当前位置: 仪器信息网 > 行业主题 > >

道式固取仪

仪器信息网道式固取仪专题为您提供2024年最新道式固取仪价格报价、厂家品牌的相关信息, 包括道式固取仪参数、型号等,不管是国产,还是进口品牌的道式固取仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合道式固取仪相关的耗材配件、试剂标物,还有道式固取仪相关的最新资讯、资料,以及道式固取仪相关的解决方案。

道式固取仪相关的资讯

  • 美华科技八通道固相萃取仪亮相上海Analytica展
    10月16日至18日,2012慕尼黑分析生化展在上海新国际展览中心举行,美华科技/美森自动化在会上展出了MULTI-SPE A208八通道全自动固相萃取仪及MULTI-SPE M08正压型多功能固相萃取装置。MULTI-SPE A208全自动固相萃取仪是该展会上唯一一款八通道自动固相萃取仪,其通量高及高度智能化的特点引起了许多参观者的高度兴趣。MULTI-SPE A208在仪器硬件及软件的设计上更加贴近用户的实际需求。 而MULTI-SPE M08则以其操作简单,适用范围而赢得包括许多国外参观者的注意。与真空负压型固相萃取装置比较,正压型固相萃取装置具有压力均衡稳定,易于控制流速的特点。而MULTI-SPE M08不但可以进行常规的SPE操作,而且还可以完成大体积样品一次性载入、双柱萃取、以及大体积洗脱组份收集的特点。另外,该仪器还可以满足不同用户的特殊应用,使得其受到许多参观者的好评。展会期间,公司CEO,样品前处理专家陈小华博士就客户提出的固相萃取及其他样品前处理问题给予了解答和建议,为客户解决他们在样品前处理遇到的实际问题。
  • 相约青岛-“固相萃取技术及在食品安全检测中的应用”研讨会
    2011中国(青岛)国际食品安全检测技术及仪器设备展览会将于2011年8月11-13日在山东青岛国际会展中心盛大开幕。届时将展示近年来我国食品行业在科技、安全、流通等方面的发展成果,加快食品业安全化、现代化、国际化发展进程,树立安全食品的品牌形象,促使行业健康有序发展。 迪马科技作为实验室色谱耗材知名的制造、供应商将出席此次展会(展位号F10),秉承着始终致力于为食品安全检测提供完善的技术支持和全面的产品服务的理念,届时将为您展示HPLC色谱柱、GC毛细管柱、样品前处理 SPE 小柱、高纯化学品、标准品等色谱耗材及其解决方案。 与此同时迪马科技将于8月11日(星期四 ) 上午10:30-11:30在青岛国际会展中心3103会议室举办《Dikma固相萃取技术及在食品安全检测中的应用》技术交流会。迪马科技应用技术工程师将现场介绍固相萃取技术的原理,作用力,应用领域;固相萃取柱的选择及Dikma固相萃取技术在农残、兽残、食品添加剂、非法添加物等食品安全检测分析中的应用案例,并就固相萃取技术在使用过程中的问题与您现场进行交流,期望给您的实际分析工作带来帮助。 迪马科技在此诚挚地邀请您的光临! 技术研讨会日程安排及参会回执.doc关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 青岛博士夫妻攻克固相微萃取 农残检测等打破欧美20年垄断
    一根根几厘米长的探针,一根根不起眼的小黑棒,不仅打破了外国长达20年的技术垄断,还能应用于环境、食安检测中。青岛博士创业园的博士靳钊与妻子共同协作,攻克固相微萃取技术,研制出全国首款性能优异、产品稳定性强的固相微萃取产品,“举个简单的例子,它可以通过吸附茶叶的味道来判断里面有没有农残,还能使农残最小检出浓度降低100倍。”靳钊表示。正在做研究的靳钊博士  农残检出浓度降低100倍  固相微萃取技术看起来是一个晦涩难懂的专业术语,好像离我们很远,甚至很多人听都没听过。但实际上,早在10多年前,它就在食品安全检测方面与我们有过交集。而这一次的交集,也是促成靳钊博士想要攻克这一技术的契机。我们知道,中国是全球最大的茶叶生产国,而欧洲是我国茶叶出口的主要地区之一。有数据表明,2000年我国出口欧盟茶叶量比“全盛时期”的1998年减少了34.5%。“使这一数字锐减的,是1999年应用于茶叶农残检测的固相微萃取技术。”靳钊博士表示,这一技术使得农残最小检出浓度降低了100倍,而当时国内分析检测技术尚不能检测如此低含量的农药残留,“没有先进的检测技术,在对外贸易中我们就会成为聋子、瞎子,就无法取得与对方平等对话的权利,已成为对外贸易中最大的制约条件。”因此,在大连理工大学主修高分子材料学靳钊誓做固相微萃取的中国先行者。  2003年,靳钊接受一位女博士的邀请,共同研究“固相微萃取”课题,进行科研攻关,而材料开发就是当时最亟待解决的问题,“固相微萃取技术是利用一种特殊的涂层,涂层所使用的材料,对于这项技术的稳定性、效率等具有决定性意义。”当时国内虽然也有科研人员进行该技术的研究,但材料单一、性能不稳定,无法满足产业化应用的要求,“我们共同开发了几款材料,没想到效果很好。”经过4年的不懈努力,2007年,他们最终研制出了一款性能优异、产品稳定性强的固相微萃取产品——固相微萃取探针。固相微萃取搅拌棒  34款产品打破国外垄断  在过去的20年里,固相微萃取技术及产品始终被欧美国家垄断,靳钊的研究成果则彻底打破了技术和产品的国外垄断。2013年,靳钊成立青岛贞正分析仪器有限公司,他和团队专注于新一代超微量物质检测技术——固相微萃取技术的研发、推广与产业化,短短3年时间便获得国家发明专利授权,在推出固相微萃取探针的基础上,陆续研发出固相微萃取搅拌棒、固相微萃取吸附管等产品。  而相较欧美国家的类似产品,他们的固相微萃取产品取得了更优的性能。“以搅拌棒为例,我们的产品磨损率低,萃取效率高,品使用寿命更长,性能更好。德国产品平均一根棒能使用60~80次,而我们的能使用150~200次,大大降低企业的使用成本。”靳钊介绍说,此后他又与研发团队相继研发出多款固相微萃取产品,“目前一共有34款产品。”广泛应用于环境监测、水质监测、食品安全、香精香料等领域的快速、痕量检测,填补了国内市场空白。  而在固相微萃取技术日臻完善的过程中,不仅让靳钊收获了一次次科研突破的喜悦,也将那位与他共同攻关的女博士变成了他的人生伴侣。固相微萃取探针  “闻闻”味,就知有没有农残  据靳钊介绍,他们研发的产品除了性能更优,应用方面也更重实用性,还是以搅拌棒为例,“德国搅拌棒主要是实验室应用,更适用于作为科学研究的工具,其市场规模较小。而我们将其作为环境在线监测仪器的核心部件,可显著提高传统环境监测仪器的性能,降低能耗。简单来说,他们用做科研,我们则更注重应用到民生当中去。”  那该如何应用到民生当中去呢?“以羊肉为例,现在大家都怕有假羊肉。目前实验室的检测方法一般是先把羊肉绞碎,再用溶剂萃取,泡出各种物质,再蒸干,浓缩,然后进仪器检测,操作程序特别复杂。”靳钊表示,而使用固相微萃取技术,只要通过味道来判断就行,“将羊肉放到密闭小瓶子里,把探针扎到小瓶里吸取挥发出的特定物质,再把探针拿出来后一加热,气味中的特定物质就检测出来了。”靳钊表示,这个味道我们可能闻不出来,但一到仪器上,所有味道成分就会被区分开,“只要跟真羊肉的色谱图比对就可以,羊肉破碎啊提取啊,这些工作都不需要做了。”  此外,检测茶叶或者蔬菜农残,或是辨别鱼虾等新不新鲜,只要拿黑色的小棒——固相微萃取搅拌棒或探针“闻闻”味道,放在仪器里一查就真相大白了。  富集吸附,污染物“没跑儿”  “闻闻”味道,就能知道有没有农残,确实挺神奇,而事实上,固相微萃取的神奇可不止这一点。据靳钊介绍,通过固相微萃取产品,还能检测空气和水中有没有污染物,而能实现这些是因为“我们的固相微萃取技术其实就是一个富集类的材料,就说空气里或水里的污染物本来很少,但都被吸收到我们这产品上面了,我们叫富集,定向吸附。”靳钊表示,他们目前有34款产品,而构成他们高分子材料是不一样的,“要针对不同的物质选择用哪种产品,例如查除草剂,就得用急性很强的高分子材料,即定向吸附原理。”  采访中,靳钊举了一个海洋监测的例子来表现产品在富集污染物质方面的效果。监测人员出海做海洋监测,需要监测上百个点的海水,其中每个点都得带回1升海水,因为水少了根本检测不出来,这样要做完这上百个点的监测,可能得带了一船的样品回来 如果用固相微萃取搅拌棒,就不用带大瓶了,每个点只要 30毫升就行,因为本身搅拌棒有吸附能力,把搅拌棒放到水里吸附后直接进仪器检测就行,“可以少带很多样品,以前需要一船,现在只要一手提箱就够了” 而如果用探针,连海水都不需要带回来了,“他只要用密封小瓶取海水,现场将探针放进去,晃一晃,直接把针密封好后带回来进行检测就行”。当然,使用哪种产品可以根据自身需要选择,但不管选哪种,“对于海洋监测来说,都能减少很大的工作量。”固相微萃取吸附管  用于刑侦,分析火灾起火源  采访中记者了解到,固相微萃取吸附管是靳钊的团队在今年8月份刚刚开发出来的新产品,外形类似搅拌棒,“目前吸附管正在上海公安局试点应用。” 这怎么还跟公安局扯上关系了?面对记者的疑问,靳钊解释道,这款产品能应用于刑侦领域,“火灾现场火源分析还有毒品快速检测。”例如,有地方着火了,可以通过吸附管来分析是什么原因引燃了这起火灾。  首先,用一种气体采样器,吸取火灾现场的空气,“气体只要经过吸附管就会被吸附,之后再分析其中的物质就可以。”靳钊表示,测试阶段,上海公安局的工作人员从某火灾现场提取了烧焦的衣服等物质,把它们放在一个密闭容器里,之后在从里面抽气,用吸附管提取,检测后查出是汽油引燃的,“那一般来说就是人为纵火。”谈到为何在上海试点而非青岛,靳钊解释,上海公安局在公安系统中是能够做科研的地方,“如果试点效果理想,上海公安局确定使用了,之后就可能会制定一个标准,在全国铺开使用,到时候青岛肯定也会用。”  将推新品检测黄曲霉毒素  对于下一步的打算,靳钊告诉记者,明年他们团队有两个方向的目标,一是以固相微萃取技术作为核心,把环境监测仪器开发出来。再就是推出一款测黄曲霉毒素的产品。“像花生、大豆、玉米、茶叶等食品只要发霉了就会产生黄曲霉毒素,这是一种高致癌物质。”靳钊表示,目前,国家标准采用“免疫亲和柱法” 来检测黄曲霉毒素,但该方法使用繁琐,且价格昂贵,大大增加了质检部门的检测时间和检测成本。“一个柱价格在160元左右,而且只能用一次。”  而靳钊团队将要开发的产品,应用固相微萃取技术,使用高分子材料制作,对黄曲霉毒素有一个定向吸附,“只吸附黄曲霉毒素。”而且,高分子成本低很多,基本上80元左右就能搞定,还可以多次使用,且不需要专用的大型设备,对操作人员要求不高,甚至可实现车载,检测人员可以对市场上的食用油进行实时的检测。此外,“他们的储存比较麻烦,得放在冰箱里,在4℃的环境里储存,我们开发的新产品对储存条件没有要求。”这些都将大大降低黄曲霉毒素的检测成本,保障食品安全。
  • 新拓仪器固相微萃取产品:从内销到出口-抓住机遇实现外汇创收
    近期,新拓仪器公司张和清总经理高兴地宣布:“我公司开发生产的的固相微萃取产品不仅受到国内用户的高度认可,更远销德国、加拿大、美国以及新加坡等发达国家”。 作为国内首家从事固相微萃取产品研发销售的企业。回顾固相微萃取的发展经历,不难发现新拓仪器对国内样品前处理领域的市场前瞻性: 2011年以前,新拓仪器一直以微波消解产品作为公司的主打产品; 2011年,成立国内首个固相微萃取研发团队。 2012年,推出首款固相微萃取产品SPME-S-01。 2013年,有幸聘请固相微萃取发明人、加拿大皇家科学院院士Pawliszyn教授和英国皇家化学学会会士、国家杰出青年基金获得者、国内固相微萃取专家欧阳钢锋教授为公司的高级顾问,并成功获得了两位教授的全部固相微萃取专利授权。 加拿大皇家科学院院士Pawliszyn教授、英国皇家化学会会士欧阳钢锋教授与新拓仪器团队Pawliszyn教授与张和清总经理合影 自2014年以来,在强大的技术力量驱动下,新拓仪器抓住互联网模式的新机遇,积极开拓海外市场。最终,实现了固相微萃取产品的海外创收。为国家增加外汇提供自己的一份力量。 张和清总经理表示:在欧洲、美国等国家地区,固相微萃取已经成为业界公认的绿色样品前处理技术,所以国外用户对固相微萃取产品的认知度和接受度比较高。因此,我们的产品性能在受到国外用户肯定的同时,又提供了比进口产品更诱人的价格。这就是我们的产品在海外畅销的秘密。 目前,新拓仪器已开发多种固相微萃取产品,涵盖了大气、水质、环保、土壤、食品安全以及香精香料等领域。更有全球独家授权的固相微萃取捕集针Needle Trap,以满足用户全方位的需求。
  • 上海新拓推出多通道正压式固相萃取仪
    上海新拓研制的XT-SPE-Ⅰ 型多通道正压式固相萃取仪,一次可处理24个样品,通过每一个孔位的微调旋钮,可真正自由调节每个孔位的流速大小,从而确保每一个萃取柱的流量均匀 创新性的串联接口,可将两支萃取柱连接进行串联萃取。这些新型设计的应用,使得固相萃取的进行更为合理、高效。      详细请浏览:http://www.sh-xintuo.com/cp.aspx?id=40
  • 博纳艾杰尔科技在青岛举办固相萃取技术培训班
    为了推广固相萃取技术,进一步提高色谱分析水平,2011年5月14-15日天津博纳艾杰尔科技有限公司与青岛市分析测试学会、青岛市菜篮子商品检验检测中心在青岛共同举办"固相萃取技术培训班"。青岛、烟台、威海、日照、东营等地20多家企事业单位员工、大学老师及同学参加了此次培训。 博纳艾杰尔科技派出了理论和实践经验丰富的陈小华、张晓飞两位专家分别做了《固相萃取技术及其应用》和《色谱柱的选择应用与故障排除》两个精彩的讲座,并与学员热烈交流,对学员的提问做了细致的解答。 理论培训结束后,学员们在博纳艾杰尔工程师陈小华、王欣玲以及青岛市菜篮子商品检验检测中心蒋万枫老师带领下,进行了&ldquo 猪肝中3种&beta -受体激动剂&mdash &mdash 沙丁胺醇、克伦特罗、莱克多巴胺的LC-MS/MS检测方法&rdquo 、&ldquo 牛奶中三聚氰胺的检测方法&rdquo 以及&ldquo 蔬菜水果中446种农药多残留检测方法&rdquo 三个演示实验,既让学员深入了解固相萃取的基础理论知识,也让学员亲自进行实验操作,切实提升实验水平。 培训现场 本次培训班结束后,学员们普遍反映这种理论和实验相结合的培训方法使自己不但提高了理论知识,也提高了实际操作水平,希望博纳艾杰尔以后多多举办这样的培训活动。 青岛市菜篮子商品检验检测中心李宝强主任发表致辞
  • 样品固相萃取好帮手——岛津ATLAS-LEXT
    固相萃取法是提取生物样本中所含有效成分的一种方法,其在样本中的杂质与目标物质的分离和浓缩方面表现出色。与液液萃取法相比,使用的溶剂量少;与QuEChERS法相比,操作工序简便。但是,手动固相萃取方法比较繁琐,并且存在处理未知样本时操作人员感染的潜在风险。为了避免这些风险以及实验室对于重复性和工作效率的需求,预处理工作的自动化逐渐成为一种趋势。岛津ATLAS-LEXT是一种台式实验室自动化样品前处理系统,可通过液液萃取法或固相萃取法进行全自动样品处理,快速、准确、高效地实现GC/GCMS和LC/LCMS等仪器分析的样品前处理过程。应用案例自动预处理装置ALTAS-LEXTGHD固相萃取功能在血清药物检测中的应用01自动固相萃取流程“样品分注”“试剂分注”“搅拌”“离心分离”“稀释”“浓缩” ,您可以自定义这些顺序。02提取再现性评价使用ATLAS-LEXT进行自动配制各药物(阿普唑仑、溴替唑仑、氯氮卓、氯噻西泮、地西泮、艾司唑仑、乙替唑仑、氟硝西泮、托非索泮,三唑仑、溴西泮 氯硝西泮、氟拉西泮、劳拉西泮 奥沙西泮 替马西泮 共16种)浓度为50 ppb的人血样品,得到的样本使用LCMS进行了分析,算出各种药物的添加回收率,求出标准偏差。日内变化 (n=3) 和日间变化 (n=5) 的评估结果如下图所示。所有药物的回收率基本都超过80%,相对标准偏差RSD约为5%以下,结果良好。此外,通过手工操作提取相同的样品 (n=1) ,获得回收率并进行比较。结果显示ATLAS-LEXT提取处理的回收率与手工操作的回收率相差无几。ATLAS-LEXT提取样品的再现性评价结果(日内变化和日间变化)与手工提取的回收率比较03总结进行了含药物的血清样品的固相提取的自动化,并对其有效性进行了评价。在日内变化和日间变化中,几乎所有16种药物都得到了RSD低于5%的良好结果。由此可见ATLAS-LEX自动固相萃取功能可轻松实现血清药物检测样品预处理过程。关联仪器ATLAS-LEXT产品①简单操作:只需进行样品收集和条件设定操作,自定义预处理方法简单②紧凑设计:长宽高均约为60厘米,节省空间,可选择放置在桌面或通风橱柜中③高效处理能力:组合了分注、搅拌、离心、浓缩等功能,通过并行处理功能等可以缩短处理时间本文内容非商业广告,仅供专业人士参考。
