导线分流器

仪器信息网导线分流器专题为您提供2024年最新导线分流器价格报价、厂家品牌的相关信息, 包括导线分流器参数、型号等,不管是国产,还是进口品牌的导线分流器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导线分流器相关的耗材配件、试剂标物,还有导线分流器相关的最新资讯、资料,以及导线分流器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

导线分流器相关的厂商

  • 浙江西崎电气科技有限公司专业生产、销售各类:软启动柜,XMTA温控仪,FL-2分流器,热电偶,热电阻,C20-H变频器,智能仪表,ERS1软启动,固态继电器等,是国内专业生产电气产品的大型企业公司之一,地处风景秀丽的国家级风景区--雁荡山之畔、凤凰景区之内的乐清市凤凰工业区,距“中国电器城”仅3公里,紧倚“104国道”与“甬台温高速公路”,离“甬台温铁路乐清火车站”仅一步之遥,交通十分便利。
    留言咨询
  • 四方光电(武汉)仪器有限公司为四方光电股份有限公司(股票代码688665)的全资子公司,简称:四方仪器,前身为成立于2010年的四方仪器自控系统有限公司,是一家专业提供气体成分及流量测量方案的高新技术企业,服务于工业过程监测、环境监测、汽车/发动机排放检测、智慧计量等领域。基于四方光电核心气体传感技术平台的优势,四方仪器开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业,在节能减排中发挥重要作用。四方仪器自主研发生产的便携式红外沼气分析仪、微流红外烟气分析仪、红外煤气分析仪曾相继获得国家重点新产品证书,红外煤气分析仪获得中国仪器仪表学会优秀产品奖荣誉,其核心技术获得湖北省发明专利金奖。四方仪器“微流红外烟气传感器研究及产业化”获得工信部2019年工业强基工程重点“产品、工艺”一条龙应用计划示范项目,公司获得“一条龙”应用计划示范企业。四方仪器凭借长期的技术沉淀、严格的质量体系及国际化视野,产品已出口多个国家和地区,正在朝着气体分析仪器仪表高端增值应用领域的国际品牌迈进。
    留言咨询
  • 山西省侯马经济开发区虹瑞仪器仪表有限公司是一家集代理、开发、设计、销售服务为一体的专业化仪器仪表公司,公司代理国内外知名厂商,其中包括:“重庆川仪”“西仪集团”“天康集团”“中环天仪”“远东仪表”“普析通用”“东西分析”“北京吉天”“北京纳克”“江苏天瑞”“福禄克”“美国哈希”“英思科”“安捷伦”“布鲁克”“ABB”“德国科隆”“岛津”“罗斯蒙特”“美国雷泰”“欧姆龙”“西门子”“工装”等厂商。公司主要销售分析仪器、检测仪器、实验室仪器、测量仪器、行业专用仪器、测绘仪器、示波器、压力仪表、流量仪表、电能表、水表、燃气表、物位传感器、压力开关、热电阻、热电偶、调节阀、数显仪表、压力变送器、温度变送器、液位变送器、气象仪表等产品。仪表配件:补偿导线、补偿电缆、仪表电缆、电线电缆、控制电缆防火电缆等。 公司以国际化的视野,专业化的服务,本土化的人才造就一个旭日东升,欣欣向荣的新型公司,为创造世界知品名牌而努力。
    留言咨询

