入以及经销方面测量需要;能源计量、安全与环境监测的需要;建立计量标准开展量值传递的需要等进行配备。 2.选配测量仪器应从测量、技术、经济特性综合考虑。 (1) 测量特性 明确测量仪器的计量特性以及为确保计量特性的必要条件是: 1﹥测量仪器应具有预期使用要求的测量特性,包括准确度、稳定性、测量范围、分辨力和灵敏度等,保证测量结果可靠是首要条件。 2﹥测量仪器应能实现量值传递和量值溯源要求。测量仪器的检定或校准能符合现行有效检定规程或校准技术规范的要求。 3﹥接受检定或校准方法和对测量对象进行测量的方法要科学、合理、可行、简便。 4﹥具有合理的检定周期(或确认间隔)。 5﹥能对测量结果进行评价。

  • 分享影像测量仪的性能特点

    影像测量仪应用在各个不同的精密产品的行业中,是院校、研究所和计量检定部门的计量室、试验室以及生产车间不可缺少的计量检测设备之一。  影像测量仪的性能:  1、影像测量仪具备基本的点、线、圆、两点距离、角度等基本测量功能及坐标平移的功能,能满足基本的二次元测量要求。  2、花岗石底座与立柱,机构稳定可靠  3、影像测量仪的X、Y轴装有光栅尺,定位精确。  4、Z轴采用交叉导轨加配重块的全新设计,镜头上下升降受力均衡,确保精度。  5、LED冷光源(表面光合轮廓光)避免工件受热变形。  6、激光定位指示器,精确制定当前测量位置,方便测量。  7、影像测量仪可以使用OVMLite软件。  8、影像测量仪的镜头:3DFAMILY-S型0.7X-4.5X连续变倍镜头,影像放大倍率:28X-180X。

  • 【分享】三维光学测量仪的特征及功能简介

    三维光学测量仪又可称为三维影像测量仪或非接触式光学测量仪,是集光学、机械、电子、计算机图像处理技术于一体的高精度、高效率、高可靠性的测量仪器。三维光学测量仪采用非接触式三维测量方式,可进行快速精密的几何尺寸和形位公差的测量,具有了良好的刚性质量比,运动平稳、精确,确保了整机精度更高。 三维光学测量仪采用国际先进的有限元分析技术设计,具有高精度、高性能高速度和高稳定性的特点。使用冷光源系统,可以避免容易变形的工件在测量是因为热变形所产生的误差,并避免了由于碰触引起的变形。三维光学测量仪可高效地检测各种复杂精密零部件的轮廓和表面形状尺寸、角度及位置,全自动地进行微观检测与质量控制;还可自动抓边、自动聚焦的功能使得最大程度减少了人为误差。 三维光学测量仪适用于航空、航天、军工、汽车、模具、电子、机械、仪表、五金、塑胶等行业中的模具、螺丝、金属、配件、橡胶、PCB板、弹簧等以坐标测量为目的一切应用领域适用范围。