  • 他,誓做固相微萃取中国先行者
    “这个长度只有一厘米多的搅拌棒作用可不小,以前进行海水增塑剂检测,至少需要一瓶矿泉水那么多的样本,每次出海需要在上百个监测点取样,这意味着出一次海至少要带回上千瓶矿泉水那么多的液体样本̷̷有了这个搅拌棒,每次检测只要一个矿泉水瓶盖的液体样本就足够了。”在位于城阳区的青岛博士创业园的实验室里,靳钊博士指着各种型号的搅拌棒和探针自豪地介绍着。  其实,真正神奇的不是这些黑色小棒或银色探针,而是靳钊与爱人坚持十余年的研发成果——固相微萃取技术。  固相微萃取,是很多人难以理解的专业名词,这门“小众”技术,高分子材料学博士毕业的靳钊与爱人坚持钻研了十余年。目前,这项技术已获得两项国家发明专利和一项实用新型专利,他所创立的青岛贞正分析仪器有限公司也成为国内在该领域首家拥有自主知识产权的企业。  靳钊说,他想做中国固相微萃取技术的先行者,事实上,他已经做到了。  民族的情怀:誓做固相微萃取中国先行者  固相微萃取技术这个看似高深难懂的专业术语,却是与食品安全息息相关的检测技术,更是中国对外贸易取得平等话语权的重要工具。  中国是全球最大的茶叶生产国,欧洲是我国茶叶出口的主要地区之一。有数据表明,2000年我国出口欧盟茶叶量比“全盛时期”的1998年减少了34.5%。“使这一数字锐减的,是1999年应用于茶叶农残检测的固相微萃取技术。使用这一新技术,农残的最小检出浓度降低了100倍。”靳钊说。当时,国内分析检测技术尚不能检测如此低含量的农药残留,出口茶叶面临因农残超标被遣回的风险,这严重制约茶叶出口。“没有先进的检测技术,在对外贸易中我们就无法取得与对方平等对话的权利,这成为我国对外贸易中最大的掣肘之一。”  因此,靳钊誓做固相微萃取的中国先行者。  人生“合伙人”协作 打破欧美技术垄断  2003年,在大连理工大学主修高分子材料学的靳钊博士收到一封邮件:一位分析化学专业的女博士在研究 “固相微萃取”课题时遇到了瓶颈,邀请靳博士共同进行科研攻关。  “固相微萃取技术是利用一种特殊的涂层,对检测物质进行定向吸附浓缩,以解决痕量(超微量)物难以检测的难题。”涂层所使用的材料,对于这项技术的稳定性、效率等具有决定性意义。当时国内虽然也有科研人员进行该技术的研究,但材料单一、性能不稳定,无法满足产业化应用的要求。  “我们共同开发了几款材料,没想到效果很好。经过四年的不懈努力,在试用了几十种材料、加工工艺与应用方法后,终于研制出了一款性能优异、产品稳定性强的固相微萃取产品。”  在过去二十年,固相微萃取技术及产品始终被欧美国家垄断,靳钊的研究成果不仅打破了技术和产品的国外垄断,还取得了更优的性能。“就以搅拌棒为例,我们的产品磨损率低,萃取效率高,品使用寿命更长,性能更好。德国产品平均一根棒能使用60-80次,而我们的能使用150-200次,大大降低企业的使用成本。”靳钊介绍说,此后他又与研发团队相继研发出十多款固相微萃取产品,广泛应用于环境监测、水质监测、食品安全、香精香料等领域的快速、痕量检测,填补了国内市场空白。  在这一过程中,两位博士也从技术 “合伙人”,发展成为一生的“合伙人”。  注册公司:在自家厨房开辟研发地点  既做科研又接触市场,科技成果产业化的思路深深根植于靳钊心中:“如果研发成果不进入市场,那这项研究就失去了意义。”2013年,随着产品体验者的增多,产品量产和市场化的需求凸显,成立公司成为顺其自然的选择。  “当时资金有限,根本没有钱去外面租专门的办公室,只能把公司注册在家里,研发地点是自家厨房。”靳钊用了一周时间拿到了小区单元42家住户的签字,又征求了街道同意,才算完成了公司的注册。  场地问题解决了,资金成为摆在靳钊面前的头等难题。这些年他为了搞研发、维系公司运转,陆续投入了70万。“这些钱都是从我和爱人每月工资里省出来的。”直到 2015年,靳钊在市人社局人才中心帮助下入驻青岛博士创业园,免费获得了100多平的办公用房,税务、工商等繁琐的手续也可以在园区的公共服务大厅一站办理。靳钊坦言,这让他能够把精力放在研发推广上,使公司真正快速发展。  造福于人:要把小众科技带进大众生活  前不久的一件小事让靳钊颇有感触:有位大妈从李沧专门坐车到城阳找他,想测测买的保健品成分合不合格。这让靳钊意识到,现实生活中,百姓对食品药品乃至环境安全如此重视,但权威、高效、便捷的检测手段太匮乏了。  “原本只是单纯地想做技术、做研究,但真做成了却发现,研究成果真正的意义是用在实践领域,是用来改变生活的。这更坚定了我把固相微萃取这项小众科技带进大众生活的信念。”  固相微萃取技术在食品安全领域还没有国家标准,所以技术的推广、百姓的认知度提升都还有一个漫长的过程。但今年初,国家有关部委明确提出要用固相微萃取检测水中有害物质,并力争在两年内建立环境监测领域固相微萃取的国家标准。“仿佛吹来了一阵春风,感觉固相微萃取这项技术的春天就要来了,十几年的坚持没有白费。”说着,靳钊脸上绽放出坚定的笑容。
  • 用科学解“毒”污水:全自动固相萃取,以一当十!
    毒品吸食后经人体代谢会被排入生活污水中,依据“污水流行病学”对特定区域生活污水中的毒品原药或其代谢物含量进行检测,再结合污水流量和污水处理厂服务区域的人口数量,就可以评估和判断污水厂服务区内毒品滥用情况并进行层层溯源。“污水验毒”不仅可用于监测城市或地区的毒品滥用情况,还可以通过监测污水中毒品的异常情况为追查制毒窝点、打击毒品犯罪和预警新精神活性物质等提供线索。但由于该方法属于纳克级检测,且污水量大、基质复杂,对前处理仪器提出了很高的要求。屹尧科技的“全自动固相萃取-液相色谱-串联质谱同时测定污水样品中10种常见毒品毒物的分析方法”,采用EXTRA全自动固相萃取仪进行污水样品前处理,既可快速、高效自动连续处理大批量污水样品,又可确保样品分析的稳定性和平行性。EXTRA采用高精度工业级丝杆机械臂搭载定量环进样方式,确保样品不进入泵阀,配合液位追踪和流动式清洗功能,避免仪器本身带来的交叉污染风险,对真实数据做出更精确的解读。全自动固相萃取-液相色谱-串联质谱同时测定污水样品中10种常见的毒品毒物仪器和材料EXTRA全自动固相萃取仪;N1全自动氮吹浓缩仪;液相色谱-串联质谱仪(AB SCIEX Exion LC-Triple Quad 5500);MCX阳离子交换柱(WondaSep MCX 60mg/3mL)污水样品前处理方法污水样品充分摇匀后,加入盐酸调节pH值小于2,使用溶剂过滤器和玻璃纤维滤膜过滤,取滤液50mL于50mL 离心管中,进行固相萃取净化。固相萃取净化步骤洗脱液采用N1全自动氮吹浓缩仪在40℃条件下氮吹浓缩至近干,用250 uL 0.1%甲酸水复溶后,过滤膜上LC-MS/MS进行分析。液质联用条件色谱柱:ACQUITY UPLC BEH C18 (100mm ×2.1 mm×1.7 μm )流速:0.40 mL/min柱温:40°C进样量:5 μL检测器:AB 5500离子模式:ESI+流动相:A:0.1%甲酸水,B:0.1%甲酸乙腈洗脱梯度:方法学验证:空白样品中添加浓度为0.05 μg/L的10种毒品标准品,按照上述步骤进行操作,结果表明:10种化合物的平均回收率在88.9%~106.3%之间,RSD小于5.0%。总结:采用EXTRA全自动固相萃取仪配套N1全自动氮吹浓缩仪进行污水样品前处理,可连续自动处理40个污水样品。SPE步骤完成后无需更换试管,即可自动完成固相萃取和氮吹浓缩全过程,减少工作人员长时间接触有毒有害溶剂,确保方法的稳定性和平行性,避免交叉污染的同时,有效提高工作效。
  • 加拿大博朗科技推出新一代固相萃取仪
    加拿大博朗科技有限公司 (PromoChrom Technologies Ltd.)着重于样品前处理技术的开发。自2005年以来, 公司针对各种分析应用的特点, 先后开发出了SPE-01净化站, SPE-06便携式固相萃取仪, SPE-03多通道固相萃取仪, 在线固相萃取仪, 和LC-04SP阀系统等一系列具有特色的样品前处理产品。其中LC-04SP阀系统和在线固相萃取仪是加拿大国家科技委员会(National Research Council)的高科技资助项目, 其目标是以此为基础, 开发出一套将样品制备和仪器分析联为一体的产品。SPE-01净化站以其特有的高性价比和可靠性,成为美国土壤中石油污染物分析的特选样品净化设备。 公司经过多年努力, 于近期成功开发了管路集成技术。该技术借鉴集成电路的思想和液体微芯片的制造技术, 将多个转换阀和流体开关的功能集成到一个模块, 从而显著简化仪器的构造和系统的死体积。使用该技术开发的仪器, 可靠性更高, 价格更低, 也更为小巧。以新的SPE-03多通道固相萃取仪为例, 其重量只有同类产品的一半, 一台8通道SPE-03的重量不到13公斤。通过采用管路集成技术, 管路的接头和液体开关部件都大幅度减少, 使仪器的维护更为方便。新的多通道固相萃取仪有4通道, 6通道, 和8通道 三种配置。用户可以根据样品量和预算选择仪器的通道配置。 利用管路集成技术, 公司将会推出更多经济实用的产品。
  • 岛津推出环境水中邻苯二甲酸酯的在线固相萃取-LC/MS/MS分析方案
    近年来,邻苯二甲酸酯用作塑料制品的增塑剂等,用途非常广泛。日本塑料制品的生产量已达约20万吨(据化学工业统计),但邻苯二甲酸酯被指有扰乱内分泌的作用,因此,除了被限制1),2),3)用于食品用器具、容器以及玩具外,还成为了REACH4)、RoHS5)等各种法规限制对象。作为增塑剂使用的邻苯二甲酸二酯进入体内后代谢为邻苯二甲酸单酯,然后排入尿中。为此,在下水中含有这些化合物。当对于含这些单酯类物质的排放水没有进行充分的处理时,单酯就可能排放到环境中。环境中的邻苯二甲酸酯以邻苯二甲酸二酯及邻苯二甲酸单酯的混合形式存在,因此,必须对它们进行同时定量分析。本方案介绍了使用快速前处理在线固相萃取法与高速三重四极杆型质谱仪相组合的分析系统定量分析邻苯二甲酸酯的方法。分析装置使用了岛津Nexera UHPLC系统以及三重四极杆型质谱仪LCMS-8030。 本方案建立了使用在线固相萃取的邻苯二甲酸酯类同时分析系统。包括在线固相萃取在内的分析时间为15分钟/循环。通过使用2根洗涤色谱柱,可以降低背景峰。确认了本系统可以有效地应用于江河水样品的分析。 1) 2002年8月2日厚生劳动省告示第267号 2) 2010年9月6日厚生劳动省告示第336号 3) 欧盟指令2005/84/EC 4) 2008年10月28日、2010年1月13日、2011年5月 5) 2011/65/EU  详细内容请点击&ldquo 环境水中邻苯二甲酸酯的在线固相萃取-LC/MS/MS分析&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 徐汇区方世忠区长一行视察区河道水质在线监测系统
    10月16日,上海市徐汇区区长方世忠携区府办、区委宣传办、区建交委、区环保局及区河长办公室相关单位,对区域水环境治理工作进行调研,视察了徐汇区在线河道水质监测站,了解系统的运行情况。方世忠区长一行来到位于宛平南路桥的龙华港水质监测站,详细了解了站内仪器设备的功能及运转流程,听取了云赛智联股份有限公司及下属企业上海仪电科学仪器股份有限公司负责人关于徐汇区在线河道水质监测信息系统基本情况的汇报。方世忠区长对上海仪电围绕“河长制”构建解决方案,提供河道在线水质监测系统表示欢迎和支持,希望以徐汇水质监测信息系统为基础,进行小型化改进,为后续向更多区域推广应用创造条件。徐汇区河道水质监测信息系统是徐汇区2017年河道治理重点工程,由徐汇区建交委、区环保局和仪电集团合作建设,仪电科仪负责具体施工和运维。该系统于今年9月正式上线,拥有30个水质监测站,覆盖徐汇区19条主要河道,基本实现区域主要河道全覆盖,能够提供及时的水质预警,并防止已修复的水生态系统受到新增污染的破坏,为河道治理和长效监管提供支持。
  • 徐汇区方世忠区长一行视察区河道水质在线监测系统
    10月16日,上海市徐汇区区长方世忠携区府办、区委宣传办、区建交委、区环保局及区河长办公室相关单位,对区域水环境治理工作进行调研,视察了徐汇区在线河道水质监测站,了解系统的运行情况。方世忠区长一行来到位于宛平南路桥的龙华港水质监测站,详细了解了站内仪器设备的功能及运转流程,听取了云赛智联股份有限公司及下属企业上海仪电科学仪器股份有限公司负责人关于徐汇区在线河道水质监测信息系统基本情况的汇报。方世忠区长对上海仪电围绕“河长制”构建解决方案,提供河道在线水质监测系统表示欢迎和支持,希望以徐汇水质监测信息系统为基础,进行小型化改进,为后续向更多区域推广应用创造条件。徐汇区河道水质监测信息系统是徐汇区2017年河道治理重点工程,由徐汇区建交委、区环保局和仪电集团合作建设,仪电科仪负责具体施工和运维。该系统于今年9月正式上线,拥有30个水质监测站,覆盖徐汇区19条主要河道,基本实现区域主要河道全覆盖,能够提供及时的水质预警,并防止已修复的水生态系统受到新增污染的破坏,为河道治理和长效监管提供支持。
  • 从理论研究、仪器制备到技术应用,第七届固相微萃取技术研讨会“无所不谈”
    p strong 仪器信息网讯 /strong 固相微萃取(SPME)技术是一项集采样、萃取、浓缩和净化于一体的新型绿色样品前处理技术,主要应用于环境化学、食品、天然产物、医药卫生、临床化学、生物化学、毒理等领域。相对于传统的样品前处理技术,固相微萃取技术大大加快了分析检测的速度。目前,该技术已被美国、德国和国际标准化组织(ISO)采纳,应用于多个环境污染物检测的标准方法中,如美国环保部标准方法EPA8272,德国标准方法DIN 38407-34,国际标准方法ISO27108: 2010(E)和 ISO/DIS 17943和我国国家标准GB/T24572.4-2009等。 br/ /p p   为加快推进SPME技术基础理论研究,促进SPME技术的在各领域的发展,深入交流和研讨SPME技术的新理论和新应用,提升中国在SPME领域的研究发展水平,由广东省化学学会、中山大学化学学院微萃取与分离技术研究中心筹办的第七届固相微萃取技术研讨会于2017年3月25-26日在广州中山大学化学学院丰盛堂成功举办。来自全国各地高校、科研院所、检测机构和企事业单位相关人员约200人参加了本次研讨会。中山大学化学学院微萃取与分离技术研究中心主任欧阳刚锋主持开幕式。 /p p style=" TEXT-ALIGN: center" img title=" 现场.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/d9790068-b382-488b-b19e-62f4b20374eb.jpg" / /p p style=" TEXT-ALIGN: center" 会议现场 /p p style=" TEXT-ALIGN: center" img title=" 陈义波.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/f3727619-1421-4391-a202-0b8f133a7bbe.jpg" / /p p style=" TEXT-ALIGN: center" 中山大学化学学院党委书记陈文波致欢迎辞 /p p   本次研讨会围绕固相微萃取技术原理、联用技术研究进展及应用展开讨论,会议邀请固相微萃取技术创始人滑铁卢大学Janusz Pawliszyn教授、加州大学河滨分校Jay Gan教授、中山大学栾天罡研究员、广州分析测试中心吴惠勤研究员等多位专家做精彩报告。 /p p   部分精彩报告 /p p style=" TEXT-ALIGN: center" img title=" 创始人.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/2a7c8e78-83a8-480b-8cff-f49464992c00.jpg" / /p p style=" TEXT-ALIGN: center" 报告人:滑铁卢大学Janusz Pawliszyn教授 /p p style=" TEXT-ALIGN: center" 报告题目:Fundamentals of SPME /p p   Janusz Pawliszyn教授在报告中讲述了固相微萃取技术原理、主要应用及未来发展等。报告指出,随着快速自动化实验室的发展,固相微萃取技术及其相关科技的发展越来越迅速,固相微萃取、针式捕集阱系统和薄膜微萃取整合了现场采样与前处理步骤,相关高性能涂层、简单的设备以及校准程序便于在异质矩阵中准确和精确的测定,是常规繁琐和耗时的L-L和L-S萃取法最好的替代,未来研究将聚焦矩阵表征以及组分与基质之间的相互作用。此外,Janusz Pawliszyn教授在“Coupling with Analytical Instrumentation”报告中讲述了固相微萃取与GC、LC、CE以及MS的联用技术。 /p p style=" TEXT-ALIGN: center" img title=" d5f1f520-96c2-4b28-b0ec-12752b00656c.jpg" src=" http://img1.17img.cn/17img/images/201703/noimg/0b5f3b2c-5e11-4173-8782-7612ec633a63.jpg" / /p p style=" TEXT-ALIGN: center" 报告人:中山大学化学学院微萃取与分离技术研究中心 欧阳刚锋 /p p style=" TEXT-ALIGN: center" 报告题目:固相微萃取探针制备及活体采样研究 /p p   欧阳钢锋在报告中讲到,自动化技术是SPME技术中非常重要的一项,尤其是分析大量样品时,自动化显得尤为方便。目前市面上已经有几家技术成熟的产品。报告围绕欧阳刚锋实验室三大块主要工作开展:性能材料研究、环境分析、活体采样以及食品分析。性能材料研究包括纳米材料、MOF材料等 环境分析主要围绕有毒有害物质展开,并且,欧阳钢锋还指出,环境分析定量的校正是非常重要的。报告还对Bio-MOF 100-102探针、MIL 101(Cr)探针、MMPNSs与MMCNs探针、TiO2纳米颗粒、C18复合材料、有序多孔聚合物、氮掺杂有序多孔聚合物、超交联聚合物、胺基改性石墨烯、PSS/PDMS活体检测探针等多个新型SPME探针制备与应用进行讲解。 /p p style=" TEXT-ALIGN: center" img title=" 练鸿振.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/cb6f959c-adc4-42fb-ae89-fb7ec01eeed8.jpg" / /p p style=" TEXT-ALIGN: center" 报告人:南京大学化学化工学院 练鸿振 /p p style=" TEXT-ALIGN: center" 报告题目:核酸适配体有机-无机杂化整体柱用于蛋白质的富集检测 /p p   报告中指出,有机-无机杂化整体柱是一种新型的整体柱材料,具有简单制备、可修饰集团多、pH使用范围广、机械强度好等优点。核酸适配体具有特异性强、易于修饰等优点。将适配体与固相材料相结合,制备高效亲和色谱或固相(微)萃取固定相材料,已经成为目前的研究热点。点击化学反应条件温和、简单、快速,并以其高反应活性成为一种新型的修饰核酸适配体的方法用于蛋白质的分离检测。而金纳米粒子具有稳定、易制备和生物相容性等特点,以其作为媒介,可以进一步拓展和发展有机-无机杂化整体柱和核酸适配体在蛋白质分离检测中的应用。练鸿振在报告中讲解了通过“巯-烯”点击化学,制备新型核酸适配体和杂化整体柱材料方法。 /p p style=" TEXT-ALIGN: center" img title=" 栾天罡.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/f8c3c440-f94a-4e3d-bfd4-bfec74167454.jpg" / /p p style=" TEXT-ALIGN: center" 报告人:中山大学生命科学学院 栾天罡 /p p style=" TEXT-ALIGN: center" 报告题目:微萃取在极性有机污染物分析的应用与进展 /p p   栾天罡在报告中讲到,当前,环境污染问题受到全球关注,复杂样品中痕量污染物分析在分析化学、环境科学、生命科学等领域极具挑战。极性有机污染物在环境污染物中含量低、样品尺度小、样品基质复杂,化学极性强,因此,实际环境中极性有机污染物的定量分析成为技术瓶颈。固相微萃取(SPME)集采样、萃取和富集于一体,可与EI-MS、API-MS、Ambient MS、LDI-MS、ICP-MS五种质谱技术联用。报告中指出,SPME与AMS联用具有多重技术优势:第一,集萃取、净化、富集、检测于一体 第二,灵敏度提高 第三,降低基质效应 第四,分析直接、快速。 /p p style=" TEXT-ALIGN: center" img title=" 吴惠勤.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/4d0f2324-ae15-4b4f-808c-ac7897c763fd.jpg" / /p p style=" TEXT-ALIGN: center" 报告人:中国广州分析测试中心 吴惠勤 /p p style=" TEXT-ALIGN: center" 报告题目:固相微萃取-气相色谱/质谱联用方法研究与应用 /p p   吴惠勤在报告中指出,当前,固相微萃取可与GC/MS、HPLC以及MS联用,其中与GC/MS联用最为成熟和实用,可在多个领域中应用,如环境领域中农药、PPCPs等污染物分析 食品领域中香气、风味、农药等分析 临床医学领域中药物浓度监测、体内代谢物分析等以及法医毒物领域中有毒物质分析等。报告以毒猪油中毒事件及地沟油分析为例讲解了SPME-GC/MS应用的优势。 /p p style=" TEXT-ALIGN: center" img title=" 朱芳.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/389b6dc7-e658-4473-a0c3-0d199d61f479.jpg" / /p p style=" TEXT-ALIGN: center" 报告人:中山大学化学学院环境化学研究所 朱芳 /p p style=" TEXT-ALIGN: center" 报告题目:生态纺织品中有害物质的绿色检测技术研究 /p p   朱芳在报告中指出,纺织品的原料及加工过程都会引入有害物质,如农药、杀虫剂等,威胁人体、环境健康。目前,纺织品农药残留的测定采用的是GB/T18412-2006国标方法,该方法有机溶剂消耗量大、前处理工作繁琐,并且容易造成二次污染。相比之下,固相微萃取技术操作简单、无需有机溶剂,是一种绿色、环境友好的方法。对于固相微萃取技术的研究,朱芳讲到,其目前主要开展了三项代表性工作:商品化SPME探针的应用、开发具有优良性能的涂层材料、建立生态纺织品中有害残留物的绿色检测方法。在报告中,朱芳表示,开展更多种类有害物质的绿色检测方法研究及推广固相微萃取分析方法的标准将作为其工作重点。 /p p   本次研讨会为期两天,除上述报告外,还有19位来自科研院所、检测机构及仪器厂商的专家及技术负责人做精彩报告。 /p table cellspacing=" 0" cellpadding=" 0" border=" 1" uetable=" null" tbody tr class=" firstRow" td style=" BORDER-TOP: windowtext 1px solid BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p strong span style=" FONT-FAMILY: 宋体" 报告人 /span /strong /p /td td style=" BORDER-TOP: windowtext 1px solid BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p strong span style=" FONT-FAMILY: 宋体" 报告题目 /span /strong /p /td td style=" BORDER-TOP: windowtext 1px solid BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p style=" TEXT-ALIGN: center" strong span style=" FONT-FAMILY: 宋体" 现场 /span /strong /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p Emanuela Gionfriddo /p p University of Waterloo Canada /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p SPME Method Development and Applications & nbsp in Food Analysis /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 创始人1.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/e522fafe-921d-447c-8fd7-1f646e0f2a4b.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p Jay Gan /p p University of California,Riverside /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p SPME and Other Passive Samplers /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" Gan.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/809c1167-55f5-469a-8f49-3640f97d8d4e.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 江瑞芬 /span /p p span style=" FONT-FAMILY: 宋体" 暨南大学 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p SPME Calibration Methods /p p & nbsp /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 江瑞芬.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/39574136-dcf5-423a-b51e-57f89194547b.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p Jonathan J. Grandy /p p University of Waterloo Canada /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p Applications of SPME in /p p Environmental Analysis /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 创始人2.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/b8532027-9e95-4238-84ca-d59478094e9f.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 梅萌 /span /p p span style=" FONT-FAMILY: 宋体" 厦门大学 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 基于整体材料的磁增强管内固相萃取技术及其应用 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 梅萌.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/d78d5af1-0629-4b6f-9e5b-b505d1ddeae7.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 干宁 /span /p p span style=" FONT-FAMILY: 宋体" 宁波大学 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 采用 /span PDA-MIL-53 span style=" FONT-FAMILY: 宋体" ( /span Fe span style=" FONT-FAMILY: 宋体" )涂层用于土壤中多氯联苯的超声辅助固相微萃取 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 干宁.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/3141c246-e6ae-4e82-b23d-93169b1bb7b9.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 杜新贞 /span /p p span style=" FONT-FAMILY: 宋体" 西北师范大学 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 十二烷基自组装修饰 /span TiO2 span style=" FONT-FAMILY: 宋体" 纳米棒固相微萃取与高效液相色谱联用测定环境水样中痕量多环芳烃 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 杜新贞.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/9e9bc989-d32e-407b-83a2-3555a5c64785.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 刘则华 /span /p p span style=" FONT-FAMILY: 宋体" 华南理工大学 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 在线固相微萃取结合衍生化耦合 /span GC-MS span style=" FONT-FAMILY: 宋体" 技术测定 /span 11 span style=" FONT-FAMILY: 宋体" 种具有异味和雌激素活性的氯酚和溴酚物质 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 刘则华.