当前位置: 仪器信息网 > 行业主题 > >

晶体谐振器

仪器信息网晶体谐振器专题为您提供2024年最新晶体谐振器价格报价、厂家品牌的相关信息, 包括晶体谐振器参数、型号等,不管是国产,还是进口品牌的晶体谐振器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合晶体谐振器相关的耗材配件、试剂标物,还有晶体谐振器相关的最新资讯、资料,以及晶体谐振器相关的解决方案。

晶体谐振器相关的资讯

  • 高性能集成化射频MEMS谐振器件
    table width=" 633" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 501" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 高性能集成化射频MEMS谐振器件 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 中科院半导体研究所 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 杨晋玲 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 172" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" jlyang@semi.ac.cn /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp √已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" √技术转让& nbsp & nbsp & nbsp √技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp √其他 /span /p /td /tr tr style=" height:304px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 304" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 射频MEMS谐振器件是基于半导体微纳加工技术制备的高性能、集成化硅基时钟器件,具有高性能、低功耗、低成本、可与IC集成等优势。是对石英产品的升级换代,正以120%的年增长率,逐渐取代石英晶体振荡器。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 本项目将在国内首次实现高性能MEMS谐振器、振荡器等射频谐振电子器件的产业化,打破国外公司的技术垄断。我们拥有高频率、高Q值MEMS谐振器件的设计、加工、封装、测试等整套技术,主要的关键技术包括:创新的采用圆盘谐振结构的面内振动模态,实现高频率的谐振输出,降低能量损耗。开发了高成品率的硅基谐振器件微纳加工技术和高可靠性的圆片级封测技术,制备高性能谐振器;利用高增益、低噪声的驱动电路和温度补偿电路构成高稳定性振荡器,开发了射频MEMS器件的小信号测试技术,可实现大规模制备与测试,大幅降低器件成本。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 本项目的创新点包括:国内首次实现具有高频、高Q的特性的MEMS谐振器、振荡器等器件,属于技术创新;高性能的驱动电路设计,提高了振荡器的系统稳定性;MEMS振荡器的高可靠性硅基集成加工,实现高成品率的批量生产,与CMOS工艺兼容等特点,可取代分立的石英晶振产品,集成在功能芯片中作为电路系统的时钟器件。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 由于MEMS谐振器对加工精度的要求很高,加工误差将导致频率的改变,且电极和圆盘之间的间隙也只有几十纳米的量级,普通微加工技术难以实现低成本、批量化的纳米尺度加工。因此,我们采用了牺牲层释放技术,实现纳米间隙的加工。同时采用新型支撑结构和圆盘一次刻蚀,填充的技术,实现了图形的自对准,避免了多次套刻产生的工艺误差。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 本产品具有高频、高Q、可集成、低功耗等特性,MEMS 谐振器和振荡器的整体性能与国外先进水平相当,实现国内首家大规模供货的射频谐振器件公司,可快速进入石英晶振的市场。 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 如果把中央处理器芯片比喻为现代电子系统的大脑,那么时钟组件当之无愧是其心脏。一颗健康、稳定、持久的“心脏”,将直接影响到电子系统的功能和可靠性。谐振器件就是电子系统中的频率参考源,即时钟器件,产生固定周期振荡信号的器件。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 每个现代电子产品中都不止一个频率参考源。每年生产的频率参考源器件数以百亿计。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 一般分为石英谐振器、MEMS谐振器和陶瓷谐振器。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 陶瓷谐振器体积大,一般较少使用。石英作为时钟市场的主流技术,一直占据着霸主地位。但受传统制造工艺限制及下游原材料(起振电路和基座)市场的垄断,性价比难以进一步提升。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" MEMS /span span style=" line-height:150% font-family:宋体" 谐振器具有体积小、成本低、可与电路集成等优点,是未来通信系统的热门研究对象,是石英谐振器的升级换代产品。目前,MEMS的振荡器产品已经广泛应用于消费电子领域,如智能手机、数码相机等,影音设备,如摄录机、机顶盒、音响设备等以及网络和通信领域,如以太网转换器、路由器、基站等电子产品和工业基础电子系统中。MEMS振荡器已经被应用于iphone7手机中作为时钟芯片,全球数以亿计的智能手机出货量,给MEMS振荡器创造了巨大的市场机会。 /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:150%" a title=" 一种频率可切换的微机械谐振器及其制备方法" span style=" line-height:150% font-family: 宋体 color:windowtext text-underline:none" 一种频率可切换的微机械谐振器及其制备方法 /span /a span style=" line-height:150% font-family:宋体" (申请号CN201310750721.X) /span /p p style=" text-indent:28px line-height:150%" a title=" 频率可调的MEMS谐振器" span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none" 频率可调的MEMS /span span style=" line-height:150% font-family: 宋体 color:windowtext text-underline:none" 谐振器 /span /a span style=" line-height:150% font-family:宋体" (申请号CN201310306960.6) /span /p p style=" text-indent:28px line-height:150%" a title=" 频率可切换的微机械谐振器" span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none" 频率可切换的微机械谐振器 /span /a span style=" line-height:150% font-family:宋体" (申请号CN201310178457.7) /span /p p style=" text-indent:28px line-height:150%" a title=" MEMS振荡器" span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none" MEMS /span span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none" 振荡器 /span /a span style=" line-height:150% font-family:宋体" (申请号CN201310178827.7) /span /p p style=" text-indent:28px line-height:150%" a title=" 一种微机械谐振器及其制作方法" span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none" 一种微机械谐振器及其制作方法 /span /a span style=" line-height:150% font-family:宋体" (申请号CN201310235167.1) /span /p p style=" text-indent:28px line-height:150%" a title=" 用于微机电系统器件的圆片级三维封装方法" span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none" 用于微机电系统器件的圆片级三维封装方法 /span /a span style=" line-height:150% font-family:宋体" (申请号CN201110346268.7) /span /p /td /tr /tbody /table
  • 郭光灿院士领衔 石墨烯纳米谐振器研究取得新突破
    p   记者从中国科技大学获悉,该校郭光灿院士领导的中科院量子信息重点实验室在纳米机电系统(NEMS)方面取得最新进展。该实验室与美国加州大学团队合作,在研究两个石墨烯纳米谐振器的模式耦合过程中,创新性地引入第三个谐振器作为声子腔模,成功地实现了非近邻的模式耦合。相关研究成果发表在近日出版的《自然通讯》上。 /p p   纳米谐振器具有尺寸小、稳定性好、品质因子高等优点,是信息存储和操控的优良载体。为了实现不同谐振模式之间的信息传递,需要先实现模式间的可控耦合。近年来,国际上不同研究组针对同一谐振器中的不同谐振模式以及近邻谐振器之间的模式耦合机制进行了深入研究。然而,对于如何实现非近邻的、可调的谐振模式耦合,国际上一直未见相关报道。 /p p   针对这一难题,研究组设计和制备了三个串联的石墨烯纳米谐振器,每个谐振器的谐振频率可以通过各自底部的金属电极进行大范围的调节,因此只要设定合适的电极电压就可以实现三个谐振器的共振耦合。研究组首先测量到了两个近邻谐振器之间的模式劈裂,证明了在该串联结构中近邻谐振器可以达到强耦合区间,这为进一步探索第一个和第三个谐振器之间的耦合创造了条件。经过实验探索,研究组发现当把中间谐振器的共振频率调到远高于(或远低于)两端谐振器的共振频率时,两端谐振器之间不能发生模式劈裂,即二者耦合强度非常小 但是当中间谐振器的共振频率逐渐靠近两端谐振器的共振频率时,两端谐振器逐渐产生模式劈裂,且劈裂值逐渐增大。 /p p   该实验是首次在纳米谐振器体系中实现谐振模式的非近邻耦合,对于纳米机电谐振器领域的发展具有重要的推动意义,并且为将来在量子区间利用声子模式进行信息的长程传递创造了条件。 /p p br/ /p
  • 日本制硅谐振水压计成功用于观测海平面波动
    近日,日本防灾科学技术研究所(NIED)、东京大学地震研究所(ERI)和横河电机株式会社(横河电机)对用于探测早期海啸的新研发的水压计进行了评估。   本次评估中使用的水压计配备了一种新型硅谐振压力传感器,安装在房总半岛附近水深3436m的海底。在本次评估过程中,该压力计成功识别了70MPa压力波动,相当于海平面7厘米的变化。 水压计,配有采用MEMS技术的硅谐振压力传感器。长度261.5毫米(来源:横河电机)   虽然因海啸是罕见的事件很难获得海啸的数据,但评估检测到类似海啸的海平面变化,水压计预计将被用于实际海啸的检测。南海海底地震海啸观测网(N-net)将采用此水压计,观测地震引发海啸所引起的海底水压波动,从而实现较准确的海啸探测,以减轻灾害带来的损失。   NIED、ERI和横河电机已经评估了一种配备MEMS硅谐振压力传感器的水压计的有效性,该传感器用作海底压力观测,能够在发生地震的重大震动期间获取准确数据。鉴于地震期间发生的重大地面运动,本次测试旨在确定测量数据的采集是否会受到水压计振动或其姿态变化的影响。   经证实,姿态变化对水压计的影响小于传统水压计。此外,在重复应用于70 MPa (相当于7,000m水深)的精密测试中,不高于70MPa的0.005%的重复性被证实性能出色。该水压计采用MEMS技术,因此具有每种产品拥有相同质量的优势。   为了评估水压计在实际海底环境中的性能,在日本千叶县房总半岛附近3,436米的深度进行了总计203天的海底观测。由于海啸是一种罕见的现象,获取海啸观测数据通常很困难。然而,在评估工作中观察到, 伴随2022年1月15日汤加火山的爆发,海平面出现了7厘米的波动。进一步的数据分析还证实,水压计能够观察到相当于海平面变化小于1厘米的压力变化。确认的灵敏度表明水压计具有足够的性能来观测实际的海啸。水压计是日本制造的产品,适用于深海作业,具有与世界上任何地方制造的尖端仪器相同的灵敏度。   地震海啸观测网络是减少灾害风险的基础设施的一部分,有助于发展关于灾害风险信息和地震海啸灾害风险研究。NIED负责陆地和海底地震海啸监测(MOWLAS),覆盖日本所有陆地和海域。从2019年开始,NIED一直在开发N-net,一种电缆型海底地震海啸观测系统。N-net将安装在南海海槽的震源区内,该震源区预计会发生地震,但尚未建立观测网络(从高知县近海到日向滩)。   N-net是一个网络系统,可以直接探测地震和海啸,并将信息可靠地传输到陆地,从而实现实时观测。这种新型硅共振水压计在该系统中发挥了重要作用。NIED、ERI和横河电机已经进行了多次测试,以确保这种水压计的可靠性,目的是在南海海槽发生大地震时,尽可能地减轻损失。据悉,横河电机的硅谐振压力传感器采用基于单晶硅谐振器谐振频率随压力变化的传感方法,具有低功耗、紧凑型、高灵敏度、高稳定性和高耐压性的特点。谐振器使用硅半导体制造技术密封在清洁的真空腔中,防止外来颗粒粘附在谐振器上降低其性能。此外,使用石英晶体谐振器的传感器不会因气体解吸而导致性能变化,并且可以实现稳定的测量。自1991年以来,横河电机一直在其工业差压和压力变送器中使用这种传感方法安装压力传感器。