导线分流器相关的仪器

  • 仪器简介:纳升(Nl)进样的NanoLC--适用于与质谱联机的液相色谱 随着现代分析水平的发展,对分析仪器的要求越来越向着微量、准确、快速发展,对仪器的检测手段及结果的要求越来越严格,对液相色谱来说,其检测器从紫外、视差、荧光发展到二极管阵列,而与质谱联机则是目前的时尚。色-质联机集高效分离、多组分同时定性和定量为一体,是分析混合物(主要是有机物)最为有效的工具,但由于液/质衔接的技术较为复杂,主要是高压液相和低压气相之间的矛盾,随着窄孔柱、毛细管柱等技术的出现,LC流量加给MS的负担有所减轻,但对于常规的液相,如何去掉液相的流动相仍然是液/质的主要问题。赛默飞向您介绍两种最新的技术,可以轻松地解决您的液相与质谱的联机问题。1、 如果您的实验室还没有液相色谱,请考虑戴安公司的UltMateTM技术。UltMate是一台集微量、毛细和纳升(Micro、Capillary and Nano)为一体的具有GLP功能的液相色谱,由微量泵、Famos自动进样器、柱箱(可选温控式)、带扫描能力的高灵敏度紫外检测器组成。2、 如果您的实验室已有了常规的液相色谱,希望与质谱联机使用,可选用戴安公司的LC/MS TOOLS,包括:①各种分流器,有用于Micro、Capillary 和 Nano HPLC的柱前分流器,有用于直接与MS、NMR和ELSD等检测器连接使用的柱后分流器。②具有双波长、Z型毛细流通池的高灵敏度UV/VIS检测器。③适用于Micro、Capillary 和 Nano HPLC的U型或Z型流通池,可用在多种标准HPLC紫外检测器上,④升级套件,可将标准流量的HPLC升级至Micro、Capillary 和 Nano HPLC,套件包括分流器、进样环、进样器、微孔柱、U-Z型流通池部分应用文献目录LC Packings毛细管/纳升级液相技术AN01LCP 用毛细管液相/质谱/质谱对药物代谢产物的快速确定AN02LCP 用超高流速的毛细管液相/质谱/质谱对血浆中的药物进行直接分析主要特点:1.提供各种惰性流路,试用于敏感生物样品分析2.是HTS理想设备,并适用于各种质谱二级质谱3.自动在线进行样品前处理脱气、消解、浓缩等4.适用于药物分析基因分析
    留言咨询
  • 德国palas FS 3三通分流器Palas® 分流器FS 3可以将气溶胶流量分成四个(相等)部分。Palas® 分流器可用于50 l/min的zui大入口体积流量。德国palas FS 3三通分流器:优点■气溶胶流量可靠和可再现的分流■易于操作和清洁德国palas FS 3三通分流器:应用领域■气溶胶流量可靠和可再现的分流■易于操作和清洁德国palas FS 3三通分流器:规格参数外型尺寸40 • 80 mm (? • L)重量约150克材料导电,抗腐蚀钢材直径10 mm (入口外径), 7 mm (入口内径), 8 mm (出口外径), 6 mm (出口内径)
    留言咨询
  • 德国palas FS 4 4-向分流器Palas® 分流器FS 4可以将气溶胶流量分成四个(相等)部分。Palas® 分流器可用于50 l/min的zui大入口体积流量。德国palas FS 4 4-向分流器:优点■可靠和可重现的颗粒流量分配■易于安装和清洁■降低您的运营成本!德国palas FS 4 4-向分流器:应用领域■具有不同测量和采样设备的实验设置■颗粒计数器和颗粒光谱仪的校准■测量系统的比较德国palas FS 4 4-向分流器:规格参数外型尺寸40 • 80 mm (? • L)重量约150克材料导电,抗腐蚀钢材直径10 mm (入口外径), 7 mm (入口内径), 8 mm (出口外径), 6 mm (出口内径)
    留言咨询