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/f9ee4b3d-62fe-4a7a-b85a-330107bf4548.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 韦松波 /span /p p span style=" FONT-FAMILY: 宋体" 中山大学 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 金属有机骨架纳米片的聚合物复合材料的制备及其在水环境检测中的应用 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 韦松波.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/28837f37-0dec-4b9e-93b3-c18e65163435.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 陈俊华 /span /p p span style=" FONT-FAMILY: 宋体" 广东省生态环境技术研究所 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 生物传感器在环境污染物快速检测中的应用 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 陈俊华.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/16476452-cd72-48e8-b2b6-f18dade12966.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 黄淑瑶 /span /p p span style=" FONT-FAMILY: 宋体" 中山大学 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 一种基于β /span - span style=" FONT-FAMILY: 宋体" 环糊精的聚合物 /span SPME span style=" FONT-FAMILY: 宋体" 探针在胆酸类分子检测上的应用 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 黄淑瑶.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/26830e43-6cf1-41d8-967f-ff22f0ab1a4d.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 裴苗 /span /p p span style=" FONT-FAMILY: 宋体" 厦门大学 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 基于多孔整体材料固相微萃取纤维束的制备及其对内分泌干扰物的萃取性能研究 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 裴苗.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/a85f0bad-a59f-4808-a53c-4a50e2c800f9.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 陈婷婷 /span /p p span style=" FONT-FAMILY: 宋体" 德祥科技有限公司 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 德祥科技—— /span GERSTEL span style=" FONT-FAMILY: 宋体" 样品前处理新技术及解决方案 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 陈婷婷.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/efc2a06e-92f8-46be-b9ed-07ce43ca3b4b.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 袁智泉 /span /p p span style=" FONT-FAMILY: 宋体" 安捷伦科技有限公司 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 使用 /span SPME-GC-MS/MS span style=" FONT-FAMILY: 宋体" 对水中致嗅物质进行高灵敏度的测定 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 袁智泉.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/2e8e5d08-fe5a-477e-8179-cfd367b5b873.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 朱建峰 /span /p p span style=" FONT-FAMILY: 宋体" 瑞士斯特斯分析仪器有限公司 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p SPME span style=" FONT-FAMILY: 宋体" 技术在全自动在线样品前处理平台 /span PAL3 span style=" FONT-FAMILY: 宋体" 上对食品和水质的应用分析 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 朱建峰.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/fc56c94d-d13f-41a7-b81b-c43fe9bdba9e.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 段晓琨 /span /p p span style=" FONT-FAMILY: 宋体" 华质泰科生物技术有限公司 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p DART-SPME span style=" FONT-FAMILY: 宋体" 原位质谱法实时快速痕量检测 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 段晓坤.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/6ff91605-c39d-48ed-a43c-1308dc990ae2.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 周向东 /span /p p span style=" FONT-FAMILY: 宋体" 珀金埃尔默股份有限公司 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 便携气质和固相微萃取联用技术在毒品快检和农残快检方面的应用 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 周向东.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/826a36ad-3448-4b36-b04e-7e8ccde32710.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 范义锋 /span /p p span style=" FONT-FAMILY: 宋体" 上海新拓分析仪器科技有限公司 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p span style=" FONT-FAMILY: 宋体" 固相微萃取耗材及仪器应用介绍 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 范义峰.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/24d94144-ae49-4124-9c6f-fac0dc8806ce.jpg" / /p /td /tr tr td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT: windowtext 1px solid PADDING-RIGHT: 7px" width=" 206" p span style=" FONT-FAMILY: 宋体" 段存争 /span /p p span style=" FONT-FAMILY: 宋体" 默克化工技术有限公司 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" width=" 150" p Supelco span style=" FONT-FAMILY: 宋体" 固相微萃取技术及应用 /span /p /td td style=" BORDER-TOP-STYLE: none BORDER-RIGHT: windowtext 1px solid BORDER-BOTTOM: windowtext 1px solid PADDING-BOTTOM: 0px PADDING-TOP: 0px PADDING-LEFT: 7px BORDER-LEFT-STYLE: none PADDING-RIGHT: 7px" valign=" top" width=" 136" p img title=" 段存争.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/afc57651-44cb-4532-a3b0-38067166f4c9.jpg" / /p /td /tr /tbody /table p   本次展会上,安捷伦科技、默克、珀金埃尔默、上海新拓、华质泰科、瑞士斯特斯、德祥科技、磐诺仪器等纷纷展示了固相微萃取相关产品。 /p p style=" TEXT-ALIGN: center" img title=" 安捷伦.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/57750e0e-1137-426d-a731-d89f2ce6f09b.jpg" / /p p style=" TEXT-ALIGN: center" 安捷伦科技 /p p style=" TEXT-ALIGN: center" img title=" 默克.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/6c3a9ab2-b982-4578-b961-becbbe49a368.jpg" / /p p style=" TEXT-ALIGN: center" 默克 /p p style=" TEXT-ALIGN: center" img title=" pe.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/199ffdfa-8ffa-4c42-837f-709b1a242cc7.jpg" / /p p style=" TEXT-ALIGN: center" 珀金埃尔默 /p p style=" TEXT-ALIGN: center" img title=" 上海新拓.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/e89ee363-66f6-4fb2-a01f-57fbebe979be.jpg" / /p p style=" TEXT-ALIGN: center" 上海新拓 /p p style=" TEXT-ALIGN: center" img title=" 华质泰科.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/4650013f-95ef-440c-a251-036bb50d84b3.jpg" / /p p style=" TEXT-ALIGN: center" 华质泰科 /p p style=" TEXT-ALIGN: center" img title=" 斯特斯.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/ec836eb9-b62f-4980-801f-fceaa4d87779.jpg" / /p p style=" TEXT-ALIGN: center" 瑞士斯特斯 /p p style=" TEXT-ALIGN: center" img title=" 德祥科技.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/fa445c1c-7515-4dd4-9674-c6dcf1a524e8.jpg" / /p p style=" TEXT-ALIGN: center" 德祥科技 /p p style=" TEXT-ALIGN: center" img title=" 磐诺仪其.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/4afa7ac0-5c73-4524-a5d8-8b62e315be6d.jpg" / /p p style=" TEXT-ALIGN: center" 磐诺仪器 /p p br/ /p p style=" text-align: right " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 撰稿人:杨改霞 /span /p
  • 岛津在线固相萃取-二维液相色谱技术助力维生素A、D、E分析
    在食品、乳制品检测等实验室中,维生素 A、D、E的测定是一项非常有挑战性的工作。其困难包括基质复杂,不同组分添加量差异大,维生素E的异构体分离困难等,尤其是前处理繁琐复杂、费时费力,重复性差。新版食品安全国家标准GB5009.296-2023《食品中维生素D的测定》首次将在线柱切换反相液相色谱法纳入标准方法中,为维生素D的测定提供了更好的参考依据。岛津依托在线固相萃取-二维液相色谱技术(online SPE-2DLC)搭建第二代维生素ADE分析系统,轻松解决维生素A、D、E传统分析中前处理复杂,分析效率低的问题,并且完全符合最新食品安全国家标准 GB 5009.296-2023 《食品中维生素 D 的测定》,并实现维生素 A、D、E 的良好分离。Online SPE-2DLCNexera维生素ADE分析系统特点01分析效率高,维生素ADE及异构体的高灵敏度同时分析同时测定维生素A、D2、D3和维生素E的5种异构体共8种化合物。(维生素E异构体包括:a-生育酚、B-生育酚、y-生育酚、6-生育酚、a-生育三烯酚)。完全符合GB5009.296-2023《食品中维生素D的测定》中在线柱切换反相液相色谱法的要求,并进一步利用在线固相萃取简化样品前处理过程,提升检测灵敏度和分析速度。色谱图-同时分析维生素A、D和维生素E 的5种异构体02自动化程度高,在线SPE大幅节省工作时间自动在线固相萃取支持皂化液直接进样, 节省大量的样品前处理时间,大幅提高工作效率, 并且具有良好的重现性和灵敏度, 适用于多种食品基质中维生素ADE的快速检测。 03可扩展性高,轻松切换在线SPE-LC/2D-LC/标准LC基于模块化液相色谱系统Nexera LC-40搭建,具有灵活的扩展性。通过简单操作即可实现不同系统间的切换(包括在线SPE前处理/常规液相色谱系统、一维/二维液相色谱,环捕集/柱捕集二维色谱系统等)。总结岛津第二代维生素ADE分析系统,高效、灵敏、灵活,可扩展应对多项标准要求,为维生素A、D、E分析提供全面的解决方案和分析平台,是您挑战脂溶性维生素分析的理想伙伴。本文内容非商业广告,仅供专业人士参考。