  • 北京航空航天大学研制成功高灵敏度石墨烯MOEMS谐振压力传感器
    由悬浮石墨烯制成的纳米机械谐振器对压力变化表现出高灵敏度。然而,由于受空气阻尼的影响,这些设备在非真空环境中表现出明显的能量损失,以及由于石墨烯的轻微渗透,参考腔内不可避免地出现微弱的气体泄漏。2023年6月12日,北京航空航天大学李成副教授团队在ACS Appl. Mater. Interfaces期刊发表名为“High-Sensitivity Graphene MOEMS Resonant Pressure Sensor”的论文,研究提出了一种利用微电子机械系统技术的新型石墨烯谐振压力传感器,其特点是将多层石墨烯膜密封在真空中,并粘附在带有凹槽的压敏硅膜上。这种方法创新性地采用了间接敏感的方法,在大气中表现出60倍的能量损失,并解决了基底和石墨烯之间长期存在的气体渗透问题。值得注意的是,所提出的传感器表现出1.7Hz/Pa的高压力灵敏度,比硅的同类产品的灵敏度高5倍。此外,全光封装腔结构有助于实现6.9×10-5/Pa的高信噪比和低温度漂移(0.014%/℃)。所提出的方法为使用二维材料作为敏感膜的压力传感器的长期稳定性和能量损失抑制提供了一个很好的解决方案。MOEMS石墨烯谐振压力传感器其特点是通过阳极键合实现10-3Pa的真空封装,大大降低了压力差下基底和石墨烯之间高空气阻尼和气体渗透造成的能量损失。总的来说,所提出的传感器为提高信噪比和实现二维材料谐振传感器的可靠使用提供了一个有前途的解决方案。
  • 低损多模反谐振空芯光纤研制方面取得新进展
    近期,中国科学院上海光学精密机械研究所单元技术实验室与国科大杭州高等研究院物理与光电工程学院(简称“杭高院物光学院”)胡丽丽教授工作室合作,在低损多模反谐振空芯光纤的研发制备研究中取得重要进展。该研究成果以“Low-loss multi-mode anti-resonant hollow-core fibers”为题发表于美国光学协会期刊《光学快讯》(Optics Express)。   近年来,反谐振空芯光纤因具备宽带、低损的传输特性而广受关注。利用仅有波长量级厚度的负曲率玻璃芯壁,反谐振空芯光纤能将绝大部分光束缚于空气芯中,从而克服了基体材料本征的影响,展示出超低材料损耗、超低色散、超低非线性和极高激光损伤阈值的特性,是未来高效传输超高功率激光以及紫外/中红外极端波长激光的有力备选材料。目前报道的反谐振空芯光纤大多以5至8个包层毛细管设计为主,并利用芯包相位匹配原则实现准单模传输。然而,单模设计在应对高功率、低光束质量激光的传输时很可能造成耦合效率低下和潜在的激光损伤,而低损多模反谐振空芯光纤则有望解决这一问题。目前,该方向研究仍处于起步阶段,有关仿真研究提出的低损多模反谐振空芯光纤结构较为复杂,制备困难,目前尚无具备实用性的低损多模反谐振空芯光纤报道。   在本项研究中,研究人员设计制备了包层区域由18个扇形谐振器组成的反谐振空芯光纤,其中芯径约66 μm而光纤外径约为193 μm。经过截断法测试,所研制的光纤具备近一个倍频程的传输带且平均损耗低于0.5 dB/m,其中1微米附近损耗更低于0.1 dB/m。此外,弯曲半径大于8 cm时在1微米附近因弯曲引发的损耗不超过0.2 dB/m。研究人员进一步使用S2技术来表征23.55米反谐振空芯光纤中的多模传导特性,结合仿真总共鉴定了七种类LP模式成分。此外,研究人员还通过放大相同的设计制备了用于中红外波长传输的多模反谐振空芯光纤,并且传输带可扩展到4μm以上。新型低损多模反谐振空芯光纤的出现为解决劣化光束质量激光(如固体激光器,光参量放大器等)高功率长距离传输提供了可能。图1 所制备空芯光纤的(a)电镜图和(b)(c)传输/损耗性质图2 差分群时延曲线及其中红星标记峰处的模式重建图:(a-i)S2测试结果;(j-t)仿真结果
  • 全力打造国内首台超声谐振谱仪——访三亚声演技术顾问汤立国
    2024年7月9日,由中国材料研究学会主办、欧洲材料研究学会联合主办、广东工业大学协办的中国材料大会2024暨第二届世界材料大会在广州白云国际会议中心盛大开幕。本届大会是在加快推进高水平科技自立自强大背景下举办的新材料领域跨学科、跨领域、跨行业的学术交流大会,是中国新材料界学术水平高、涉及领域广、前沿动态新的品牌大会。借此盛会,仪器信息网采访了三亚声演科技有限公司(以下简称“三亚声演”) 技术顾问/厦门大学 教授汤立国。采访中,汤老师详细介绍了公司的主要产品——超声谐振谱仪的功能、应用领域及相较于同类产品的优势,并分享了超声谐振谱技术未来的发展趋势,及基于此技术公司的发展规划等。仪器信息网:本次是贵公司第几次参加中国材料大会?参会感受如何?汤立国:这是我们公司第一次参加中国材料大会仪器展。通过这次大会确实可以了解到行业里面的很多需求,对今后仪器的推广有非常大的作用。仪器信息网:本次贵公司带来了哪些解决方案或新品?主要针对哪些市场?解决了用户的哪些痛点?汤立国:这次带来的主要产品是超声谐振谱仪,目前是国内首款超声谐振谱仪。我们公司是全球第三家能提供超声谐振谱仪的公司,其中一家是美国的洛斯阿拉莫斯国家实验室,另外一家是日本的KK公司。我们公司生产的这款产品与这两家公司相比,产品的软件功能更为全面。这款仪器的主要功能:一是可以定征压电材料所有弹性常数和压电常数,而且在定征过程中只需要单块样品,也是目前全球唯一一款可以对压电晶体所有弹性常数和压电常数进行表征的超声谐振谱仪。除了对压电晶体的材料常数进行表征,这套系统还可以对合金、陶瓷以及其他人工晶体的所有弹性常数进行表征。与传统的材料参数表方法相比,这套系统一方面它只需要单块样品,另外对于各向异性强烈的材料,定征的效率和精度更高,并且可以对压电材料、弹性材料的材料常数随温度的变化特性进行定征。仪器信息网:贵司相关产品的主要热点应用领域有哪些?采取了哪些产品研发计划或市场计划?汤立国:在压电行业和合金行业,在进行材料常数定征时,如定征压电晶体的所有弹性常数和压电常数时,传统方法是采用超声脉冲回波法、电谐振法定征,需要多块尺寸差异显著的样品,由于需要采用多块样品,会导致定征的结果易出现不自洽。我们公司的超声谐振谱仪的优点就在于只需要单块样品就可以实现所有弹性常数和压电常数的表征,因此定征结果更加可靠,而且定征过程更加便捷。除了用于压电材料的定征,在合金行业(如高熵合金)或在功能陶瓷行业,对所有的弹性常数进行表征时,同样这款仪器只需要单块样品,就可以对所有的弹性常数进行高精度的定征。因此这款设备可以为国内压电行业、合金行业或功能陶瓷行业,从材料的制备到应用,都可以起到一个促进作用。仪器信息网:谈谈相关技术或产品未来的发展趋势?未来贵司将有哪些新产品和新技术发展计划?汤立国:超声谐振谱技术,虽然在几十年前就存在了,但是该技术在发展过程中,随着材料行业的发展,就出现了两个比较大的需求:一个是要在高温环境下,对材料参数进行表征,尤其是一些高温的压电晶体,甚至需要在1000℃的高温条件下,对所有的弹性常数、压电常数进行表征;另外还有在极端的环境下,如在航空航天中需要合金或压电材料在低温的情况下,对所有的材料参数进行表征。总之,在高温、低温这两种环境下,对功能材料的材料参数进行表征,是超声谐振谱仪发展的趋势。为了适应这个趋势的发展,目前我们公司开发了一款利用高温的超声换能器,这台设备结合高温超声换能器及高低温箱,可以对晶体或者合金在200℃的高温环境下所有的参数进行表征。目前我们公司还正在跟一些高低温箱的厂家进行深度合作,今年年底的目标是这套系统在500℃甚至更高的温度下实现材料参数的表征。明年打算开发一个低温系统,就是把这套仪器设备和低温的环境相结合,实现压电晶体、功能陶瓷等在-180℃甚至更低的环境下材料参数的表征。仪器信息网:贵司在过去一年中,业绩表现如何?接下来有哪些战略规划或市场规划?汤立国:目前这套系统是刚刚开发完成,还没有进行商业化的推广。下一步的主要任务是在国内的相关行业中,进行这款仪器设备的推广。因为目前这款仪器是国内首款的超声谐振谱仪,相信通过对这套仪器的推广,可以促进国内压电行业、合金行业、功能陶瓷行业的材料表征,为相关的科研人员提供一种全新的国产的表征仪器。
  • 西安光机所在中红外空芯反谐振光纤研究方面取得进展
    近期,西安光机所光子功能材料与器件研究室郭海涛研究员团队在中红外空芯反谐振光纤(HC-ARF)研究方面取得重要进展。科研团队基于自研的硫系玻璃材料研制出一款“七孔接触式”HC-ARF,理论成功预测并通过实验验证光纤在中红外波段存在多个低损耗传输通带,兼具优异的高阶模抑制特性,并且存在进一步降低光纤损耗至0.01 dB/m的空间(比目前实芯阶跃型硫系光纤损耗低1个数量级以上)。相关研究成果发表在Optics Express。论文第一作者为西安光机所博士生张豪,通讯作者为郭海涛研究员。21世纪以后,中红外光纤激光器的功率/脉宽不断突破,但红外光纤材料的本征缺陷也越来越突出,如非线性、色散、光致损伤、材料吸收损耗等,这在传统实芯光纤中很难获得实质性突破,这些特征也就成为了制约中红外光纤技术发展的瓶颈。近年来,基于反谐振效应的HC-ARF因其传输带宽、激光损伤阈值高、传输损耗低和模式纯度高等优异特性而逐渐获得关注。虽然HC-ARF应用领域在不断扩张,但光纤拉制难度也成为了笼罩在研究人员头顶的一朵乌云,实际光纤损耗一直徘徊在几个dB/m水平。诸多国际知名公司或科研机构都在集中力量攻克这一难题,国内也鲜有光纤实际制备的相关报道。该成果团队怀着“解放光纤技术应用中的材料限制”的梦想,开始了对中红外空芯反谐振光纤的探索。他们从实际制备和应用角度出发,基于红外玻璃材料特点,创新性提出“七孔接触式”结构,利用有限元法对光纤的限制损耗、弯曲损耗、材料损耗和高阶模抑制等光纤性能进行理论仿真,基于As40S60硫系玻璃结合堆积拉制法和双路气压控制技术,成功制备出结构复现性良好的HC-ARF。测试数据表明,该光纤具有高阶模式抑制特性和多个低损耗传输通带,在4.79 μm激光波长处损耗仅为1.29 dB/m。此外,研究团队还深入研究了不同工艺参数下光纤结构的演化规律,分析造成额外光纤损耗的关键因素,并对该结构光纤的理论损耗极限进行了预测,为HC-ARF的结构设计和拉制提供理论支撑。图(a)堆积拉制法和双路气压控制技术(b)光纤预制棒 (c)光纤的理论损耗与实测损耗该项研究得到了国家自然科学基金、陕西省自然科学基金、广东省光纤传感与通信技术重点实验室开放基金的资助。光子功能材料与器件研究室的主要研究方向是西安光机所的优秀传统学科,它围绕高科技领域对光子功能材料和器件的需求,开展光子功能玻璃、特种光纤及器件的制备和应用技术研究,建立了“玻璃-光纤-器件”全链条一体化研究平台,研制了覆盖“可见-近红外-中红外-太赫兹”波段的增益、通信、传能及成像光纤和器件,性能优良,是国内特种玻璃、光纤材料研制的优势单位之一。
  • Anal. Chem. 封面|基于谐振式微悬臂梁的热重分析技术
    近日,中科院上海微系统与信息技术研究所李昕欣研究员团队报道了一种基于谐振式微悬臂梁的热重分析技术(简称MEMS TGA)。与国际主流的TGA分析仪器相比,该MEMS TGA技术将毫克级的样品消耗量降至10纳克量级,质量变化分辨率从0.1ug提升至1pg,最高升降温速率从50 °C/min提升至数百°C/s,并进一步突破了现有TGA仪器难以测量强氧化剂/爆炸物的使用限制。该MEMS TGA技术还成功与拉曼光谱等表征技术实现了联用,成功实现了TGA-Raman原位实时同步表征,显著提升扩展了TGA的分析能力。相关研究成果以Thermogravimetric Analysis on a Resonant Microcantilever为题,发表在Analytical Chemistry期刊上,并被选为当期的Supplementary Cover论文(图1)。李昕欣团队的博士生姚方兰和许鹏程副研究员为论文的共同第一作者。图1 该工作被选为Analytical Chemistry当期的Supplementary Cover论文英文原题:Thermogravimetric Analysis on a Resonant Microcantilever通讯作者:李昕欣,中国科学院上海微系统与信息技术研究所作者:Fanglan Yao (姚方兰)#, Pengcheng Xu (许鹏程)#, Hao Jia (贾浩), Xinyu Li (李昕昱), Haitao Yu (于海涛), and Xinxin Li (李昕欣)* 背景介绍热重分析技术主要用来测量物质质量随温度变化的关系,被广泛应用于各种功能材料的研发、优化与质量监控。目前商用的热重分析仪器普遍使用高精度热天平进行称重,并利用高温炉来对样品实现加热;每次测试需要消耗毫克(10-3 g)量级的样品,且无法快速升温,测试效率不高。此外,这类仪器无法测试具有腐蚀性或易爆炸性的样品。在联用方面,商用的热重分析仪器通常需要将待测样品密封在TGA测试腔体中,难以与光谱联用,因而无法在加热过程对样品的结构演变进行实时测量。李昕欣团队的论文报道了一种集成片上加热和测温元件的MEMS谐振微悬臂梁,利用该集成谐振微悬臂梁具有的超灵敏质量测量功能(亚皮克量级),实现了微芯片上的热重分析技术(MEMS TGA,其工作原理如图2所示)。该技术只需要纳克(10-9 g)量级的样品即可进行TGA测试,而且可以在1秒钟内将样品加热至1000℃。图文解读图2 MEMS TGA技术的工作原理示意图该论文选取了两种常用的标准样品Cu2(OH)2CO3(碱式碳酸铜)和Ca2C2O4∙H2O(一水合草酸钙),验证了MEMS TGA技术的优势。如图3所示,当升温速率加快时,传统TGA的热重曲线表现出明显的热滞后效应。而MEMS TGA未表现出明显的热滞后现象,因此可在保证测量精度的情况下更高效地测量样品的热重曲线。图3 标准样品的热重分析结果对比:(a) Cu2(OH)2CO3;(b) Ca2C2O4∙H2O由于MEMS TGA具有皮克(10-12 g)量级的超高质量灵敏度,使得对单颗粒样品的TGA测试成为了可能。本论文利用MEMS TGA技术,首次对直径仅为4微米的单颗粒PS(聚苯乙烯)微球实现了TGA测试。而且在进行TGA测试过程中,同时利用光学显微镜实时观测并记录了PS微球在温度升高过程中的形貌演变(图4)。该技术不仅首次实现了单颗粒的TGA测试,还对TGA的测试过程实现了全程可视化。图4 在显微镜下利用MEMS TGA技术对单颗粒PS微球实现了可视化的热重分析MEMS TGA技术具有更广泛的应用范围,甚至可以测试爆炸物。若使用传统的TGA仪器测试具有爆炸性、腐蚀性或强氧化特性的样品,不仅会损毁TGA仪器,而且具有安全隐患。而MEMS TGA技术每次分析仅需要纳克(10-9 g)量级的痕量样品,消除了该方面的安全隐患,可以对此类危险系数高的样品进行测试。如图5所示,本论文成功利用MEMS TGA技术对强氧化物(高锰酸钾)和爆炸物(TNT炸药)进行了热重分析。图5 MEMS TGA在空气中测得的两种危险化学品的TGA曲线:(a) KMnO4;(b) TNTMEMS TGA与光谱具有很强的联用能力。本论文示意了TGA-Raman同步表征技术:在进行TGA测量的同时,可以将MEMS TGA芯片直接置于Raman光谱的光学镜头下,并将Raman激光束聚焦在样品上。在TGA测量过程中,原位实时采集了材料的拉曼信号,从而实现了TGA-Raman同步表征,其工作原理和部分测试结果如图6所示。图6 TGA-Raman同步表征技术总结/展望综上所述,李昕欣团队提出并开发了一种基于谐振悬臂梁微芯片的材料表征技术——MEMS TGA技术。该技术具有显著的优势:纳克样品量要求、皮克超高质量分辨率、数百°C/s的超快升降温速率、极低的功耗和广泛的应用范围。使用该技术甚至已经可以对单颗粒样品实现TGA测试。该MEMS TGA技术还可以与拉曼光谱仪联用,对样品进行TGA-Raman同步表征。在上述研究基础上,李昕欣团队近期还进一步将该MEMS TGA技术与原位TEM技术进行了联用,在进行气体池 in situ TEM表征的同时,实时原位测试了Ni(OH)2等纳米材料的TGA曲线,首次实现了TGA-TEM的同步表征,该部分工作也于近期发表于Analytical Chemistry (DOI: 10.1021/acs.analchem.2c01051)。作者简介:李昕欣,研究员,国家杰出青年科学基金获得者。长期研究微纳电子机械系统(MEMS/NEMS)和微纳传感器技术,是该领域国际知名的学者和国内的学术带头人之一。有约300篇SCI论文发表在国际重要SCI期刊如Nano Letters, Nat. Comm., Anal. Chem., Nano Today, JMCA, PRL, Small, IEEE EDL, IEEE J-MEMS等。