导线分流器相关的资讯

  • PerkinElmer 推出S-Swafer 分流器套件
    珀金埃尔默的 Swafer&trade 平台是一种微通道芯片技术,不仅可以为 Clarus® 500 及 600 气相色谱仪用户提供更多的应用灵活性,而且可以提供更为丰富的样品信息、提高灵敏度、降低维护成本以及提高样品通量。 S-Swafer 是一种灵活的分流设备,设计用于在一系列检测器或色谱柱间实现样品流分离。可编程的压力调节器提高了气体进入分流器出口时的流速,从而使更高的分流比能够得以应用。 可以利用不同的方式配置 S-Swafer 以提供各种附加功能: 最多可在四个检测器之间进行色谱柱流出物分流 &ndash 适用于在多个检测器上的色谱监测 色谱柱间的进口分流 &ndash 允许在多个色谱柱上进行不同分流 样品反吹 &ndash 用于除去较重的样品残留物/li 色谱柱隔离 &ndash 允许在不关闭气相色谱仪的情况下维护进样口 质谱仪 (MS) 隔离 &ndash 可以在质谱检测器仍处于真空状态时更换气相色谱柱 极性调谐 &ndash 允许在进行色谱测量时调节色谱柱的选择性来优化困难的分离过程 适用于新型 Clarus 气相色谱仪的 S-Swafer 分流器套件配有可编程气路控制 (PPC),及以下配件: S-Swafer 分流器、所有所需的安装硬件及用户指南。 详细信息请浏览:http://las.perkinelmer.com.cn/Catalog/ProductInfoPage.htm?ProductID=N6520272
  • 天津市民研制出一种废水自动分流器(图)
    天津市民艾先生研制了一种废水自动分流器,通过探头对水质进行物理探测后自动将生活废水中可再利用的水分流出来存储再利用,起到节水的目的。目前该产品已获得实用新型专利。
  • 2nm以下的芯片导线选择
    将异质结构导入先进的芯片导线(interconnect)深具发展潜力,不同导体材料之间的接口更扮演了关键角色,但目前在整合技术上仍面临了一些挑战。因此IMEC在2021年IEEE国际芯片导线技术会议(International Interconnect Technology Conference)上提出了几种可用来延续后段制程微缩的异质整合方法。推进芯片的后段制程技术芯片开发商现在正持续推动前段制程的晶体管发展,但同时,后段制程的内连导线技术却面临了开发挑战,难以跟进。后段制程的处理步骤依照不同的金属层进行安排,包含局部导线层、中间导线层、半全局和全局导线层,这些金属层之间透过通孔(via)结构互连,通孔则以金属填充。然而,每一代新制程技术所面临的布线拥塞和讯号严重延迟的问题变得越来越棘手,迫使芯片开发商必须为导线制程着想,考虑全新的整合方案和材料。就现阶段进入量产的最先进5纳米制程来说,在关键的局部导线层,金属导线间距最短为28纳米。铜双镶嵌结构依然是导线制程中最费工耗时的步骤,但随着未来金属导线间距将微缩至21纳米以下,芯片开发商可能会逐渐淡出主流技术市场。像是IMEC就提出了一些替代的整合方案,包含通孔混合异质金属布线、半镶嵌制程,以及信道高度的零通孔结构,为往后的技术节点做好准备。同时,其他质量因素(figure of merit)较高的导体材料也被纳入研究范围,用于前述的那些先进制程。这里说的质量因素,指的是块材电阻(bulk resistivity)与金属内部载子平均自由路径的乘积。目前备受瞩目的材料包含钴(Co)、钌(Ru)、钨(W),还有铝镍合金(AlNi)或钌钒合金(RuV3)等有序二元介金属化合物。