  • 美华科技展出固相萃取仪等产品——CFAS 2012食品、农产品检测新技术系列视频采访
    仪器信息网讯 2012年6月5日,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会主办,北京雄鹰国际展览公司承办的2012中国食品与农产品质量安全检测技术应用国际论坛暨展览会(CFAS 2012)在北京国际会议中心隆重开幕。本届论坛以“为构建我国食品安全保障体系,进一步推动食品、农产品检测新技术的广泛应用,完善食品与农产品质检体系建设”为主题,特别邀请到了多位食品、农产品监管部门的领导和食品质检领域的著名学者做主题报告,并同期举行展览会,汇聚了70余家国内外科学仪器相关厂商,吸引了600余位来自各界的专家、代表参会。   展会期间,仪器信息网特别制作了“食品、农产品检测新技术系列视频采访”,与会的部分参展仪器厂商分别针对目前食品、农产品检测当中面临的技术、应用与市场需求,介绍了各自所能提供的解决方案。   美森自动化技术有限公司是香港美华科技实业有限公司在中国成立的子公司,主要向我们展示了两个产品,一个是MULTI-SPE M08多功能固相萃取装置,这台机器跟市面上其它的一些正压型的多功能萃取仪相比,特别适用于食品分析。这是因为它本身可以是单柱或者双柱,一般情况下食品的样品会比较大,而这台仪器可以一次性把样品载入,然后进行萃取,萃取完毕之后,还可以进行大体积的收集,最大可以到100ml;根据你的需要,也可以进行小体积的收集,最小的可以收集2ml的样品。   另外一台仪器是MULTI-SPE A208多通道固相萃取系统,这也是为食品、环境检测量身设计的,该仪器的特点是通量比较大,是目前全世界通量最大的固相萃取仪,它可以同时做8个样品的萃取,此外在食品萃取工作中,样品当中经常会有一些小颗粒,而这个颗粒可能会对柱子造成半堵塞或全堵塞,对于这个问题,目前整个固相萃取仪行业还没有拿出很好的解决方案,而这台仪器采用我们的发明专利,当样品过柱的时候,它可以感应到样品在过柱,柱子有一部分堵塞时,仪器可以自动进行程序升压,该仪器是目前全世界固相萃取仪这个领域中,唯一一台可以做升压的仪器。   另外,如果我们的柱子在固相萃取的过程中,发生了全堵塞现象,这时候,它也可以判断这个柱子的状态,因为该仪器是八通道的,所以某一个或者两个堵塞的情况下,经过系统自动的判断之后,这一或两个通道会停止下来,而其它的通道仍然可以继续进行工作,不会造成样品的浪费。   美华科技实业有限公司 美华科技实业有限公司在美国、香港及中国设有研发基地,是集研发、生产、引进为一体的高科技产业公司。为了更好地为国内客户服务,我们在广州成立了美森自动化技术有限公司。公司在发展过程中得到了党中央和各级政府的关心、支持和帮助。2011年,胡锦涛总书记在广州视察期间,公司CEO陈小华博士专门向总书记汇报了采用自主知识产权研发生产的自动化样品前处理仪器。   在引进国外高端专业仪器方面,美华科技与美国GWC生物技术公司合作,引进用于蛋白质/基因相互作用的表面等离子共振仪 与英国Activotec公司合作,引进其多肽合成仪、低聚糖合成仪、Accumax移液器等仪器设备。
  • 新品发布I莱奥正压固相萃取仪,助力食品、生物、环境等领域前处理分析
    2024年广州莱奥产品家族迎来了新成员,正压固相萃取仪即将登场,性能稳定且优异,适用领域广,服务专业且省心,旨在为用户带来更好的前处理体验;您是否有以下困扰:&bull 预算有限无法购买全自动固相萃取仪,但又想提高实验效率?&bull 基质复杂,目前用得负压装置效率低,导致重复性、回收率不好?&bull 目前用得负压装置压力不足,基质复杂样品过柱费时长?Leowlab Purifier正压固相萃取仪系列可解决以上问题。产品适用性:产品名称产品适用领域Leowlab Purifier A12正压固相萃取仪用于大体积水样的高通量净化Leowlab Purifier A48正压固相萃取仪用于食品、药物、土壤等样品的高通量净化Leowlab Purifier A96正压固相萃取仪用于血液、尿液等生物样本的高通量净化产品亮点:一、Leowlab Purifier A121、大体积样品可以自动上样,省去繁琐的人工操作;2、一次性同时处理12个样,大大节省实验时间;3、仪器均匀稳定压柱代替负压装置,压力高达100psi,有极佳的重复性和回收率;4、与LeowLab自动氮吹浓缩仪联用,无需样品转移,减少样品转移带来的损失。二、Leowlab Purifier A24/481、一次性同时处理48个样品,大大减少实验时间;2、仪器均匀稳定压柱代替负压装置,有极佳的重复性和回收率;3、正压固相萃取压力高达100psi,确保粘稠样品轻松过柱;4、与LeowLab自动氮吹浓缩仪联用,无需样品转移,减少样品转移带来的损失;5、可按需客户需求选配24位。三、Leowlab Purifier A961、一次性同时处理96个样品,大大减少实验室时间;2、96孔之间流速均匀一致,确保很好的重复性和回收率;3、正压固相萃取压力高达100psi,确保粘稠样品轻松过柱;4、与LeowLab自动氮吹浓缩仪联用,无需样品转移,减少样品转移带来的损失。我们的服务
  • 美华科技新型固相萃取仪器设备参展CFAS 2012
    为了提高食品及农产品安全检测技术,2012年6月5日,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会主办的2012中国食品与农产品质量安全检测技术应用国际论坛暨展览会(CFAS 2012)在北京国际会议中心隆重开幕。论坛吸引了来自各界的专家和代表600余位参会。作为样品前处理专业厂商,美华科技广州分公司美森自动化技术有限公司携MULTI-SPE A208多通道自动固相萃取仪及MULTI-SPE M08正压型固相萃取装置参加了论坛的仪器展,受到了与会代表的高度关注。包括《仪器信息网》在内的多家媒体到公司展台对公司CEO陈小华博士进行了采访。 MULTI-SPE M08正压型固相萃取装置采用的是自动化固相萃取仪通用的正压作为液体载入SPE柱的动力,压力平稳,流速容易控制,因此受到许多曾经使用负压真空型固相萃取装置用户的靓采。而MULTI-SPE A208多通道自动固相萃取仪则以通量大、智能化程度高和操作方便以及良好的技术支持等特点受到用户的好评。
  • 中国固相萃取仪市场研究报告(2017版)
    p   固相萃取技术(SOILD PHASE EXTRACTION,简称SPE)于八十年代在国外兴起,它取代了传统的液-液萃取技术。目前,固相萃取技术在样品前处理中所起的作用也显得日益重要,已被广泛应用于医药、血液、检验检疫、环保、水质、食品领域中的样品前处理。同时,人们也开始使用固相萃取技术对复杂的生物样品基质进行纯化。此外,随着技术的成熟,全自动固相萃取仪的使用也越来越广泛。 /p p    span style=" color: rgb(0, 176, 240) " strong 固相萃取技术现状 /strong /span /p p   固相萃取技术基本原理和液相色谱相同,但两者最终需要达到的目的不一样。固相萃取技术纯化的原理为:在萃取过程中,固定相对分析物的吸附力比溶解分离物的溶剂更大。当样品溶液通过吸附剂床时,分离物浓缩在其表面,其他样品成分通过吸附剂床。通过只吸附分离物而不吸附其他样品成分的吸附剂,可以得到高纯度和浓缩的分离物。 /p p   相比较高效液相色谱需要在短时间内将各化合物分离并保持好的峰形,固相萃取则是要从复杂的基液中分离出所需要的化合物并将其浓缩,以便进一步的分析。因此,一般固相萃取柱填料的粒径比高效液相色谱柱填料的粒径要大,而且固相萃取柱填料的形状是不规则的,这样可以增加接触样品的表面积。目前用的最广泛的是键合硅胶柱和聚合树脂柱。 /p p    span style=" color: rgb(0, 176, 240) " strong 固相萃取仪市场及相关应用 /strong /span /p p   固相萃取技术已经越来越广泛地被应用在各种实验室。然而,大部分用户仍在用手动固相萃取。手动固相萃取一般是采用多个固相萃取柱(SPE小柱)一次同时进行多个样品萃取。这就要求操作人员必须全神贯注,否则容易发生添加顺序混乱,导致样品作废。其次,采用手动固相萃取容易造成样品回收率重现性较差。在固相萃取过程中,样品及洗脱液通过固相萃取柱的速度会直接影响最后的回收率及重现性。而在手工操作过程中,控制流速十分困难的。因此其重现性很难保证。此外,采用手动固相萃取所需时间较长。 /p p   自动固相萃取仪可以很好地弥补手动固相萃取仪的缺陷。首先,自动固相萃取仪严格按照系统设定程序进行,不会出现手工操作的错误。其次,自动固相萃取仪能够准确控制液体流速,保证实验结果的重现性。此外,自动固相萃取仪能够运行多个不同的程序,建立的方法便于推广及建立标准方法。因此,自动固相萃取仪不仅能够降低实验人员的劳动强度,提高效率,更重要的是能够保证结果的可靠性及重现性。目前国内许多实验室要求按照GLP标准进行管理,这就要求所有的原始实验数据都必须完整地保存,而自动固相萃取仪可以很好地保存已建立的方法及实验数据,从而方便了按照GLP标准的管理。 /p p   全自动固相萃取仪按处理样品量的不同可分为:小体积全自动固相萃取仪和大体积全自动固相萃取仪。小体积全自动固相萃取仪针对的样品主要为进样量在50ml以下的食品、药品、血液等 大体积全自动固相萃取仪主要为进样量在200ml量以上的水样。全自动固相萃取仪按萃取载体可分为:柱萃取全自动固相萃取仪和膜萃取全自动固相萃取仪,其中,膜萃取全自动固相萃取仪主要为大体积水样而设计的,膜萃取速度快是其优点,而且不容易堵塞,但是单个样品的处理成本较柱萃取高。 /p p   目前国内有10余家在做全自动固相萃取仪。据统计,全自动固相萃取仪国内年销售额在3~4亿元。从市场总体情况来看,整个固相萃取仪年销售量在***台左右(包括手动、半自动和全自动),其中全自动固相萃取仪的年销售量在***台左右。产值排名靠前的部分全自动固相萃取仪生产厂家主要有:北京普立泰科仪器有限公司、天津博纳艾杰尔科技有限公司(已被SCIEX公司收购)、上海屹尧仪器科技发展有限公司、济南海能仪器股份有限公司、美国Horizon Technology公司、吉尔森公司、Biotage AB、德国lctech公司、莱伯泰科有限公司和睿科仪器有限公司等。就国产技术方面来看,相比较进口品牌的全自动固相萃取仪,国产品牌全自动固相萃取仪近年来的发展速度较快,基本掌握了全自动固相萃取仪生产技术,但也存在一些差距。 strong ( span style=" color: rgb(0, 176, 240) " 不同品牌之间的技术和价格比较及市场占有率分布详见: /span /strong a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 中国固相萃取仪市场研究报告(2017版) /strong /span /a span style=" color: rgb(255, 0, 0) " strong ) /strong /span /p p    span style=" color: rgb(0, 176, 240) " strong 受调研用户单位性质及应用领域分布 /strong /span /p p   《中国固相萃取仪市场研究报告(2017版)》得到了广大用户、企业以及业内专家的大力支持。其中,共有380余位来自食品、环境、制药、第三方检测、科研机构等领域的专家和实验室用户参与了此次固相萃取仪调研。根据统计,参与本次调研的用户当中,检测/质控人员所占比例最高,为67% 接下来为科研人员和单位管理人员,所占比例分别为24%和9%。 /p p   从参与本次抽样调研的固相萃取仪用户的分布领域来看,用户集中在食品/饮料、环保/水工业、农/林/牧/渔、制药/化妆品和医疗/卫生等领域,其中食品/饮料领域中固相萃取仪用户的比例最高,达到30%,其次是环保/水工业领域,所占比例为28%。食品/饮料、环保/水工业、农/林/牧/渔、制药/化妆品和医疗/卫生领域的用户合计占整个用户的比例为85%。 /p p    span style=" color: rgb(0, 176, 240) " strong 受调查用户购买全自动固相萃取仪价格分布 /strong /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/83569614-c7ba-40d7-861f-7b5533f6c0d6.jpg" title=" QQ图片1.png" / /p p style=" text-align: center " strong 图4.2 受调查用户购买全自动固相萃取仪价格统计分布 /strong /p p style=" text-align: right "   (数据来源:仪器信息网抽样调研) /p p   从图中可以看出,受调查用户购买的全自动固相萃取仪价格集中在10万-40万之间,其中全自动固相萃取仪采购价格在20万-30万之间的受调查用户,占到了总调查人数的20%。此外,6%的仪器用户全自动固相萃取仪的购买价格在60万以上。 /p p    span style=" color: rgb(0, 176, 240) " strong 2016年全自动固相萃取仪采购招标情况分布 /strong /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/d80d51a1-e303-4061-8742-5a397bb3a96e.jpg" title=" QQ图片2.png" / /p p style=" text-align: center " strong 图4.3 2016年全自动固相萃取仪采购招标数量月分布(单位:台) /strong /p p style=" text-align: right "   (数据来源:互联网) /p p   strong  注:1、数据统计从2016年1月1日到2016年12月31日 2、采购数据来源于互联网公开发布的相关招中标信息。 /strong /p p   通过对互联网公开发布的2016年度全自动固相萃取仪的招投标信息进行梳理汇总发现,目前市场对全自动固相萃取仪的需求呈现周期性波动。但从整体趋势来看,产品需求成规律性变化趋势 strong ( span style=" color: rgb(0, 176, 240) " 具体变化规律及相关政策解读详见: /span /strong span style=" text-decoration: none " strong a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " span style=" text-decoration: none color: rgb(255, 0, 0) " 中国固相萃取仪市场研究报告(2017版) /span /a /strong /span strong ) /strong /p p    span style=" color: rgb(0, 176, 240) " strong 2016年全自动固相萃取仪采购区域分布 /strong /span /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201710/insimg/e2c9a604-8755-4da3-8cc8-f5b683cfff77.jpg" title=" QQ图片20171025143337.png" / /strong /p p style=" text-align: center " strong 图4.5 2016年全自动固相萃取仪采购区域分布 /strong /p p style=" text-align: right "   (数据来源:互联网) /p p   注:1、数据统计从2016年1月1日至2016年12月31日 2、采购数量来源于互联网公开发布的相关招中标信息,此处仅统计中标结果,废标和谈判中数据未列入 3、区域分布图通过第三方软件“地图慧”绘制所得。 /p p   2016年,通过公开招标采购全固相萃取仪的单位共涉及28个省份/直辖市。其中以西南、华南和华东地区较为密集。 strong ( /strong span style=" color: rgb(0, 176, 240) " strong 各省份全自动固相萃取仪具体需求状况及采购单位详情请见: /strong /span a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " style=" text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 中国固相萃取仪市场研究报告(2017版) /strong /span /a strong ) /strong 。 /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 《中国固相萃取仪市场研究报告(2017版)》 /strong /span /p p    strong 目录 /strong /p p    strong 第1章、 固相萃取仪技术与市场概述. 9 /strong /p p   1.1 固相萃取仪技术与市场简介. 9 /p p   1.2全自动固相萃取仪市场部分主流仪器情况统计. 11 /p p   1.3 全自动固相萃取仪市场部分主流仪器价格区间统计. 12 /p p   1.4全自动固相萃取仪市场部分主流厂商情况分析. 13 /p p   strong  第2章、 固相萃取仪技术现状及发展趋势. 15 /strong /p p   2.1固相萃取仪技术特点与优势. 15 /p p   2.2部分主流全自动固相萃取仪主要性能参数对比. 17 /p p   2.3 当前产品缺陷及用户关注点. 20 /p p    strong 第3章、 固相萃取仪主要应用领域与目标用户分析. 22 /strong /p p   3.1 受调查用户所在单位性质统计. 22 /p p   3.2 受调查用户所在领域统计. 22 /p p   3.3 受调查用户固相萃取仪使用特点分析. 23 /p p   3.4全自动固相萃取仪主要应用领域分析. 24 /p p    strong 第4章、 全自动固相萃取仪市场保有量/市场规模分析. 28 /strong /p p   4.1全自动固相萃取仪主流品牌占有率. 28 /p p   4.2受调查用户购买全自动固相萃取仪价格分析. 28 /p p   4.3全自动固相萃取仪市场容量/年销售量. 29 /p p   4.4 2016年全自动固相萃取仪采购招标情况分析. 31 /p p   4.5固相萃取仪部分主要用户单位分布情况. 33 /p p    strong 第5章、 总结. 35 /strong /p p    strong 附录:全自动固相萃取仪部分潜在用户单位列表. 37 /strong /p p br/ /p p style=" text-align: center " strong 更多报告内容请阅读: /strong /p p class=" f18" style=" margin: 0px padding: 0px font-size: 18px color: rgb(60, 84, 151) font-family: 宋体, & #39 Arial Narrow& #39 text-align: -webkit-center white-space: normal background-color: rgb(255, 255, 255) " a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 中国固相萃取仪市场研究报告(2017版) /strong /span /a /p p style=" text-align: center " strong & nbsp & nbsp 【咨询热线】:010-51654077-8042 /strong /p p 更多相关报告内容: /p p   · 2016食品行业政策解读及相关分析仪器市场动态研究报告 /p p   · 2016年制药行业市场发展及对仪器市场影响分析报告 /p p   · 2016年分析仪器中标信息统计分析报告 /p p   · 2016年中国环境监测市场分析及未来市场预测报告 /p p   · 中国气质联用仪市场调研报告(2016版) /p p   · 中国气相色谱仪市场调研报告(2016版) /p p   · 中国在线挥发性有机物分析仪市场调研报告(2016版) /p p   · 2016年第三季度分析仪器中标信息分析报告 /p p   · 中国傅立叶变换中红外光谱仪市场调研报告(2016版) /p
  • 加拿大博朗科技推出新型固相萃取仪器
    SPE-05 是一款效率高, 应用范围最广的样品前处理仪器。既可以用于大体积水样品的萃取又可用于常规体积样品提取液的净化(如食品中的农残、兽残分析, 土壤中污染物的分析, 法医学毒物分析),还可以处理小体积的生物样品。仪器配有八个注射泵, 可以在40分钟内完成40个农残样品的净化处理。为了避免小体积的血样(0.1-2毫升)在上样过程中污染注射泵或损失, 采用了进样环上样, 样品不经注射泵而完全进入SPE柱。通过采用管路集成技术, 将复杂的管线和阀集成为一至二个模块,仪器结构得以大幅度简化。简化的结构不仅提高了运行的稳定性, 而且使SPE-05成为市场上性价比最高的多通道多样品的固相萃取仪。SPE-05的控制采用触摸屏工控电脑.仪器不需要另外配置电脑.方法的建立只要通过点击现成的选择表就可以很快完成。方法也可以用台式电脑编辑, 然后用U盘下载到仪器。
  • 傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 固相微萃取(Solid Phase Micro Extraction,SPME)顶空气相色谱是一种简洁、便捷、环保、一举三得(萃取、浓缩、进样)的制样和分析并举的方法。SPME不仅可以和气相色谱仪器结合使用还可以和其他分析方法如液相色谱及各种质谱分析相结合。SPME有八大优点:1、操作简单,2、功能多样,3、设备低廉,4、萃取快捷,5、无需溶剂,6、在线、活体取样,7、可自动化,8、可在分析系统直接脱附。所以SPME是一种神通广大的样品制备技术。 1. 固相微萃取的由来   加拿大的 Pawliszyn 研究组在1987年研究气相色谱(GC)的快速进样技术,他们使用激光加热样品,使之快速汽化,这种 GC进样技术是把样品涂渍在激光光导纤维头部,把光导纤维头置于GC 汽化室中,用激光使样品中挥发性组分进入色谱系统,在研究中发现样品化气样速度很快,但是样品前处理却要耗费很长的时间。为了把样品处理时间缩短,他们就把处理和GC进样合二为一。即把光导纤维的石英丝涂渍上固定相(高聚物或吸附剂),因为当时 GC 毛细管石英色谱柱的涂渍工艺已经是成熟技术了,把涂渍固定相的石英丝放在样品水溶液中,吸收(吸附)被分析物,一段时间后取出石英丝置于 GC 汽化室中进行 GC 分析[3,4],这就是SPME 的开始。   为了把涂渍固定相的石英丝放入和取出 GC 的进样口不并且不影响 GC 气路系统的密封性,他们把涂渍固定相的石英丝粘接到 Hamilton 7000 型注射器针头上,如图 1 所示。用一支内径略大的不锈钢毛细管代替注射器的金属活塞棒,取一段 1.5 cm 石英丝,剥去一端0.5cm 的保护涂层,把另一端用环氧树脂粘接插入到不锈钢毛细管中,这个粘接着涂有固定相石英丝的不锈钢毛细管可以伸出或缩回到注射器针头中,以便通过隔垫把微萃取丝插到GC进样口中。其结构如图2所示。   图1 原始的SPME装置 图2 原始的SPME 针头和萃取丝装置 2.SPME 的理论研究   为了更好地理解 SPMEP 的本质和影响吸收过程的因素,Pawliszyn 研究组在发明了 SPME 以后就立刻进行了理论研究,考察了 SPME 萃取头在从水溶液中直接吸收被分析物的动力学过程,他们研究的一个模型说明,在充分搅拌溶液的条件下,样品吸收的时间只取决于样品在固定相中的扩散速度。另一个模型说明在静止的溶液中,样品吸收的时间取决于样品在溶液中的扩散速度,在使用标准的搅拌器械时,SPME 的萃取过程受溶质扩散过围绕 SPME 萃取丝周围一层静止的溶液液膜的控制。   他们还考察了SPME 萃取头在顶空情况下萃取挥发性样品的过程,这一研究说明:在溶液静态不搅拌情况下,进行顶空SPME 萃取,适合于具有高亨利常数、疏水性较强有机物的分析, 而且这种有机物在萃取固定相和空间气氛之间的分配系数较小,这一方法对测定难挥发性物质中的挥发性有机物有利。同时也详细研究了在充分搅拌被测溶液情况下进行顶空 SPME 萃取的过程,各种参数对萃取的影响。这些模型的研究促进了对 SPME 过程的理解,有利于这一方法的推广。 3.国内近年使用顶空固相微萃取气相色谱案例   我们从实际出发,看看国内近两年使用这一方法的进展,表 1 列出2013-2014年国内期刊上发表的HS-SPME-GC-MS分析案例。从这些发表的文章刊出:(1) HS-SPME-GC-MS使用十分广泛 (2) 国内的研究工作相比前几年有很大的提高(都使用了GC-MS作深入一些的研究) (3)研究工作大都使用商品化产品。 表 1 国内期刊上发表的HS-SPME-GC-MS分析案例 序号 分析对象 主要设备 文献 1 3种山茶属花香气成分的HS-SPME-GC-MS分析 安捷伦6890-5975C GC-MS联用仪,50mL顶空采样瓶、手动固相微萃取装置(美国Supelco公司);萃取纤维头2cm.50/30&mu m DVB 甘秀海,梁志远,王道平等,食品科学,2013,34(6):204-207 2 HS-SPME-GC-MS分析刺梨种子挥发性香气成分 安捷伦6890-5975C GC-MS联用仪,15mL顶空采样瓶手动固相微萃取装置(美国Supelco公司);萃取纤维头70&mu m PDMS 陈青,高健,中国酿造,2014,33(1):141-142 3 HS-SPME-GC-MS分析香荚兰豆中挥发性成分 安捷伦6890-5973 GC-MS联用仪,15mL顶空采样瓶, 萃取纤维头德国IKA公司),65&mu m聚二甲基硅氧烷.二乙烯基苯(PDMS&mdash DVB)萃取纤维头及100 17),手动固相微萃取(SPME)进样器装置(美国Supelco公司),65 Ixm聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。m PDMS萃取纤维头(美国Supelco公司) 卢金清,李雨玲,张锐等,中国实验方剂学杂志,20414,20(3):79-82 4 HS-SPME-GC-MS结合化学计量法对不同产地艾叶药材挥发性成分的比较分析 安捷伦6890-5973 GC-MS联用仪65 &mu mPDMS/DVB萃取头(美国Supelco公司),手动固相微萃取进样器装置(美国Supelco公司), 梁欢,卢金清,戴艺等,中国实验方剂学杂志,2014,20(18):85-90 5HS-SPME和VDE两种方法对普洱茶香气成分分析的比较研究 HS-SPME手动进样,500顶空采样瓶, 谢吉林,肖海军&rdquo ,鲍治帆等,云南农业大学学报,2014,29(6):873&mdash 879 6 SD-HS-SPME-GC-MS分析华中碎米荠挥发性成分 Agilent 6890/5973 GC-MS联用仪,17),手动固相微萃取进样器装置(美国Supelco公司),65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。 卢金清,李婷+,郭彧等,中国实验方剂学杂志,2013,19(1):148-152 7 SPME-GC-MS法分析金华火腿风味物质的条件优化 Trace Ultra气相色谱.DSQ II质谱联用仪器、Triplus自动进样器美国, Thermo公司;75 gm CAR/PDMS萃取头(美国Supelco公司) 李鑫,刘登勇,李亮等,食品科学,2014,35(4):122-126 8 SPME-GC-MS法分析室内空气中挥发性有机物 Varian 4000 GC/MS气相色谱-质谱仪&rsquo ,分流/不分流进样口和离子阱质谱检测器。固相微萃取装置(美国Supelco公司),包括手柄和100 &mu m PDMS、65}&mu m PDMS/DVB、75肚m Carboxen/PDMS三种吸附纤维,15 mL顶空瓶(德国CNW公司)。 降升平,张小红,张玲玲等,太原理工大学学报,2013,44(3):272-277 9 SPME-GC-MS分析高梁 、大豆丹贝和大豆丹贝中的挥发性成分 SPME手动进样柄及75&mu m CAR/PDMS萃取头(美国Supelco公司); 1200 GC(美国瓦里安公司) 丁一,肖愈,黄瑾等,食品科学,2013,34(20):131 - 134 10 SPME-GC-MS 分析商品藤茶中环烃类化合物 Agilent 6890/5975C GC/ MS 联用仪, 手动固相微萃取装置(美国Supelco 公司),萃取纤维头为:2 cm - 50/30 &mu m DVB/ CAR/ PDMS 赖茂林,郁建平,山地农业生物学报,2014,33(4) :092 - 094, 11 SPME-GC-MS检测不同中西方奶酪的挥发性风味物质及比较 Agilent 6890N,59731气相色谱-质谱联用仪:SPME手柄、75&mu m CAR/PDMS萃取头(美国Supelco公司) 马艳丽,曹雁平,杨贞耐等,食品科学,2013,34(20):103 - 107 12 SPME-GC-MS联合分析槟榔花香气成分 岛津QP 2010 Plus型气相色谱-质谱联用仪(GC&mdash MS); 自动SPME进样器;5&mu mPDMS&mdash DVB萃取纤维头。 张明,黄玉林,宋菲等,热带作物学报,2014,35(6):1244-1249 13 薄皮甜瓜品种&lsquo 白玉糖&rsquo 香气成分的HS-SPME/GC-MS 分析 100&mu m PDMS(聚二甲基氧硅烷)萃取头(美国Supelco),Agilent 7890A/5975C GC-MS 气相色谱质谱联用仪 赵光伟,徐志红,孔维虎等,中国瓜菜,2014,27(5):14-17 14 保留指数在茶叶挥发物鉴定中的 应用及保留指数库的建立 SPME 65 &mu m 聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent 公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶) 林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-270 15 不同高山杜鹃品种杂交后代花瓣香气成分的HS-SPME.GC.MS分析 Trace GCMS&mdash DSQ II气相色谱-质谱联用仪(Thermo,USA),萃取头的材料未报道 苏家乐,何丽斯,刘晓青等,江苏农业学报,2014,30(1):227-229 16 顶空固相微萃取结合气相色谱.