  • 电镜大咖齐聚|材料界面/表面分析与表征会议在深圳召开
    仪器信息网讯 2023年7月8日,中国材料大会2022-2023在深圳国际会展中心开幕。本届中国材料大会系首次在深圳举办,大会聚焦前沿新材料科学与技术,设置77个关键战略材料及相关领域分会场,三天会期预计超1.9万名全国新材料行业产学研企代表将齐聚鹏城,出席大会。作为分会场之一,材料界面/表面分析与表征分会于7月8日下午开启两天半的专家报告日程。中国材料大会2022-2023开幕式暨大会报现场材料界面/表面分析与表征分会由香港城市大学陈福荣教授、太原理工大学许并社教授、北京工业大学/南方科技大学韩晓东教授、中科院金属研究所马秀良研究员、北京工业大学隋曼龄教授、太原理工大学郭俊杰教授等担任分会主席。分会采用主题报告、邀请报告、口头报告、快闪报告等形式,围绕材料界面/表面先进表征方法、功能材料调控与表征、结构材料界面/相变/位错与变形、纳米催化材料、半导体材料、能源电池材料、铁电功能材料等七大主题专场邀请60余位业界专家进行了逐一分享。以下是“材料界面/表面先进表征方法”主题专场报告花絮与摘要简介,以飨读者。“材料界面/表面先进表征方法”主题专场现场报告人:香港城市大学 陈福荣报告题目:脉冲电子显微镜对螺旋材料三维原子动态的研究 像差校正电子光学和数据采集方案的进步使TEM能够提供亚埃分辨率和单原子灵敏度的图像。然而, 辐射损伤、静态成像和二维几何投影三个瓶颈仍然挑战者原子级软材料的TEM成像。对于辐射损伤,电子束不仅可以在原子水平上改变形状和表面结构,而且还可以在纳米尺度的 化学反应中诱发辐射分解伪影。陈福荣在报告中分享了如何由脉冲电子控制低剂量到量子电子显微镜的零作用。并介绍了脉冲电子光源提供可控制的低剂量电子光源, 在高时间分辨率下探测3D原子分辨率动力学 方面的研究进展。报告人:南方科技大学 林君浩报告题目:新型二维材料的原子尺度精细缺陷表征与物性关联研究二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解缺陷的原子结构和动态其演变过程对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如铁电性,铁磁性或超导的单层材料在大气环境下会迅速劣化,无法表征其缺陷的精细结构。林君浩分享了定量衬度分析技术在二维材料缺陷表征中的应用,以及其课题组在克服二维材料水氧敏感性的一些尝试。报告人:北京大学 赵晓续报告题目:旋转低维材料的原子结构解析与皮米尺度应力场分析理论预测旋转二维材料的超导机制及其他物理学特性与层间电子强关联效应息息相关,然而迄今为止旋转二维材料的摩尔原子结构及其应力场至今未被实验在原子尺度精确测量。鉴于此,赵晓续团队利用低压球差扫描透射电子显微镜对一系列旋转二维材料的原子摩尔结构及其应力场做了深入研究和分析,通过大量实验对比和验证,系统解析出了由于层间滑移所产生的五种不同相。相关工作第一次系统分析了旋转二维材料的精细结构及应力场,对进一步探索和挖 掘旋转材料体系奇异物性有着重要指导意义。 报告人:香港理工大学 朱叶报告题目:Resolving exotic superstructure ordering in emerging materials using advanced STEM新型功能材料的特点通常是在传统晶胞之外呈现有序性。这种复杂的排序,即使是集体发生的,通常也会遭受纳米级的波动,破坏传统的基于衍射的结构分析所需的长期周期性,对精确的结构确定提出了巨大的挑战。另一方面,成熟的像差校正TEM/STEM提供了一种替代的实空间方法,通过直接成像原子结构以皮米级精度来探测局部复杂有序。报告中,朱叶通过系列案例展示了先进的STEM在解决钙钛矿氧化物和二维材料中复杂的原子有序方面的能力。STEM中的iDPC技术帮助课题组能够解开复杂钙钛矿中与调制八面体倾斜相关的奇异极性结构。工作中的表征策略和能力为在原子尺度上探索新兴功能材料的结构-性能相互作用提供了有力的工具。报告人:中国科学院物理研究所 王立芬报告题目:晶体合成的原位电镜研究发展原位表征手段对决定晶核形成的初期进行高分辨探测表征是研究材料形核结晶微观动力学的关键。王立芬在报告中,分享了利用原位透射电子显微学方法,通过设计原位电镜液态池,实时观察了氯化钠这一经典成核结晶理论模型在石墨烯囊泡中的原子级分辨动力学结晶行为,实验发现了有别于传统认知的氯化钠以新型六角结构为暂稳相的非经典成核结晶路径,该原位实验数据为异相成核结晶理论的发展提供了新思路,也为通过衬底调控寻找新结构相提供了新的启发。通过发展原位冷冻电镜技术,研究了水在不同衬底表面的异质结晶过程,发现了单晶纯相的立方冰相较于六角冰的形核生长,展示水的气象异质形核的动力学特性。通过观察到的一系列新现象、新材料和新机制,展示了原位透射电子显微学技术在材料合成研究中的重要应用,因而为材料物理化学领域的研究和发展提供新的实验技术支持和储备。 报告人:北京工业大学材料与制造学部 隋曼龄报告题目:锂/钠离子电池层状正极材料的构效关系和抑制衰退策略 层状结构的碱金属过渡金属氧化物是多种二次电池中重要的一族正极材料体系,具有相近的晶体结构,且普遍具有能量密度高和可开发潜力大的优点,其在锂离子电池中已有广泛的应用,在钠离子电池等新兴储能领域也占据了重要地位。开发层状正极材料需要深入理解材料的构效关系和演变规律,以实现更精准的材料调控和性能优化。从原子角度去解析材料的性能结构关系、演变规律以及表界面物理化学过程,是透射电子显微学的突出优势,并且随着成像技术的发展以及越来越多的新原位表征技术的开发应用,已经实现了对电池材料进行高时空分辨的原子动态表征。隋曼龄报告中,研究内容以电子显微学的表征技术为特色,以锂 /钠离子电池材料层状正极材料为研究对象,揭示正极材料在循环过程中发生的体相衰退机制和表界面演变机理,并在此基础上提出抑制正极材料循环性能衰退的应对策略,展示先进电子显微学技术在电池材料的 基础科学研究和应用开发中可以发挥的重要作用。 报告人:浙江大学 王勇报告题目:环境电子显微学助力催化活性位点的原位设计多相催化剂被广泛用于能源、环境、化工等重要的工业领域。在实际应用中,催化剂上起到关键作用的通常是催化剂表/界面上的小部分位点,即催化剂的活性位点。自从上世纪20年代Hugh Taylor提出"活 性位点"的概念以来,在原子水平确定催化剂活性位点以及理解发生在活性位点上的分子反应机制已成为催化研究的重中之重;研究人员尝试用不同的方法来获取与表界面活性位点有关的各种信息,以实现从原 子水平上对催化剂进行合理设计。然而到目前为止,由于缺乏真实反应环境下活性位点原子尺度的直接信 息以及对其原子水平调控有效的手段,对表界面活性位点的原子水平原位设计仍然具有很大挑战。王勇报告介绍了其课题组利用环境透射电子显微学对催化剂表界面活性位点原位设计的初步探索进展。报告人:吉林大学 张伟报告题目:基于优化Fe-N交互作用的超稳定储能的探索 具有高安全性、低成本和环境友好性的水系电池是先进储能技术未来发展方向之一。然而,在电极材料中进行可逆嵌入/脱出,引发较大的体积膨胀仍然是一个严峻的挑战。六氰化铁(FeHCF)具 有制备简单,成本低,环境友好等特点,是水系电池中常用的正极材料之一。对于传统金属离子,嵌入晶格时引Fe离子价态降低,金属离子向Fe离子方向移动,两者相互排斥,引发晶体内氰键进一步弯曲, 长期循环中造成晶格坍塌。有别于传统的形貌和结构的控制,受工业合成氨和金属铁渗氮中前期Fe-N弱 相互作用的启发,基于电荷载体(NH4+)和电极材料间的相互作用。张伟报告中研究设计了一种与电荷载体相反作用力的Fe-N弱的交互作用,有效解决了体积膨胀问题。报告人:香港城市大学 薛又峻报告题目:高时空分辨零作用电子显微镜设计透射电镜能够以亚埃级的空间分辨率提供单原子灵敏度的图像,原子级的观测需要强烈的电子照射,这通常会造成材料的纳米结构产生改变,辐射损伤仍然是最重要的瓶颈问题。目前主要的手段是利用冷冻电镜在低温环境下降低电子辐射损伤,但样品在急速冷冻的过程中可能会发生形貌结构的改变,冷冻后无法观察到反应过程的动态信息。制造可实现探测电子和材料间无作用量测的量子电子显微镜,可以用来克服辐射损伤的瓶颈问题。薛又峻报告表示,香港城市大学深圳福田研究院在深圳市福田区的支持下,已开发了具有脉冲电子光源的紧凑型电子显微镜的关键零部件。团队在这个基础上,设计了搭配脉冲电子光源使用的量子谐振器,作为达成量子电子显微镜的关键部件。也设计了基于多极子场的电子谐振腔、配合量子谐振腔的其他关键部件等。基于脉冲电子光源的量子电子显微镜设计开发,可望解决辐射损伤的关键问题,成为纳米尺度下 研究软物质材料的新一代利器。 报告人:南京航空航天大学分析测试中心 王毅报告题目:基于直接电子探测成像的4D-STEM在功能材料的应用传统的扫描透射(STEM)成像,采用环形探头在每一个扫描点,记录一个单一数值/信号强度,构成 2维的强度信号。直接电子探测相机的高帧率使得在每一个扫描点,完整记录电子束斑穿透样品后的衍射 花样(CBED)成为可能,由此构成四维数据 (2维实空间和2维倒易空间),被称为4D-STEM (亦被称为扫描电子衍射成像)。通过四维数据的后期处理,不仅可以实现任意常规STEM图像的重构,比如明场像,环形明场像,环形暗场像等,不再受限于一次试验中可使用的STEM探头和相对收集角度的限制;而且也可以提取更多材料的信息,比如材料的结构、晶体的取向、应力、电场或磁场分布等, 而随着4D-STEM而产生的电子叠层衍射成像技术已被证明可进一步提高电镜的分辩率,能更有效利用电子束剂量,在对电子束敏感材料有着广大的应用空间。王毅在报告中以几种典型的功能材料为例,介绍了基于直接电子探测成像的4D-STEM和电子能量损失谱在实现原子分辨像和原子分辨元素分布研究方面的进展。 报告人:南方科技大学 王戊报告题目:DPC-STEM成像技术研究轻元素原子占位和电荷分布 新兴成像技术的发展和应用促进着材料微观结构的表征和解析,差分相位衬度-扫描透射电子显微成像技术(DPC-STEM)不仅能实现轻重原子同时成像,也能获取材料的电场和电荷分布信息。王戊分享了使用DPC-STEM成像技术,在低电子束剂量下,研究有机半导体氮化碳材料的轻元素原子占位。实现三嗪基氮化碳晶体的原子结构清晰成像,揭示三嗪基氮化碳晶体的蜂窝状结构、三嗪环的六元特征及插层Cl离子的位置所在,并发现框架腔内的三种Li/H构 型。进一步通过实验和模拟DPC-STEM图像相互印证,明确氮化碳材料中轻元素Li和H原子的占位。基于DPC-STEM的分段探头,计算由样品势场引起的电子束偏移,获得材料的本征电场和电荷信息。 基于DPC-STEM技术获得的原子尺度电场和电荷分布信息,进一步揭示原子之间电场的解耦效应,以及电子的转移和重新分布。报告人:上海微纳国际贸易有限公司 赵颉报告题目:Dectris混合像素直接电子探测器及其在4D-STEM中的应用由于提供了从样品中获取信息的新方式,4D-STEM技术在电子显微镜表征方法中越来越受到重视。在混合像素直接电子探测技术不断发展的情况下,混合像素直接电子探测器能够实现与传统STEM成像类似的采集速率进行4D-STEM数据采集,特别是能够事现驻留时间小于10µs。除了在给定的实验时间内扩展4D-STEM表征视场和数据收集,使用混合像素直接电子探测器可以更全面地记录相同电子剂量下的散射花样信息。赵颉介绍了Dectris混合像素直接电子探测器技术的最新发展,该技术现在允许4D-STEM实验,其设置与传统STEM成像类似,同时单像素采集时间低于10µs。同时介绍了虚拟STEM探测器成像和晶体相取向面分布分析的应用实例。