  • 气动量仪的组成、原理及优势

    [b][font='Times New Roman'][font=宋体]气[/font][/font][font=宋体]电[/font][font='Times New Roman'][font=宋体]量仪的组成[/font][/font][/b][font=宋体][font=Times New Roman]1)[/font][/font][font='Times New Roman'][font=宋体]精密[/font][/font][font=宋体]减[/font][font='Times New Roman'][font=宋体]压阀,为[/font][/font][font=宋体]量仪提供工作压力。[/font][font=宋体][font=Times New Roman]2[/font][font=宋体])测头,[/font][/font][font='Times New Roman'][font=宋体]传递工件表面的气流或气压值。[/font][/font][font=宋体]测头[/font][font='Times New Roman'][font=宋体]可以是塞规、环规或其他形状,都是根据被测工件的具体尺寸而配制的。[/font][/font][font=宋体]测头两个重要部件喷嘴孔和排气槽。[/font][font=宋体][font=Times New Roman]3[/font][font=宋体])压力变送器(气电转换器)将测头感知的压力信号转换为电信号[/font][/font][font=宋体][font=Times New Roman]4[/font][font=宋体])单片机控制系统:由显示单元、按键操作单元和[/font][font=Times New Roman]CPU[/font][font=宋体]构成[/font][/font][font=宋体]显示单元用于显示测量值和测量判断结果按键操作单元用于操作量仪:如设定参数,触发保存数据上传数据[/font][font=宋体][font=Times New Roman]CPU[/font][font=宋体]:把气电转换器转换后的信号经过[/font][font=Times New Roman]AD[/font][font=宋体]采样,[/font][font=Times New Roman]CPU[/font][font=宋体]处理运算后,转换成显示值送给显示单元直观显示。[/font][/font][font=宋体][font=Times New Roman]5[/font][font=宋体])电源:为量仪电路部分提供工作电压[/font][/font][font=宋体][font=Times New Roman]6[/font][font=宋体])[/font][/font][font='Times New Roman'][font=宋体]标定规是用于标定[/font][/font][font=宋体]量仪[/font][font='Times New Roman'][font=宋体]测量系统。[/font][/font][font=宋体]一般根据公差上下限制作极限标定规尺寸。[/font][font='Times New Roman'][font=宋体]标定规的材质分为钢、铬或硬质合金[/font][/font][font=宋体]。[/font][b][font='Times New Roman'][font=宋体]电子柱式[/font][/font][font=宋体]气电量仪和[/font][font='Times New Roman'][font=宋体]浮标式[/font][/font][font=宋体]气动量仪的比较[/font][/b][font=宋体]气电量仪特点:测量范围大,一台气电量仪包含了各种倍数的气动量仪[/font][font=宋体]测量精度高,读数准确,显示直观[/font][font=宋体]可组网做在线自动化数据收集和统计分析,实现无纸化数据记录。[/font][font=宋体]弊端:须专业人员进行售后维护,对气源质量要求较高,单台成本较高[/font][font='Times New Roman'][font=宋体]浮标式[/font][/font][font=宋体]气动量仪特点:不需电源供电,对气源质量要求较低,操作简单,单台成本低[/font][font=宋体]弊端:不同公差要求需配备不同放大倍数的量仪,综合成本较高,数据统计须人工记录[/font][b][font=宋体]气动量仪术语[/font][/b][font='Times New Roman'][font=宋体]放大器[/font] – [font=宋体]气动量仪的数据显示设备。放大器包括空气流量和压力的调节装置,能在一个标尺上显示出测量得到的尺寸值,当它同一个气动测量工具相接时,能够将得到的数据成倍放大后显示出来以便于操作者读出。[/font][/font][font='Times New Roman'][font=宋体]平衡状态[/font] – [font=宋体]当气动测头的一个喷嘴孔较之另一喷嘴孔靠近被测工件的表面,远离工件表面的那个喷嘴孔的流量补偿了靠近被测工件表面的喷嘴孔的流量时,放大器的读出数据保持稳定的状态。[/font][/font][font='Times New Roman'][font=宋体]显示柱[/font]–[font=宋体]一个气电放大器或流量放大器特性显示为一个柱状图形条或是流量计锥管。[/font][/font][font='Times New Roman'][font=宋体]满量程值([/font]FSV[font=宋体]) [/font][font=Times New Roman]– [/font][font=宋体]刻度显示出的最大值。[/font][font=Times New Roman]FSV[/font][font=宋体]通常为[/font][font=Times New Roman]1.5[/font][font=宋体]~[/font][font=Times New Roman]2[/font][font=宋体]倍被测尺寸的最大公差值,以显示被测尺寸接近或超差的情况。[/font][/font][font='Times New Roman'][font=宋体]放大倍数[/font] – [font=宋体]放大器给出的尺寸增量。对于气动量仪中放大倍率可调的系统,这种调节是通过使用校对规调节背压的大小来实现的,而对于具有固定放大倍数的系统,为了得到精密的测量值,就只能对气动测头提出更高的精度要求。[/font][/font][font='Times New Roman'][font=宋体]喷嘴[/font] – [font=宋体]气动测头上对被测工件喷出空气的阻尼孔。喷嘴孔的直径由所用的气动量仪系统决定。