除此之外,研究人员也在密切关注石墨烯(graphene)的发展潜力,因为它具备优异的材料特性,现在正逐步进军(生物)感测、储能、光伏、光电和CMOS微缩等市场焦点应用。为什么选用石墨烯?近年来,石墨烯一直是芯片导线应用的研究重点,因为它具备发挥多种功能的发展潜力。例如,它常被当作金属材料的氧化阻障层和超薄扩散阻障层。研究人员也在评估利用多层石墨烯导线或纳米带(nanoribbon)当作替代导体的可行性。石墨烯会在导线应用备受瞩目完全在意料之中,它具备高达200,000cm2V-1s-1的本质载子迁移率,还有108A/cm2的最高载流量。而且石墨烯的导热性佳,抗迁移韧性也具备竞争优势,还能制造出单层原子的结构,减薄组件层厚度,进而减缓RC延迟的问题。图一 : 碳基材料与其他导线材料的特性比较表。碳基材料包含纳米碳管(carbon nanotube;CNT)、单层石墨烯(single layer graphene;SLG)和寡层石墨烯(few layer graphene;FLG);其他受到关注的金属材料则有钨、铜和钌。尽管石墨烯具备这些吸睛的材料特性,但却有一大缺点:它不能用来当作局部导线层,因为本身的载流子数量不够。载流子不足会严重折损导电性,但导电性却是导线性能的关键指针,与迁移率和载子浓度成比例。所以经过建模证实,如果要用于(局部)导线层,就需要在例如铜等金属混杂好几层石墨烯,至于层数多寡,则必须考虑对电阻和电容的整体影响后做出取舍。幸运的是,我们可以利用一些方法来调变石墨烯的传导性。有关「石墨烯纳米带」的研究—也就是窄带状图形化的石墨烯层,因此蔚为风潮。另一个改良方法则从石墨烯层和下方组件层之间的角方向着手。最后,我们还能透过掺杂(doping)来增强石墨烯的导电性,如此一来,石墨烯就有更多的电子和电洞来带动电流。掺杂能以几种方式进行,例如金属诱发技术利用石墨烯和铜、钌等金属的直接接触来产生结晶。这些混合了金属和石墨烯的掺杂方法可以整合两种材料各自的最大优势:金属的高载子密度与石墨烯的高迁移率。本文探讨在2纳米以下的芯片导线中采用金属/石墨烯混合结构的可行性。目前有两种结构正在进行研究,包括具备石墨烯覆盖层的金属组件,以及具备金属覆盖层的石墨烯组件。本研究锁定钌金属,业界近期逐渐把它当作取代铜的金属布线材料,但这里提到的概念未来应该可以延伸到其他的导线金属材料上。采用钌覆盖层的石墨烯本研究中,IMEC团队将化学气相沉积(CVD)的多层石墨烯薄膜,转移到物理气相沉积(PVD)的钌金属薄膜(通常是5纳米)上面,最终制成混合了钌和石墨烯的组件结构。结果发现,石墨烯在转移之后可以完整附着在大面积的钌金属薄膜上。在导线应用,石墨烯的金属诱发掺杂技术获得了市场关注,预计会让石墨烯在与钌接触的接口产生结晶。为了了解并控制掺杂的结果,我们针对钌与石墨烯接触接口的电荷转移展开系统性研究。结果有两大发现:首先,研究人员发现钌在与石墨烯完成封装之后,薄膜电阻(sheet resistance)平均下降了15%。第二,他们发现石墨烯的费米能阶下降,价带比纯石墨烯低了约0.5eV,相当于1.9E13cm-2的电洞浓度。这项发现指出,在界面发生的金属诱发掺杂现象,让石墨烯在作为钌金属的覆盖层时,会变成P型。图二 : 实验测量纯钌金属(黑色)与具备石墨烯覆盖层的钌组件(红色),在不同厚度的钌薄膜基板上的薄膜电阻值。经过本研究就可以确定钌在与石墨烯混合封装后,确实可以增加其作为导线的电气性能。不过,覆盖层内的导电机制究竟如何运作,还需要更多基础研究来提供见解。不论是将钌当作主要导体,辅以石墨烯来抑制金属内的散射机制,进而降低电阻,或是让这两种导体共同运作,其中,石墨烯会因为电荷迁移而具备比纯石墨烯还要高的导电性,这些混合方法现在都还在透过建立模型来取得更深入的了解。