  • 高分子表征技术专题——石英晶体微天平在高分子研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20248《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304 石英晶体微天平在高分子研究中的应用袁海洋 1 ,马春风 2 ,刘光明 1 , 张广照 2 , , 1.中国科学技术大学化学物理系 合肥微尺度物质科学国家研究中心 安徽省教育厅表界面化学与能源催化重点实验室 合肥 2300262.华南理工大学材料科学与工程学院 广州 510640作者简介: 刘光明,男,1979年生. 2002年于安徽师范大学获得学士学位,2007年于中国科学技术大学获得博士学位. 2005~2006年,香港科技大学,研究助理;2008~2010年,澳大利亚国立大学,博士后;2010~2011年,中国科学技术大学,特任副教授;2011~2016年,中国科学技术大学,副教授;2016年至今,中国科学技术大学,教授. 获得2011年度中国分析测试协会科学技术奖(CAIA奖)(二等奖),2013年入选中国科学院青年创新促进会,并于2017年入选为中国科学院青年创新促进会优秀会员. 近年来的研究兴趣主要集中于高分子的离子效应方面 张广照,男,1966年生. 华南理工大学高分子科学与工程系教授. 1987年本科毕业于四川大学高分子材料系,1998年在复旦大学获博士学位. 先后在香港中文大学(1999~2001年)和美国麻省大学(2001~2002年)从事博士后研究. 2002~2010年任中国科学技术大学教授,2010至今在华南理工大学工作. 曾获国家杰出青年基金获得者(2007年),先后担任科技部重大研究计划项目首席科学家(2012年),国际海洋材料保护研究常设委员会(COIPM)委员(2017年),中国材料研究学会高分子材料与工程分会副主任,广东省化学会高分子化学专业委员会主任,《Macromolecules》(2012~2014年)、《ACS Macro Letters》(2012~2014年)、《Macromolecular Chemistry and Physics》、《Chinese Joural of Polymer Science》、《高分子材料科学与工程》编委或顾问编委. 研究方向为高分子溶液与界面物理化学,在大分子构象与相互作用、高分子表征方法学、杂化共聚反应、海洋防污材料方面做出了原创性工作 通讯作者: 刘光明, E-mail: gml@ustc.edu.cn 张广照, E-mail: msgzzhang@scut.edu.cn 摘要: 石英晶体微天平(QCM)作为一种强有力的表征工具已被广泛应用于高分子研究之中. 本文中,作者介绍了QCM的发展简史、基本原理以及实验样品制备方法. 在此基础上,介绍了如何基于带有耗散测量功能的石英晶体微天平(QCM-D)及相关联用技术研究界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料,展示了QCM-D技术在高分子研究中的广阔应用前景. QCM-D可同时检测界面高分子薄膜的质量变化和刚性变化,从而反映其结构变化. 与光谱型椭偏仪联用后,还可同步获取界面高分子薄膜的厚度变化等信息,可以有效解决相关高分子研究中的问题. 希望本文能够对如何利用QCM-D技术开展高分子研究起到一定的启示作用,使这一表征技术能够为高分子研究解决更多问题.关键词: 石英晶体微天平 / 高分子刷 / 聚电解质 / 离子效应 / 海洋防污材料 目录1. 发展简史2. 石英晶体微天平基本原理3. 石英晶体微天平实验样品制备3.1 在振子表面制备化学接枝高分子刷3.2 在振子表面制备物理涂覆高分子膜4. 石英晶体微天平在高分子研究中的应用4.1 界面接枝高分子构象行为4.2 高分子的离子效应4.2.1 高分子的离子特异性效应4.2.2 高分子的离子氢键效应4.2.3 高分子的离子亲/疏水效应4.3 高分子海洋防污材料5. 结语参考文献1. 发展简史1880年,Jacques Curie和Pierre Curie发现Rochelle盐晶体具有压电效应[1 ]. 1921年,Cady利用X切型石英晶体制造出世界上第一个石英晶体振荡器[2 ]. 但是,由于X切型石英晶体受温度影响太大,该切型石英晶体并未被广泛应用. 直到1934年,第一个AT切型石英晶体振荡器被制造出来[3 ],由于其在室温附近几乎不受温度影响,因而得到广泛应用. 1959年,Sauerbrey建立了有关石英晶体表面质量变化和频率变化的定量关系,即著名的Sauerbrey方程[4 ],该方程的建立为石英晶体微天平(QCM)技术的推广与应用奠定了坚实基础. 20世纪六七十年代QCM技术主要被应用于检测空气或真空中薄膜的厚度[5 ]. 1982年,Nomura和Okuhara实现了在液相中石英晶体振子的稳定振动,从而开辟了QCM技术在液相环境中的应用[6 ]. 1995年,Kasemo等开发了具有耗散因子测量功能的石英晶体微天平技术(QCM-D)[7 ],实现了对石英晶体振子表面薄膜的质量变化和结构变化进行同时监测. 近年来,随着科学技术的发展,出现了QCM-D与其他表征技术的联用. 如QCM-D与光谱型椭偏仪联用技术(QCM-D/SE)[8 ]、QCM-D与电化学联用技术[9 ]等,这些联用技术无疑极大地拓展了QCM-D的应用范围,丰富了表征过程中的信息获取量,加深了对相关科学问题的理解. 毋庸置疑,在过去的60年中,QCM技术已取得了长足进步,广泛应用于包括高分子表征在内的不同领域之中[10 ~14 ],为相关领域的发展作出了重要贡献.2. 石英晶体微天平基本原理对于石英晶体而言,其切形决定了石英晶体振子的振动模式. QCM所使用的AT切石英振子的法线方向与石英晶体z轴的夹角大约为55°[15 ],其振动是由绕z轴的切应力所产生的绕z轴的切应变激励而成的,为厚度剪切模式,即质点在x方向振动,波沿着y方向传播,该剪切波为横波(图1 )[15 ~17 ].图 1Figure 1. Schematic illustration of a quartz resonator working at the thickness-shear-mode, where the shear wave (red curve) oscillates in the horizontal (x) direction as indicated by the two blue double-sided arrows but propagates in the vertical (y) direction as indicated by the light blue double-sided arrows. The two gold lines represent the two electrodes covered on the two sides of the quartz crystal plate, and the dashed line represents the center line of the quartz crystal plate at the y direction. (Adapted with permission from Ref.[16 ] Copyright (2000) JohnWiley & Sons, Inc).当石英振子表面薄膜厚度远小于石英振子厚度时,Sauerbrey建立了AT切石英压电振子在厚度方向上传播的剪切波频率变化(Δf)与石英压电振子表面均匀刚性薄膜单位面积质量变化(Δmf)间的关系,称为Sauerbrey方程[4 ]:其中,ρq为石英晶体的密度,hq为石英振子的厚度,f0为基频,n为泛频数,C = ρqhq/(nf0). Sauerbrey方程为QCM技术的应用奠定了基础. 值得指出的是,此方程一般情况下仅适用于真空或空气中的相关测量.当黏弹性薄膜吸附于石英振子表面时,振子的振动受到其表面吸附层的阻尼作用,因此需要定义一个参数耗散因子(D)来表征石英振子表面薄膜的刚性:其中,Q为品质因数,Es表示储存的能量,Ed表示每周期中消耗的能量. 较小的D值反映振子表面薄膜刚性较大,反之,较大的D值表明振子表面薄膜刚性较小.当QCM用于液相中的相关测量时,Kanazawa和Gordon于1985年建立了石英压电振子频率变化和牛顿流体性质间的关系,即Kanazawa-Gordon方程[18 ]:其中ηl代表液相黏度,ρl为液相密度. 1996年,Rodahl等建立了有关耗散因子变化与牛顿流体性质间关系的方程[19 ]:在液相中,石英振子表面黏弹性薄膜的复数剪切模量(G)可表示为[20 ]:G′代表薄膜的储存模量,G″代表薄膜的耗散模量,μf代表薄膜的弹性模量,ηf代表薄膜的剪切黏度,τf代表薄膜的特征驰豫时间. 因此,石英压电振子的频率变化和耗散因子变化可表示为[20 ]:其中ρf代表薄膜密度,hf代表薄膜厚度.石英压电振子的频率与耗散因子可以通过阻抗谱方法加以测量[16 ],也可以通过拟合振幅衰减曲线获得[7 ]. 以后者为例,当继电器断开后,由交变电压产生的驱动力会突然消失,石英压电振子的振幅在阻尼作用下会按照下面的方式逐渐衰减[21 ].其中t为时间,A(t)为t时刻的振幅,A0为t=0时的振幅,τ为衰减时间常数,φ为相位,C为常数. 注意此时输出频率(f)并非为石英振子的谐振频率,而是f0和参照频率(fr)之差[21 ]. 通过对石英压电振子振幅衰减曲线的拟合,可以得到f 和τ.耗散因子可以通过如下公式求得[7 ]:3. 石英晶体微天平实验样品制备].3.2 在振子表面制备物理涂覆高分子膜以旋涂法在振子表面制备高分子膜过程中,首先将振子放置于旋涂仪上,抽真空使振子固定,将高分子溶液滴在振子表面后,启动旋涂仪,高分子溶液将沿着振子的径向铺展开来. 伴随溶剂的挥发,可在振子表面制备一层物理涂覆的高分子薄膜[27 ,28
  • Nature前沿动态:低温强磁场共聚焦显微镜助力CrI3在新兴潜在领域中的应用
    自二维磁性材料被成功制备以来,人们一直度关注磁性的调控,特别是对三碘化铬(CrI3)而言,更是受到广泛的研究和众多的文献报道。CrI3薄片可以很容易地从大块CrI3中剥离,就像石墨烯可以从石墨中剥离一样。也有多篇文献报道CrI3单分子膜具有层间反铁磁序,并且在施加外场后,可以实现从反铁磁性到铁磁性的转变,并观察到巨大的隧穿磁阻。令人惊讶的是,CrI3双层膜表现出反铁磁性,而三层膜又是铁磁性的。近期,Jie Shan和Kin Fai Mak(美国康奈尔大学)的研究小组在理解CrI3薄膜厚度对磁基态依赖性的物理起源方面取得了显著突破。此外,他们的研究成果为类似薄膜的磁性调控开辟了道路。在他们的研究中,基于attocube的低温恒温器在各种实验技术中都起到了关键性作用。该课题组的研究成果近期发表了多篇论文。详细的发现如下:材料科学家不仅要了解材料的特性,而且要能设计出具有所需特性的材料并在器件中实现。当涉及到设计所需的性能,范德瓦尔斯材料(vdWMs)已被证明是特别有益的。然而,在范德瓦尔斯材料中缺乏磁性材料,磁性材料在技术上可用于数据存储或传感器。CrI3是一种罕见的具有本征磁性的范德瓦尔斯材料,尽管这种情况只发生在低温下并且材料对空气敏感。CrI3近年来已成为研究和开发范德瓦尔斯材料有用特性的重要平台。图1. 双层CrI3中,磁圆二色信号在不同温度下随磁场变化曲线,揭示了压致铁磁性在~60 K下仍然存在[1]。 Jie Shan和Kin Fai Mak(美国康奈尔大学)的小组以面向应用的方式广泛研究了CrI3薄片的磁有序性。研究成果显示CrI3中的层间反铁磁耦合在转变为铁磁性之前,可以在压力下被调谐近100%[1]。此外,在双层CrI3中,通过电场调控技术,证明了反铁磁共振在几十GHz范围内的可调谐性,表明了CrI3在超高速数据存储和处理方面的潜力[2]。图2. CrI3制成的机械谐振器中,机械振幅随驱动频率在磁场中的变化(磁场扫描范围-1T-1T)[3]。 研究也为磁驱动和磁传感的潜在应用奠定了基础。该小组证明了双层反铁磁CrI3中的磁致伸缩:在由CrI3制成的机械谐振器中,共振频率取决于材料的磁性状态[3]。图3. 基于双层CrI3的电学器件光学照片[4]。 利用电场控制CrI3层间磁序的特性,课题组设计并测试了一种基于CrI3的自旋晶体管。该器件中的磁化配置不受自旋电流控制,而由栅电压控制,自旋晶体管可以实现约400%的电导比,这适用于非易失性存储器应用[4]。以上的结果是借助于attoDRY1000和attoDRY2100低温恒温器获得的,这些低温恒温器可以与拉曼光谱、磁圆二色性、磁光克尔效应和隧道磁阻测量等多种实验技术结合使用。图4:低振动无液氦磁体与恒温器—attoDRY系列,超低振动是提供高分辨率与长时间稳定光谱的关键因素。https://qd-china.com/zh/pro/detail/3/1912041697862 attoDRY2100+CFM I主要技术特点:+ 应用范围广泛: PL/EL/ Raman等光谱测量+ 变温范围:1.8K - 300K+ 空间分辨率:+ 精细扫描范围:30 mm X 30 mm@4K+ 可进行电学测量,配备标准chip carrier+ 可升到AFM/MFM、PFM、ct-AFM、KPFM、SHPM等功能参考文献:[1] T. Li et al., Pressure-controlled interlayer magnetism in atomically thin CrI3, Nature Mater. 18, 1303 (2019)[2] X.-X. Zhang et al., Gate-tunable spin waves in antiferromagnetic atomic bilayers, Nature Mater. 19, 838 (2020)[3] S. Jiang et al., Exchange magnetostriction in two-dimensional antiferromagnets, Nature Mater. 19, 1295 (2020)[4] S. Jiang et al., Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures, Nature Electron. 2, 159 (2019)
  • Berkeley实验室开发出快速、准确的纳米级传感器
    p   想象一下,有一天也许可以在你自己的厨房快速检测你的食物是否携带任何致命的微生物。该项研究在劳伦斯伯克利国家实验室(Berkeley实验室)进行,现在正在被Optokey公司商业化。 /p p   Optokey是位于California 州Hayward的一家新公司,已经开发出一种基于 a title=" " href=" http://www.instrument.com.cn/zc/34.html" target=" _self" strong 拉曼光谱 /strong /a 的微型传感器,可以实现分子水平上的快速、准确地检测或诊断。“我们的系统可以做化学、生物学、生物化学、分子生物学、临床诊断、和化学分析等工作”,公司总裁和创始人Fanqing Frank Chen说。“我们的系统应用起来非常便宜,而且人为干预很少。” /p p   这项技术基于表面增强 a title=" " href=" http://www.instrument.com.cn/zc/34.html" target=" _self" strong 拉曼 /strong /a 光谱(SERS),虽然SERS是一个高灵敏的分析方法,但结果不容易重现。Berkeley实验室的科学家Chen和他的同事们开发了一种解决这个问题的方法,他们称为“纳米等离子体谐振”的技术,利用这种技术测量纳米结构活性表面光子间的相互作用进行化学和生物传感,使测量方法更加可靠。 /p p   “在Optokey,我们能够大规模生产这种纳米等离子体谐振器晶片,” Chen说。“我们从研发领域转变为工业生产。” /p p   这种微型传感器使用微流体控制系统实现“芯片上的实验室”自动化液体取样。“我们利用从高科技半导体制造方法中获得的知识控制芯片的成本、体积和准确性”,制造副总裁Robert Chebi说, Robert Chebi在微电子行业具有丰富的经验,曾在Lam Research and Applied Materials工作。“我们也利用激光和光学领域的所有知识开发这项专业的基于拉曼的检测方法。” /p p   Chebi将Optokey的产品称为“生化的鼻子”,或先进的纳米光子自动化系统,检测灵敏度为单分子水平,远优于当今市场上的传感器。“今天的检测和诊断方法还远不够完美——检测限在PPM(百万分之)和PPB(十亿分之几),”他说。“此外,我们的系统可以在几分钟内提供信息,甚至连续同步,而其他方法,如果样品必须被送到另一个实验室可能需要几小时甚至几天。” /p p   对于应用,他说,潜在的应用非常广阔,包括食品安全、环境监测(液体和气体)、医疗诊断和化学分析等。Optokey的客户包括一个欧洲公司(食品安全),中国石化公司(杂质的检测)和一家德国公司(即时诊断等)。 /p p   “我想我们处在一个重大转变期间,” Chen说。“我们预计产品是紧凑型的,自动化的,还可以相互关联,它可以进入学校、餐厅、工厂、医院、救护车、机场、甚至战场。” /p p   Chen关注的下一个目标市场是智能家居,在这个领域纳米光子传感器不仅可以用来检测食物,还可以扫描空气和水中的污染物。经过Los Alamos国家实验室和纽约大学西奈山医院的培训, Chen开始作为一个生物化学家致力于生物医学设备的研究工作。他加入Berkeley之后,学习了量子点有关知识(一种具有独特属性的纳米晶体),并开始探索它们在生物学中的应用。这些导致了他对纳米材料的进一步调查和研究。 /p p   最终,Chen和他的团队开发了约20项专利,包括混合生物纳米材料。导致Optokey成立的最关键的发现就是纳米等离子体谐振器,它极大地改善了拉曼光谱信号及可靠性。这项技术最初在实验室中用于前列腺癌生物标志物的快速、准确地检测,此项检测使用传统的方法具有较高的假阳性。 /p p   Optokey是一家私人公司,约10人。除了Chen,另一个联合创始人Richard Mathies,(加州大学伯克利分校的化学教授、世界知名的拉曼光谱专家)。公司成立于2010年, 2013年正式运营。 /p
