当前位置: 仪器信息网 > 行业主题 > >

氯化铵

仪器信息网氯化铵专题为您提供2024年最新氯化铵价格报价、厂家品牌的相关信息, 包括氯化铵参数、型号等,不管是国产,还是进口品牌的氯化铵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氯化铵相关的耗材配件、试剂标物,还有氯化铵相关的最新资讯、资料,以及氯化铵相关的解决方案。

氯化铵相关的资讯

  • SAXS有奖征文精选 | 膜孔道的溶剂化环境调控,实现锂离子选择性传输
    一、介绍 锂资源作为电子设备和电动汽车的关键原料,被誉为 "白色黄金"。为了确保锂资源的稳定供应,人们开始尝试从盐湖中提取锂资源。然而,盐湖中含有大量与Li+离子化学性质相似的Mg2+离子,这极大地增加了盐湖提锂的难度。因此,实现离子的高效分离以及盐湖提锂成为当前研究的重点。目前的研究主要集中在调控膜的尺寸和电荷量,以实现Li/Mg分离。研究表明,许多生物离子通道通过离子与孔道官能团之间的溶剂化/配位相互作用实现对离子的高效分离。然而,对于这种溶剂化/配位相互作用选择性机制在Li/Mg分离的研究仍然相对较少。二、测试和结果Li+/Mg2+离子分离膜的设计原理 由三醛基间苯三酚(Tp)制成的COF以其化学稳定性和与多种酰肼衍生物单体的兼容性而著称。这使得我们能够在图1中很好地研究膜的孔道环境和选择性之间的关系。因此,我们利用Tp与连接不同数量环氧乙烷(EO)单元的酰肼单体制备了膜,这些膜具有不同数量的EO单元,并将其命名为COF-EOx,其中x代表EO单元的数量。 图 1. COF-EOx的化学结构。 我们使用掠入射小角XRD衍射 (GIWAXS)技术评估了以COF-EO2/PAN 膜为代表的COF膜的结晶度。尽管活性COF层非常薄,而且腙键连接的COF具有一定的柔性,这导致该类COF的信号较弱,但XEUSS 3.0*仍然观察到了它们的衍射峰,表明其良好的结晶度(见图2)。此外,我们对COF-EO2/PAN膜进行了取向分析,证实了PAN基底上的COF膜在平面方向上没有优先取向,Qz = 0处的圆形模式证明了这一点(见图2)。这可能是孔道内的醚氧链官能团影响了最终的结果。 图2.(A)PAN基底和(B)COF-EO2/PAN膜对应的2D-GIWAXS图像。(C)上述2D-GIWAXS图像对应的一维图。 为了探究不同长度醚氧链COF膜对Li+和Mg2+跨膜传输的影响,我们首先进行了分子动力学(MD)模拟。结果显示,随着醚氧链长度的增加,Li+和Mg2+的跨膜能垒逐渐下降。这表明,醚氧链在促进离子传输方面发挥了重要作用。有趣的是,含有最长醚氧链的COF-EO4膜在Li+和Mg2+离子间的跨膜能垒上并未显示出最大的差异。相反,COF-EO2膜显示出最高的跨膜能垒差(见图2A),表明醚氧链能够有效调节COF膜的孔道环境,优化其分离Li+和Mg2+的性能。膜孔径的测量 随后,我们通过测量不易水合的四甲基氯化铵、四乙基氯化铵、四丙基氯化铵、四丁基氯化铵和四戊基氯化铵溶液的跨膜电导率,拟合出了COF-EOx/PAN膜的孔径。根据拟合结果,COF-EO0/PAN、COF-EO1/PAN、COF-EO2/PAN、COF-EO3/PAN和COF-EO4/PAN的孔径分别为2.86、2.51、2.13、1.98和1.82 nm(见图3B)。这个结果表明,不同长度的醚氧链对COF膜的孔径影响不大,这表明在水溶液中,醚氧链可以自由运动。研究Li+和Mg2+的跨膜选择性 接着我们测试了孔道醚氧链的长度对Li+和Mg2+相对扩散速率的影响。结果显示Li+和Mg2+的相对离子通量与EO单元数量呈现出明显的火山状曲线关系(见图3C,插图)。具有中等长度醚氧链的COF-EO2/PAN膜展现出Li+和Mg2+离子相对迁移率的最大差异。这一发现与MD模拟的结果非常吻合。考虑到这些差异,为了量化醚氧链对Li+和Mg2+离子跨膜传输的影响,我们首先测量了COF-EOx/PAN在单盐条件下的离子通量,并将这些膜与不含醚氧链的COF-EO0/PAN进行了比较。我们的研究结果表明,增加醚氧链的长度可以增强离子传输,因为随着EO单元数量的增加,传输速度持续增加(见图3A)。值得注意的是,含有四个EO单元的COF-EO4/PAN对Li+和Mg2+离子的传输速度最高,超过COF-EO1/PAN对Li+和Mg2+传输速度的两个数量级以上。我们注意到这些膜的孔径随着醚氧链长度的增加而略有减小,这更加为醚氧链在离子传输中的促进作用提供了确凿的证据。图3. 离子跨膜行为的研究。(A) 根据PMF曲线得出的Li+和Mg2+离子穿过COF-EOx的跨膜自由能垒;(B) 四烷基铵阳离子与Cl-离子跨膜的相对迁移率;(C) COF-EOx/PAN在两侧注入相同浓度梯度溶液的条件下记录的I-V图(插图:COF-EOx/PAN的Vr)。 为了对这些实验观察结果做出合理解释,我们测量了COF-EOx/PAN中的Li+和Mg2+离子浓度。我们发现,Li+和Mg2+离子的电导率都高于体相值,并且随着醚氧链长度的增加,偏离更为明显(见图4B)。这表明,具有较长醚氧链的膜孔道能吸附更多的Li+和Mg2+离子。为了定量评估COF-EOx/PAN膜的跨膜能垒,我们测量了离子跨膜的表观活化能。结果表明,随着膜孔道EO单元数量的增加,Li+和Mg2+的表观活化能降低,而COF-EO2的Li+和Mg2+跨膜活化能差异最大,这与MD模拟和电化学实验结果一致(见图4D)。基于上述结果,我们认为基于配位化学的离子识别(通过促进传输机制发生)可用于合理解释选择性分离(见图4E)。图4. (A) 在1 M单盐条件下测试的LiCl和MgCl2穿过COF-EOx/PAN的离子通量,以及通过DFT计算得出的Li+和Mg2+与COF-EOx的结合能;(B) COF-EOx/PAN的电导率与氯化锂浓度的关系;(C) MD计算得出的Li+(虚线)和Mg2+(实线)穿过COF-EOx的PMF曲线(灰色背景代表离子进入COF孔道的区域;(D)在1 M单盐条件下测试的COF-EOx/PAN膜上的LiCl和MgCl2跨膜活化能以及相应的Li+/Mg2+选择性,以及(E)推测的离子跨膜传输机理。 为了进一步评估COF-EOx/PAN膜的分离性能,我们使用含有相同Li+和Mg2+离子浓度(0.025-1 M)的混合溶液进行了扩散实验。Li+和Mg2+离子的二元盐选择性峰值在15到331之间(见图5A)。与单盐条件相比,COF-EOx/PAN在二元体系下测试的Li+/ Mg2+选择性更高,这可能是因为在二元体系下,由于离子存在竞争作用,Mg2+离子的通量极大地减少。为了定量分析这一现象,我们将二元体系中的离子通量与单盐溶液中的离子通量进行了归一化处理。分析表明,在二元体系下,Li+和Mg2+离子的通量分别减少至0.34-0.60和0.06-0.19。因此,导致了Li+/ Mg2+选择性的增加(见图5B)。电驱动二元盐体系下的Li+/Mg2+分离性能的研究 为了研究COF-EOx/PAN在实际应用中的性能,采用了类似工业电渗析的装置,并在5 mA cm-2的电流密度下评估了其性能。实验中使用了0.1 M LiCl和0.1 M MgCl2的二元水溶液作为进料液。结果表明,COF膜的Li+/Mg2+分离比随着膜中醚氧链上EO单元数量的增加而变化。在电驱动条件下,虽然观察到离子通量显著增加,但COF膜仍然实现了高达1352的Li+/Mg2+分离比,远超过COF-EO2/PAN在扩散渗析条件下的分离比,成为迄今为止报道中性能最优的锂镁分离膜之一。此外,COF-EO2/PAN的Li+/Mg2+选择性超过了ASTOM标准两个数量级。因此,在使用COF-EO2/PAN进行电渗析处理后,西台吉尔盐湖(中国)的模拟溶液中Li+/Mg2+的摩尔比从0.06显著提升至10.9,而阿塔卡马盐湖(智利)模拟溶液中Li+/Mg2+的摩尔比从0.61提高至230。这些结果表明,COF-EO2/PAN在盐湖提锂应用中具有巨大的潜力。另外,COF-EO2/PAN还展现出卓越的长期稳定性。尽管选择性随时间略有下降,但通过用去离子水清洗膜,其选择性至少可以在10个周期后完全恢复。COF-EO2/PAN在不同条件下展现的全面稳定性和优异的选择性,使其成为盐湖提锂工业中理想的膜材料。图5. (A) 在二元盐体系下测试的LiCl和MgCl2在COF-EOx/PAN中的离子通量以及相应的LiCl和MgCl2的选择性(各为 1 M,误差条代表三个不同测量值的标准偏差);(B) 在二元盐体系下测试的LiCl和MgCl2的离子通量与在单盐条件下测试的离子通量(各为1 M)的归一化通量;(C) COF-EO2/PAN对Li+/Mg2+的选择性和对LiCl的离子通量与其他膜材料的比较。三、结论 在本研究中,我们通过一系列系统性研究深入探讨了醚氧链对COF膜在离子进膜、跨膜扩散以及选择性方面的影响。我们的研究成果揭示了一个重要发现:与Mg2+的传输相比,醚氧链替代的离子水合物对Li+的传输更为有利。此外,Li+和Mg2+与膜中密集分布的醚氧链形成的络合作用导致了膜孔道内离子的富集,有效地将离子与体相溶液隔离。这一富集效应在静电排斥力的作用下促进了离子通过膜的传导。Li+与Mg2+跨膜传导的活化能差异决定了膜的选择性特征。在分子层面上,离子选择性的机理研究表明,通过调节离子与膜之间的结合能,可以在保持高离子通量的同时提升离子选择性。Author: Qingwei MENGZhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China参考文献:[1] Meng, Qing-Wei, et al. "Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes." Proceedings of the National Academy of Sciences 121.8 (2024): e2316716121.随后,我们通过测量不易水合的四甲基氯化铵、四乙基氯化铵、四丙基氯化铵、四丁基氯化铵和四戊基氯化铵溶液的跨膜电导率,拟合出了COF-EOx/PAN膜的孔径。根据拟合结果,COF-EO0/PAN、COF-EO1/PAN、COF-EO2/PAN、COF-EO3/PAN和COF-EO4/PAN的孔径分别为2.86、2.51、2.13、1.98和1.82 nm(见图3B)。这个结果表明,不同长度的醚氧链对COF膜的孔径影响不大,这表明在水溶液中,醚氧链可以自由运动。