此外,值得注意的是,钌金属导线在与石墨烯封装后,对温度变化的敏感度也降低了,这可能源于石墨烯的高导热性,散热机制因为多了额外或替代的传导路径而变得更有效率。这项发现也在开发未来的导线应用时引起关注,因为高度微缩的IC布线本身就会产生热能,其周围的介电组件散热能力又不足,导致芯片内部导线的热可靠度(thermal reliability)下降。整体而言研究人员下了个结论,那就是采用石墨烯覆盖层的混合金属结构提供了一套解决导线RC延迟的解决办法。IMEC预期,这项技术未来能导入1纳米以下技术节点的后段制程。金属与石墨烯混合的夹层结构长远来看,IMEC团队为了进一步提升导电性,目前正在研究石墨烯与金属相互交替的堆栈结构。以类似三明治的方式堆栈出金属/石墨烯/金属… 的夹层结构时,就会有第二个、第三个… 的不同接口,每个都发挥同等重要的作用,都是在石墨烯上方沉积金属层时的接触接口。就像先前提到的研究结果,石墨烯和金属在接触接口自产产生的交互作用,能够改变石墨烯的物理特性,而且电子能带结构会因接口上的电荷分布而产生明显变化。不过,设计石墨烯和金属接口是一项巨大挑战。通常(经过转移的)石墨烯层含有大量的非定向晶粒,这些晶界会充当线缺陷和上层表面金属沉积的晶粒成核中心位置。运用PVD或原子层沉积(ALD)等传统方法时,要让金属均匀覆盖在整片石墨烯基面上会有困难。而且石墨烯在转移后表面会受到杂质污染,所以需要采用合适的清洗方法,才不会损及石墨烯层。在一项实验室研究中,IMEC使用了氢气电浆(氩气/氢气顺流式电浆)来清洗石墨烯表面,然后利用电子束表面蒸镀的方式沉积金属(例如钌)。接着研究这些制程对石墨烯和钌堆栈的导电度产生了哪些影响。研究人员发现,石墨烯在接触氢气电浆后会产生N型掺杂,载流子浓度也会上升。不幸的是,单层石墨烯还是要面临电浆诱发的缺陷问题。在这些情况下,采用(经电浆清洗的)钌覆盖层的石墨烯组件,整体导电性提升了18%。这些初次研究成果相当振奋人心,预计未来还能透过调整氢气电浆的化学特性和清洗条件,以及增加交替层数,实现进一步的改良。图三 : (图左)具备钌覆盖层并以电浆清洗的寡层石墨烯,此为电子穿透显微镜(TEM)影像;(图右)双层石墨烯组件的转移特性曲线,显示了经电浆清洗且转移后的石墨烯,在清洗步骤后开启电流时的变化,以及其电荷中性点的变动。实线和虚线分别代表从63个组件测得的转移曲线上限和下限。迈向产业应用上述研究成果展示了金属/石墨烯混合结构用于先进芯片导线的性能潜力,不过在导入12吋晶圆厂以前,这些导线制程都必须先克服在整合方面的挑战。举例来说,在本研究探讨石墨烯转移时,比较“精练”的沉积方法是让石墨烯直接成长在金属模板上,但是高质量石墨烯的成长温度高达900℃~1000℃,所以石墨烯生成不能用在一般导线会选用的金属材料上。已有研究展示在较低温的环境下进行沉积,但会导致缺陷和石墨烯质量的下降。本研究采用的另一种替代方法牵涉到高质量石墨烯的移转,晶粒生成会先在白金箔上以CVD制程进行。这种转移方法在热预算受限时可能派得上用场。IMEC先前展示过如何在12吋晶圆上完成高质量石墨烯的分层和转移,但这些步骤可能会因为下方金属层表面平坦化的程度不同而面临考验。此外,石墨烯的移转势必增加好几道额外的处理步骤,还必须优化均匀度和制程控制。为了将这些石墨烯和金属的混合架构导入产业应用,未来研究还必须加强对石墨烯层的缺陷和晶粒取向控制。结语对1纳米以下的节点来说,石墨烯和金属的混合结构有望成功延续后段制程的技术进展。本文探讨两种可能的混合架构,其中,石墨烯和金属之间的接口在导线整体的电性表现上都扮演了要角。尽管具备石墨烯覆盖层的金属导线技术较为成熟,但长远来看,交替层堆栈结构可能会被逐渐扩大采用。