  • 多自由度光场的共振输出,获取连续变量高维纠缠
    量子纠缠是量子信息中的核心资源,它已经广泛应用到量子测量、量子通信以及量子计算领域。纠缠态的产生、发展和创新极大地推动了第二次量子革命的发展。随着量子信息技术的发展,多模、大尺度的连续变量量子态成为研究的发展方向,以满足大容量量子通信、分布式及多参数、容错量子计算的需求。为了满足量子计算需求和构建量子网络,需要获得大尺度纠缠态。目前,研究人员基于光场时间、空间或频率结构模式,制备出了可观数目的光场纠缠,并已经实现了单自由度复用的连续变量量子通信,展现了增强信道容量的前景。而进一步扩展纠缠数目,需要对多个自由度的同时调控技术,构建连续变量高维纠缠光场。为解决上述问题,山西大学量子光学与光量子器件国家重点实验室的郜江瑞团队通过色散、像散补偿技术和多模参量控制技术,实现了光学参量振荡器中多自由度光场的共振输出,获得了同时具有频率梳、自旋和轨道角动量纠缠的连续变量高维纠缠。并基于其中产生的高维纠缠态,演示了空间-频率复用的量子密集编码协议。相关研究成果发表于Photonics Research 2022年第12期。如图所示,通过光学参量下转换过程产生的纠缠光子对具有多个物理自由度。关联光子A,B具有对称“能级”,相反的轨道角动量和相互垂直的偏振。在实验中,量子关联的测量通过可独立选择的一对参考光场,在平衡零拍探测系统中提取。图(a)参量下转换过程纠缠光子三自由度示意图;(b)多模光学参量谐振器同时输出多个“能级”的三自由度纠缠;(c) 实验验证装置;(d) 完整的第一“能级”纠缠关系测量(左图)及其在复用量子密集编码的演示(右图)实验结果表明,光学参量谐振器直接输出了携带频率梳,自旋角动量和轨道角动量的三自由度高维纠缠,达到-3.3 dB的纠缠水平。值得一提的是,该谐振器有能力直接输出约2000个“能级”共计8000对的量子纠缠。为探究多自由度高维纠缠资源在量子信息的潜能,团队首次实验演示了空间-频率复用的量子密集编码,图(d)展示了量子通信信道容量的显著增强。刘奎教授表示:“相比于传统的连续变量纠缠产生方案,多自由度、多模光学参量谐振器产生的纠缠光源具有更高可扩展性,更丰富光场结构的特点,不但适合高信道容量量子通信需求,而且可用于实现特别的量子任务,例如量子多参数测量,多自由量子界面和混合型的高维量子离物传态等。”目前对于连续变量高维纠缠的研究还有许多开放性问题值得研究,如是否具有与分离变量高维纠缠类似的纠缠特性,更高的安全性,和更强的抗噪能力等。团队后续将进一步开展更高纠缠水平、更多元的纠缠数量以及多自由度分离及交互的研究,同时开展基于连续变量高维纠缠的应用研究,如高维量子离物传态以及其在量子传感和量子测量领域的应用。
  • 新全光二极管研制成功 可用于微型光电路
    p   据物理学家组织网16日报道,英国国家物理实验室(NPL)的研究人员研制出了一种全光二极管,新二极管能被用于微型光子电路中,有望为微纳光子学芯片提供廉价高效的光二极管,从而对光子芯片和光子通信等领域产生重要影响。 /p p   北京大学现代光学研究所研究员肖云峰对科技日报记者解释说:“二极管能传输一个方向上的电流,但却阻挡反向电流,是几乎所有电子电路的基本组成元件,但现有的光学二极管需要大块磁光晶体,严重阻碍了其在微纳尺度上的集成,成为集成光子学领域面临的重大挑战之一。” /p p   在新研究中,帕斯卡· 德尔海耶博士领导的团队将光发射到一个微谐振器(一个硅芯片上的玻璃微环)内。尽管微环直径仅与人头发丝相当,却可使光在微环内来回传播。利用微环增强的光学克尔效应,该团队制造出了新的全光二极管。新二极管仅能在一个方向上传输光,且可集成到微纳光子电路中,因此,克服了二极管需要大块磁光晶体这一限制。 /p p   德尔海耶强调称:“这些二极管有望为微光芯片提供廉价高效的光二极管,也将为可用于光学计算的新型集成光子电路铺平道路,还可能对未来的光子通信系统产生重大影响。” /p p   据悉,中国科学家也在该领域获得了较好的成果,例如中国科学技术大学董春华博士利用微腔光力相互作用,得到了全光控制的非互易微腔器件,包括全光二极管和环形器等。 /p p   肖云峰说:“尽管最新研究并非第一个全光二极管,但获得的器件具有操作简单、隔离度高等特点,是一个很有潜力的方案。当然,与现有的全光二极管方案类似,基于谐振腔的全光二极管往往存在带宽限制,仅能在较窄的谐振模式内工作。未来还需进一步研究,突破其限制。” /p
  • 美国研发出可同时操控光线和振动的晶体
    光线传播和机械振动是两种不同的物理现象,而美国研究人员新研发出的晶体可以在一个小空间中同时操控这两者。这种光学机械晶体将有助于量子计算机等领域的科研工作。   英国《自然》杂志网站日前刊登研究报告说,美国加州理工学院的研究人员在一条只有10微米长的硅晶片上刻了许多凹槽,然后再利用具有特定共振频率的激光照射该晶体,光线在凹槽中多次反射并互相干涉,最后只有部分光线透出,这说明另一部分光线被截留在了晶体中间。与此同时,研究人员探测到晶体中间的小格子在进行前后的机械振动。   研究人员说,这种光学机械晶体可用于未来的计算机电路中,尤其是在当前的量子计算机研究中。量子计算处理器的基础各有不同,如原子、光子或超导体等,需要使用不同频率的光,难以结合到一起,而新晶体可以将一种量子处理器的光转化为振动,再将这种振动转化为另一种频率的光。这样,新晶体可以成为混合型量子计算机的理想“连接器”。   由于这种晶体对光频率的变化非常敏感,它还可以用作医疗探测器,检查DNA(脱氧核糖核酸)序列和病原体等。此外,它还可以帮助研发出能够检测单个气体分子的探测仪器,这将超出当前任何一种探测仪器的精度。
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 联影开建世界最大高端医械晶体生产基地
    在科创板过会、研发取得重大突破的联影医疗又有大动作!6月18日上午,2022年常州国家高新区重点项目集中签约“拿地即开工”仪式上,联影高端医学影像设备及核心部件项目等总投资103.4亿元的12个重点项目落地。随着“健康中国”已上升为国家战略,我国大健康市场快速扩容、高端医学影像行业支持力度增加以及新冠疫情的常态化防控等因素都促进了对医学影像设备的潜在需求,经过十余年国产医学影像设备技术的发展以及相关核心部件公关,国产品牌的进口替代趋势愈发明显,进口品牌的市场份额呈现下降趋势。据了解,联影高端医学影像设备及核心部件项目将规划达成400台RT(直线加速器)的部件加工和整机生产规模,以及500台PET-CT的晶体生产能力,项目建成后,将成为世界上最大的高端医疗设备晶体生产基地,这将极大地满足国内医学影像设备需求。01、要建世界最大高端医疗设备晶体生产基地围绕《新材料产业发展指南》明确的十大重点领域,力争到2020年在关键领域建立20家左右。“医疗器械材料生产应用示范平台”即此前工信部按照国家新材料产业发展总体规划,在“生物医药 和高性能医疗器械材料”领域部署的国家级应用示范平台。LYSO/LSO晶体在核医学设备、高能物理、油井钻探、安全检查、环境检查等领域应用广泛,是目前全球最重要和最理想的射线探测器材料之一。当前,我国正推动大型医疗设备国产化,为打破国外材料供应商对国内医疗设备厂商的垄断供应局面,进一步完善国产高端医疗设备的研发、生产体系,LYSO/LSO晶体等闪烁晶体材料的国产化是重要环节。而在影像产业链中,核心部件主要涉及闪烁晶体、液氦、X射线球管、高压发生器、探测器等。闪烁晶体是能够与X射线、伽玛射线、带电粒子等粒子发生作用,将粒子沉积在闪烁晶体中的动能转换为可见光光子的透明晶体。硅酸钇镥(LYSO)稀土闪烁晶体作为PET探测器的核心部件,占到PET/CT整机成本的40%-50%,与溴化镧稀土闪烁晶体同为最具商业价值的新材料。国产PET/CT无论是关键技术还是核心材料,均已不逊色国外品牌,甚至在一些“卡脖子”的原材料方面也取得了突破性进展,2019年,联影医疗联合下游企业——上海新漫晶体,通过上海市工业强基项目“符合PET/CT需求的大尺寸晶体的开发与产业化”的持续攻关,制定晶体性能指标要求,承担晶体性能检测、效果验证等工作,实现了LYSO 晶体的国产化,解决了国产PET/CT对进口晶体的依赖问题。现在,上海新漫系联影重要子公司,为公司提供分子影像产品重要原材料LYSO闪烁晶体。除了晶体制造技术,联影公司还掌握探测器技术、数据传输和处理技术、产品设计和制造能力等,在高端医疗影像设备研发及产业化中联影展现更大雄心,在刚过科创板的招股书中:联影要新建高端智能制造工厂,购置和安装必要的产线生产设备、自动化升级设备、自动控制设备、立体仓库和物流设备以及搭建厂区智能化系统,建成后主要用于生产高端XR、CT、PET/CT、MR和PET/MR等系列产品;新建生产研发楼;新建配套综合楼以及其他配套设施。RT在研产品 CT在研产品2018 年,联影医疗uRT-linac 506c 获NMPA 医疗器械技术审评中心第三类医疗器械认证,是世界首款一体化CT 直线加速器。目前联影医疗在放疗领域的前沿性、关键性技术的掌握情况如下:联影医疗对加速管、多叶光栅已实现自研自产,并结合治疗床技术,精密剂量控制系统,治疗计划系统,肿瘤信息系统等方面形成技术基础。未来联影医疗在放疗领域核心部件的布局规划主要包括下一代功率源系统、加速管系统、新一代多叶光栅等。经过多年的经营积累,常州联影已具备包括MR、CT、DR和RT在内的高端医学影像设备上游机加工和整机生产能力。此次,常州联影高端医学影像设备及核心部件项目将规划达成400台RT(直线加速器)的部件加工和整机生产规模,以及500台PET-CT的晶体生产能力。项目建成后,将成为世界上最大的高端医疗设备晶体生产基地。02、揭秘联影常州基地重大项目建设,是经济发展的“稳定器”。二季度,常州强保障、优服务,启动“拿地即开工”攻坚行动,保障重大项目快开工、快推进、快投产,以项目之“进”撑经济发展之“稳”。在科技创新的加持下,常州产业发展的韧性得以进一步加强:全国每五台工业机器人中,就有一台是“常州造”;动力电池年产值国内第一,占全国份额的三分之一、全省的三分之二;智能制造装备、新型碳材料产业集群进入“国家队”… … 瞄准“国际化智造名城、长三角 中轴枢纽”发展定位,常州正在智能制造上找准定位、增强特色、拉长长板。2022年,常州国家高新区确立实施173个重点项目,年内计划投资367亿元。今年以来,常州高新区全面深化“招推服一体化”改革,最大程度压缩审批时限,在签订土地出让合同的当天即同步下发“四证五书”,实现从拿地到开工“零时差”。本次集中签约项目共24个:包括总投资30亿元重大项目1个,精品外资项目5个,高端智造产业及生产性服务业项目12个,科技人才项目6个。在此次签约仪式上,新北区代区长石旭涌为12个拿地即开工项目代表:联影(常州)二期项目负责人颁发了证书。据了解,今年二季度,常州国家高新区共有40个开工重点项目,总投资达231.6亿元。联影(常州)医疗科技有限公司是全球单体规模最大的全线高端医疗设备生产基地。联影(常州)项目总占地面积340亩,一期用地162亩,建筑面积91505平方米,总投资15亿元,建成后形成年产数字平板X射线成像系统3600套、CT系统500套、分子影像系统(磁共振成像)720套、放射治疗仪系统400套的生产能力。2020年销售额为9.92亿元,纳税额为1.3亿元。联影自落户常州高新区以来,始终保持高质量发展态势,取得了很好的发展。新冠疫情期间,联影在第一时间驰援武汉,更是展现出了让人称赞的“中国速度”。据介绍,从小年夜到年初五,按计划生产的移动DR15台,CT530系列设备10台,已基本按需完成。后续,仍保质保量供应。去年1月19日上午,常州国家高新区与联影医疗技术集团举行项目签约仪式,联影医疗技术集团决定在常州高新区投资30亿元,建设二期新项目,作为全国获得国家专利金奖和商标金奖仅有的两家企业之一,上海联影医疗科技股份有限公司在投资联影(常州)一期项目基础上,今年投资建设的二期项目正式启动,此次联影高端医学影像设备及核心部件项目要建成的世界最大高端医疗设备晶体生产基地便在该期项目中。联影(常州)医疗科技有限公司总经理严全良感慨道:“联影(常州)一期项目在整个报建、生产过程中,得到了市、区、镇各级政府的大力支持和帮助!原本至少近70个工作日的审批过程,缩短为1个工作日,真正做到了‘拿地即开工’。政府部门高效的审批,让我们企业真正实现了‘少走路’、‘少等待’,帮助我们项目‘早开工、早投产’”。03、差异化定位、区域化分工构建的全球化产能格局形成上海联影医疗科技股份有限公司成立于2011年3 月,是联影医疗技术集团的总部,研发中心辐射全球,主要从事高端医学影像诊断产品、放射治疗产品及高端生命科学仪器的设计、研发、生产和销售,并提供配套智能化、信息化解决方案,主打高端医疗设备市场,有国内唯一设计、研发、制造医用1.5T、3.0T超导磁体等全线产品的能力。2020年,联影医疗在武汉全面布局,总投资约50亿元,占地20余万平方米的联影医疗武汉总部基地一期已正式启用,是全球高端医疗设备行业规模最大,最具特色的研发、生产、运营中心。同时,联影智能武汉分部、UIHCloud联影云总部也“安家”于此。联影武汉总部基地智能制造中心该基地投用后,到2028年,将实现高端医疗设备本土化生产和销售,预计年收入百亿元。联影医疗将在武汉重点打造联影高端医疗设备研发及智能制造中心,自主研发生产手术机器人、医疗可穿戴设备等先进医疗装备。常州是一个世界级加工基地,联影认为整个产业链的把控才能确保产品的质量,才能确保最优的性价比利用一流设备,从原材料精加工到模具都是自己做。此外联影在美国德州还拥有休士顿研发基地,并称未来在国外还会建更多生产基地,进入世界市场。去年9月24日,虹桥国际开放枢纽重大项目集中开工长宁区分会场活动,在联影智慧医疗产业园项目建设工地举行,联影智慧医疗产业园是此次5个集中开工的参与项目之一。联影医疗科技智慧医疗总部项目位于广顺北路临华路,用地面积约2.99万平方米,地上建筑面积约9.45万平方米,地下建筑面积约8万平方米。园区主要包括联影智慧医疗全球总部、中国智慧医学影像研究院及智慧影像产业基地、智慧医疗亚洲体验中心及旗舰店、联影互联网医院管理中心、联影全国基层医疗升级指导培训中心和共建关键学科专家工作室中心,将建成具备集团优势、生态优势和运营团队优势的产业集聚区。据文汇报报道,未来五年联影智慧医疗预期年收入100亿元,团队接近5000人,服务覆盖国内大部分地区,带动医疗大健康领域人工智能技术设备创新和医疗健康产业的产融结合服务创新,催生1000亿元产业规模,助力长宁相关产业发展。联影医疗产业化示范基地二期效果图今年1月6日,联影医疗产业化示范基地二期项目作为嘉定新城今年首批6个重大项目之一正式启动建设。此次启动建设的联影医疗产业化示范基地二期,将建成为全球规模领先的、国际一流的现代化、智能化高端医疗装备研发生产基地。据悉,联影医疗产业化示范基地二期项目总投资31.26亿元,总建筑面积约42万平方米,将建设成为集技术研发、智能制造、国际交流培训、全球品牌展示、生活服务、中央公园等功能于一体的智慧园区,可容纳8000-10000人。园区将由曾设计上海中心大厦的全球顶尖建筑设计公司Gensler设计,预计2024年底竣工。此次,大手笔打造的“超级工厂”将作为公司全球研发总部,新基地对标国际最高水平,加速下一代产品与技术研发创新,推动PET/MR、PET-CT、MR、CT、XR等全线高端医疗装备、核心部件与先进技术从研发到产业化的进程,推动“卡脖子”技术自主可控。新基地还将打造数智化超级工厂,借助工业物联网、大数据、人工智能等前沿技术,将实现生产制造、仓储、物流等各环节生产要素全面感知和控制,以自动化、智能化、精密化的生产及运营管理,大幅提升全线高端产品全球供给能力与速度。由此,上海总部基地、常州工厂、武汉基地、美国基地几大基地之间也将构建起差异化定位、区域化分工的全球化产能格局。两月前,万众瞩目的联影医疗终于过会了!融资金额高达124.8亿元,市值有望破千亿,这也是科创板市场2022年以来IPO规模最大的上市企业。募集资金用于下一代产品研发、高端医疗影像设备产业化基金项目等,提前规划“多中心、分级次”的生产基地战略布局,新建生产基地,将有力提升公司品牌的全球影响力。