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom® P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom® P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom® P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom® P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 美丽新卫士:电雾式检测器应用于化妆品检测
    美丽新卫士:电雾式检测器应用于化妆品检测熊亮 胡金盛 冉良骥 金燕引言:随着经济的快速发展,人们生活水平的提高,化妆品已从早期的奢侈品转变为大众日常的消费品,美丽经济规模日渐壮大。近年来随着电商的广泛应用、各大美妆博主的时尚引导、短视频平台的直播带货,化妆品的种类不断丰富,化妆品的消费逐年递增,随之而来引起的化妆品纠纷也逐年上升。化妆品中致癌致敏成分检出、铅汞重金属含量超标、糖皮质激素非法添加、微生物污染等安全问题, 使得化妆品质量监督管理及化妆品检验的科学性受到了人们的关注和重视。 2021年3月2日,国家药品监督管理局发布2021年第17号通告,将《化妆品中防腐剂检验方法》、《化妆品中硼酸和硼酸盐检验方法》、《化妆品中对苯二胺等32种组分检验方法》、《化妆品中维甲酸等8种组分检验方法》等7项检验方法纳入《化妆品安全技术规范(2015年版)》,作为该规范修订或新增的检验方法。 此次新增和修订,对原技术规范“第四章 理化检验方法4防腐剂检验方法”整个分析方法的框架结构进行了调整,变更尺度非常之大。在修订的《化妆品中防腐剂检验方法》中,新增了4.3 已脒定二(羟乙基磺酸)盐等7种组分的检验方法。 随着政府通告的发布,《规范》修订的检验方法,自2021年5月1日起施行,因此众多具有化妆品注册和备案检验机构资质的实验室开始了实验室扩项的准备工作。然而有多个客户实验室在实际方法开发过程中发现,参照“4.3 已脒定二(羟乙基磺酸)盐等7种组分”标准方法,采用0.1%三氟乙酸溶液作为流动相,检测波长为210nm,虽然可以提高部分低紫外吸收待测物的响应,但由于210nm为三氟乙酸的截止波长,在梯度分析过程中产生剧烈的基线波动,可能会影响低含量待测物的峰型以及检测灵敏度。 飞飞有妙招针对这一情况,飞飞协助客户开发了一套全新的含量测定方法。新方法采用了Acclaim Surfactant Plus表面活性剂专用色谱柱分离,并配合赛默飞独有的电雾式检测器(以下简称CAD,如图1所示)测定。图1 电雾式检测器(CAD)(左:Vanquish CAD系列,右:Corona Veo系列)由于待测物经色谱柱分离后,在CAD内部先进行雾化再进行检测,可完全消除挥发性流动相对基线的干扰,而且相对原标准方法,飞飞发现“十二烷基三甲基溴化铵”的检测灵敏度也有大幅提升,如图2所示。图中7种组分的浓度分别为:己脒定二(羟乙基磺酸)盐40 μg/mL、氯己定60 μg/mL、十二烷基三甲基溴化铵(DTAB)800 μg/mL、十二烷基二甲基苄基氯化铵200 μg/mL、苄索氯铵200 μg/mL、十四烷基二甲基苄基氯化铵200 μg/mL、十六烷基二甲基苄基氯化铵200 μg/mL。图2 7种组分混标CAD色谱图 随后飞飞对这套全新方案进行了方法学考察,结果当然也是妥妥哒!图3 混标最低点连续进样6次重叠色谱图 结论本方法基于赛默飞新一代Vanquish Core高效液相色谱系统,Acclaim Surfactant Plus表面活性剂专用色谱柱配合赛默飞特有的电雾式检测器(CAD),开发了一个全新的针对化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量测定方法。本方法中7种防腐剂的分离度和灵敏度均优于国标方法,重复性好,线性范围宽,给化妆品中限量使用组分的分析提供了一种新思路,拓展了化妆品行业的分析手段。 “码”上下载扫码立即免费下载【采用电雾式检测器(CAD)分析化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量】
  • 锌、铅精矿化学分析方法新标准解读
    锌、铅精矿中的目标金属元素主要以硫化物的形式存在,还有可能以可溶性状态存在,如可溶性锌和可溶性铅。可溶性锌、铅的存在会直接影响烧结块的温度,脱硫率,及结块性。因此在今年已经实施和即将实施的GB/T 8151.24-2021和GB/T 8152.15-2021分别规定了锌、铅精矿中可溶性锌、铅的测定方法。 GB/T 8151.24-2021锌精矿化学分析方法 第24部分:可溶性锌含量的测定 火焰原子吸收光谱法于11月1日正式实施,此标准重点补充了锌精矿中可溶性锌含量的测定,测定范围:0.1%~10.5%。原理:利用可溶性锌(硫酸锌、碳酸锌、氧化锌等)易溶解于氨水-氯化铵溶剂的特点,选择氨水-氯化铵为溶剂,加入适量抗血酸与二水合二氧化亚锡作为抑制剂,使样品中可溶性锌与硫化锌及难溶性锌实现有效分离。然后用火焰原子吸收法测定可溶性锌的含量。 GB/T 8152.15-2021铅精矿化学分析方法 第15部分:可溶性铅含量的测定 火焰原子吸收光谱法也将于12月1日实施,此标准重点补充了铅精矿中可溶性铅含量的测定,测定范围:0.3%~10.5%。原理:利用可溶性铅(硫酸铅、碳酸铅、氧化铅等)易溶解于乙酸-乙酸铵溶剂的特点,选择乙酸-乙酸铵为溶剂,加少量二水合二氧化亚锡消除Fe3+的干扰,使样品中可溶性铅与硫化铅及难溶性铅盐实现有效分离。然后用火焰原子吸收法测定可溶性铅的含量。 AA-7000系列AA-6800系列 这两个标准都涉及火焰原子吸收光谱法,岛津原子吸收分光光度计AA-6880系列和AA-7000系列,拥有优异的性能和灵活的配置,可满足GB/T 8151.24-2021和GB/T 8152.15-2021中可溶性锌、铅的测试要求。 火焰法工作条件 本文内容非商业广告,仅供专业人士参考。
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 关于公开征求C. I.颜料黑7等5种食品相关产品新品种意见
    根据《食品相关产品新品种行政许可管理规定》和《食品相关产品新品种申报与受理规定》要求,C.I.颜料黑7等5种食品相关产品新品种已通过专家评审委员会技术评审(具体情况见附件)。现公开征求意见。请于2023年5月24日前将书面意见反馈至我中心,如在截止日期前未反馈相关意见,视为无不同意见。邮 箱:biaozhun@cfsa.net.cn产品名称、适用范围及最大使用量食品接触材料及制品用添加剂扩大使用范围产品名称使用范围最大使用量/%C.I.颜料黑 7;炭黑塑料:聚醚醚酮0.5丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸 和 N,N'-亚甲基双丙烯酰胺的共聚物丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸和 N,N'-亚甲基双丙烯酰胺的共聚物纸和纸板1.5(以干重计)2-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯间接接触食品用油墨10食品接触材料及制品用树脂新品种1,4-苯二甲酸与癸二酸和 1,2-乙二醇的聚 合物涂料及涂层按生产需要适量使用甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙 酯和甲基丙烯酸甲酯的聚合物和对苯二 酚与 4,4-亚甲基双(2,6-二甲基酚)和氯甲 基环氧乙烷的聚合物与 N,N-二甲基乙醇 胺的反应产物涂料及涂层20(以涂料配方计)征求意见的食品相关产品新品种公告文本.pdf征求意见的食品相关产品新品种背景材料.pdf
  • 世界性难题高盐废水处理的“机遇”在哪?