导线分流器相关的方案

导线分流器相关的资料

导线分流器相关的试剂

导线分流器相关的论坛

  • 【讨论】分流器的作用及应用范围

    分流器是根据直流电流通过电阻时在电阻两端产生电压的原理制成。   分流器广泛用于扩大仪表测量电流范围,有固定式定值分流器和精密合金电阻器,均可用于通讯系统、电子整机、自动化控制的电源等回路作限流,均流取样检测。   用于直流电流测量的分流器有插槽式和非插槽式。 分流器有锰镍铜合金电阻棒和铜带,并镀有镍层。其额定压降是60mV,但也可被用作75、100、120、150及300 mV。   插槽式分流器额定电流有以下几种:5 A, 10 A, 15 A, 20 A 和 25 A   非插槽式分流器的额定电流从30 A 到 15 kA 标准间隔均有。  分流器是测量直流电流用的;   分流器实际就是一个阻值很小的电阻,当有直流电流通过时,产生压降,供直流电流表显示;   直流电流表实际是电压表,满度值75mV;   直流电流表和分流器是配套使用的;   比如:100A电流表配套的分流器阻值为0.00075欧;   即100A*0.00075欧=75mV;   50A电流表配套的分流器阻值为0.0015欧;   50A*0.0015欧=75mV。  要测量一个很大的直流电流,例如几十安培,甚至更大,几百安培,我们没有那么大量程的电流表进行电流的测量,怎么办?这就要采用分流器.分流器是一个可以通过大电流的精确电阻,当电流流过分流器时,在它的两端就会出现一个毫伏级的电压,于是我们用毫伏电压表来测量这个电压,再将这个电压换算成电流.就完成了大电流的测量.  电流表有多种不同规格,但是实际表头却是标准的毫伏电压表。比如是一种满刻度为75mv的电压表。 那么用这块电压表测量比如20A的电流,就需要给它配一个在流过20A电流时候产生75mv电压降的分流电阻,也称75mv分流器。   分流器就是一个能够通过极大电流的电阻一般常用的15A或20A以及35A的电流表都需要分流器.分流器的阻抗=表头标志满度电压/表头满度电流.比如20A的电流表的分流器阻值=75mv*10-3/20A=0.00375Ω ,阻抗恒定后根据欧姆定律U=IR,电流与电压成正比.电流为线形电压也呈线形.所以我们就可以用一个满度为75mv的电压表显示当前电流.因此,我们使用的电流表实际是一块电压表.  交流大电流怎么测量呢?采用电流互感器,将大电流以一定变比变成5安培以下的小电流,于是用小量程交流电流表就可测量大电流了.只是测得的电流还要乘那个变比.  就是一根短的导体,可以是各种金属或合金的,也连接端子;其直流电阻是严格调好的;串接在直流电路里,直流电流过分流器,分流器两端产生毫伏级直流电压信号,使并接在该分流器两端的计量表指针摆动,该读数就是该直流电路里的电流值。所谓分流,即分一小的电流去推动表指示,该小电流(mA)与大回路里的电流(1A-几十A)比例越小,电流表指示读数的线性就越好,也更精确。  这是电工电路的常用产品,防雷有分流措施。

  • 数字多用表的分流器的型号

    我们有一台数字多用表,是keithley_2002型号的,但是其测量电流只能到2A,所以想买一款与之匹配的分流器,使其测量电流能达到50安培左右。求各为给个建议,买哪一个厂牌型号的分流器才可以?再次多谢各位!