质谱法分析兔肉的挥发性风味物质 QP 2010气相色谱-质谱联用仪(日本岛津公司);手动SPME进样器、75&mu m碳分子筛/ 聚二甲基硅氧烷(CAR/PDMS)涂层萃取头(美国Supelco公司):萃取瓶美国Perkinelmer公司 王琚,贺稚非,李洪军等,食品科学,2013,34(14):212-217 17 顶空固相微萃取-气相色谱-质谱法分析东北油豆角挥发性成分 6890N-5975气相色谱-质谱联用仪,20 mL钳口项空样品瓶(美国Agilent公司);65&mu m PDMS,DVB萃取头(美国Supelco公司) 王艳,宋述尧牢,张越等,食品科学,2014,35(12):169-173 18 顶空固相微萃取-气相色谱-质谱法分析玉兰花的挥发性成分 Agilent 6890 GC-5975MS气质联用仪(美国安捷伦公司);固相微萃取装置,75 &mu mCAR/PDMS萃取头(美国Supelco公司) 许柏球,栾崇林,刘莉萍等,香料香精化妆品 ,2014,(3): 19 顶空- 固相微萃取-气相色谱- 质谱联用法分析 &ldquo 无锡毫茶&rdquo 中的香气成分 Trace MS 气相色谱-四极杆质谱联用仪(美国Finnigan 公司);手动SPME 进样器(美国Supelco 公司);100 &mu m 聚二甲基硅氧烷(PDMS)萃取头、75 &mu m 碳分子筛/ 聚二甲基硅氧烷(CAR/ PDMS)萃取头、65 &mu m 二乙烯基苯/ 聚二甲基硅氧烷( DVB/ PDMS)萃取头、50/30 &mu m 二乙烯基苯/ 碳分子筛/ 聚二甲基硅氧烷(DVB/ CAR/ PDMS)萃取头、15 mL 顶空瓶(上海安谱科学仪器有限公司) 曾 茜,曹光群,李 明等,分析测试学报,2014,3(10):1136 -1141 20 顶空固相微萃取.气质联用分析并比较两种延胡索挥发性成分 Trace DSQ型气质联用仪(美国Thermo Finnigan公司),手动固相微萃取装置,聚二甲基硅氧烷涂层萃取头 (100 &mu m聚二甲基硅氧烷)和125 m1带聚四氟乙烯涂层硅橡胶垫的螺口玻璃瓶(美国supelco公司) 施华青,陈彬,寿佳妮等,中国医药工业杂志, 2014,45(1):66-68,75 21 顶空固相微萃取一气质色谱联用技术分析海州香薷与石香薷中挥发性成分 Agilent 7890N-5973N GC.MSD气相色谱质谱联用仪(美国Agilent公司),GC-MSD数据分析系统65&mu m PDMS/DVB(聚二甲基硅氧烷/二乙烯苯)SPME萃取头。 李佳,刘红燕,张永清,中国实验方剂学杂志,2013,19(16):118-122 22 发酵牛肉肠挥发性成分固相微萃取条件优化分析 , SCION TQ气质联用仪(德国布鲁克公司),固相微萃取头和57330U固相微萃取手柄美国(Supelco公司), 用DVB/CAR/DMS、PDMS/DVB,CAR/PDMS 3种萃取头 董琪,王武宰,陈从贵等,食品科学,2014,35(12):174-178 23 固相微萃取条件对橙汁主要挥发性成分GC-FID测定的影响 6890-5973气相色谱(美国Agilent公司); SP3400气相色谱仪(北分瑞利分析仪器公司),固相微萃100&mu m PDMS(美国Supelco公司) 牛丽影,郁萌,吴继红等,食品科学,2013,34(22):224-233 24 酒醅微量挥发性成分的HS-SPME和GC-MS分析 6890N-5973I气相色谱-质谱联用仪(美国安捷伦公司),PC420固相微萃取仪,萃取头(75&mu m CAR/PDMS、65&mu m PDMS/DVB,50/30&mu m DVB,CAR/PDMS 100&mu m PDMS(颜色分别为黑色、蓝色、灰色、红色,美国Supelo公司) 赵爽,张毅斌,张弦等,食品科学,2013,34(4):118-124 25 食用油品中己醛的分析 GC-2010气相色谱仪(本岛津公司), SPME手柄及SPME纤维(Supelco公司), 100 &mu m PDMS, 65 &mu m PDMS/DVB, 85 &mu m PA, 85 &mu m CAR/PDMS 和70 &mu m CW/DVB,最终选取 85 &mu mCAR/PDMS 陈冬梅, 福建分析测试, 2014,23(3):22-26 26 同时蒸馏萃取法和固相微萃取法分析棕榈油与菜籽油复合火锅底料中的风味物质 QP2010型气相色谱-质谱联用仪(日本岛津公司),固相微萃取手柄、75 &mu m CAR/DMS固相微萃取头(美国Supelco公司) 张丽珠,黄湛,唐洁等,食品科学,2014,35(18):156-160 27 应用SPME-GC-MS分析变温压差膨化干燥香蕉脆片香气成分 萃取头65 &mu m DVB/PDMS(美国Supelco公司),QP 2010 Plus气相色谱-质谱联用仪(日本岛津公司) 李宝玉,杨君,尹凯丹等,食品科学,2014,35(14):184-18828 HS-SPME-GC-MS分析河南产牛至挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS型气相色谱-质谱联用仪,美国Supelco公司手动固相微萃取(SPME)装置,萃取头为65&mu m PDMS-DVB 尹震花,王海燕,彭涛, 中国实验方剂学杂志,2014,20(6):77-80 29 HS-SPME-GC-MS分析藿香蓟花中的挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS气相色谱-质谱联用仪,美国supelco公司手动固相微萃取(SPME)装置,萃取头为100&mu m PDMS-DVB 张橡楠,张一冰,张勇等,中国实验方剂学杂志,2014,20(9):99-101 30 SPME与SD提取八角茴香挥发性风味成分的GC-MS比较 美国安捷伦公司GC 6890 N GC/5973 MS型气相色谱-质谱联用仪,65&mu mPDMS/DVB萃取纤维头, 顶空瓶15mL(德国IKA公司) 黎强,卢金清,郭胜男, 中国调味品,2014,39(7):107-109 31 SPME-GC/MS/O法分析水性涂料的气味问题 气相色谱-质谱-嗅觉测量联用仪(Agilent 6890-5973 MSD-O),固相微萃取装置(Combi&mdash PAL,CTC-SPME),萃取纤维(Supelco,50/30&mu m DVB/CAR/PDMS StableFlex/SS l cm),20 mL顶空样品瓶 董婕,朱莉莉,方芳等,涂料工业,2014,44(5):53-55 32 SPME-GC-MS法研究竹叶柴胡和北柴胡挥发性成分差异 6890-5973N型气相色谱-质谱联用仪 (美国Agilent公司),手动固相微萃取装置(美国Supelco公司),萃取纤维头(100&mu m PDMS,7&mu m PDMS,85&mu m PA),5 mL SPME.GC专用采样瓶(美国Supelco公司) 王砚,王书林, 中国实验方剂学杂志,2014,20(14):104-108 33 SPME/GC-MS鉴别地沟油新方法(Ⅲ) Agilent 6890 GC/5973i MS气相色谱-质谱联用仪(美国安捷伦公司);自制SPME固相微萃取头NACC-1。 吴惠勤,黄晓兰,林晓珊等,分析测试学报,2014,32(11):1277-1282 34 巴氏灭菌对不同品种菠萝蜜汁挥发性香气成分的影响 Thermo Trace 1300-ISQ气相色谱一质谱联用仪,20mL样品瓶、固相微萃取自动进样手柄美国Thermo公司;固相微萃取头(65 &mu m PDMS/DVB) 美国Supelco公司。 皋香,施瑞城,谷风林等,食品科学,2014,35(9):63-68 35 保留指数在茶叶挥发物鉴定中的应用及保留指数库的建立 SPME 手持器(SAAB-57330U)和65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶) 林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-270 36 不同地区黄酒挥发性物质差异性分析 75 &mu mCAR/PDMS固相微萃取头(美国Suplco公司), Trace MS气相色谱-质谱联用仪(美国Finnigan公司) 王培璇,毛健,李晓钟等,食品科学,2014,35(6):83-89 37 不同性别伊拉兔肉挥发性风味物质的SPME-GC-MS分析 QP 2010气相色谱-质谱联用仪(日本岛津公司);手动固相微萃取进样器、75&mu m CAR/PDMS涂层萃取头(美国Supelco公司) 陈康,李洪军,贺稚非等,食品科学,2014,35(6):96-102 38 顶空固相微萃取-气相色谱.质谱联用法分析仔姜与老姜的挥发性成分 QP 2010型气相色谱-质谱联用仪(日本岛津公司;固相微萃取装置(配有50/30&mu m DVB/CAR/PDMS萃取头) 美国 Supelco公司;萃取瓶美国Perkin Elmer公司 汪莉莎,陈光静,张甫生等,食品科学,2014,35(10):153-157 39 顶空固相微萃取与气相色谱.电子捕获技术联用检测软木塞中2,4,6.三氯苯甲醚 CP-3800气相色谱仪(美国Varian公司),20 mL项空瓶,;手动固相微萃取手柄,100&mu m聚二甲基硅氧烷涂层萃取头(美国sigma公司) 张哲琦,王玉春,陈臣等,食品科学,2014,35(12):148-150 40 多种提取方法分析蛇莓挥发性组分 QP 2010-Plus 气相色谱-质谱联用仪(日本岛津公司),顶空进样针PDMS 100 &mu m, PDMS-DVB 65 &mu m, CAR-PDMS 75 &mu m,PA 85&mu m (美国Sigma 公司) 王晨旭,于兰,杨艳芹等,分析化学,2014,42(11):1710 -1714 41 海南主要地域生咖啡豆挥发性化学成分对比研究 QP 2010 Plus气质联用系统(日本岛津公司),20 mL顶空瓶,未报道萃取头品种 胡荣锁,初众,谷风林等,光谱学与光谱分析,2013,33(2):548-55342 葎草鲜品不同部位的挥发油成分及含量 仪器:Aghilent 6890-5973 GC/MS ;手动固相微萃取(美国Supelco公司),萃取纤维头为:100&mu mPDMS 彭小冰,邵进明,刘炳新等,贵州农业科学,2014,42(4):178-181  43 熟化方式对小米粉制品挥发性成分的影响 气相色谱质谱联用仪(美国Varian公司);顶空固相微萃取装置(美国Supelco公司), DVB/CAR/PDMS萃取头 李雯,陈怡菁,任建华等,中国粮油学报,2014,29(4):93-97 44 GC-MS分析比较3个特产香椿品种的挥发性成分 Varian 4000 GC-MS(美国瓦里安公司);顶空固相微萃取装置(包括手持式手柄,50/30&mu m DVB/PDMS、75 &mu m CAR/PDMS、lOO&mu m PDMS、65&mu m PDMS/DVB 4种萃取头,40mL顶空瓶)( 美国Supelco公司) 刘常金,张杰,周争艳等,食品科学,2013,34(20):261-267 45 HS-SPME-GC-MS法分析肉桂子挥发性化学成分 QP2010气相色谱-质谱联用仪(日本岛津公司),;手持固相微萃取设备(美国,Supelco公司)100&mu m PDMS ,75&mu m PDMS/CAR ,65&mu m PDMS/DVB 和50/30&mu m PDMS/DVB/CAR萃取 头 熊梅,张正方,唐军等中国调味品,2013,38(1):88-91 46 HS-SPME-GC-MS分析两种南瓜瓤挥发性成分 Agilent GC 6890 N /5975 MS,Supelco SPME 65&mu m PDMSA-DVB 萃取头物膜(聚二甲基硅氧烷)   小结:SPME 是现今和气相色谱仪连接使用最多的一种结合样品处理与分离分析在一起的方法,应用模式和应用范围还在发展。   下一讲讨论样品处理的另一种模式&mdash &mdash &ldquo 悬空济世&mdash 单滴液体微萃取的妙用&rdquo 。   最后预祝读者羊年快乐!万事如意!
  • “参与固相萃取仪调研,赢取话费”获奖名单公布
    p   为了更好地了解目前市场上固相萃取仪的使用情况,仪器信息网特组织此次“参与固相萃取仪调研、赢取话费”活动,以便给更多的固相萃取仪用户在使用和选购仪器过程中做出指导。目前累计近400人参与此次调研活动。 /p p   迄今为止,参与电话调研,获得电话奖励的用户名单也已新鲜出炉!据统计,获得此次话费奖励的用户共计170人,现将获奖者名单公布如下,快看看是不是有你吧! /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/3b23ec20-17ad-4136-8a2c-6f85ef2f7cf0.jpg" title=" QQ图片20170718163056.jpg" width=" 607" height=" 695" style=" width: 607px height: 695px " / /p
  • 污水识毒,一机两得 | SUPEC 5220型 在线固相萃取液质联用系统
    当打击毒品与污水挂钩为了助力缉毒检查,各地区开始进行污水中毒品的分析。污水验毒,通过污水毒品检测技术了解区域毒情,打击毒品犯罪,为公安机关快速精确的判定“毒情”提供有利技术支撑。污水识毒,谱育科技硬核新利器来咯,高效、快速、精准分析,高端技术应用激发禁毒实战新动能。✦✦每一次创新都不同凡响SUPEC 5220 OSPE LC-MS/MS 在线固相萃取液质联用系统● ● ●一机两得,大体积进样+常规进样渠道无需前处理,采用自动化“一站式”分析模式大体积进样,实现ng/L级别的检出限和定量限前沿技术搭配,精准监测,更从容应对复杂基质双柱交替运行,无需反复,更高效输出监测数据★产品概述★谱育科技全新推出的SUPEC 5220 在线固相萃取液质联用系统,仪器采用在线SPE(固相萃取)与LC-MS/MS联用技术,增大样品通量,实现对复杂基质中目标物的富集与分离,有效解决传统离线SPE方法前处理繁琐、效率低等问题,大大提升实验室污水中违禁品的检测效率和实验结果的准确性。
  • 岛津技迩2014年底大促销 固相萃取小柱优惠送
    ………………………………………………活动产品………………………………………………WondaSep系列&InertSep系列,含硅胶基体、聚合物基体、特殊填料等各种填料常用WondaSep系列产品填料规格.包装产品编号市场价/RMB优惠价/RMBWondaSep HLB60mg/3mL,50/p5010-81921974682200mg/6mL,30/p5010-819231113779500mg/6mL,30/p5010-8192423841669WondaSep MPC60mg/3mL,50/p5010-MPC1080756WondaSep GC-e/NH2500mg/500mg/6mL,50/p5010-81804680476WondaSep NH2500mg/6mL,30/p5010-81204530371WondaSep C18500mg/6mL,30/p5010-81004550385WondaSep FL-PR1g/6mL,30/p5010-81125490343…………………………………………另有好礼相赠………………………………………………天堂伞 保温杯 精美背包 九阳豆浆机一次性买满3盒即可得 一次性买满6盒即可得 累计买满9盒即可得 累计买满21盒即可得 岛津技迩广西区代理:广西德尔菲仪器设备有限公司地址:南宁市青秀区青山路18号青秀山庄D39栋电话:0771-5846320/18076630653 传真:0771-5846932E-mail:dpymz@delphy.com.cn网址:www.delphy.com.cn 400-678 3088