    “高盐废水处理是世界性难题,我国每年产生的此类废水超过3亿立方米,由此副产的高盐危废超过千万吨,其中大部分没有得到合理处置,给生态环境带来巨大压力。”谈及工业废盐问题,享受国务院政府特殊津贴专家、天津理工大学绿色化工与废弃物资源化工程技术中心主任李梅彤说。中化环境总工程师李强告诉记者:“工业废盐的资源化利用已成为制约化工行业尤其是煤化工、农药、制药、精细化工等行业发展的‘瓶颈’和‘痛点’。”12月28日,中国物资再生协会危废工作委员会组织召开2023年危废行业高质量发展论坛。废盐资源化利用问题成为会议的焦点话题之一。我国的工业废盐来自哪里?废盐主要指以无机盐为主要成分的固体废弃物,由于含有多种复杂有毒有害成分,很大一部分都属于危废。由于在危废目录中没有单独分类,公开的危废统计数据无法直观反映废盐实际产量,带来监管的困难。据分析,我国每年工业废盐产生量超过2000万吨,目前交由危险废物经营单位规范利用处置的废盐约占总量的10%,大部分以副产盐或一般固体废物流向市场,严重危害公众健康和环境安全。这些废盐是怎么产生的?李梅彤告诉记者:“高盐废水是废盐的主要来源,高盐废水主要来源于农药、医药、染料、焦化、冶金、新材料、化纤等行业,种类主要包括氯化钠、硫酸钠、氯化铵、硫酸铵、醋酸钠以及混合盐等”。据悉,我国主要废盐产生区域处于第一梯队的包括山东、江苏等;处于第二梯队的包括河北、内蒙古、四川、湖北等;处于第三梯队的包括浙江、湖南、广东、江西等。废盐处理难在哪?为何资源化利用是最有前途的方向?李强说:“废盐成分差异明显,具有组分差异大、特征不固定的特点。不仅是不同行业产生的废盐成分不同,即使是来自同一行业的不同企业、同一企业不同批次的废盐,不仅盐硝比具有显著差异,其余杂质含量水平还具有十倍甚至几十倍的差别。这无疑增加了废盐处理的技术开发和实际运营难度。”在谈及目前我国废盐处理的问题时,李梅彤介绍:“我国是世界第一大涂料、染料生产国,世界第二大农药生产国,精细化工销售额排名世界第三位。”这就意味着废盐的产生量大。与此同时,目前我国正常运行的废盐集中处理企业较少。此外,废盐品种多、处置技术难度大、装置标准化困难。至今没有低成本、无二次污染、成熟的工艺应用。现有焚烧炉对高盐危废不适应,对复杂可燃危废适应性不强。因此,资源化、技术集成是高盐危废处置最有前途的方向。”据悉,目前,化工废盐资源化利用途径主要包括再生利用、制成肥料、制成建筑材料、焚烧处理等。其中,再生利用指的是将废盐经过净化处理达到再生工业盐标准后,再次用于工业生产。前三种都属于对废盐进行再利用,第四种属于无害化处理,比较彻底,但需要消耗大量能源。高值化工艺推广应用要打通“赌点”专家介绍,废盐资源化的技术瓶颈主要表现在废盐处理系统稳定运行难、废盐中有机污染物深度去除难、废盐残渣资源化利用难等方面。在深度去除污染物方面,李强告诉记者:“化工废盐再生处理后,绝大部分有毒有害物质被去除,但是仍残留少量杂质,如微量有机物、钙、镁及重金属离子、二氧化硅等。在氯碱工业中,部分杂质可通过盐水精制去除,但是仍有一些杂质(如TOC)难以通过常规手段去除。有必要开发微量杂质的去除方法,并对精制净化的饱和盐水开展长周期评价。”据悉,氯碱企业目前对再生盐的接受度低,只有极少数企业短时间、小比例(3%-5%)掺用再生盐。开展盐评价有助于消除氯碱企业担忧,确定废盐的合理掺混比例,打开废盐资源化利用的出路。李梅彤告诉记者:“在废盐资源化利用方面,目前典型的高值化工艺包括废氯化钠制氯碱,硫酸钠复分解制纯碱,硫酸钠及混合盐电解制备碳酸钠、硫酸铵(氯化铵)。现实情况是,高盐水废水量大、混合盐价值低。目前国内外蒸发出混合盐或分盐出盐的工艺,成本大多超过50元/m³。基于此,废氯化钠制氯碱从技术上讲是非常理想的方向,但从市场的角度看,因为投资较大,尤其因为氯化钠本身价格很低,氯碱企业使用意愿很低,短时间造成难以推广应用。国家相关部门正在制定鼓励使用的政策。低浓度杂盐废水制纯碱工艺是目前可以实现盈利的技术路线。硫酸钠盐和氯化钠制备纯碱,技术上已经不存在难题,但是由于碳酸钠产品标准有原料来源限制的问题,同样存在准入的障碍。”为推动产业发展、增加销售收入,需补齐哪些“短板”?虽然目前我国高盐废水和废盐资源化方面仍存在“痛点”,但专家认为,这一领域未来具备重大的机遇。一方面,近年来,国家相关政策不断出台,推动行业规范发展,助力拓展应用市场。另一方面,目前我国高盐废水和废盐资源化、高值化技术都取得了突破性进展,处于国际领先水平。同时,这一领域的难题更多的是工程难题,但目前也积累了大量的工程化经验,具备大规模推广的条件。为了更好地抓住机遇,补齐短板,专家达成共识,废盐资源化利用需要更多的标准支撑和政策引导。李强说:“废盐资源化后制取的产品盐标准不健全。工业废盐目前作为危废进行管理,如需利用工业废盐为原料精制得到的产品盐进行外售,必须解决其‘危废’身份。目前我国废盐制取产品盐的产品标准几乎为空白,因此工业废盐精制得到的产品盐往往需要经过危废鉴定,确认不属于危废后才可作为产品外售。”与此同时,专家认为,高值化是废盐资源化领域的发展趋势之一。废盐循环、资源化利用时要考虑下游产业,尝试高附加值的材料工艺技术。如氯化钠产品盐应用于氯碱行业,在以氢氧化钠为主要销售产品的同时,兼顾考虑将氯气开发成下游高附加值产品,有利于固废处理产业发展和增加销售收入。此外,李强告诉记者:“工业废盐资源化利用往往需要达到一定规模后,才能实现资源化效益。因此,可以省、市或者工业园区为单元,建立较大规模的处置中心实现集中、规模化处置,对废盐进行统一的、真正意义上的资源化利用。”
  • 真的有“0添加”防腐剂化妆品?智商税!
    我们常用的化妆品,如护肤、彩妆、洗护类产品,由水、油脂和营养物质组成,是微生物增生、繁殖的培养基地,极易变质腐败。为了延长化妆品使用寿命,在生产的过程中需加入适量的防腐剂。根据文献资料和新闻报道,绝大多数化妆品所谓的“0添加”只是没有添加《化妆品安全技术规范》中列出的防腐剂,而是使用了其他替代防腐剂,且这类物质使用时间较短,其副作用还暂不明确。 2015版《化妆品安全技术规范》中规定了51种准用防腐剂及最大允许浓度,较常用的有苯氧乙醇、苯甲酸钠、对羟基苯甲酸酯类、甲基异噻唑啉酮等。某护手霜成分表 如何检测化妆品中防腐剂? 防腐剂是一把双刃剑,过量的或不适合自身肤质的防腐剂可能会导致过敏性皮炎、肝脏毒性、类激素作用等副作用。 2021年3月国家药品监督管理局发布《化妆品中防腐剂检验方法》(2021年第17号通告),与2015版《化妆品安全技术规范》中绝大部分准用防腐剂一一对应,检测仪器有液相色谱仪和气相色谱仪,如有阳性检出或测试结果存在干扰因素,可采用三重四极杆液相色谱-质谱仪、气相色谱-质谱仪进行确证。 《化妆品安全技术规范(2015年版)》准用防腐剂与检验方法对照表岛津解决方案 岛津公司拥有丰富的色谱质谱产品,性能优越,操作简便,可以应对化妆品中防腐剂的检测。 检验方法 液相色谱法检测化妆品中23种防腐剂色谱柱:Shim-pack GIST C18,250mm x 4.6mm x 5μm流动相:A 0.12%磷酸水溶液 B乙腈流速:1 mL/min,柱温:30℃检测波长:230nm、254nm、280nm进样体积:10 μL洗脱程序:梯度洗脱 色谱图(1. 甲基异噻唑啉酮、2. 2-溴-2-硝基丙烷-1,3-二醇、3. 4-羟基苯甲酸、4. 甲基氯异噻唑啉酮、5. 苯甲醇、6. 苯氧乙醇、7. 苯甲酸、8. 4-羟基苯甲酸甲酯、9. 氯苯甘醚、10. 脱氢乙酸、11. 5-溴-5-硝基-1,3-二噁烷、12. 4-羟基苯甲酸乙酯、13. 4-羟基苯甲酸异丙酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 4-羟基苯甲酸异丁酯、17.4-羟基苯甲酸丁酯、18. 4-羟基苯甲酸苄酯、19.苯甲酸乙酯、20. 4-羟基苯甲酸戊酯,21. 苯甲酸异丙酯、22. 苯甲酸丙酯、23. 苯甲酸苯基酯) 气相色谱法检测化妆品中26种防腐剂色谱柱:Rxi-wax,60m×0.32mm×0.25μm柱温程序:50℃(1 min)_50℃/min_ 120℃ _5℃/min_195℃(3 min)_20℃ /min_220℃(10min)_20℃/min_240℃ (15 min)进样方式:分流进样(分流比为5:1)检测器温度:250℃ 色谱图(1. 丙酸、2. 三氯叔丁醇、3. 苯甲酸甲酯、4.苯甲酸异丙酯、5. 苯甲酸乙酯、6. 苯甲酸丙酯、7. 苯甲酸异丁酯、8. 苯甲酸异丁酯、9. 苯甲醇、10. 甲基氯异噻唑啉酮、11. 苯氧异丙醇、12. 甲基异噻唑啉酮、13. 山梨酸、14. 苯氧乙醇、15. 苯甲酸、16. 十一烯酸、17. 对氯间甲酚、18. 氯二甲酚、19. 邻苯基苯酚、20. 4-羟基苯甲酸甲酯、21. 4-羟基苯甲酸异丙酯、22. 4-羟基苯甲酸乙酯、23. 4-羟基苯甲酸丙酯、24. 4-羟基苯甲酸异丁酯、25. 4-羟基苯甲酸丁酯、26. 4-羟基苯甲酸戊酯) 确证方法 三重四极杆液相色谱-质谱法检测化妆品中34种防腐剂 色谱柱:Shim-pack GIST C18,50mm x 2.1mmx 2μm流动相1:A相-5 mM乙酸铵;B相-甲醇流动相2:A相-5 mM乙酸铵(含0.1%甲酸) B相-甲醇流速:0.3 mL/min洗脱方式:梯度洗脱离子化模式:ESI +/- 同时扫描离子源接口电压:4.0 kV雾化气:氮气 3.0 L/minDL温度:250℃扫描模式:多反应监测(MRM) 色谱图流动相1:(1. 水杨酸、2. 甲基异噻唑啉酮、3. 苯甲酸、4. 2-溴-2硝基丙烷-1,3-二醇、5. 4-羟基苯甲酸、6. 脱氢乙酸、7. 甲基氯异噻唑啉酮、8. 硫柳汞、9. 4-羟基苯甲酸甲酯、10. 4-羟基苯甲酸乙酯、11. 4-羟基苯甲酸异丙酯、12. 对氯间甲酚、13. 碘丙炔醇丁基氨甲酸酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 邻苯基苯酚、17. 氯二甲酚、18. 4-羟基苯甲酸异丁酯、19. 4-羟基苯甲酸丁酯、20. 4-羟基苯甲酸苄酯、21. 氯咪巴唑、22. 十二烷基三甲基溴化铵、23. 4-羟基苯甲酸戊酯、24. 苄氯酚、25. 十二烷基二甲基苄基氯化铵、26. 苄索氯铵、27. 溴氯酚、28. 三氯卡班、29. 三氯生、30. 十四烷基二甲基苄基氯化铵、31. 十六烷基二甲基苄基氯化铵、32. 海克替啶) 流动相2:(1. 己咪定二(羟乙基磺酸)盐、2. 氯己定) 部分同分异构体色谱图气相色谱-质谱法检测化妆品中19种防腐剂色谱柱:InertCap Pure-WAX,30 m×0.25 mm×0.25 μm柱温程序:40℃(1 min)_40℃/min_80℃_10℃/min_230℃(1 min) _10℃/min_260℃(5 min)色谱柱流量:1 mL/min进样方式:分流进样(分流比为5:1)采集模式:SIM 色谱图(1. 甲酸、2. 丙酸、3. 三氯叔丁醇、4. 苯甲酸甲酯、5. 苯甲酸异丙酯、6. 苯甲酸乙酯、7. 苯甲酸丙酯、8. 苯甲酸异丁酯、9. 苯甲酸丁酯、10. 苯甲醇、11. 苯氧异丙醇、12. 山梨酸、13. 苯氧乙醇、14. 2,6-二氯苯甲醇、15. 邻伞花烃-5-醇、16. 2,4-二氯苯甲醇、17. 十一烯酸、18. 苯甲酸苯基酯、19. 氯苯甘醚) 结语 其实,为了抑制细菌繁殖,绝大多数化妆品都会添加防腐剂。防腐剂种类繁多,涉及多种检测仪器,利用岛津LC、GC可以准确测定防腐剂含量,如存在不确定因素,可用岛津LC-MS/MS和GC-MS进行定性定量确证,符合法规要求,助您高效准确识别化妆品中防腐剂。 撰稿人:郑嘉
  • 听说抄袭我们的都火了?今天带来原创的杂质分离方法开发过程
    zui近月旭科技除了产品以外,我们发布的内容也越来越受到大家的喜爱,遭到了多家公众号的自主发布,热度也颇高,我们十分“欣慰”。我们的内容能够得到大家的喜欢,真的是我们zui高兴的事情。但是其发表的内容因为水印等问题,谱图截取并不完整,影响大家的观看体验。所以小编就来以正视听,将完整的谱图,以及zui完整的杂质分离方法开发过程分享给大家,我们一起变得更强!首先来看看需要分离的三个物质的结构式:01 分析目的要求开发一种合适的分析方法,使上述3种化合物在浓度1.0mg/mL的情况下分离度大于1.50。开始方法开发之前,di一件该做的事是什么呢?当然是去了解这几个物质的性质,尽可能的得到有关这些物质的信息,这样可以为后面工作节省zui多的时间。而对这三个物质得到的信息大致如下:三种物质极性比较强,水溶性比较好,在常规C18色谱柱保留太弱,基本上与溶剂峰重叠。结构式上主要是官能团的差异,分别为-NH2,-Br,-COOH,差异性很大。综合考虑,有两种方案:一是加离子对试剂,用反相C18色谱柱增强保留,进行分离;二是使用离子交换色谱柱进行分离。首先由于个人的习惯,离子交换色谱被我直接排除(离子色谱平衡比较慢,而且离子交换色谱柱非常容易出现重现性问题)。所以本实验采用C18添加离子对试剂的方法。考虑的实验过程中需要使用离子对试剂,且流动相pH需要大范围调整(可能用到碱性流动相),所以色谱柱选择月旭Xtimate ® C18(4.6×250mm,5μm)色谱柱,流速:1.0mL/min,柱温30℃,检测波长220nm。02 流动相优化及测试结果图谱2.1 初步尝试流动相:0.05mol/L庚烷磺酸钠+0.05mol/L磷酸二氢钾,PH=4.60。结果:化合物3保留时间2.6min,化合物1不出峰。估计是化合物1保留太强未洗脱下来。接下来,调整pH并增加有机相的比例,来加大洗脱能力。2.2流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):甲醇=60:40。混合对照图谱如下:实验中将庚烷磺酸钠改为辛烷磺酸钠,增加有机相(甲醇)比例,结果三个物质分离良好,但是化合物1(19.9分钟)峰型太差,下一步优化化合物1的峰型。2.3 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):乙腈=80:20。化合物1图谱:基于上一次实验,将有机相甲醇变为乙腈,通过改变选择性看是否峰型会有改善。结果发现并没有任何改善,而且发现这个方法中有机相只提供洗脱能力,不提供选择性改变作用。2.4 流动相:缓冲液(缓冲液:1.00g十二烷基磺酸钠,50mM氯化铵至500mL水,用磷酸调pH=1.80):甲醇=60:40。混合对照图谱:当时换成这个流动相的主要思路是,加十二烷基磺酸钠使保留更强,加氯化铵提高离子浓度,调pH至1.80强酸性使化合物1中-NH2官能团作用更弱,达到优化峰型的目的,但是效果很差。回头总结发现我们所有的目光都聚焦在三种物质的不同官能团上,导致越走越偏离分离的轨迹,这里,三个物质共同含有的官能团可能也是影响分离的主要因素,换了个角度后,豁然开朗了。推翻了之前的方案,将离子对试剂换为四丁基氢氧化铵,从头开始。2.5 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=9.30):乙腈=80:20。混合对照图谱:流动相中添加三乙胺和并将pH调成9.3目的是抑制化合物1的拖尾,但是结果发现三种物质没有分开。继续优化条件将pH值降低。2.6 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=7.00):乙腈=80:20。混合对照图谱:看到这结果是不是项目就OK了。但是既然是方法开发,方法重现性实验实验是必不可少的,需要用一根新色谱柱重现该色谱条件。结果问题就来了.....化合物1图谱:化合物1峰型一直分叉,zui终发现应该是色谱柱使用多种离子对试剂,造成色谱柱改性,新色谱柱不能重现结果。好吧,再开始。然后又是继续摸索。不得不说有时候运气也是成功的一部分,在一次流动相配置过程中,看到四丁基氢氧化铵试剂旁边还有一瓶四丁基溴化铵,突然我就冒出想法,用四丁基溴化铵试试,不知道结果会怎么样,说做就做。2.7 流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20。混合对照图谱:03 结果