  • 【原创】分流器的管理与校准

    一、问题的提出直流大电流的准确计量在电化学、电冶金行业生产管理中占有重要的地位。直流大电流测量不准确的直接后果是生产工艺技术条件不能优化,从而降低了电能利用率和经济效益,严重制约企业管理、技术进步。同时,直流大电流测量的不准确对产品质量亦有着直接影响,如在电镀中镀层的厚度与电流的大小及通电时间成正比,当不能准确测量电流时其镀层厚度也就无法保证,保证产品质量也就成了一句空话。在工业生产和科学实验中,通常用分流器及配套的二次仪表来测量电路中的大电流。对直流大电流测量设备的校准是通过校准(检定)分流器和二次仪表来实现的。分流器是测量系统的重要部件,在我公司主要应用于产品试验设备及热处理车间,用于10A以上直流大电流的测量。目前国家尚无分流器的校准规范,致使分流器的校准工作无法进行。本课题拟针对分流器的校准进行研究,研究其校准方法,使分流器的校准做到有法可依,有据可查,使其校准工作统一化、文件化,有力保障航空军品性能测试的可靠性、统一性及一致性。同时,如果二次仪表的选择、校准或使用不当将对测量的准确性产生较大的影响,而且这种影响通常是隐性的,是一种方法误差。为此,有必要对分流器的管理与校准进行研究。考虑到此类大电流的准确度较低,一般均在5级以下,因此对0.5级以下分流器的校准是本课题研究的重点。二、分流器的校准★方案设想分流器一般做成四端钮电阻形式(两个电流端、两个电位端)。当有电流流过分流器时,在其电位端上会产生相应的电动势,通过测量电动势的大小来确定流过电路中的电流大小。因此,可利用欧姆定律测试分流器阻值与其理论值进行比较,确定其冷态下是否合格,研究分流器冷态及热态下电阻值的变化,绘制其变化曲线。为确定其校准方法的可行性,须对以下项目进行试验,并对试验结果进行分析:1.测量重复性试验,要求: ……………………………………(1)式中:s——测量重复性;δ——分流器允许误差极限。2.短期稳定性试验,要求: ……………………………………(2)式中:S——短期稳定性。3.长期复现性试验,要求: …………………………………(3)式中:Sm——长期复现性。4.温度影响试验,要求: ……………………………………(4)式中:γT——温度影响。★方案实施及试验结果分析校准不同等级的分流器选用的测量标准不同,现以校准0.5级,300A/75mV的分流器为例加以分析。1.测量重复性试验室温条件下,在分流器的两电流端通以电流I0(用XF30-I直流多功能校准仪作为电流源提供电流,取I0=30A),1分钟后在两电位端检测其电动势V0(用HP34420A数字多用表检测)。重复测量10次,测量数据见表1。表1 测量重复性试验数据次 数12345678910电压测量/mV7.4907.4927.4917.5007.4937.4937.4877.4927.4947.495计算电阻/uΩ247.67249.73249.70250.00249.77249.77249.57249.73249.80249.83用贝塞尔公式计算测量重复性,得: 结论:测量重复性满足试验预期要求。2.短期稳定性试验室温条件下,在分流器的两电流端通以电流I0(用XF30-I直流多功能校准仪作为电流源提供电流,取I0=30A),每隔1分钟读取两电位端的电动势V0(用HP34420A数字多用表检测)。记录30分钟内检测的电动势的最大与最小值,数据见表2。用极差法计算短期稳定性,得: 结论:短期稳定性满足试验预期要求。表2 短期稳定性试验数据极 值最大值最小值电压测量/mV7.5077.493计算电阻/uΩ250.23249.773.长期复现性试验每隔一段时间(一个月以上),在室温条件下,在分流器的两电流端通以电流I0(用XF30-I直流多功能校准仪作为电流源提供电流,取I0=30A),1分钟后在两电位端检测其电动势V0(用HP34420A数字多用表检测),重复测量10次,测量数据见表3。表3 长期复现性试验数据测量时间测量次数2007051520070615200707182007082117.4907.4947.4937.49927.4927.4967.4977.48437.4917.4987.4967.49147.5007.4977.4957.49157.4937.4967.4977.49667.4937.4967.4977.49577.4877.4957.4967.49587.4927.4947.4977.49597.4947.4947.4967.493107.4957.4917.4927.496电压平均值 /mV7.4937.4957.4967.494计算电阻 /uΩ249.76249.84249.85249.78按式(5)计算电压(测量)平均值 ,按式(6)计算电阻值 ,计算结果填入表3中。 ………………………………………(5) ………………………………………(6)用贝塞尔公式计算长期复现性,得: 结论:长期复现性满足试验预期要求。

导线分流器相关的耗材

  • 空气分流器 | 22076
    产品特点:空气分流器Air Diverter订货号:22076产品名称:空气分流器 (Air Diverter)类似:Agilent 19247-60510,G1530-80650仪器:适用于Agilent 5890/6890/7890 GC用于安捷伦GC● 将GC废气热量从实验台上排放出去。● 达到或超过原厂的性能。● 易于安装 - 无需工具。● 和4英寸柔性金属干燥器软管兼容。
  • 石英压合接头/分流器
    订货信息: 石英压合接头/分流器 说明 单位 部件号 石英柱接头,0.1至0.53mm 5/包 5181-3395 脱活石英柱接头 5/包 5181-3396 石英分流器   5181-3397 石英脱活分流器   5181-3398
  • MS/FID分流器
    MS/FID分流器 为了分流MS和FID检测器的流程特别设计; 极低的死体积; 惰性玻璃管(GLT)、T型; 可以用于所有的毛细管柱,0.1mm内径柱除外; 1:1分流比; 提供整套的限流器、螺母、压环、支架和预切熔融石英管。 描述 货号 MS/FID分流器 - 包括一套限流器,SilTite金属压环和石英管 123710 替换SilTite金属压环 &ndash 0.4 mm内径(每包装10个) 073220 替换SilTite金属压环 &ndash 0.5 mm内径(每包装10个) 073221 替换SilTite金属压环 &ndash 0.8 mm内径(每包装10个) 073222
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制