喷嘴孔的数目和位置则由测量工件的应用决定。[/font][/font][font='Times New Roman'][font=宋体]分辨率[/font] – [font=宋体]放大显示的量程范围内的最小增量值。例如,爱德蒙得的电气柱型图有一百个分度值,分辨率就是满量程的[/font][font=Times New Roman]1/100[/font][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]调压阀[/font] – [font=宋体]气动量仪系统用于调节空气的流量或压力的设备。例如一个具有精确尺寸的阻尼孔,或者一个针阀,或者是二者一起使用。[/font][/font][font='Times New Roman'][font=宋体]零位[/font] – [font=宋体]放大器设置放大率过程中确定放大后测量范围的位置的过程。零位常选择在满量程的中点位置,而显示的值可以位于全量程范围内的任何位置。[/font][/font][font='Times New Roman'][font=宋体]零位尺寸[/font] – [font=宋体]被测尺寸的期望值或者是名义尺寸值。在背压系统中,零位尺寸通常是最大值与最小值的中间值,而在流量系统中,零位尺寸通常是最小值。[/font][/font][b][font=宋体]气电量仪的工作原理[/font][/b][font='Times New Roman'][font=宋体]气[/font][/font][font=宋体]电[/font][font='Times New Roman'][font=宋体]量仪的测量原理是比较测量法。其测量方法是将长度信号转化为气流[/font][/font][font='Times New Roman'][font=宋体]信号,通过有刻度的玻璃管内的浮标示值,称为浮标式气动测量仪;或通[/font][/font][font='Times New Roman'][font=宋体]过气电转换器将气信号转换为电信号由发光管组成的光柱示值,称为电子[/font][/font][font='Times New Roman'][font=宋体]柱式气动测量仪。气动量仪是一种可多台拼装的量仪,它与不同的气动测[/font][/font][font='Times New Roman'][font=宋体]头搭配,可以实现多种参数的测量。气动量仪[/font][/font][font=宋体]与其它量仪相比[/font][font='Times New Roman'][font=宋体]优点如下:[/font][/font][font='Times New Roman']1[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]、测量项目多,如长度、形状和位置误差等,特别对某些用机械量具和量[/font][/font][font='Times New Roman'][font=宋体]仪难以解决的测量,例如:测深孔内径、小孔内径、窄槽宽度等,用气动测量比较容易实现。[/font][/font][font='Times New Roman']2[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]、量仪的放大倍数较高,人为误差较小,不会影响测量精度;工作时无机械磨擦,所以没有回程误差。[/font][/font][font='Times New Roman']3[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]、操作方法简单,读数容易,能够进行连续测量,很容易看出各尺寸是否合格[/font][/font][font='Times New Roman']4[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]、实现测量头与被测表面不直接接触,减少测量力对测量结果的影响,同时避免划伤被测件表面,对薄壁零件和软金属零件的测量尤为适用。[/font][/font][font='Times New Roman'][/font][font='Times New Roman']5[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]、由于非接触测量,测量头可以减少磨损,延长使用期限。气动量仪主体和测量头之间采用软管连接,可实现远距离测量。[/font][/font][font=宋体]距离不影响数据准确度,会影响反应时间[/font][font=宋体]([/font][font=宋体][font=Times New Roman]1.5[/font][font=宋体]米[/font][/font][font=宋体])[/font][font='Times New Roman'][/font][font='Times New Roman']6[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]、结构简单,工作可靠,调整、使用和维修都十分方便。[/font][/font][font='Times New Roman'][/font][font='Times New Roman'][font=宋体]可测量项目:内径、外径、槽宽、两孔距、深度、厚度、圆度、锥度、同轴度、直线度、平面度、平行度、垂直度、通气度和密封性[/font][/font][font=宋体][font=宋体]气动量仪基于[/font][font=宋体]“喷嘴挡板”的机构(如图[/font][font=Times New Roman]1[/font][font=宋体]),把被测量的尺寸变化转换为空气流量变化的一种测量仪器。当喷嘴和挡板间的间隙发生变化时,从间隙中流出的气体流量将发生变化,从[/font][/font][font=宋体]而[/font][font=宋体][font=宋体]引起内部气体压力发生变化。由内部差压传感器感知的变化,相当于喷嘴和挡板间的距离变化。当[/font][font=宋体]“挡板”为被测尺寸时,量仪就会指示出被测尺寸的变化量。 当喷嘴孔径[/font][font=Times New Roman]d[/font][font=宋体]固定不变时,流量[/font][font=Times New Roman]Q[/font][font=宋体]与间隙[/font][font=Times New Roman]S[/font][font=宋体]的特性曲线如图[/font][font=Times New Roman]2[/font][font=宋体]所示[/font][/font][font='Times New Roman'] [/font]