  • 中科院研发太赫兹扫描隧道显微镜
    ▲图 | 太赫兹扫描隧道显微镜系统(来源:资料图)太赫兹,是介于远红外和微波之间的电磁波,具有光子能量低、穿透性好等特点,在高速无线通信、光谱学、无损伤成像检测和学科交叉等领域具备广泛应用前景,被誉为“改变未来世界的十大技术”之一。简单来看,太赫兹扫描隧道显微镜系统就是一个超快摄影机,只不过它要观察和拍摄的对象是分子和原子世界,并且拍摄的帧率在亚皮秒量级。对于非线性太赫兹科学来说,控制太赫兹脉冲的“载波包络相位”,即激光脉冲的载波与包络之间的关系至关重要,特别是用于超快太赫兹扫描隧道显微镜时。太赫兹载波包络相位移相器的设计和实现,在利用太赫兹脉冲控制分子定向、高次谐波生成、阈上电离、太赫兹波前整形等领域,均具备潜在应用价值。(来源:Advanced Optical Materials)1. 为调控太赫兹的载波包络相位提供新方案据介绍,王天武在中科院空天信息研究院(广州园区)-广东大湾区空天信息研究院担任主任和研究员等职务,研究方向为太赫兹技术。目前,其主要负责大湾区研究院的太赫兹科研队伍建设。该研究要解决的问题在于,常规探测手段只能得到静态的原子形貌图像,无法观察物质受到激发,例如经过激光辐照后的动态弛豫过程图像,即无法观察到激子的形成、俄歇复合、载流子谷间散射等过程,而这些机理的研究,对于凝聚态物理学包括产业化应用都非常重要。原因在于,这些动力学过程发生的时间尺度,往往都在皮秒量级,即万亿分之一秒的时间,任何普通调控手段均无法达到这一时间量级。利用飞秒脉冲激光技术,能显著提高扫描隧道显微镜(Scanning Tunneling Microscope,STM)这一扫描探针显微术工具的时间分辨率。但是,目前仍受到多种因素的限制,比如样品和针尖制备困难、针尖的电容耦合效应、脉冲光引起的热膨胀效应等。太赫兹的脉冲宽度位于亚皮秒尺度,其电场分量可被看作一个在很宽范围内、连续可调的交流电流源。因此,将太赫兹电场脉冲与 STM 结合,利用其瞬态电场,即可作用于扫描针尖和样品之间的空隙,从而产生隧穿电流进行扫描成像,能同时实现原子级空间分辨率和亚皮秒时间分辨率。如前所述,太赫兹扫描隧道显微镜系统好比一个超快摄影机。但是,太赫兹电场脉冲和 STM 的实际结合过程,却并非那么简单,中间要攻克诸多难题。其中一个最基础的重要难题,在于太赫兹源的相位调控技术。太赫兹扫描隧道显微镜系统是利用太赫兹激发针尖尖端和样品之间的空隙,来产生隧穿电流并进行采样。不同相位太赫兹源的电场方向不一样,这样一来所激发的隧穿电流的方向亦不相同。根据不同样品施加不同相位的太赫兹源,可以更好地匹配样品,进而发挥系统性能优势,借此得到高质量光谱。因此,通过简单高效的途径,就能控制太赫兹脉冲的载波包络相位,借此实现对于隧道结中近场太赫兹时间波形的主动控制,同时这也是发展超快原子级分辨技术的必备阶段。通常,超短脉冲的载波包络相位,必须通过反馈技术来稳定。除少数例子外,比如用双色场激光等离子体产生的太赫兹辐射源,大多数商业化设备产生的太赫兹脉冲的载波包络相位都是锁定的,例如人们常用的光整流技术生成的太赫兹脉冲。多个太赫兹偏振元件组成的复杂装置,可用于控制太赫兹脉冲的载波包络相位。然而,鉴于菲涅耳反射带来的损耗,致使其插入损耗很大,故无法被广泛应用。另外,在太赫兹波段,大部分天然材料的色散响应较弱、双折射系数较小,很难被设计成相应的载波包络相位控制器件,因此无法用于具有宽频率成分的太赫兹脉冲。与天然材料相比,超材料是一种由亚波长结构衍生而来的、具有特殊光学特性的人工材料,其对电磁波的色散响应和双折射系数,均可进行人为定制。虽然超材料技术发展迅猛。但是,由于近单周期太赫兹脉冲的宽带特性,利用超材料对太赫兹脉冲的载波包络相位进行控制,仍是一件难事。为解决这一难题,王天武用超材料制备出一款芯片——即柔性太赫兹载波包络移相器,专门用于控制太赫兹脉冲的载波包络相位。该芯片由不同结构的超材料阵列组成,可在亚波长厚度和不改变太赫兹电场极化的情况下,实现对太赫兹载波包络相位的消色差可控相移,其对太赫兹脉冲的载波包络相位的相移调制深度高达 2π。相比传统的太赫兹载波包络相位移相器,该移相器具有超薄、柔性、低插损、易于安装和操作等优点,有望成为太赫兹扫描隧道显微镜系统的核心部件。近日,相关论文以《基于超材料的柔性太赫兹载波环移相器》(Flexible THz Carrier-Envelope Phase Shifter Based on Metamaterials)为题发表在 Advanced Optical Materials 上,李彤和全保刚分别担任第一和第二作者,王天武和空天信息创新研究院方广有研究员担任共同通讯作者。▲图 | 相关论文(来源:Advanced Optical Materials)审稿人认为:“此研究非常有趣、简明扼要,研究团队完成了一套完备的工作体系。该芯片的设计和实现,为调控太赫兹的载波包络相位提供了新的解决方案。”2. 建立国际领先的太赫兹科学实验平台据介绍,王天武所在的研究院,围绕制约人类利用太赫兹频谱资源的主要科学问题和技术瓶颈,致力于形成一批引领国际的原创性理论方法和太赫兹核心器件技术,以建立国际领先的太赫兹科学实验平台。他说:“太赫兹扫描隧道显微镜是我们院的一大特色,该设备摒弃了此前施加电压的方式,以太赫兹为激发源,去激发探针尖端和样品之间的间隙,从而产生隧穿电流并进行成像。相关技术在国内属于首创,在国际上也处于领先水平。”在诸多要克服的困难中,太赫兹载波包络相位的调制便是其中之一。入射太赫兹的相位大小对激发的隧穿电流的幅值、相位等信息影响甚大,是提高设备时间和空间分辨率必须要解决的重要问题之一。由于设备腔体比较长,并且腔体内部为高真空环境,与外界空气是隔绝的。传统的太赫兹相位改变方式比较难以实现,因此需要研发新型的相位调制器件。而该课题立项的初衷,正是希望找到一种结构简单、但是对太赫兹载波包络相位调制效率高的方法和装置,以便更好地服务于太赫兹扫描隧道显微镜系统。在文献调研的初始阶段,该团队商定使用超材料来制作太赫兹相位调制器。具体来说,其利用特定的金属分裂环谐振器的几何相位、以及共振相位,来控制太赫兹脉冲的载波包络相位值。之所以选择金属分裂环谐振器作为基本相控单元,是因为在一定条件下,它对太赫兹具有宽谱响应。当任意方向的线偏振波与谐振器耦合时,入射电场分量可映射到平行于谐振器对称轴和垂直于谐振器对称轴,借此可以激发谐振器的对称本征模和反对称本征模。此时,通过改变金属分裂环谐振器的几何相位和共振相位,散射场的某一偏振分量的电场相位会相应延迟,大小可以轻松覆盖 0-2π。但是,由于存在电偶极子的双向辐射,导致金属分裂环谐振器存在明显的反射和偏振损耗。为此,课题组引入了一对正交的定向光栅,利用多光束干涉的方式解决了谐振器插入损耗大的问题。随之而来的另一难题是,由于正交光栅的存在,导致入射波和透射波之间的电场偏振始终是垂直的,在太赫兹扫描隧道显微镜系统的工作中,这是不被允许的。好在样品均是由互易材料制成的,于是这一问题很快迎刃而解。随后,该团队采用常规紫外光刻、电子束沉积以及聚酰亚胺薄膜上的剥离技术,制备出相关样品,并利用太赫兹时域光谱系统,对所制备的样品性能进行表征。当入射的太赫兹脉冲,依次被样品中不同的微结构阵列调制时,研究人员通过太赫兹时域光谱测量,清晰观察到了太赫兹脉冲的时间波形的变化,且与仿真结果十分吻合。此外,课题组还在广角入射和大样品形变时,验证了该样品的鲁棒性。总而言之,该成果为宽带太赫兹载波包络相位的控制,提供了一种新型解决方案,并在不改变太赫兹电场极化的情况下,利用“超材料”在亚波长厚度的尺度上,实现了针对宽带太赫兹载波包络相位的消色差可控相移。关于这一部分成果的相关论文,也已发表在《先进光学材料》期刊。(来源:Advanced Optical Materials)据介绍,此次芯片能把太赫兹的相位最高移动至 2π 大小,并且具有大的光入射角度和良好的柔韧性等优点,在太赫兹扫描隧道显微镜系统,以及其他相关领域有较高的应用价值。但是,该芯片目前仍存在一个缺点,即无法做到太赫兹载波包络相位的连续调制。这是由于,采用的金属分裂环谐振器是单次加工制成的,所能调制的几何相位和共振相位已经确定,无法再被人为改变。因此,使用过程中只能通过加工特定结构的芯片,来实现所需相位的调制。未来,该团队打算将当下比较热门的二维材料、相变材料、液晶材料等材料集成到芯片中,这些材料的优势在于光学性能可被人为改变。同时,其还将综合电、光、热等手段,实现金属分裂环谐振器几何和共振相位的主动控制,从而实现对太赫兹脉冲的连续载波包络相位调制。此外,课题组也会继续优化微加工工艺和原料制备流程,进一步提升芯片的综合性能指标,比如器件的低插入损耗、高工作带宽等,同时也将降低制造成本,以便后续的产业化推广。
  • 充当质谱仪的“度量标尺”的新仪器问世
    美国加州理工学院近日开发出仅有百万分之一米大小的纳米电子机械系统(NEMS)谐振器,可实时测定单个分子的质量。该成果刊登在最近一期的《自然纳米技术》杂志上。   过去,科学家一直依靠现有质谱分析技术测量分子的质量,程序十分繁琐。首先要将被测样品中成千上万的分子离子化,使其呈带电状态,然后将这些离子引入电场,根据它们的运动状态确定其质荷比,进而确定它们的质量。   加州理工学院的物理学、应用物理学和生物工程学教授兼该校纳米科学研究所主任迈克尔L若克斯及其同事经过十多年努力,开发出一种微型NEMS谐振器,有效简化了分子质量测量的程序,并使测量器械微型化。这种2微米长、100纳米宽的桥状谐振器,具有很高的振动频率,可有效充当质谱仪的“度量标尺”。   研究论文的第一作者、物理学家阿斯科沙伊奈克指出,谐振器的振动频率与其所测量目标的质量成正比,振动频率的变化会与被测物的质量变化契合。将一个蛋白放到谐振器上后,谐振器的振动频率就会下降,而通过这种频率转换即可测定蛋白的质量。   研究人员使用该仪器测试了牛血清白蛋白(BSA)的蛋白质量,其结果为66千道尔顿(道尔顿是表示原子或分子质量的单位,1道尔顿大约与一个氢原子的质量相当)。他们首先使用电喷雾离子化(ESI)系统使BSA蛋白离子处于蒸汽态,然后将其喷射到振动频率为450兆赫兹的NEMS谐振器上,使谐振器的振动频率降低了1.2千赫兹。相比之下,淀粉酶的蛋白分子所引起的频率转换大约为3.6千赫兹,其蛋白质量约为200千道尔顿,是BSA蛋白质量的3倍。   奈克指出,谐振器振动频率的变化还会受到被测分子在谐振器上所处位置的影响,在中心位置引起的频率变动幅度大于边缘位置引起的变动幅度。因此,不能仅依靠一次测量就确定分子质量的大小,大约需要500次的频率转换才会得到更精确的结果。将来,研究人员会设法使质量测量免除分子位置点的干扰。目前这套技术设备已有了原型。原则上,这种系统的测量精度可达1道尔顿,相当于一个氢原子的质量。但这是下一代装置才能达到的目标,它不仅要更精细小巧,还要具有更好的噪声性能。而研究小组则希望能创建或许含有成千上万个NEMS谐振器的阵列,通过并行工作,以“在一瞬间”确定成千上万个分子的质量。   若克斯教授指出,随着生命科学研究的深入,越来越需要进行大量的蛋白质组学分析,下一代用于相关研究的仪器,尤其是用于系统生物学研究的仪器,一定要能完成这样的任务。而半导体微电子加工工艺的发展,使这种仪器的研制成为可能。   此项研究工作得到了美国国立卫生研究院、美国国防部高级研究计划局以及美国空间和海上作战司令部的支持。
  • 电子显微镜下首次成功创建电子—光子对
    来自德国和瑞士的一个研究团队首次在电子显微镜中以可控方式成功创建了电子—光子对。这一发表在《科学》杂志上的新方法,可同时生成两个成对的粒子,且能够精确地检测到所涉及的粒子。该研究结果扩展了量子技术的工具箱。 世界各地的科学家都在尝试将基础研究的成果应用到量子技术中。为此,通常需要具有定制特性的单个粒子。 德国马克斯普朗克研究所(MPI)、哥廷根大学和瑞士洛桑联邦理工学院(EPFL)的国际团队成功地在电子显微镜中耦合单个自由电子和光子。在哥廷根大学的实验中,来自电子显微镜的光束穿过由瑞士团队制造的集成光学芯片。该芯片由一个光纤耦合器和一个环形谐振器组成,该谐振器通过将移动的光子保持在圆形路径上来存储光。 MPI科学家阿明菲斯特解释说,当一个电子在最初的空谐振器上散射时,就会产生一个光子。在这个过程中,电子损失的能量正好是光子在谐振器中从无到有创造出来所需的能量。结果,这两个粒子通过它们的相互作用耦合成一对。通过改进测量方法,物理学家可精确地检测所涉及的单个粒子及其表现。 研究人员强调,使用电子—光子对,只需要测量一个粒子即可获得有关第二个粒子的能量和时间的信息,这使得研究人员可在实验中使用一个量子粒子,同时通过检测另一个粒子来确认它的存在。这对于量子技术的许多应用来说都十分必要。 研究人员将电子—光子对视为量子研究的新机遇。该方法为电子显微镜开辟了吸引人的新用途。在量子光学领域,纠缠光子对已经改善了成像。通过该项工作,可用电子来探索这些概念。研究人员称,这是第一次将自由电子纳入了量子信息科学的工具箱。更广泛地说,使用集成光子耦合自由电子和光,可为新型混合量子技术开辟道路。
  • 将自由电子纳入“量子信息科学工具箱”,电子显微镜下首次成功创建电子—光子对
