推荐厂家
暂无
暂无
高低压分析仪器流道中常见气泡问题的解决方案_第三部分上线啦...... 具体内容请点击以下链接查阅:http://www.instrument.com.cn/netshow/SH101586/download.asp欢迎大家分享在这方面碰到的问题和其他解决方法。
续接我们上个月贴出的关于“气泡问题” 的第一部分探讨文章,早期HPLC工程师显然已明白,溶剂的混合对这些系统的设计而言是个问题。 对于纯水或水性流体系统而言,也许并不真正需要排除系统流体和试剂中的空气。事实上,早期生物分析仪利用空气将液体流分段后流经内径较大的管道——称为分段流动分析法。 这类系统一般通过各种机理消除气泡,或干脆忽略与气泡相关的检测信号部分。 然而,随着连续流动分析仪的引入,不再采用气泡分段流动,流体中气泡的随机干扰变成一个问题。 在现代的医疗分析仪中,气泡在流动系统中会产生以前不曾遇到过的的干扰。 抽吸的液体样品中带有空气时,气泡会干扰分配,造成直接剂量误差。 夹带在分配系统中的一个气泡在样品抽吸和分配时,会因压力变化而导致间接剂量误差。 http://ng1.17img.cn/bbsfiles/images/2011/01/201101141519_274118_1732309_3.jpg图 1:用单一注射泵,抽取和分配含有饱和空气的水。 取样管的内径足够小,可以产生适中的限流。 出现分配异常(误差)的概率大约为2%。 由于空气的疏水性,气泡将附着在分配系统的几乎每个部位上,要求非常高的速度或湍流才能冲走流体中的气泡,从而经废液排出。 这个过程耗时长、不可预测,而且可能需要对系统进行设计,使之能识别出气泡存在。 只需简单地数数用于检测气泡的传感器数量,就能证明这个问题的深度。 光学传感器、超声传感器、视频传感器和热传感器都可用于检测流体中的气泡。 无论设计如何,由于温度、压力的变化,或在与其它流体混合时,水性溶液仍要进行脱气处理。 在这些情况下,流体脱气可能是消除气泡成形的唯一可靠方法。http://ng1.17img.cn/bbsfiles/images/2011/01/201101141523_274120_1732309_3.jpg图2:水经过脱气后,气蚀形成的气泡不再导致分配误差。 流体的脱气的确会增加分配系统的成本,但仅仅发生一次取样和分配误差,可能比添加脱气环节的代价更高。HPLC应用要求必须进行脱气处理,这是由于空气在混合溶液中的溶解度不同造成的。对于HPLC来说,工程师很容易验证,相对于添加另一台溶剂泵进行混合的成本而言,使用比例阀和脱气器的合理性。 即使需要第二台高压泵,如UHPLC系统,对溶剂的脱气也可防止因随机气泡导致的泵送故障。 正如我们在本文中了解到的,我们可看到分析液中气泡的随机性。 由于诊断IVD仪器有可能在相对封闭的环境下操作,流入仪器的流体与环境及仪器本身能达到完全平衡,因此在这些条件下可能不需要对冲洗水或其它流体进行脱气。 但当环境条件发生变化,不再保持平衡时,对仪器中的流体进行脱气可确保仪器的正常操作,并确保患者样本的分析误差可能性降至最低。 在接下来发布的第三部分内容中,我们将举例介绍一个客户的实际应用,在此应用中工程师诊断出IVD诊断仪器内的流体需要进行脱气处理,尽管该系统设计非常优秀,但额外的脱气处理仍是必要的。
基本“气泡问题”的解决方案 (第一部分) 跟踪观察流体中的空气含量有很多方法:水中溶氧度计,醇类液体中可看到的溶剂与氧的相互作用以及一些用于测量气体本身氧含量的溶剂和传感器。 根据溶解氧含量,可推断出流体系统中溶解空气的总量。 很早以前工程师就发现许多不同系统受到水中溶解氧含量或氧与氮含量的不良影响。 蒸汽机的问世使对锅炉管腐蚀的研究成为必要,深海潜水员必须解决血液里氮麻醉和气泡形成的问题。 生物学家需要了解水温与水生物种鲤鱼和鳟鱼所喜好的环境之间的关系。 随着工程学的进步,了解气蚀和气泡的影响越来越重要。 潜艇螺旋浆已经过特殊加工来消除螺旋浆表面上的压降,从而不会形成气泡,而且当气泡离开低压区时会破裂。 这些破裂气泡发出的声音会彻底暴露潜水艇的位置。 在实验室中,使用高压液相色谱法(HPLC)时必须致力于避免仪器所使用的溶剂发生气蚀现象。这些物理相互作用对单向阀、柱塞杆、管道和接头的设计极其重要,在70年代后期,当工程师开始设计一种需要将两种或更多溶剂在进入HPLC泵之前进行混合的系统时,产生了新的问题。 已退休的Rheodyne公司科学家, Steve Bakalyar博士定义并阐释了用于HPLC脱气的“黄金法则”:用氦气吹扫流体。 Tokunaga于1976年进行了开创性的工程研究,在研究中分析了醇、水及其混合物中的空气浓度,清楚地表明需要将空气从将要混合的溶剂中去除以消除气泡。Bakalyar博士采用的“脱气”方法是在溶剂进入HPLC泵之前,利用阀门按比例地混合溶剂。Bakalyar博士将他的这一发现申请了专利,即我们所知的氦气吹扫技术。 简而言之,醇类的含气量可高达水含气量的7倍,但水与醇的混合物中的含气量却将低于各溶剂带入混合物中的含气量的总和。 Tokunaga发现,在常压下将30%和70%的甲醇溶液进行混合,得到的水/甲醇混合溶液只能溶解其各自带入的空气总含量的38%。关于其它溶剂相互机械作用的研究也表明,沿混合曲线溶解度也发生类似的下降。 空气在水和甲醇混合液中的溶解性(HPLC梯度混合过程)基于Tokunaga, J Chem & Eng Vol 20 No 11975 的数据 http://ng1.17img.cn/bbsfiles/images/2010/12/201012171713_267706_1587_3.jpg 图:阐释为何水和甲醇混合过程中会形成气泡(版权归IDEX Health & Science所有) 在上图中,混合物中的过量空气在HPLC