  • 往期赛事|药斯卡争霸赛往期精选优秀作品(化药篇1)
    由岛津(上海)实验器材有限公司主办的药斯卡争霸赛(以下简称“药斯卡”),从2020年至今已经成功举办三届。围绕每届不同的药物分析主题,药斯卡共吸引了来自全国各地超过300多份优质投稿。往届的参赛老师们大显身手,纷纷提交分离分析检测优质作品,各路神仙打架,赢取丰厚礼品,好不热闹!点击上方图片即刻报名新赛季!在第四届药斯卡即将开幕之际,让我们一同回顾历届优秀作品,希望它们能为更多药物分析工作者们提供研究思路,促进友好交流和共同进步!药斯卡历届优秀作品回顾将分为“化药篇”和“中药篇”。关注公众号,敬请期待下期药斯卡赛事正式开启!优秀作品01从第二届药斯卡开始,赛事中不断涌现多篇优秀的化药分析领域投稿。尽管各位老师们都遇到了分离检测的难关,但他们都不畏挑战,屡次实验,选用合适的色谱柱,成功得出了满意的数据。下面这位老师就使用了岛津Shim-pack Scepter C18-120 (4.6mm×150mm, 5μm) 色谱柱,成功将FTN与杂质峰完全分离,峰型良好。《FTN有关物质分析》色谱条件:色谱柱:Shim-pack Scepter C18-120(4.6mm×150mm,5μm;P/N:227-31020-05)柱温:40℃检测波长:210 nm流速:1 mL/min进样量:100 μL流动相:以0.01mol/L氯化铵溶液(用氨水调节pH值至9.6)-乙腈(950:50)为流动相A,以0.01mol/L氯化铵溶液(用氨水调节pH值至9.6)-乙腈(400:600)为流动相B;按下表进行线性梯度洗脱。优秀作品02无独有偶,当遇到异构体分离的难题时,这位老师也想到使用岛津Shim-pack Scepter HD-C18-80色谱柱,有效分离所有异构体!《取代位置异构体的另类解法》色谱条件:色谱柱:Shim-pack Scepter HD-C18-80(4.6*150mm,3μm)流速:1ml/min柱温:35℃流动相A:0.2%乙酸水溶液,用TEA调pH至10.0流动相B:乙腈梯度洗脱,流动相B(20→60)35min待分离的三个杂质为苯环上F取代的位置异构体,碱性较强,疏水作用力有微小的区别,这时我想到了岛津的Shim-pack Scepter HD-C18-80色谱柱,其载碳量高达26%~27%,且该色谱柱为杂化硅胶,可以走碱性条件!通过优化方法,所有异构体均得到了有效的分离!活动开启看了上面几位老师优秀的药物分析作品后,您是不是也有灵感了呢?岛津第四届药斯卡争霸赛——“提速药分,高效前行”即将火热开启!快点击下方通道报名药斯卡吧!更多优秀作品由于篇幅有限,我们把更多优秀的参赛作品整理成册,希望大家能从各位参赛老师们的作品中获得启发,一同促进药物分析行业的繁荣发展。点击查看完整往期精选集
  • 全国第三次土壤普查土壤样品检测技术规范(征求意见稿)
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.1 土壤容重5.2.1.1 环刀法:《耕地质量等级》附录 E(规范性附录)土壤容重的测定(GB/T 33469-2016)。5.2.2 机械组成5.2.2.1 吸管法:《土壤分析技术规范》第二版,5.1 吸管法。5.2.2.2 比重计法:《耕地质量等级》附录 D(规范性附录)土壤机械组成的测定(GB/T 33469-2016)。5.2.2.3 吸管法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.2.4 密度计法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.3 水稳性大团聚体5.2.3.1 人工筛法:《土壤检测第 19 部分:土壤水稳性大团聚体组成的测定》(NY/T 1121.19-2008)。5.2.3.2 机械筛选法:《森林土壤大团聚体组成的测定》(LY/T 1227-1999)。5.2.4 土壤田间持水量5.2.4.1 环刀法:《土壤检测 第 22 部分:土壤田间持水量的测定 环刀法》(NY/T 1121.22-2010)。5.2.4.2 环刀法:《森林土壤水分- 物理性质的测定》(LY/T 1215-1999)。5.2.5 矿物组成5.2.5.1 X-射线衍射仪XRD 法:《土壤粘粒矿物测定 X射线衍射法》。5.2.6 pH5.2.6.1 电位法:《耕地质量等级》附录 I(规范性附录)土壤 pH 的测定(GB/T 33469-2016)。5.2.6.2 电位法:《森林土壤 pH 值的测定》(LY/T 1239-1999)。5.2.7 可交换酸度5.2.7.1 氯化钾交换-中和滴定法:《土壤分析技术规范》第二版,11.2 土壤交换性酸的测定。5.2.7.2 氯化钾交换-中和滴定法(森林土壤):《森林土壤交换性酸度的测定》(LY/T 1240-1999)。5.2.8 水解性酸度5.2.8.1 乙酸钠水解-中和滴定法:《森林土壤水解性总酸度的测定》(LY/T 1241-1999)。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.10 水溶性盐总量5.2.10.1 重量法:《耕地质量等级》附录 F(规范性附录)土壤水溶性盐总量的测定(GB/T 33469-2016)。5.2.10.2 质量法、电导法(森林土壤):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.11 交换性盐基总量5.2.11.1 乙酸铵交换法-中和滴定法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.11.2 氯化铵-乙醇交换-原子吸收分光光度法/火焰光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.11.3 乙酸铵交换法-中和滴定法(酸性、中性森林土壤):《森林土壤交换性盐基总量的测定》(LY/T 1244- 1999)。5.2.12 电导率5.2.12.1 电导法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。5.2.14 总碳5.2.14.1 杜马斯燃烧法:《土壤中总碳和有机质的测定元素分析仪法》。5.2.15 全氮5.2.15.1 自动定氮仪法:《土壤检测第 24 部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012)。5.2.15.2 凯氏定氮法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.3 连续流动分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.4 元素分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.16 全磷5.2.16.1 氢氧化钠熔融-钼锑抗比色法:《土壤分析技术规范》第二版,8.1 土壤全磷的测定(氢氧化钠熔融-钼锑抗比色法)。5.2.16.2 碱熔-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.16.3 酸溶法-钼锑抗比色/电感耦合等离子体发射 光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.17 全钾5.2.17.1 氢氧化钠熔融-火焰光度法/原子吸收分光光度法:《土壤分析技术规范》第二版,9.1 土壤全钾的测定。5.2.17.2 碱熔-火焰光度法/原子吸收分光光度法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.17.3 酸溶-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.18 全硫5.2.18.1 硝酸镁氧化-硫酸钡比浊法:《土壤分析技术规范》第二版,16.9 全硫的测定(硝酸镁氧化-硫酸钡比浊法)。5.2.18.2 燃烧碘量法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.18.3 EDTA 间接滴定法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.19 全硼5.2.19.1 碱熔-甲亚胺-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.2 碱熔-姜黄素-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.3 碱熔-等离子体发射光谱法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.20 全硒5.2.20.1 酸溶-氢化物发生-原子荧光光谱法:《土壤中全硒的测定》(NY/T 1104-2006)。5.2.21 全铁5.2.21.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.21.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.22 全锰5.2.22.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.22.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.23 全铜5.2.23.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.23.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.24 全锌5.2.24.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.24.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.25 全钼5.2.25.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.26 全铝5.2.26.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.26.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.27 全硅5.2.27.1 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.28 全钙5.2.28.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.28.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.29 全镁5.2.29.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.29.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.30 全钛5.2.30.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.30.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.31 有效磷5.2.31.1 氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法:《土壤检测第 7 部分:土壤有效磷的测定》(NY/T 1121.7-2014)。5.2.31.2 盐酸-硫酸/氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.3 盐酸-硫酸/氟化铵-盐酸溶液浸提-电感耦合等离子体发射光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.4 氟化铵-盐酸/碳酸氢钠浸提-连续流动分析仪法(森林酸性土壤):《森林土壤磷的测定》(LY/T 1232- 2015)。