    来自德国和瑞士的一个研究团队首次在电子显微镜中以可控方式成功创建了电子—光子对。他们发表在《科学》杂志上的新方法,可同时生成两个成对的粒子,且能够精确地检测到所涉及的粒子。该研究结果扩展了量子技术的工具箱。耦合电子—光子对的产生示意图。一束自由电子(黄色)穿过环形谐振器(黑色),产生单个光子。这产生了一个在能量含量和时间发生方面具有密切相关特性的耦合电子—光子对。图片来源:瑞恩艾伦/第二湾工作室世界各地的科学家都在尝试将基础研究的成果应用到量子技术中。为此,通常需要具有定制特性的单个粒子。德国马克斯普朗克研究所(MPI)、哥廷根大学和瑞士洛桑联邦理工学院(EPFL)的国际团队成功地在电子显微镜中耦合单个自由电子和光子。在哥廷根大学的实验中,来自电子显微镜的光束穿过由瑞士团队制造的集成光学芯片。该芯片由一个光纤耦合器和一个环形谐振器组成,该谐振器通过将移动的光子保持在圆形路径上来存储光。MPI科学家阿明菲斯特解释说,当一个电子在最初的空谐振器上散射时,就会产生一个光子。在这个过程中,电子损失的能量正好是光子在谐振器中从无到有创造出来所需的能量。结果,这两个粒子通过它们的相互作用耦合成一对。通过改进测量方法,物理学家可精确地检测所涉及的单个粒子及其表现。研究人员强调,使用电子—光子对,只需要测量一个粒子即可获得有关第二个粒子的能量和时间的信息,这使得研究人员可在实验中使用一个量子粒子,同时通过检测另一个粒子来确认它的存在。这对于量子技术的许多应用来说都十分必要。研究人员将电子—光子对视为量子研究的新机遇。该方法为电子显微镜开辟了吸引人的新用途。在量子光学领域,纠缠光子对已经改善了成像。通过该项工作,可用电子来探索这些概念。研究人员称,这是第一次将自由电子纳入了量子信息科学的工具箱。更广泛地说,使用集成光子耦合自由电子和光,可为新型混合量子技术开辟道路。
  • 西安交大:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚Dt=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066官网:https://www.bmftec.cn/links/10
  • HEPS自主研制共振非弹性散射分析晶体完成在线实测
    2023年5月,国家重大科技基础设施高能同步辐射光源(HEPS)自主研制的共振非弹性散射(RIXS)分析晶体完成在线实测,实测能量分辨率37.7meV@8.9keV,标志着HEPS自主研制光学部件又进一步。   HEPS是亚洲首台第四代同步辐射光源,有利于开展高能量分辨谱学实验。为满足高分辨谱学需求,HEPS光源部署自主研制高分辨RIXS谱学分析晶体,100毫米直径的球面衬底上,布满近1万块1.5毫米见方、2毫米厚的小晶块,小晶块之间排列取向精度误差小于400μrad。该类分析晶体制备工艺极为复杂,国际上仅有少数光源具备此类分析晶体研制能力。HEPS高能量分辨谱学线站负责人徐伟研究员带领团队与光学设计、光学机械、光束线控制系统相关人员,联合多学科中心晶体实验室积极攻关,完成RIXS分析晶体自主加工。   RIXS分析晶体的在线表征是检验分析晶体品质的关键步骤。2023年5月,高分辨谱学线站团队包括徐伟研究员、郭志英副研究员、张玉骏副研究员、靳硕学副研究员等通过与日本超级环光源-日本量子科学技术研究开发机构线站(SPring-8-QST-BL11XU)的Kenji Ishii(石井贤司)教授合作,顺利完成了RIXS分析晶体的在线表征。曲率半径2米的单晶硅(553) RIXS分析晶体,实测分辨达到37.7meV (FWHM)@8985eV。这一结果表明,HEPS团队已具备RIXS分析晶体自主研制能力。   值得一提的是,2022年10月,依托北京同步辐射装置,HEPS首批自主研制X射线拉曼散射(XRS)谱仪分析晶体完成在线表征,实测1eV(FWHM)@9.7 keV;2023年3月,依托上海光源BL13SSW稀有元素线站,HEPS相关人员与上海光源边风刚研究员、何上明研究员、曾建荣副研究员、洪春霞高级工程师等团队合作,完成了一批(15组)条带型高分辨XRS分析晶体的在线表征,实测0.53 eV@9.7 keV。   高分辨分析晶体再一次取得突破性进展,离不开团队合作、国内外同行协助。下一步,团队成员将齐心协力,进一步开发定制指数面硅基、非硅基高能量分辨分析晶体。在满足HEPS高分辨分析晶体需求基础上,也可为国内外同行提供先进光学部件。   高分辨分析晶体在线表征得到上海光源稀有元素线站BL13SSW、测试线站BL09B,日本SPring-8 BL11XU等线站的大力支持。
  • 西安交大《Physical Review Applied》:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚▲t=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066
  • 德国研发出世界上最小线宽的激光器 仅10 mHz
    p & nbsp & nbsp & nbsp & nbsp 激光器是精密的代名词,但一般来说,其还有改进的余地。“完美”的激光器会在一个特定的波长发出一种光。光从激光器中射出,激光起振后,会有一个或多个纵模产生,每个纵模的频率的范围就是激光的“线宽”。尽可能缩窄线宽是激光研究的目标之一,现在德国研究人员已经开发出了世界上最小线宽的激光器,线宽仅为10 mHz(0.01 Hz)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/d28fbc97-43fc-4843-8448-b6c70db66b3c.jpg" title=" fa9904fa7c0c651.jpg" / /p p   通常,最好的激光器可以具有窄到几kHz的线宽,但是对于特别精确的仪器,如光学原子钟,就需要将之进一步收窄。另一种衡量激光束质量的方式是光频率的稳定性:在过了一段时间之后,光波的震荡会出现不同步,因此一束激光能维持更长的“完美”时间,其质量也就愈佳。 /p p   来自德国联邦物理技术研究院(PTB)和美国天体物理联合实验室(JILA)的科学家共同研发的新型激光器在这两个领域均表现优异。除了其10 mHz的极小线宽,其光波能持续11秒保持稳定,此时光束延伸约330万公里,约是地月距离的10倍。 /p p   事实上,新的激光器非常精确的,难以与现有的激光器进行比较,为了证明它的价值,团队研发了两个激光器,并将它们相互比较。这两个设备由Fabry-Pé rot硅谐振器制成,包含两个彼此相对的固定反射镜。由于谐振器的长度决定了光波的频率,所以研究人员利用长21cm的谐振器来获得理想的激光束。 研究人员通过这样精确的测量,使仪器不受其他因素干扰,例如压力,振动和温度。 /p p   研究人员正在利用这种极小线宽的新型激光器来制造更准确的原子钟,并对超冷原子进行更精确的测量。研究人员认为,通过调整反射镜的组成并找到降低谐振器内部温度的方法,线宽能进一步收窄,甚至可以达到1 mHz以下。 /p p   这项研究成果发表在《物理评论快报》(Physical Review Letters)杂志上。 /p p br/ /p
  • 科学家研制出最微小天平:可称出分子质量
    最微小天平由4部分组成 金属层(1)位于一个金刚砂层(2)之上,附着于一个硅衬底(3)以及微型支架(4)   新浪科技讯 北京时间2月15日消息,据国外媒体报道,科学家研制出世界上最微小的天平,可以实时称量单个分子的质量。借助这种最小的天平,研究人员称出了某种蛋白质分子和金纳米微粒的质量。   据了解,世界上最微小的天平是由美国加州理工学院物理学家迈克尔-卢克斯和他的同事研制的。研究人员可以利用这种微型仪器实时称量单个分子的质量。最小天平可谓用途广泛。化学家可以用这种高灵敏衡器来确定未知物质的化学特性。而加州理工学院研究小组表示,科学家利用这种微型仪器可以在几毫秒内分析上千种蛋白质,而且所需样本更少。   科学家研制出的世界最微小天平其实是一种微型谐振器,只有2微米长,120纳米宽。它由4部分组成,金属层(1)位于一个金刚砂层(2)之上,附着于一个硅衬底(3)以及微型支架(4)。它的工作原理是:当称量一个分子的质量时,含有这种分子的溶液喷洒到这一微型谐振器上。当分子“降落”到谐振器上,会使谐振器的震动方式发生改变。微型谐振器和一个电路相连,电路记录下震动改变,并传输至计算机,随后计算出分子的质量。每一次分子降落到谐振器上,都会计算出一个分子的质量;最终上百个分子堆积在谐振器上,科学家可以多次测量,得到非常精确的分子质量数据。   截至目前,卢克斯利用这种最微小天平测量出金纳米微粒的质量以及三种奶牛血清蛋白的质量。目前,他正领导研究小组研制新型谐振器。他们希望新型谐振器的震动方式更为复杂,能够做出更为精确的测量。
  • 飞扬的粒子传感器(评论Pittcon撰稿人金奖产品)
    3月3日,我利用新闻发布会的间隙,走入展厅,随即与展会上的人们聊天。   我最激动的发现是,一个新的公司研发生产了一款纳米颗粒粒度测定仪,该仪器的研发是基于美国麻省理工学院(MIT)传感器大师Scott Manalis的研究工作。   我曾经报道过Scott Manalis教授通过悬浮的微通道谐振器的微机电系统(MEMS)来测定颗粒的重量,测量可以精确到fg级。所以,你可以想象当我看到这个研究成果商品化后的兴奋心情。   一项在科学杂志上发表的技术在不到三年的时间内就看到商品化的产品,这种情况很少见。但是Affinity Biosensors 做到了。   Affinity Biosensors 公司在Ken Babcock领导下,成功的将这样一款产品推向了市场。该产品采用了微通道谐振器装置,当粒子通过该装置时,通过微谐振器共振频率的变化,便可检测出被测粒子的质量。该装置还可以通过计算粒子的密度,从而得到粒子的大小。由于该系统不是采用在传统的通过激光照射来测量颗粒的大小的方式,所以不会受到诸如只有通过动态光散色才能分析混合物的问题。   令人更加兴奋的是,Babcock 告诉我,未来该系统不仅可以用于简单测定颗粒的重量和大小,其正致力于将该系统与HPLC连接,其充当一个通用的密度检测器,可以检测紫外检测器或气溶胶检测器所不能检测到的化合物。  (此文翻译于chemistry world blog上 Matt Wilkinson文章)
  • 纳米梁光谱仪,从彩虹得到的灵感
    “据我了解,中国‘嫦娥五号’月球探测器上也配有小型光谱分析仪,除能分析月球常见的矿物组成,还具有研究矿物风化层水合作用的能力。其探测范围覆盖可见光到中红外光,并分别使用 CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)光谱成像、铟镓砷探测器、碲镉汞探测器。而如果利用我们的纳米梁光谱仪,借助其扩展性和移植性,则有望大幅减少探测器种类和数目。除此之外,随着应用目标需求的变更,比如新的工作波段、更大波长范围等,都可通过类似的设计流程,对器件进行快速迭代,充分发挥纳米梁光谱仪的通用化、可定制、灵活性的优势。比如,对于老百姓来说,将来某天去水果摊只需手机扫一下,便可知道瓜是不是保熟。”对于课题组研发的纳米梁光谱仪,华中科技大学武汉光电国家研究中心教授董建绩表示。图 | 董建绩(来源:董建绩)该纳米梁器件具有小尺寸、小模式体积、高 Q 值(衡量电感器件的主要参数)的突出优势,以及结构多样的可调性、对各种集成材料平台的兼容性等性能。除了用作光谱仪以外,它在作为满足集成光子技术发展需求的新型基本单元结构上,同样有较大的应用潜力。此前已经有人使用增益材料结合纳米梁谐振腔实现了室温下的连续激光器,还有人结合石墨烯等二维材料制作出高效的热光调制器。未来有望将这一器件应用到更多的场景,例如发光器件、电光调制器件、力学传感、气相探测等领域。从彩虹到纳米梁器件看似是一个硬件,其背后原理却要从美丽的彩虹说起。“虹”是一种常见的自然现象。通常雨后转晴时,阳光射到空中接近球型的小水滴,产生各种颜色的图谱即自然界的“光谱”。光谱最早是指自然界中的分光图案,后来拓展到整个电磁波段的辐射能量随波长或频率的分布。光谱仪是研究光辐射强度特性随频率变化的光学仪器,它将不同频率的光辐射按照一定规律分开,配合一系列机械、电子、计算机等系统,实现对光辐射的精密测定和研究。光谱分析在现代光学应用中有重要的作用,被广泛应用于工业生产、化学成分分析、环境监测、航天遥感等领域。传统的光谱仪存在结构组成复杂、占用体积大、价格昂贵等劣势,在很多要求便携式设备的应用场合存在限制。而光谱仪的小型化和集成化,可满足各种新兴光谱分析应用的低成本、小尺寸的需求,比如片上实验系统、细胞组织检测分析、乃至移动设备搭载光谱仪等,都是近年来的重要研究方向。一般的微型化光谱仪,都是通过将传统的大型台式光谱仪中的色散元件、或者滤波元件使用集成光子技术小型化后得到的。然而,常见的色散分光型和傅里叶变换型光谱仪,通常需要较长的衍射路径,才能积累足够的光程或光程差,从而分辨不同的光谱分量,故而难以兼得小尺寸和高精度。图 | 级联纳米梁光谱仪工作原理(来源:Optica)光谱计算重建(Computational reconstruction)方法,是近年来新兴的一种光谱仪实现方法。该方法通过计算机辅助计算重建算法,降低了对光谱分光或滤波的严格要求,促使了基于随机结构、量子点、单纳米线等新型光谱仪的涌现。计算重建方法,通过对入射光场和输出通道间的映射进行预先标定,再借助重建算法并使用计算机进行迭代求解线性方程组,从而求出输入光谱。这些基于计算重建方法的光谱仪方案,既具有简单的结构和紧凑的尺寸,同时又表现出更优异的特性。然而,现有方案存在无法根据需求扩展、不够灵活的缺点。例如,在材料加工和集成上,基于精细的材料工程、所获得的材料光谱响应渐变的方案,有着很高的复杂度,由此带来了高成本和低产率,这也导致其较难迁移到其他波段。此外,预校准传输响应也会影响光谱仪的准确率。也就是说,构造一系列具有高度正交性的传输谱,是提高重建光谱性能的关键。在此之前,该团队已经对光子晶体纳米梁谐振腔器件,建立了良好的研究基础和积累,比如应用到光开关[1]、高消光比滤波器[2]、通用模块化光谱仪[3]等。他们发现,纳米梁的传输谱经过热调谐后,可以构成一系列正交的基函数,并且纳米梁单元还具有易于级联扩展的特点,有望解决重建型光谱仪的性能限制问题。图 | 纳米梁单元的热调谐传输谱(来源:Optica)同时,有别于通过材料成分渐变结构获得的光谱仪,该方案是基于结构参数渐变,不仅对不同工作波段具有扩展性和移植性,而且制作工艺与标准 CMOS 工艺兼容,无需精细调节材料组份。因此,课题组将纳米梁谐振腔与计算重建算法相结合,得到了兼顾小尺寸、可扩展、高分辨率的级联纳米梁光谱仪。相比传统的窄带滤波型光谱仪,重建算法使得分辨率突破了谐振峰半高全宽的限制。而相对于其他重建型光谱仪,窄带响应提供了高正交性的预校准基函数,这进一步提高了性能。近日,相关论文以《具有高分辨率和可扩展性的级联纳米梁光谱仪》(Cascaded nanobeam spectrometer with high resolution and scalability )为题,发表在 Optica(IF 11.1)上[4],张佳晖担任第一作者,董建绩担任通讯作者。