  • 如何区分实物量具和测量仪器

    [align=center][font=-apple-system-font, BlinkMacSystemFont, &][font=-apple-system, BlinkMacSystemFont, &][size=16px][b]如何区分实物量具和测量仪器[/b][/size][/font][/font][/align][size=15px][font=-apple-system-font, BlinkMacSystemFont, &][color=#0080ff]原创 中国计量 计量资讯速递 8月2日[/color][/font][/size][size=12px][font=-apple-system-font, BlinkMacSystemFont, &]各位版友,计量资讯速递每周一都会发布计量使用与调修类干货好文哦。如需了解更多内容,请每周一记得阅览哦。[/font] 实物量具在JJF1001-2011《通用计量术语及定义》中的定义为“具有所赋量值,使用时以固定形态复现或提供一个或多个量值的测量仪器。”  实际工作中及很多计量专业书籍里将“实物量具”简称为“量具”,百度百科上也显示“量具是实物量具的简称”,但JJF1001里并没有给出“量具”这个简称,因此“实物量具”是不是简称为“量具”没有标准回答,只能根据上下文领会。“量具”一词通常在几何量计量中常用,但并不为几何量计量独有,十大类计量里都有“量具”和“仪器”之分。JJF1001之6.5的定义给出的七个实物量具的实例都不是几何量计量中的计量器具,但都称为实物量具。  JJF1001之6.5给出的实物量具的定义在结尾处使用了“测量仪器”,请注意这里的“测量仪器”在6.1条中与“计量器具”等同,它包含实物量具和非实物量具的仪器,这与通常所说的仪器不是同一个概念。也就是说实物量具是测量仪器(计量器具)的一个种类,与之相对应的另一个种类就是带有放大或(和)量值转换结构的计量器具,所以从大家口头上的习惯来看,一般把这种计量器具才真正称为“仪器”,而把实物量具简称为“量具”。  判断计量器具是不是实物量具,主要看它是否已经被明确地赋值。比如一个标准电阻、一个信号发生器、化学标准物质等,它们所提供的一些物理量的值都是已知的。比如一个标准频率计就不是实物量具,而一个输出标准频率信号的信号发生器就是实物量具。  因此,测量设备的结构中不带有量值放大或(和)量值转换结构或元器件的为实物量具,带有量值放大或(和)量值转换结构或元器件的测量设备为测量仪器。例如量块、砝码、光滑量规、螺纹量规、钢直尺、钢卷尺、标准电池、电阻、标准物质等不含有量值放大或(和)量值转换结构或元器件的测量设备,均属于实物量具的范畴。卡尺、千分尺、百分表等虽然也叫游标量具、微分类量具、指示类量具,但因其结构中含有传动放大机构,本质上属于“测量仪器”而不属于“量具”。  量具可分为单值量具,如砝码、量块、标准电池等;多值量具,如线纹尺、钢直尺、标准信号发生器等;成组量具,如砝码组、量块组等。有些量具必须与其他测量仪器一起使用才能进行测量,例如砝码只有借助天平或质量比较仪才能进行质量的测量,这种量具称为从属量具;有些量具不必借助于其他测量仪器而可单独进行测量,这种量具称为独立量具,例如直尺、量筒。  有必要提一下测量设备这个术语,它是包含范围最大的概念,包括为实现测量过程所必需的计量器具、标准物质、计算机软件、辅助设备及其组合等所有东西,包括有形的、无形的、硬件的、软件的、看得见和看不见的东西,按概念从大到小分别是测量设备、测量仪器(计量器具)、实物量具。  最后按一级注册计量师教材把经常接触到的实物量具归纳如下:砝码、量块、标准信号发生器、线纹尺、标准电阻、单刻度量杯、多刻度玻璃量具、电阻箱、可变电容、尺子、量杯、钢卷尺、钢直尺、注射器、铁路计量油罐车、标准硬度块、标准物质等。[/size][size=15px][/size][b][/b][align=center][size=14px][color=#888888]END[/color][/size][/align][align=center][size=14px][color=#888888]本文刊发于《中国计量》杂志2020年第7期[/color][/size][/align][align=center][size=14px][color=#888888]作者:新疆阿克苏地区计量检定所 刘凯 刘晓红[/color][/size][/align]