5.2.32 速效钾5.2.32.1 乙酸铵浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.32.2 乙酸铵浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.33 缓效钾5.2.33.1 热硝酸浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.33.2 热硝酸浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.34 有效硫5.2.34.1 磷酸盐-乙酸溶液/氯化钙浸提-电感耦合等离子体发射光谱法:《土壤检测第 14 部分:土壤有效硫的测定》(NY/T 1121.14)。5.2.34.2 磷酸盐-乙酸溶液浸提-硫酸钡比浊法(森林土壤):《森林土壤有效硫的测定》(LY/T 1265-1999)。5.2.35 有效硅5.2.35.1 柠檬酸浸提-硅钼蓝比色法:《土壤分析技术规范》第二版,20.2 土壤有效硅的测定。5.2.35.2 HOAc 缓冲液浸提-硅钼蓝比色法(森林土壤):《森林土壤有效硅的测定》(LY/T 1266-1999)。5.2.36 有效铁5.2.36.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.3 DTPA 浸提-邻菲啰啉比色法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.36.4 DTPA 浸提-原子吸收分光光度法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.37 有效锰5.2.37.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.3 乙酸铵溶液浸提-高锰酸钾比色法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263-1999)。5.2.37.4 乙酸铵溶液浸提-原子吸收分光光度法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263- 1999)。5.2.37.5 对苯二酚-0.1mol/L 乙酸铵浸提-高锰酸钾比色法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.37.6 对苯二酚-0.1mol/L 乙酸铵浸提-原子吸收分光光度法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.38 有效铜5.2.38.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.38.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.39 有效锌5.2.39.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.39.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.40 有效硼5.2.40.1 沸水提取-甲亚胺-H 比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.2 沸水提取-姜黄素-比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.3 沸水-硫酸镁浸提-电感耦合等离子体发射光谱法:《土壤有效硼的测定 电感耦合等离子体发射光谱法》。5.2.40.4 沸水浸提-甲亚胺-H 比色法:《森林土壤有效硼的测定》(LY/T 1258-1999)。5.2.41 有效钼5.2.41.1 草酸-草酸铵浸提-示波极谱法:《土壤检测第 9 部分:土壤有效钼的测定》(NY/T 1121.9-2012)5.2.41.2 草酸-草酸铵浸提-电感耦合等离子体质谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.3 草酸-草酸铵浸提-电感耦合等离子体发射光谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.4 草酸-草酸铵浸提-硫氰化钾比色法/极谱法:《森林土壤有效钼的测定》(LY/T 1259-1999)。5.2.42 有效硒5.2.42.1 磷酸二氢钾溶液浸提-氢化物发生原子荧光光谱法:《土壤有效硒的测定 氢化物发生原子荧光光谱法》(NY/T 3420-2019)。5.2.43 交换性钙5.2.43.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)5.2.43.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.43.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.44 交换性镁5.2.44.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.44.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.44.3乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.45 交换性钠5.2.45.1 乙酸铵交换-火焰光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.45.2 乙酸铵交换-火焰光度法(森林土壤):《森林土壤交换性钾和钠的测定》(LY/T 1246-1999)。5.2.45.3 乙酸铵-氢氧化铵交换-火焰光度法(碱化森林土壤):《碱化土壤交换性钠的测定》(LY/T 1248-1999)。5.2.46 水溶性钠和钾离子5.2.46.1 火焰光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47 水溶性钙和镁离子5.2.47.1 EDTA 络合滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47.2 原子吸收分光光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.48 水溶性碳酸根和碳酸氢根5.2.48.1 双指示剂中合法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49 水溶性硫酸根5.2.49.1 土壤浸出液中硫酸根的预测:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.2 EDTA 间接滴定法(含量适中):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.3 硫酸钡比浊法(含量较低):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.4 硫酸钡质量法(含量较高):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.50 水溶性氯根5.2.50.1 硝酸银滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.51 总汞5.2.51.1 氢化物发生原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 1 部分:土壤中总汞的测定》(GB/T 22105.1-2008)。5.2.51.2 催化热解-冷原子吸收分光光度法:《土壤和沉积物 总汞的测定 催化热解/冷原子吸收分光光度法》(HJ 923-2017)。5.2.52 总砷5.2.52.1 原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法壤样品 制备、保存、流转和检测技术规范 (征求意见稿)更多资料:《第三次全国土壤普查资料汇编》——仪器+方法+采样+制备+质控(全册)
  • 聚焦第三次全国土壤普查,有机质和阳离子交换量全自动检测方案出台
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。土壤有机质全自动检测方案:全文下载:土壤有机质全自动检测方法研制报告土壤阳离子交换量自动检测方案:全文下载:土壤阳离子交换量全自动检测方法验证报告
  • 新标准实施丨X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法
    导读随着国家标准《GB/T 40196-2021 X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法》于2021年12月1日正式实施,标志着防腐木材和木材防腐剂中重金属分析已从传统繁复的湿化分析向智能化高效化能谱仪的快速分析迈进。岛津EDX-7000能量色散型X射线荧光光谱仪快速无损分析防腐木材和木材防腐剂的重金属分析应用也早已完成,您准备好了吗? 法规解读据统计,我国防腐木年生产量约500万立方米,年产值约1000亿元,各类型防腐剂消费总量约3000吨,其中铜铬砷(CCA)和季铵铜(ACQ)木材防腐剂总生产量占90%以上。目前,我国现阶段市场上流通的防腐木平均每立方米载药量远低于户外最低C3类4.0kg/m³使用要求。数据表明防腐木行业发展及其市场秩序已经偏离相关标准规范。而《GB/T 40196-2021》标准的制定将会给防腐木行业产品快速检测、快速分析数据、在线指导生产带来革命性的突破,助推防腐木行业高质量发展。 铜铬砷(简称CCA),主要成分为铜、铬和砷盐或其他氧化物的混合物;季铵铜(简称ACQ),是铜盐(以氧化铜计)与季铵盐化合物(以二癸基二甲基氯化铵计)的混合物。 CCA和ACQ都是木材防腐剂中能抑制木材腐朽菌、霉菌、变色菌、昆虫和海生动物在木材中生长的活性成分。CCA木材防腐剂和ACQ木材防腐剂适用于建筑用材、园林景观用材、矿用木材、铁道枕木、船用木材、海洋用材及其他工业用材和农用木材等的防腐、防虫(蚁)、防海生钻孔动物处理。 《GB/T 40196-2021 X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法》国家标准,规范了能量色散型X射线荧光光谱仪如何建立工作曲线,如何对防腐木材和木材防腐剂中的氧化铜、三氧化铬、五氧化二砷含量进行分析。岛津是如何应对的呢? 岛津应对方案根据铜、铬和砷元素浓度与X荧光强度成正比例关系的原理,利用岛津EDX-7000能量色散型X射线荧光光谱仪建立防腐木材和木材防腐剂中Cu、Cr、As的工作曲线,然后采用工作曲线法进行防腐木材和木材防腐剂中Cu、Cr、As的含量分析。 • EDX-7000能量色散型X射线荧光光谱仪特点 工作曲线由于不同基体对X荧光的吸收与增强不同,故要建立铜铬砷防腐木材、铜铬砷木材防腐剂、季铵铜防腐木材、季铵铜木材防腐剂四种基体的工作曲线,根据不同基体选择对应的工作曲线进行分析。 图2 防腐木材粉压片样及木材防腐剂液体样 下面以铜铬砷防腐木材为例,进行介绍。元素氧化物的校准曲线如下图。图3. 元素氧化物校准曲线 各元素氧化物的检出限如下。元素氧化物的检出限(单位:%)按标准要求,连续3次分析实际样品,三次结果极差要求0.3%。选择4个样品进行测试,极差远小于0.3%。同时,与客户提供的参考值吻合良好。 实际样品分析结果(单位:%)说明:样品3次分析结果极差满足标准不大于0.3%的要求。 结语岛津EDX-7000能量色散型X射线荧光光谱仪能够按照标准《GB/T 40196-2021 X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法》的方法,对防腐木材和木材防腐剂中的氧化铜、三氧化铬、五氧化二砷含量进行分析,操作简单,无需化学前处理。为木材市场上标准的应对提供了良好的支持! 本文内容非商业广告,仅供专业人士参考。
  • 过硬的技术,优质的服务,上海禾工再获客户肯定
    四川乐山和邦股份有限公司(以下简称乐山和邦)是一家新兴的化工经营型股份制企业,公司主营业务为:制造、销售纯碱、氯化铵、液氨、碳酸钙、化工新产品开发;生产工艺中的废气、废渣、废水处理;其下属的还有两家子公司,四川和邦集团乐山天然气化工有限公司和重庆碱胺实业有限公司,公司的整体实力雄厚。近日,因公司业务发展需要,乐山和邦再次从我司订购4台CT-1Plus多功能全自动滴定仪和1台AKF-2010V卡尔费休水分测定仪。仪器运行状态稳定、检测精度高、自动化程度高、故障率低等特点都是乐山和邦选择多次与我们合作的理由。目前,在总部生产线上已有十几台禾工仪器投入正常使用。秋风起,天气渐凉;虽然温度直线下降,但我们的技术人员却永远拥有着夏天般的热情。2019年9月3日,巫工在乐山和邦实验室内准备了一场电化学分析仪器的培训会议。由于乐山和邦前期接受过仪器安装检测培训,因此这次培训巫工结合行业与用户特点对方案进行了一次地讲解,传递给用户工作带去的价值,并展示用户非常感兴趣的实际应用案例。如本次使用电位滴定仪对样品中的总酸度、氰、蛋氨酸进行检测分析,引起了用户的极大兴趣。这次他们带着许多平时工作中遇到的问题,与禾工技术员巫工进行讨论,并且将自己的心得体会与巫工进行分享。培训交流会结束之后,巫工还对前期购买的仪器运行状态进行检查、维护。乐山和邦技术监督对此次培训给予了充分的肯定。 关于禾工上海禾工科学仪器有限公司成立于2004年,长期致力于电位滴定仪、水分测定仪研发、生产与销售。并提供行业应用、方法、服务等综合解决方案。作为国内电化学分析仪器领军品牌,公司拥有数十项专利、著作权等知识产权。承诺30天无理由退换货,3年整机质保!