  • 掌握这些固相萃取知识,你就能成为实验室zui靓的仔
    近年来分析检测技术有了很大的飞跃,但样品前处理依然是科研工作者必须面对的挑战。 固相萃取(Solid Phase Extraction,简称SPE)是一种从二十世纪七十年代中期开始发展起来,用途广泛而且越来越受欢迎的样品前处理技术。根据吸附剂填料及吸附机理的不同,主要分为正相、反相、离子交换和混合型固相萃取小柱,正相、反相固相萃取小柱主要是用来萃取分离极性和非极性化合物,但对一些带电物质(离子化合物)的萃取回收率并不高,如C18填料固相萃取小柱,当目标化合物呈离子状态时,C18对于该化合物的容量因子就会大大降低。为了解决这一问题,月旭推出了硅胶基质和聚合物基质的离子交换固相萃取小柱。 下面就由小编为大家介绍离子交换固相萃取小柱方法开发中需要注意的问题。 离子交换固相萃取适用于可解离成带电离子的化合物,其机理是利用带电荷的目标化合物离子与带相反电荷的吸附剂之间的静电吸引力。样品基质可以是极性的,如水溶液,也可以是非极性的有机溶液,但在实际应用中以水溶液较多,包括生物体液、江河湖海等自然水、废水等。 方法开发第一步:我们要分析的目标化合物必须具备下列任意一种或以上的官能团才能通过离子作用力将其从样品溶液中分离出来:(1)可生成阳离子的官能团(带正电荷)(2)可生成阴离子的官能团(带负电荷)而且待分析的目标化合物必须在一定的pH环境下才能呈离子化或中性化。 第二步:要有效地利用离子交换机理将目标化合物吸附在SPE柱上,必须满足以下两个条件:(1)目标化合物离子与吸附剂官能团的离子态带相反电荷;(2)萃取环境的pH必须同时使目标化合物和吸附剂上的官能团带电荷;(3)萃取环境不能含有高浓度的带有和目标化合物相同电荷的竞争化合物。在实际操作中,为了满足前两个条件,确保99%以上的目标化合物及固相萃取吸附剂上的官能团能够呈离子态或呈中性状态,应该根据目标化合物及固相萃取吸附剂官能团的pKa来调节样品或SPE柱的pH。 那么小编为大家介绍一下pH与pKa值的关系:对于一个可生成离子的化合物,pKa是该化合物50%呈离子状态,50%呈中性状态时的pH。就弱酸性化合物HA而言,其在水中的解离平衡方程式为:从式三可以看到,当pH与pKa相同时,[A?]/[HA]为1。也就是说,这时50%的弱酸性化合物呈阴离子状态,另外50%呈中性状态。在该pH环境下,即便这些呈阴离子状态的化合物100%地被阴离子交换剂吸附,之后又100%地被洗脱,zui高回收率也只能达到50%。因为只有50%的弱酸性化合物呈离子状态,并被阴离子交换剂吸附。由此可见在离子交换固相萃取中,控制环境的pH十分重要。 [A?]/[HA]越大,代表弱酸性化合物离子化程度越大。理论上,当[A?]/[HA]等于100时,99%的弱酸性化合物呈阴离子状态,可以被阴离子交换剂吸附。根据式三,在进行阴离子固相萃取吸附时,要使弱酸性化合物99%离子化,样品基质的pH应该高于该化合物pKa至少两个pH单位。反之,在对该弱酸性化合物进行洗脱时,应该将环境的pH调节至低于该化合物pKa至少两个pH单位,此时弱酸性化合物99%呈中性状态,用适当的溶剂就可以将其从阴离子交换柱上洗脱下来。 式三同样可以用于可生成阳离子官能团的弱碱性化合物。这时我们将弱碱性化合物看作共轭酸[HA+],并将该公式改写为:与弱酸性化合物相反,在阳离子交换固相萃取中,要使弱碱性化合物99%解离为阳离子,需要将该弱碱性化合物所处的环境体系的pH应该低于该化合物pKa至少两个pH单位。而在洗脱时,环境体系的pH应该高于该化合物的pKa至少两个pH单位,此时99%的该化合物呈中性状态,用适当的溶剂就可以将其从阳离子交换柱上洗脱下来。 第三步:离子交换固相萃取柱种类的选择:为了能够有效地将被吸附的离子化合物洗脱出来,对于含有强离子官能团的目标化合物一般选用弱离子交换柱;而对于含有弱离子官能团的化合物,则可选用强离子交换柱。这样可以避免目标化合物和吸附剂官能团同时处于离子化状态,导致目标化合物始终处于的保留状态无法被洗脱。 下面小编为大家举一个应用案例:例如,用硅胶键合羧基官能团的弱阳离子交换固相萃取小柱对猪肉或猪尿液中的盐酸克伦特luo进行萃取分离,SPE柱填料的羧基官能团的pKa=4.8,盐酸克伦特luo的pKa=9.6。根据上述两个pH单位的原则,为保证吸附剂上羧基官能团和目标化合物盐酸克伦特luo尽可能离子化,环境的pH至少应该调节到7.6。在此pH环境下,99%的盐酸克伦特luo呈阳离子状态,而SPE柱的羧甲基官能团呈阴离子状态。因此,可以将盐酸克伦特luo吸附。而在洗脱的时候,为了使盐酸克伦特luo呈中性状态,可在洗脱剂中加入碱,将洗脱环境的pH调节至高于其pKa两个单位,即pH≧11.6。在此环境下,目标化合物盐酸克伦特luo呈中性状态并且与阳离子交换剂脱离,被洗脱溶剂从SPE柱洗脱出来。 好了,今天关于离子交换固相萃取小柱方法开发中需要注意的问题就先讲到这了。此外,月旭在固相萃取技术产品中,已经推出了硅胶基质和聚合物基质的强阳离子交换、强阴离子交换、弱阳离子交换、弱阴离子交换的SPE小柱,并广泛应用于食品安全检测、环境检测、生物样品、农药残留分析等各个领域,具有回收率高、萃取效果好等优点。
  • 智能化全自动固相萃取仪
    成果名称 智能化全自动固相萃取仪 单位名称 北京普立泰科仪器有限公司 联系人 初春 联系邮箱 Chun.chu@pltk.com.cn 成果成熟度 □研发阶段 □原理样机 □通过小试 &radic 通过中试 □可以量产 合作方式 □技术转让 □技术入股 □合作开发 &radic 其他 成果简介: 基于我国十二五科技发展规划对大力发展国产仪器的要求,根据北京市食品安全分析测试工程技术研究中心需求,结合首都科技条件平台专项科学仪器开发培育项目2013年度项目组织工作指南,开发基于固相萃取的智能化样品前处理设备,具有包括以下研发内容: 在仪器开发方面,侧重于1)研制具有自主知识产权的全自动固相萃取仪;2)通过集成控制软件、人机界面、方法系统数据和传输接口,形成智能化样品前处理设备。在应用开发方面,侧重于将该系统用于环境监测和食品安全等领域关键技术的研究。 本项目是在本研究团队多年研究基础上,以产、研、用合作研究模式的进一步设计和开发。仪器开发任务将为应用开发提供高性能的固相萃取仪和集成控制软件;工程化开发将确保研制仪器的安全性、稳定性和耐用性,为全自动固相萃取仪的产业化提供保证。应用开发将以环境污染物、食品中有毒有害物质为仪器开发提供的样品样机 工程化样机和成型产品进行测评和改进意见反馈,同时还将拓展仪器的性能,并扩充仪器开发建立的数据库。 ①接触式液面探测技术; 通过技术对比,选择计算式针随液面下降的方式进行取样,大大降低了交叉污染的可能性; ②固相萃取设备的高可靠性和高重复性; 全自动仪器的高可靠性和高重复性一直是困扰厂商的一个技术壁垒,本项目通过硬件和软件的相互配合,在仪器设计中采用先进的材质和部件进行试验,在每个部件上都做到精益求精,样机和每一台出厂机器都确保经过稳定性测试,使仪器达到要求; ③样品预处理条件与方法效率间的方法建立。 样品预处理过程一直占据了整个实验过程的绝大部分时间,有60%以上的时间都在进行样品预处理,但是目前实验室样品数量越来越大,应急监测、常规检测都变成了实验室的常态,目前科技发展越来越迅速,对效率和速度的要求越来越高,如何更快更好的将预处理条件建立是摆在科研工作者面前的一个难题。本项目通过与北京市理化分析测试中心的合作,建立了预处理时间少于5小时的前处理方法,并且通过多通道的全自动智能化仪器,让实验室效率大幅提高。 创新点: ①研制的固相萃取仪能够实现样品前处理的智能化、自动化及高通量; ②该项目研发的设备包括进样、萃取、收集、清洗多种功能,实现样品前处理操作的一体化; ③仪器研发与相应的应用方法同步进行,提供完善的解决方案。 应用情况: 将研制的智能化多功能样品前处理设备用于食品安全及环境监测等领域关键技术的研究,并建立环境样品中多氯联苯污染物、食品中有机氯农药和拟除虫菊酯类农药残留的前处理方法,拓展仪器的应用。 ①以环境中持久性有机污染物为研究对象,为多氯联苯类污染物的检测提供技术支持; ②以有机氯农药和拟除虫菊酯类农药为研究对象,为实现该类食品安全预警与质量控制提供技术支持。 应用前景: 可以有效的利用公司已有的客户资源和课题合作单位,通过网络、会议、展会等形式扩大产品的知名度,通过先试用再购买的销售手段进行智能化样品前处理设备的推广,在短期内增加客户群体和仪器持有量,更好更快速的打开市场。 本课题研制的全自动固相萃取仪已经展现了良好的市场前景,经过低于一年半的项目周期,不仅成功研制出可使用的样机,使用样机做了许多涵盖面较广的应用,并且在短期内已经销售了3套,展现出非常可观的销售前景,并且目前已有涵盖企业、高校、科研院所、检测单位等不同领域的用户达成了购买意向。 本课题组针对研制的全自动固相萃取仪,制定了相应的推广应用计划: 1. 继续拓展在各相关领域的应用范围,推广固相萃取法针对持久性有机污染物、多环芳烃类的应用; 2. 继续拓展在食品安全领域的应用范围,推广固相萃取在有机磷农药、兽药、非法添加剂、真菌毒素等领域的应用; 3. 借助课题合作单位的国产科学仪器应用示范中心、&ldquo 国产科学仪器设备应用示范产业技术创新战略联盟&rdquo ,以及首都科技条件平台等多个平台进行全自动固相萃取仪的应用、示范及推广工作。 知识产权及项目获奖情况: 已提交专利申请4项,其中发明专利3项,实用新型专利1项,还未授权。 撰写核心期刊文章2篇,一篇已接收,一篇在审稿。
  • 双核:在无锡,感受固相萃取和微波萃取
    4月8-9日,EMIF生态环境检测技术创新论坛在无锡成功举办。出席会议的有来自全省分析测试机构、高校科研单位和企业的代表,以及安捷伦、赛默飞、PE、沃特世、岛津、屹尧科技等仪器厂商。来自无锡、南京、常州、镇江等市环境检测中心的专家对环境监测的热点和方向、江苏省环境监测条例和现场监测的新标准做了分析解读,并分享了水质中藻毒素和酞酸酯的测定,以及环境空气中VOCs的测定技巧。江苏省环境检测中心的陈老师则介绍了检测行业飞行检查需要注意的要点以及检测机构内部质量管理的要点。前处理仪器作为环境监测中重要的一环,屹尧科技产品部齐经理在会上做了《水质和土壤中污染物分析自动化前处理方法》的报告。无论固相萃取还是微波萃取,屹尧科技都可以针对不同应用需求,为您提供更合适的解决方案。好的固相萃取仪什么样?它不应该只能测水样,还可以同时测土壤、食品和生物样!真正的全自动固相萃取仪,不会因为体积大小不同,或者用到不同的SPE柱子,就不得不手动更换配件。是的,EXTRA固相萃取仪作为真正全自动的“时间管理大师”,能同时轻松搞定各种类型的样品,并实现多种SPE柱的自动切换。除了便捷高效之外,再好看的数据,也首先要真实才有意义。用户一直苦恼的固相萃取过程中的交叉污染,对EXTRA早已不再是问题。它采用极其巧妙的流路设计,移液针配套高精度注射泵实现样品通过缓冲环进样方式,样品不经过泵阀,从源头上避免了交叉污染。随着样品量的不断增加,检测需求的不断提高,微波萃取在土壤和沉积物、固体废物等样品分析前处理中的应用也越来越多。密闭微波溶剂萃取利用微波加热的优势,大大提高了目标分析物在提取溶剂中的溶解度,增加其从样品基质中脱吸的速率,且更大程度的保留了易挥发组份。屹尧科技精确的温度控制保证了提取的重复性,110mL萃取管满足了标准中大样品量需求,45分钟即可完成27个样品的提取。屹尧科技,为您提供更高效可靠的微波萃取与更便捷精准的全自动固相萃取双核驱动的样品前处理。
  • 普立泰科携全新一代全自动固相萃取系统亮相BCEIA
    2013年10月23日,第十五届北京分析测试学术报告会及展览会(BCEIA 2013)于北京展览馆隆重召开,本次展会共吸引了国内外17个国家的364个厂商参展,北京普立泰科作为前处理行业资深代理及生产商携5款口碑优良的仪器亮相BCEIA,尤其之中更有一款全新发布的全自动多通道固相萃取仪引起了广泛关注。 众多学者前来技术交流 全自动多通道固相萃取系统以六通道,无线控制,高效的样品处理能力,实现一个序列解决288个样品处理,可选的灵活配置等优势吸引了众多眼球。此款仪器外观新颖,功能强大,与市场上现有的固相萃取有很大区别,采用surface平板电脑控制整个系统,全自动实现样品的整个净化过程。 全自动多通道固相萃取系统以六通道,无线控制,高效的样品处理能力,实现一个序列解决288个样品处理,可选的灵活配置等优势吸引了众多眼球。此款仪器外观新颖,功能强大,与市场上现有的固相萃取有很大区别,采用surface平板电脑控制整个系统,全自动实现样品的整个净化过程。 全自动多通道固相萃取系统以六通道,无线控制,高效的样品处理能力,实现一个序列解决288个样品处理,可选的灵活配置等优势吸引了众多眼球。此款仪器外观新颖,功能强大,与市场上现有的固相萃取有很大区别,采用surface平板电脑控制整个系统,全自动实现样品的整个净化过程。 众多学者前往
  • 索氏提取器|固相萃取装置厂家促销
    上海乔枫品牌的索氏提取器和固相萃取装置厂家年底促销活动正式开始,详情请咨询:021-54385660 1801521092索氏提取器产品说明:主要由加热抽提,溶剂回收和冷却三大部分组成。操作时可以根据试剂沸点和环境温度不同而调节加热温度,试样在抽提过程反复浸泡及抽提,从而达到快速提取目的。索氏提取器技术指标:1、应用范围:可用于提取粮食、饲料、油料、土壤等各种样品;2、每批提取样品数:2个;3、提取瓶容积:500ml/个;4、提取样品量:0.5-20g/个;5、抽提时间可调,到时报警;6、提取溶剂可自动回收;7、控温范围:室温+5oC ~ 100oC 8、电源电压:220V+10V 频率50Hz;9、 电加热功率:300W;10、外型尺寸(mm):750×360×550;11、重量:16kg。固相萃取装置产品说明:固相萃取/固相萃取装置(Solid-Phase Extraction,简称SPE)是一种被广泛应用且备受欢迎的样品前处理技术,就是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰 化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。它在传统的液—液萃取基础上采用物质间相似作用的相似相溶原理并结合目前 广泛应用的液相色谱和气相色谱固定相基本知识发展而来。 固相萃取装置主要特征:●圆柱形设计,整体密封性能优越。●整机采用有机玻璃制作,耐腐蚀性好。●与DP-01真空泵配套使用真空度可达0.098Mpa。●真空槽采用特硬玻璃模具成形,其壁厚均匀故可承受-0.085Mpa以上的高负压。●萃取柱托盘采用特高分子材料制成,其美观耐腐蚀并且长期使用在高压力状态下不变形。●内部试管架由聚四氟制成故有很高的耐腐蚀。 固相萃取装置技术参数:型 号孔数气体控制方式工作区尺寸(mm)压力显示真空度流量控制阀价格(元)QSE -12B12统一控制 ∮132X138 有压力表 0.098Mpa 无4200QSE -12D独立控制每个孔12个6300QSE -24A24统一控制 ∮202X138 无6000QSE -24B独立控制每个孔24个8200可定做不同孔径和孔数的试管托盘或支架与RS-1真空泵配套使用真空度可达0.098Mpa
  • 《食品/环境分析中的固相萃取》专题技术报告
    白酒塑化剂事件,将食品安全问题再次推到了风口浪尖,引起了全国人民乃至全世界的高度关注。而食品安全的检测则是所有相关实验室检测人员关心的问题。12月6日-8日,由国联资源网、食品安全与检测网主办的2012中国(广州)食品安全检测技术交流会将在广州市嘉福国际大酒店(原嘉应宾馆)举行。陈小华博士应邀在会上作《食品/环境分析中的固相萃取-若干问题及解决方案》专题技术报告,就固相萃取、相关仪器设备及邻苯二甲酸酯的固相萃取等问题进行探讨和解读,欢迎感兴趣的人员参加。有关会议信息,请点击一下链接: http://topic.ibicn.com/2012/882/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制