  • 【分享】电子式气动量仪的优点

    AEC-100电子式气动量仪是以微处理器为基础的。它有一个三色光柱用于定性显示,它的测量立柱由101个三色LED组成,可以根据设置的公差带、预警公差带自动变色,显示方便,便于监视。每个LED对应的分辨率有0.1μm、0.2μm、0.5μm、1μm四种档位可供选择。同时它还有一个8位数显的数字显示框,同时显示测量结果的绝对数值,用于定量显示。 不过气动量仪由于其本身具备很多优点,所以在机械制造行业得到了广泛的应用。 其优点如下:  1、电子式气动量仪测量项目多,如长度、形状和位置误差等,特别对某些用机械量具和量仪难以解决的测量,例如:测深孔内径、小孔内径、窄槽宽度等,用气动测量比较容易实现。  2、量仪的放大倍数较高,人为误差较小,不会影响测量精度;工作时无机械摩擦,所以没有回程误差。  3、电子式气动量仪操作方法简单,读数容易,能够进行连续测量,很容易看出各尺寸是否合格。  4、实现测量头与被测表面不直接接触,减少测量力对测量结果的影响,同时避免划伤被测件表面,对薄壁零件和软金属零件的测量尤为适用。  5、由于非接触测量,测量头可以减少磨损,延长使用期限。气动量仪主体和测量头之间采用软管连接,可实现远距离测量。  6、电子式气动量仪结构简单,工作可靠,调整、使用和维修都十分方便。

  • 各种光谱测量仪要如何区别

    目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别??? 现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。

  • 二次元影像测量仪在工作中的广泛应用性

    二次元影像测量仪在工业生产中,有着广泛的应用,对很多行业的工件都可以进行测量,同时,在影像测量仪的测量中,也有着许多的测量方式,通过这些方式,影像测量仪才能顺利的完成测量的任务。 以下介绍精密检测仪器二次元影像测量仪的两个测量方式,他们分别是轮廓测量和表面测量。  1、轮廓测量  顾名思义就是影像测量仪测量工件的轮廓边缘,一般采用底部的轮廓光源,需要时也可加表面光做辅助照明,让被测边线更加清晰,有利于测量。  2、表面测量  表面测量可以说是二次元影像测量仪的主要功能,凡是能看到的物体表面图形尺寸,在表面光源照明下,影像测量仪几乎全部能测量,电路板上的线路铜箔尺寸、IC电路等,当被测物件是黑色塑料、橡胶时,影像测量仪也能轻易测量尺寸。http://www.zhengyekeji.net/include/upload/ckeditor/images/1319709450197084656155029.jpg  二次元影像测量仪(又名影像式测绘仪)是建立在CCD数位影像的基础上,依托于计算机屏幕测量技术和空间几何运算的强大软件能力而产生的。计算机在安装上专用控制与图形测量软件后,变成了具有软件灵魂的测量大脑,是整个PCB实验室解决方案设备的主体。