  • 解决方案 | 自来水中总硬度-乙二胺四乙酸二钠滴定法的测定
    水中总硬度原系指沉淀肥皂的程度,使肥皂沉淀的原因主要由于水中的钙、镁离子,此外,铁、铝、锰、锶及锌也有同样的作用。长期饮用高硬度水的人会增加肾结石的发病率,硬度越高,发病率越高。《GB/T 5750.4-2006 生活饮用水标准检验方法 感官性状和物理指标》中规定了饮用水及其水源水的测定方法,睿科根据其方法提供自动化样品整体解决方案,代替人工进行水质总硬度的测定,保证检测的快速高效。仪器、耗材与试剂仪器睿科Auto Titra 08全自动滴定仪分析天平:感量为1mg鼓风干燥箱耗材试剂瓶:50X160mm、60X160mm试剂氯化铵氨水(ρ20=0.88g/mL)硫酸镁(MgSO47H2O)乙二胺四乙酸二钠(Na2EDTA2H2O)铬黑T硫化钠(Na2S9H2O)盐酸羟胺(NH2OHHCl)锌粒、盐酸分析步骤样品测定1吸取50mL自来水样(硬度过高的样品,可取适量水样,用纯水稀释至50mL,硬度过低的样品,可取100mL)置于试剂瓶中。2立即将样品全部放置于睿科Auto Titra 08全自动滴定仪的样品槽中,仪器自动加入1mL缓冲溶液和5滴指示剂,用Na2EDTA标准溶液滴定至溶液从紫红色变成纯蓝色即为终点,仪器自动判定。睿科Auto Titra 08全自动滴定仪空白试验按以上相同步骤以50.0mL试剂水代替水样进行空白试验,记录下空白滴定时消耗Na2EDTA标准溶液的体积V0。实验结果结果计算将标定浓度、空白值输入到软件界面中,仪器内置计算公式,根据每个样品滴定体积自动计算结果。计算参数界面质控样测试
  • 赫施曼助力锂电池中镍钴锰的测定
    锂离子电池具有质量轻、寿命长、能量密度大且无记忆效应等诸多优点。锂电池中镍钴锰含量的高低对于电池的性能有直接的影响,因此准确的测定其含量具有重要意义。 根据YST 1006.1-2014,锂离子电池正极材料镍钴锰酸锂中镍钴锰总量的测定方法为:试料用盐酸溶解,在pH值9-10碱性溶液中以紫脲酸胺为指示剂,用EDTA标准滴定溶液滴定至紫红色为终点。根据消耗的EDTA标准滴定溶液的体积计算镍钴锰总量。 主要步骤为:将试料0.1g试样放人100mL烧杯中,用瓶口分液器加人25mL盐酸(1+1),于低温电热板上加热至完全溶解,冷却后移入100mL容量瓶中,加水稀释至刻度,混匀。移取25mL试液于250mL三角瓶中,加入约50mL水,用瓶口分液器加入10mL氨水-氯化铵缓冲溶液和约0.1g紫脲酸胺指示剂,用EDTA标准滴定溶液乙二胺四乙酸二钠滴定至紫红色。按下式的实际浓度: 当三个滴定体积极差在0.10mL范围内时,取三个标定结果的平均值,否则重新标定。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转控制滴定速度、光能板供电无需电池;赫施曼的opus电子滴定器可通过触屏来进行灌液、预滴定、快速滴定和半滴滴定等功能。这两种滴定器均为屏幕直接读数,可连接电脑输出数据,针对性解决了三大痛点,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。
  • 回顾我与国产仪器的点点滴滴
    回顾我与国产仪器的点点滴滴——四川广安市新桥工业园区广安利尔化学 罗锐作为一名在分析行业工作了6年的我,目前作为一名实验室设备管理员,在2020年有幸认识了上海禾工仪器这个品牌。在此之前多是接触诸如安捷伦、岛津、梅特勒托利多等进口分析仪器,主要涉及色谱级理化滴定先关分析。再接触上海禾工CT-1Plus多功能全自动滴定仪(生产日期为2020/4/22)后,我才知道我们国产仪器也在崛起,接下来从以下几点来回顾我与国产仪器的点点滴滴。在2020年上半年,因为我们实验室由于分析压力的增加,需要新增一台氯离子电位滴定仪,再次前我们部门内有一台梅特勒托利多型号为ET-28的自动电位滴定仪,考虑到进口仪器费用较为昂贵,于是乎在做了一番调研发现国产品牌中上海禾工的电位滴定仪性能稳定,同时价格优惠,尝试性购买了一台。当仪器到达我们公司后,完成一些列手续后我第一时间打开了包裹,同时查看了发货单,对比了部件无误开始自己动手,将仪器各零散的部件组装完成。又经过两周的等待,上门安装的工程师到了,我记得当时是巫羽鹏工程师来做的售后。巫工当时看仪器都组装好了也比较惊叹,再进行了确认无误后开始了仪器的调试工作,调试工作非常顺利,不到一个小时就完成了仪器的调试工作。巫工把更多的时间留在了仪器的使用和维护培训上,再次感谢巫工对我们的帮助。再说说仪器使用性能这块。结合我自身的使用感受来讲,来说说CT-1Plus多功能全自动滴定仪的优缺点;优点方面:首先是仪器整体的性价比不错,在大多数情况下能满足进口仪器梅特勒ET-28电位滴定仪的分析任务,相比ET-28,CT-1Plus多功能全自动滴定仪有更低的售价;另一个是它的功能比较多,有满足我们氯离子分析的滴定,同时还可以做ph酸碱滴定、氧化还原滴定、沉淀滴定和络合滴定,在仪器的功能性上还是很丰富的;还有一个必须要拿来说的,就是禾工的仪器可以用来做二元酸、三元酸的滴定,通过对滴定体积和时间求导的形式确定我们滴定过程以及滴定结果;另外该仪器的数据存储也提供了较大的方便,配有U盘,可以提高数据最大的存储量。缺点方面:正如前面说的功能较多,相对应带来的就是软件操作较为复杂,对仪器使用人员要求比较高,因为滴定方法需要在前期编辑好,同时不同试样,比如我们测氯化钠或者氯化铵,需要分别编辑对应的方法文件,在使用操作上不如梅特勒的ET-28滴定仪便捷,禾工可以在仪器软件上做优化,比如内置方法文件,通过用户选择需要滴定的类型的形式。总的说来,我认为该仪器是目前国产品牌中性价比很高的仪器,从上海禾工的发展我们可以看到国产分析仪器也在逐渐崛起,逐渐填补分析行业这个空缺。作为分析人员的我深感欣慰,作为中国人就该有自家的分析仪器,就该用自家的分析仪器。而我在此也祝愿上海禾工仪器公司事业蓬勃发展,日胜一日,在各个领域都能成为国内的佼佼者!