审稿人给予高度评价:“该工作提出的级联纳米梁光谱仪设计方案是非常新颖的,特别是提高了重建型光谱仪的测量分辨率。”并称赞纳米梁结构具有工作波段可扩展性,非常适合发表在 Optica 上。借“光”前行,成就新型光仪器事实上,该团队很早就注意到微型光谱仪这一领域的发展动态。2013 年,耶鲁大学团队就曾经提出一种基于随机结构的光谱仪[5],成功实现了 0.5nm 窄峰和 0.75nm 间距双峰的重建。2015 年,清华大学、麻省理工学院、加州理工大学的研究人员发表了关于量子点光谱仪的论文[6]。2019 年,英国剑桥大学的学者在 Science 上发表了纳米线光谱仪的工作[7]。这些工作分别提出了不同种类的重建型光谱仪,也为此次研究开拓了思路。2021 年,加州大学圣地亚哥分校的团队提出一种基于分层波导的片上光谱仪,并证明滤波器的传输谱正交性对于提高分辨率是至关重要的[8]。这让董建绩更加深入地思考进一步突破微型化重建光谱仪性能限制的可能性。同时,该团队也注意到,现有的这些重建光谱仪方案使用的宽谱响应基函数存在难以根据实际需求扩展的问题。这一问题也启发了他们对纳米梁光谱仪的研究。本质来看,光子晶体纳米梁是一种一维光子晶体谐振腔,它呈现出和波导尺寸类似的狭窄条状梁。当沿着梁的方向刻蚀周期性的孔,孔中部会有破坏晶体周期性的缺陷。形成的缺陷模式光,会被周围的光子晶体结构约束,仅在缺陷附近形成小模式体积的光场,这就形成了光子晶体谐振腔。由于具有超小的模式体积,纳米梁被视为一种超小型的片上谐振器件,在集成化、微型化应用方面有重要价值,因此也非常适合用作小型化光谱仪的基本单元。图 | 纳米梁单元结构(来源:Optica)于此,该团队希望找到能有效提高分辨率的正交频谱响应,而纳米梁的传输谱完美地具备这个特性。同时,基于设计周期结构尺寸而获得的光子禁带的纳米梁谐振腔不仅易于级联,还可通过改变结构扩展波段,符合他们对可扩展性能的需要。因此,纳米梁是一个符合微型化光谱仪需求的合适器件。为了实现纳米梁光谱仪的设想,该团队制定了“三步走”的研究计划。第一步是空间光谱仪方案。他们将大量纳米梁阵列按照空间排布,通过对空间光进行采集获得不同的频谱响应,结合重建算法设计了空间光谱仪[3]。在这个阶段,课题组对纳米梁的加工工艺进行了探索,包括孔径、波导宽度的工艺误差对谐振性能的影响,为后续工作打好基础。第二步是片上集成化光谱仪方案。引入热调谐以实现超小尺寸,将纳米梁阵列转化为少量级联的单元,通过频率扫描的方式获得高精度测量[4]。研究中,该团队进行了一系列优化设计,还在纳米梁单元引入部分透过结构以实现 Fano 谐振增强,从而进一步提升性能。作为分辨率的表征,他们演示了 0.16nm 线宽的窄带信号以及 0.32nm 间距的双峰信号的重建,还展示了不对称双峰、多峰以及基于3通道级联单元工作的 16nm 宽带信号的重建。图 | 信号重建结果(来源:Optica)第三步是高度集成化光谱仪。“这是未来的目标,就是希望把光谱仪和光电探测器、电路高度集成,实现商用化的光谱分析模块。”董建绩表示。有望用于无人机勘察和宝石鉴定由于具有小尺寸和高性能的特点,级联纳米梁光谱仪有望在各类微型化、便携式需求的光谱分析中得到应用。比如,植被覆盖率是生态环境的重要指标之一。通过将便携式光谱仪集成到无人机上,即可采集目标区域的可见光遥感影像,并通过光谱分析地理类型,获得植被分布情况。不仅可应用于检测植物的物候状态,还可用于估算粮食产量、提供环境政策参考。另外,在宝石考古研究中,由于不同的成因,古代的玛瑙石具有不同的矿物组成、颜色机理、结构特点。而有些宝石出于文物保护价值,无法移动到实验室进行组分分析。便携式的光谱仪就可以很好地解决这个问题。通过对宝石内纤维结构、元素成分的光谱分析,还原出新的历史信息。再比如,蔬菜、水果等农产品的成熟度,对农业采摘、市场交易、长途运输等具有重要的意义,而成熟度较好的水果会在某些波段(通常是红外)具有特定的光谱特性。对于微型化光谱仪来说,它可利用这一特点检测水果是否成熟,甚至帮助量化采摘、销售、保存的最佳时间。某些水果的水分、糖含量、坚实度也可以反映在光谱特性中,这都可以通过便携式光谱仪设备进行检测,具有成本低、快速、方便的特点。此外,得益于纳米梁是一种能带工程器件,可充分发挥其可扩展、可移植的灵活性优势,组装成适用性更广泛的其他商业产品,有望应用在更多集成化、便携式的使用场景中。与人交谈一次,胜过闭门劳作未来,该团队主要有两方面打算。一方面希望实现集成片上功率探测的完整芯片化光谱分析系统,借此达成工程化应用,进一步开发出相关产品,实现一定的演示功能,并希望和有兴趣的公司开展合作。另一方面,在基础研究上,从不同的能带结构设计出发,开发出不同波段需求的光谱仪。董建绩表示,每当遇到实际问题或工作难点,大家总能集思广益、寻找办法。他说:“我常跟大家讲,与人沟通是提高自己的一种有效方式,是一个团队行稳致远的重要基石。沟通不仅体现在老师对学生的引导,还有学长与学弟的传承,更有成员与成员间的探讨。这个项目攻关历时 9 年,期间培养了 3 个博士生,而且攻关仍在继续。列夫托尔斯泰曾说过,‘与人交谈一次,往往比多年闭门劳作更能启发心智。’我想在今后的科研道路上,我们应当继续保持这种良好的习惯。”-End-参考文献:1、Opt. Lett. 45, 2363-2366 (2020)2、Opt. Lett. 46, 3873-3876 (2021)3、ACS Photonics 9, 74-81 (2022)4、Optica, 9(5), 517-521.(2022)5、Nature Photon 7, 746-751 (2013)6、Nature 523, 67-70 (2015)7、Science, 365, 1017-1020 (2019)8、Nat. Commun. 12, 2704 (2021)
  • 从光到声音:痕量气体的光声分析
    概述通过廉价的移动设备将气体测量降至万亿分之一(ppt)范围——这在几年前是不可想象的,但由于创新的研发,这种测量越来越明显。可靠的、全区域的温室气体测量、城市中的移动NOx测量,甚至通过分析呼出气体进行的医学诊断,都只是光声光谱(PAS)的少数应用。光声光谱学光声光谱(PAS)结合了高选择性、低检测限、快速响应时间、宽测量带宽(ppt–permille)和巨大的小型化潜力。此外,通过使用3D打印部件或手机麦克风等廉价组件,PAS传感器也可以以低成本进入消费者市场。在此基础上,可以开发出适合特定要求的测量设备。本文介绍了环境诊断和呼吸分析领域的应用实例,这些应用正由奥赫雷根斯堡传感器技术应用中心(SappZ)与德国雷根斯堡大学合作进行研究和开发。PAS的功能原理(图1)基于分子的周期性和光学激发。光子的吸收增加了分析物分子的振动能量,从而将其转换为激发态。如果这些分子现在与周围的分子碰撞,振动能可以以动能的形式释放到样品气体中。图1:光声测量池的示意图:调制光源激发分析物分子,分析物分子通过与其他分子的碰撞将其振动能释放到样品气体中(见放大镜,右侧)。产生的声波由声学谐振器放大,并由麦克风检测。这种效应被称为“非辐射弛豫”。因此,样品气体的加热最小,然后返回到其平衡温度。由于光学激励是周期性的,因此热输入也以相同的频率重复。这种循环加热或冷却伴随着压力波动,该压力波动可以被麦克风检测为声波。共振放大,即将光路设计为声谐振器,将产生的声波放大多次,甚至可以检测到最小的浓度。环境中的污染物测量《京都议定书》将甲烷(CH4)指定为除二氧化碳(CO2)、一氧化二氮(N2O)和含氢氢氟碳化合物(HFCs)外的温室气体[1]。除了湿地等自然甲烷来源外,能源部门、垃圾填埋场和农业等人为来源也有助于全球甲烷排放。尽管大部分排放的甲烷通过与羟基自由基(•OH)的反应而降解,但大气中的甲烷浓度仍在稳步增加。由于在这种情况下,即使是浓度的微小变化也可能是显著的,因此对合适的测量系统的要求很高。例如,祖格斯皮茨的一个测量站记录到,1995年至2021期间,大气中甲烷含量增加了0.2 ppm,同时几乎增加了2 ppmV[2]。我们开发了一种检测极限为7 ppb的紧凑型光声CH4传感器,并针对环境条件进行了广泛的表征[3]。Read the full article on page 26 in Wiley Analytical Science Magazine Volume 2 - April/22. References[1] Vereinte Nationen. Das Protokoll von Kyoto zum Rahmenübereinkommen der Vereinten Nationen über Klimaänderungen Einleitung.[2] Umweltbundesamt. Atmosphärische Treibhausgas-Konzentrationen | Umweltbundesamt. https://www.umweltbundesamt.de/daten/klima/atmosphaerisch e-treibhausgas-konzentrationen#beitrag-langlebiger-treibhausgase-zum-treibhauseffekt [3] Pangerl, J. et al. (2022). Characterizing a sensitive compact mid-infrared photoacoustic sensor for methane, ethane and acetylene detection considering changing ambient parameters and bulk composition (N2, O2 and H2O). Sens Actuators B Chem. DOI: 10.1016/J.SNB.2021.130962 .作者简介Jonas PangerlOstbayerische Technische Hochschule (OTH) University of Regensburg, Regensburg, GermanyJonas Pangerl毕业于应用研究项目,于2020年在德国雷根斯堡的Ostbayerische Technische Hochschule(OTH)获得理学硕士学位。目前,他正在与德国雷根斯堡大学分析化学、化学和生物传感器研究所合作,攻读通过光声光谱进行人类呼气分析领域的自然科学博士学位。Max MüllerSensor Application Center East Bavarian Technical University (OTH) University of Regensburg, Regensburg, GermanyMax Müller于2020年在德国雷根斯堡的Ostbayerische Technische Hochschule(OTH)获得了电气和微系统工程硕士学位。目前,他正在与雷根斯堡大学分析化学、化学和生物传感器研究所和德国Sensorik ApplikationsZentrum(SappZ)合作攻读自然科学博士学位。自2018年以来,他一直在光声痕量气体传感领域进行研究,并专注于振动能量传递和经典声学现象。供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • AMPTEK携“1000um”晶体探测器新品亮相BCEIA2021
    仪器信息网讯 2021年9月27日,第十九届北京分析测试学术报告会暨展览会(BCEIA2021)在北京中国国际展览中心(天竺新馆)正式拉开了帷幕,各大仪器厂商纷纷携重磅产品盛装亮相,此次展览会展出面积达53000 m2,集中展示了国内外先进的分析测试新方法、新技术、新仪器设备、新的解决方案等。AMPTEK展位(E2馆,2401)此次BCEIA展会,有众多知名国外仪器公司相关人员携新品和主推产品也来到了现场,美国AMPTEK公司就是其中之一。AMPTEK是一家成立于1977年的高科技公司,致力于设计并制造各种尖端探测器等,在该领域也一直处于世界领先水平,在OEM厂商中占有非常高的使用率和良好的信用度。值此BCEIA展览会召开之际,仪器信息网特别来到了AMPTEK展位(E2馆,2401),采访到了AMPTEK亚太区经理蒋小虎(英文名:Jerry),并由他向我们介绍了此次AMPTEK带来的产品:包括 X-123Si-pin,X-123FASTSDD(160mm2, 1mm晶体),CdTe,Mini-X2光管和数字多道处理器 PX5,DP5 or DP5-X。AMPTEK亚太区经理蒋小虎(英文名:Jerry)碳化硼(B4C)新窗口碳化硼(B4C)新窗口产品特点和优势• 无Be(对环境无害), 新材料硼化碳,Al涂膜隔绝有色光 • 相对8um的Be窗厚度,轻元素透过效能好• 新材料采用半导体工艺,厚度均匀,不易漏气目前AMPTEK新窗口已经经受过客户现场真空测试,且主流产品之间都可无缝切换。1000um 晶体探测器AMPTEK从2010年就开始研发超薄晶体探测器了,其间迭代了数代,直到去年(2020年)才真正突破技术发展瓶颈!推出了这款1000um 晶体探测器(以下简称1000um),而在此之前研发的500um晶体探测器(以下简称500um)的性能一直未能满足需求。虽然1000um较500um晶体厚度增加了一倍,但是信噪比却仍能保持一致,并且在15keV以上的透过性能提高了一倍;结合光路设计,让EDXRF能谱仪分析下限从1ppm级别降低到1ppb级别。AMPTEK希望,1000um未来能广泛地应用在稀土元素,土壤,水质重金属元素,半导体晶圆镀层厚度,晶圆面扫描等众多领域。蒋小虎提到了“All technical in House”,这是AMPTEK公司内部的说法,指的是探测器所有的关键材料和工艺都能自主生产。AMPTEK拥有强大的研发团队和独家技术,以“市场和解决客户需求”为核心,致力于提高探测器分辨率达到122eV,而目前研发的产品中分辨率最高已接近理论值119eV。因此,AMPTEK又将研发重心转变为“更大面积”和“更厚晶体”,更大面积探测器产品有70mm2和160mm2,分别可以提高2倍和6倍的计数率;更厚晶体指的就是从500um增加到1000um,5keV能量转换效率提高了一倍。然而,更大更厚的硅偏移探测器,意味会产生更大的暗电流、更强的拖尾、更加复杂的噪音,那么,用什么工艺和新材料去保证新产品的成品率就变成了探测器研发的难点。蒋小虎还分享了目前探测器的研发形势:国外大部分集中在更大面积和阵列硅漂移探测器,国内还处于追赶的初级阶段,仅有2-3家研究机构和企业在做合作开发的工作。目前看,工业探测器领域的竞争对手主要来自德国和美国,但其产品相对单一。而AMPTEK是每年发布新品最多的公司,产品丰富包括SI-PIN、SDD、FASTSDD、CdTe等,还有多样的OEM解决方案,AMPTEK自主开发的数字处理器。AMPTEK公司还拥有经验丰富的本土技术团队,可实现所有的服务如售前,售后和商务活动等。AMPTEK展位产品
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制