  • 全自动影像测量仪的技术

    全自动影像测量仪是在数字化影像测量仪基础上发展起来的人工智能型现代光学非接触测量仪器,其承续了数字化仪器优异的运动精度与运动操控性能,融合机器视觉软件的设计灵性,属于当今最前沿的光学尺寸检测设备。全自动影像测量仪能够便捷而快速进行三维坐标测量与SPC结果分类,满足现代制造业对尺寸检测日益突出的要求:更高速、更便捷、更精准的测量需要,解决制造业发展中的又一个瓶颈技术。全自动影像测量仪基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有“点哪走哪”自动测量、CNC走位自动测量、自动学习批量测量,影像地图目标指引,全视场鹰眼放大等优异功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰造影下辅助测高需要(亦可加入触点测头完成坐标测高)。支持空间坐标旋转的优异软件性能,可在工件随意放置的情况下进行批量测量,亦可使用夹具进行大批量扫描测量与SPC 结果分类。全自动影像测量仪是影像测量技术的高级阶段,具有高度智能化与自动化特点。其优异的软硬件性能让坐标尺寸测量变得便捷而惬意,拥有基于机器视觉与过程控制的自动学习功能,依托数字化仪器高速而精准的微米级走位,可将测量过程的路径,对焦、选点、功能切换、人工修正、灯光匹配等操作过程自学并记忆。全自动影像测量仪可以轻松学会操作员的所有实操过程,结合其自动对焦和区域搜寻、目标锁定、边缘提取、理匹选点的模糊运算实现人工智能,可自动修正由工件差异和走位差别导致的偏移实现精确选点,具有高精度重复性。从而使操作人员从疲劳的精确目视对位,频繁选点、重复走位、功能切换等单调操作和日益繁重的待测任务中解脱出来,成百倍地提高工件批测效率,满足工业抽检与大批量检测需要。最新推出的全自动影像测量仪具有人工测量、CNC扫描测量、自动学习测量三种方式,并可将三种方式的模块叠加进行复合测量。可扫描生成鸟瞰影像地图,实现“点哪走哪”的全屏目标牵引,测量结果生成图形与影像地图图影同步,可点击图形自动回位、全屏鹰眼放大。可对任意被测尺寸通过标件实测修正造影成像误差,从而提高关键数据的批测精度。全自动影像测量仪人机界面友好,支持多重选择和学习修正,其优异的高速测量可达1500mm/min,重合精度: ±2μm,线性精度:±(3+L/150)μm。优秀性能使其在各种精密电子、晶圆科技、刀具、塑胶、精密零件、弹簧、冲压件、接插件、模具、军工、二维抄数、绘图、工程开发、五金塑胶、PCB板、导电橡胶、粉末冶金、螺丝、钟表零件、手机、医药工业、光纤器件、汽车工程、航天航空、高等院校、科研院所等领域具有广泛运用空间。SK全自动影像测量仪承续了SK数字化影像仪的以下技术特点:集CNC快速测量、CAD逆向测绘、图影管理于一身。运用了现代光学、计算机屏幕测量、空间几何运算和精密运动控制等前沿技术,是集光、机、电、软件为一体的高度智能化设备。具有三轴数控、点哪走哪、图影同步、实时校验、误差修正、工件随意放置、CNC快速测量等基础性能。具有极高的数字化程度,全部操作均由鼠标完成。柔和的三轴微米数控能力,实现“点哪走哪”、同步读数、人机合一;良好的人机界面将烦琐的操作过程有机集成,摆脱手摇时代的机械局限;实时非线性误差修正使其突破了传统设备中存在的精度与速度极限;便捷的CNC快速测量,通过样品实测、图纸计算、CNC 数据导入等方式建立CNC坐标数据,由仪器自动走向每一个目标点进行测量操作,数十倍于手摇式测量设备的工作能力下人员轻松高效。具有优异的高速性能,基于独有的高速位移传感技术,其±2um测量精度下的速度可达500mm/min,其工作效率是工具手摇式测量仪器的数十倍以上。位移驱动为0.1μm,位移解析度为0.4μm,重合精度达±2μm,线性精度±(3+L/150)μm,这些参数均优于传统设备和同类产品。具有空间几何运算能力,可以利用软件技术完成空间坐标系旋转和多坐标系之间的复杂换算,被测工件可随意放置,随意建立坐标原点和基准方向并得到测量值,同时在屏幕上呈现出标记,直观地看出坐标方向和测量点,使最为常见的基准测量变得十分简便而直观,也使分度盘这个机械时代的产物与摇柄一起成为历史。具有支持个性化的软件平台,具有图像保存、编辑、处理等图影管理功能。全新的测绘操作,可轻松描绘或导入CAD图形。还可根据客户需求扩充测量模块,从而满足个性化特点和综合测量的快速需要,使测量设备具有量身定做的软件灵魂。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制