  • 在用于制药和化妆品的表面活性剂凝胶中,不同的生产工艺会产生不同性能的凝胶
    化妆品,如护发素,必须符合许多的要求,来切合客户的需求。稳定性,香味和外观,奶油状的质地和改变头发表面亲水性的能力都是一些最重要的要求。在适当的处理条件下,少量的长链醇和阳离子表面活性剂可以形成膨胀的双分子层,从而锁住大量的水。这些凝胶网络主要由多层囊泡(MLVs)组成,囊泡壁是由六边形填充的酒精和表面活性剂分子组成的脂质双分子层。这种多层囊泡凝胶网络使得护发素呈现奶油质地。 尽管冷却速度在长链醇和表面活性剂凝胶的生成中一直是一个重要的因素,但造成这些差异的物理化学原因仍然难以捉摸。鲸蜡硬脂醇和氯化十六烷基三甲基氯化铵(CTAC)是构成许多药品和化妆品配方的基础。在一项研究中,来自意大利巴里大学化学系的研究人员与欧莱雅和瑞典隆德大学合作,阐明了冷却过程和凝胶流变特性之间的联系。利用多种技术方法,他们发现使用不同的冷却速率会生成具有不同重复距离的多层囊泡。不同工艺形成的凝胶具有明显不同的弹性模量和粘性模量。 在加热至85℃的条件下,制备了含有5%的鲸蜡硬脂醇和6%的CTAC的凝胶样品。样品在冰水中淬火,或在空气中冷却到室温。淬火凝胶的弹性(G’)和粘性(G’’)模量是空气中的冷却凝胶的4倍,因此影响了凝胶的涂抹性能和手感。两种样品的小角X射线散射(SAXS)结果证实了多层囊泡的存在。Kratky图分析显示,两种样品的层间长周期存在差异,淬火样品为31.4 nm,空气冷却样品为28.5 nm。通过对比Lβ相的理论值,发现淬火样品完全由膨胀的Lβ相组成,而空气冷却样品则是由Lβ相为主的多相凝胶网络组成。利用脂质双分子层形状因子,对散射密度进行拟合,得出两种样品相似的双分子层厚度为3.8 nm (δ)。结合两种样品的双层膜厚度和平均长周期,可以计算出淬火样品中鲸蜡硬脂醇和CTAC的体积分数为0.83,空气冷却样品为0.77。也就是说,在空气冷却的样品中,较大体积分数的鲸蜡硬脂醇和表面活性剂形成的脂质双分子层没有合并到囊泡中。这对平均弯曲刚度有影响,淬火样品的弯曲刚度更大。 综上所述,本研究表明,尽管快速冷却和缓慢冷却都能导致多层囊泡的形成,但囊泡中所含物质的数量不同,层间的膨胀程度也不同。这些差异导致了不同的弯曲刚度和不同的流变性能。了解这些参数有助于制备具有所需厚度、丰富质感和涂抹性能的复杂药物和化妆品配方。
  • 话说实验室第八期:实验室常见试剂、药品毒性及处理 3
    大家好,欢迎来到话说实验室!作为实验室人员常常会和实验室中的各种试剂、药品打交道,但是对于他们的毒性以及中毒后的应急处理方法,您又知道多少呢?今天我们将来讲讲在实验室中的氰化物、三氯化砷和农药(有机磷、有机氯)发生烧伤或中毒后的应急处理方法:氰化物按化学结构可分为无机氰化物和有机氰化物,后者变称腈类化合物,氰化物进入体内后,氰离子迅速与氧化型细胞色素氧化酶的三价铁结合,阻碍其细胞色素还原为带二价铁的还的型细胞色素氧化酶,使细胞不能得到足够的氧,造成"细胞内窒息"。急性中毒者动静脉血氧差可自正常的4%~5%降至1%~1.5%,故易致呼吸中枢麻痹,并造成死亡。 氰化物的烧伤处理:氰化钠、钾及氢氰酸等,先用大量水冲洗,冲洗后用3%硼酸水湿敷,或1:4000高锰酸钾溶液冲洗。 氰化物中毒的主要临床表现为乏力、胸痛、胸闷、头晕、耳鸣、呼吸困难、心律失常、瞳孔缩小或扩大、陈发性或强直性抽搐、昏迷,最后呼吸,心跳停止而死亡。 其中毒处理为给予亚硝酸异戊酯和亚硝酸钠。现场或运送途中,可给患者吸入亚硝酸异戊酯0.2~0.4ml,每隔15~30秒至数分钟一次,不要超过5~6支,吸入至静注亚硝酸钠为止。30%亚硝酸钠10~20ml(6~12mg/kg),以2~3ml/分的速度静脉注射,然后在同一针头下给予25%硫代硫酸钠50ml,必要时1小时重复注射一次。注射时速度勿快,以免引起低血压。局部创面应先用大量流动清水冲洗,然后用0.01%的高锰酸钾冲洗,再用5%硫代硫酸钠冲洗,应该注意的是亚硝酸钠及硫代硫酸钠对有机氰中毒无解毒作用,且亚硝酸钠本身对机体有损害作用。 三氯化砷发生中毒后的应急处理方法:先用水冲洗,再用25%氯化铵溶液湿敷,最后用2%二巯基丙醇软膏涂。农药(有机磷、有机氯)发生中毒后的应急处理方法:立即用小苏打或肥皂水洗涤,再用清水冲洗。但敌百虫禁用上述碱性液处理,因敌百虫遇碱后毒性反应大。在受上述灼伤后,若创面起水泡,均不宜把水泡挑破。 以上就是本期人和《话说实验室》的全部内容,我们将陆续为您推送各类精彩定评与文章,希望能给您的实验室生活带来些许帮助。更多详情欢迎来电咨询:400 820 0117同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司上海市漕河泾新兴技术开发区虹漕路39号怡虹科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司十数年一直致力于提升中国实验室生产力水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、GRABNER、EXAKT、ATAGO、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、SIEMENS、YAMATO等。】
  • 全国土壤污染物状况详查检测项目和分析方法汇总
    近日,国务院下发通知,按照党中央、国务院有关决策部署,为全面掌握我国土壤资源情况,国务院决定自2022年起开展第三次全国土壤普查。  据仪器信息网跟踪,其中土壤污染状况调查及相关监测评估或是至关重要的一环,将涉及大量分析检测与仪器配置等相关工作。仪器信息网特别整理2017年发布的“全国土壤污染物状况详查检测项目和采用的分析方法”,供广大用户与仪器企业参考。详查计划检测项目和采用的分析方法一览表序号检测领域检测项目分析方法参考标准编号1土壤无机污染物总镉GAAS法、ICP-MS法GB/T 17141-1997、HJ 766-2015总汞原子荧光法GB/T 22105.1-2008总砷原子荧光法GB/T 22105.2-2008、HJ 766-2015总铅ICP-MS法、ICP-AES法、GAAS法HJ 766-2015和GB/T 14506.30-2010、HJ 781-2016、GB/T 17141-1997总铬ICP-AES法、ICP-MS法、FAAS法HJ 781-2016、HJ 766-2015、HJ 491-2009总铜ICP-AES法、ICP-MS法、FAAS法HJ 781-2016、HJ 766-2015、GB/T 17138-1997总镍ICP-AES法、ICP-MS法、FAAS法HJ 781-2016、HJ 766-2015、GB/T 17139-1997总锌ICP-AES法、ICP-MS法、FAAS法HJ 781-2016、HJ 766-2015、GB/T 17138-1997总钴ICP-AES法、ICP-MS法HJ 781-2016、HJ 766-2015总钒ICP-AES法、ICP-MS法HJ 781-2016、HJ 766-2015总锑ICP-AES法、ICP-MS法HJ 781-2016、HJ 766-2015总铊ICP-AES法、ICP-MS法HJ 781-2016、HJ 766-2015总锰ICP-AES法、ICP-MS法HJ 781-2016、HJ 766-2015总铍ICP-AES法、ICP-MS法HJ 781-2016、HJ766-2015总钼ICP-MS法HJ 766-2015氟化物离子选择性电极法GB/T 22104-2008氰化物异烟酸-巴比妥酸分光光度法、异烟酸-吡唑啉酮分光光度法HJ 745-20152土壤有机污染物多环芳烃GC-MSD法HJ 805-2016有机氯农药GC-MSD法HJ报批稿2土壤有机污染物邻苯二甲酸酯类GC-MSD法ISO 13913-2014石油烃(C10-C40)GC-FID法ISO 16703:2011挥发性有机物顶空GC-MSD法、吹扫捕集GC-MSD法HJ 642-2013、HJ 605-2011酚类GC-FID法HJ 703-2014硝基苯类GC-MSD法EPA method 8270D苯胺类GC-MSD法EPA method 8270D多氯联苯GC-MSD法HJ 743-2015二噁英类和呋喃HRGC-HRMS法HJ 77.4-20083土壤理化性质水分重量法HJ 613-2011pH值玻璃电极法NY/T 1377-2007有机质重铬酸钾容量法LY/T1237-1999机械组成吸管法、密度计法LY/T 1225-1999阳离子交换量乙酸铵交换法、氯化铵-乙酸铵交换法NY/T 295-19954农产品(水稻/小麦)污染物总砷ICP-MS法、AFS法GB 5009.11-2014总铅GAAS法、AFS法、ICP-MS法GB 5009.12-2010总镉GAAS法、ICP-MS法GB 5009.15-2014总汞原子荧光法、冷原子吸收法GB 5009.17-2014总铜FAAS法、GAAS法、ICP-MS法GB 5009.13-2003总锌FAAS法、ICP-MS法GB 5009.14-2003总镍GAAS法、ICP-MS法GB 5009.138-2003总铬GAAS法、ICP-MS法GB 5009.123-20145地下水无机污染物金属元素(同土壤)ICP-AES法、ICP-MS法、AFS法HJ 776-2015、HJ 700-2014、HJ694-2014氟化物离子选择性电极法、离子色谱法GB 7484-87、HJ 84-2016氰化物异烟酸-吡唑啉酮分光光度法HJ 484-20096地下水有机污染物多环芳烃GC-MSD法HJ 478-2009有机氯农药类GC-MSD法HJ 699-2014邻苯二甲酸酯类GC-MSD法ISO 18856-2004石油烃(C10-C40)GC-FID法ISO 9377-2:2000挥发性有机物顶空GC-MSD法、吹扫捕集GC-MSD法HJ 810-2016、HJ 639-2012酚类GC-MSD法HJ 744-2015硝基苯类GC-MSD法HJ 716-2014苯胺类GC-MSD法USEPA Method 8270D多氯联苯GC-MSD法HJ 715-2014二噁英类和呋喃HRGC-HRMS法HJ 77.1-2008检测方法说明:ICP-MS 等离子体质谱 ICP-AES 等离子体发射光谱 GAAS石墨炉原子吸收 FAAS火焰原子吸收 AFS 原子荧光GC-FID 气相色谱火焰光度 GC-MSD气相色谱质谱 HRGC-HRMS 高分辨气相色谱高分辨质谱
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 格哈特发布德国格哈特-带自动进样器全自动凯氏定氮仪-VAP500C新品
    带有自动进样器的全自动蒸馏系统一、仪器简介德国格哈特推出了其享誉全球的VAPODEST® (维普得)系列的最新旗舰产品。VAP 500C是VAPODEST® (维普得)系列中一款可以对所有功能进行程序控制的带自动进样器全自动蒸馏滴定系统,如全自动定量加液、全自动蒸馏、全自动滴定、全自动排废、全自动监控蒸馏过程等,确保分析的可靠。同时可以编程并存储多个工作程序供随时调用。 二、应用 适用范围:检测粮食、食品、乳制品、饮料、啤酒、葡萄酒、白酒、黄酒、肉制品、水产品、植物、中药材、香辛料、生物质燃料、饲料、土壤、肥料、石油、煤炭、淀粉、橡胶、食品接触材料(比如木筷竹筷)、烟草、稀土、地质样品、贵金属、水、药物、沉淀物、钢铁金属、皮革毛皮和化学品等中的各种氮、粗蛋白质、真蛋白、非蛋白氮、铵盐含量、氯化铵,执行各种水蒸气蒸馏检测工作,如:阳离子交换量、N-亚硝胺类化合物、丁酰肼残留量、挥发性盐基氮、碱解氮、氨态氮、硝态氮、非蛋白氮、蛋白氮、有效氮、丙酸钠/钙、挥发酸总量、甲醛、挥发酚、二氧化硫、硫化物、氰化物、氟化物、双乙酸钠、挥发脂肪酸值、挥发性碱、总植物碱截留量、五氯苯酚、吊白块、防腐剂、二噁英/烷、醇类、钌量和锇量等,专门的设计特别适合标准方法酒精蒸馏的高效方便蒸馏分离!选择专业配件后同样特别适合于甲醛、二氧化硫等挥发性成分分析!三、主要特点1、样品的蒸馏时间: 2-4min/样,优化蒸汽量控制,10-100%蒸汽量输出,软件设置精确供给无以伦比。冷却水供应:最高可至7L/min的超宽冷却水可控范围,特别适合夏日高温环境。2、和之前享誉世界广受欢迎几十年的最顶级VAPODEST® 50s一样,采用独特的精确pH值直接监测滴定法进行凯氮的酸碱中和滴定,无需配制混合指示剂,准确性比普通指示剂间接监测pH方法更高,反应更灵敏!独特的起始pH终点法提供无以伦比的稳定性,pH差值法给予自动分析仪最佳的稳定性。3、最专业的凯氏蒸汽蒸馏设备:金属防爆式自动蒸汽发生器,具蒸汽待机功能,具蒸汽压力可调功能;标配耐腐蚀特种聚合物可拆卸式蒸馏头,可选高质量玻璃蒸馏头,更换方便,满足各种应用;可程序控制实现自动蒸馏和安全监控。4、可程序控制定量自动加碱、自动加水稀释样品、自动加硼酸,即时蒸汽供应,自动精确到秒定时蒸馏,可程序控制自动延时、自动控制蒸汽量、自动排废液(试管和滴定废液)。内置专用全自动滴定系统完全由主机操控,在线同步滴定,主机直接显示结果和各种指示,组成浑然一体自动滴定蒸馏仪(自动定氮仪)。5、大量玻璃器具可选: 100-1200ml试管和250-750ml凯氏烧瓶,确保最大的分析灵活性。6、新式试剂桶液位控制传感器(可选)适配5L、10L和20L的标准试剂桶, 免除实验人员从事危险的化学试剂转移。7、SSS(蒸汽软起动)功能完美解决剧烈反应和结晶样品。8、可以在蒸馏过程中手动操控碱泵补加NaOH。9、主动泵吸式样品和接受液废液排废,无需担心堵塞或漏气导致的无法自动排废问题,不用手动倾倒高温或危险液体。10、背景照明的玻璃组件和透明全覆盖安全门确保可监管的分析过程。 直接厂家技术支持,直接厂家专业服务。技术服务中心传承:顶级专业售后服务水平,享誉中华的高度责任感。独特提供7X24小时在线技术服务!重支持,重维护,重培训。创新点:1、带自动进样器的全自动凯氏蒸馏仪 德国格哈特-带自动进样器全自动凯氏定氮仪-VAP500C
  • 南昌大学陈义旺团队在能源转换和存储领域取得重要研究进展
    近日,南昌大学化学化工学院、高分子及能源化学研究院陈义旺教授团队在能源转化和存储领域取得重要研究进展。在能源转化领域,通过调节铅基/非铅基钙钛矿吸光层结晶行为,实现高效、稳定钙钛矿光伏器件。在能源存储领域,通过构造和调控多级纳米结构与电极界面,实现高效氧还原电催化剂和锌金属电池的制备。得益于简易的溶液加工方式、优异的半导体性能以及对柔性可穿戴设备的兼容性,钙钛矿太阳电池已成为光伏商业化应用中极具潜力的候选者之一。然而,相比于传统光伏技术长达20年的使用寿命,钙钛矿太阳电池的稳定性仍是制约其商业化应用的关键因素。作为制备钙钛矿太阳电池的初始材料,前驱体溶液中的高活性组分极易发生副反应,从而引发钙钛矿太阳电池的效率批次性以及稳定性问题。此外,由于对溶液表征手段的局限性,前驱体溶液中胶粒的组装行为对后续晶体的生长影响仍未可知。鉴于此,陈义旺团队利用先进的液体飞行时间二次离子质谱仪作为“分子眼”评估前驱体物种差异,刨析前驱体溶液接触空气后的化学演变,直观揭示钙钛矿前驱体溶液老化本质。同时,结合氢键强度变化与离子团簇含量差异,可视化低维钙钛矿前驱体溶液中胶粒组装与量子阱演化之间的内在联系,实现低维钙钛矿模组可印刷性的突破。为进一步论证氢键作用在形核结晶过程的普适性,在无铅钙钛矿体系中揭示了以盐析结晶为主导的反溶剂机制和以氢键强弱为依据的挑选反溶剂的通用规则,发展了以乙酸为代表的一类多功能绿色新型反溶剂。此外,针对两步法中碘化铅的残留问题,引入“多功能胶囊”概念构筑多孔通道,促进固液界面反应,并通过下转换效应提高光利用率,实现高效、稳定的钙钛矿太阳电池的制备。团队进一步总结了钙钛矿太阳电池中离子迁移的起源和抑制离子迁移的有效策略,并创新性地从整体器件的角度提出了抑制离子迁移的前瞻性方法,为开发高效、稳定的钙钛矿太阳电池提供了新思路。针对当前商业化的锂离子电池面临的性能、安全和成本等瓶颈,研发下一代环境友好型储能技术以提高器件功率密度、能量密度、安全性,降低制造成本显得尤为重要。得益于资源丰度高及绿色无污染等特性,水系锌基电化学储能器件极具发展前景。为提高水系锌空气电池的功率密度及稳定性,陈义旺团队通过在邻苯二甲腈功能化石墨烯表面经微波聚合原位生长铁酞菁聚合物,通过液相原位电荷剥离策略,制备得到铁酞菁聚合物纳米片纵向接枝于石墨烯的多级次纳米片,作为高效氧还原电催化剂用于液态和柔性准固态锌空气电池。此外,为克服锌金属负极面临的枝晶生长、腐蚀、钝化等问题,团队采用聚阳离子电解质-聚二烯丙基二甲基氯化铵(PDD)作为添加剂双向调控电解液和锌/电解液界面电场,改善Zn2+迁移行为,诱导Zn(002)优势沉积,成功构筑高可逆和高稳定性的锌金属电池。团队长期围绕能量转换与存储器件关键材料与技术等方面开展研究,发展了一套可全自动化印刷制备工艺,实现大面积柔性固态能量转换与存储器件(太阳电池、超级电容器、金属-空气电池)的制备、集成及应用,在专利技术和工艺优化中取得连续突破,为进一步的产业化提供了支撑。团队最新研究成果近期连续在化学和材料顶级期刊Angewandte Chemie International Edition,Advanced Materials和Energy & Environmental Science上发表(Angew. Chem. Int. Ed., 2023, 62, e2022157 Angew. Chem. Int. Ed.,2023, e202303177 Angew. Chem. Int. Ed., 2023, 62, e2023016 Angew. Chem. Int. Ed., 2023, e202302701 Adver. Mater., 2023, 2301852 Adver. Mater.,2023, 2302552 Energy Environ. Sci.,2023, 10.1039/D3EE00202K),南昌大学为论文第一及通讯作者单位。
  • 天木生物ARTP成功助力耐受高浓度甘蔗糖蜜酿酒酵母的选育
    本期为您推荐广西科技大学生物与化学工程学院牛福星副教授课题组发表在Microbial Cell Factories上面的文章:Key role of K+ and Ca2+ in high-yield ethanol production by S. Cerevisiae from concentrated sugarcane molasses。本研究利用常压室温等离子体进行诱变,筛选出对不同胁迫因素(高渗透压、高醇、高温、高盐离子以及高浓度甘蔗糖蜜)分别具有鲁棒性能的酿酒酵母菌株。其中由此所选育的对高浓度甘蔗糖蜜具有鲁棒性能的酿酒酵母乙醇合成产量达到目前物理诱变高水平(111.65 g/L,糖醇转化率达到95.53%)。最后结合酵母的细胞形态、发酵产能以及组学分析,揭示了限制酿酒酵母无法实现高浓度甘蔗糖蜜高浓度乙醇发酵的主要限制性因素是K+和Ca2+同时存在的影响。 生物基乙醇的合成原料有很多,从环保、经济、富民的角度研发是重点。我国是人口大国,每年由于食品添加、工业应用等所消耗的糖量位居世界前列。甘蔗是糖分提炼的主要原材料之一,在提料糖分的同时会产生糖蜜,而且早期研究数据表明产3吨糖的同时可产约1吨糖蜜。糖蜜是一种混合物,成分复杂,直接排放或者用于田间施肥是为浪费且会造成环境污染,而且是为资源利用的不充分。但是利用糖蜜(非粮食)生物资源进行酿酒酵母的乙醇合成,却可以在不断满足人们对乙醇用量需求的同时,助推国家绿色低碳能源发展。酿酒酵母利用糖蜜进行乙醇发酵的工艺已经比较成熟,但是在利用高浓度的糖蜜来生产高浓度的乙醇效率方面却是一个挑战,究其原因便是各种胁迫性因素的影响。但是从科学研究的角度确切的阐述哪种才是限制性的关键影响因素早期还未有研究报道。 研究人员借助ARTP(室温等离子体)诱变、适应性进化以及高通量的基于三苯基-2H-四唑氯化铵(TTC)及前体物丙酮酸(或丙酮酸自由基离子)与Fe3+发生络合反应呈现黄色的双重高通量筛选方法(Py-Fe3+)获取了分别对高浓度甘蔗糖蜜(总糖浓度达到300 g/L)以及蔗糖添加模型下的高温(37℃)、高醇(10%)、高渗透压(400 g/L可发酵总糖)以及高浓度K+(15 g/L)、Ca2+(8 g/L)、K+&Ca2+(15 g/L &8 g/L)发酵环境下的七株鲁棒型酿酒酵母菌株(图1、表1)。通过各自鲁棒型菌株在高浓度甘蔗糖蜜环境下细胞形态比较(图2),乙醇合成的产率以及细胞数量(图3、图4)、鲁棒型菌株比较基因组学、比较转录组学GO、KEGG分析研究,得出K+、Ca2+同时存在才是限制酿酒酵母高浓度甘蔗糖蜜乙醇发酵的主要因素。图1 实验流程 表1 在相同发酵条件下与野生型J108相比产量差距图2 在250 g/L糖蜜发酵不同菌株的细胞形态A:NGCa2+-F1 B:NGK+-F1 C:NGK+&Ca2+-F1 D:NGTM-F1图3 不同菌株的乙醇合成率及细胞数图4.在5L发酵罐体系中利用250 g/L甘蔗糖蜜发酵, 菌株NGTM-F1的乙醇产量达到111.65 g/L 总结:甘蔗糖蜜对细胞的影响不仅仅局限于高浓度发酵,在低浓度情况下同样会对细胞的生长造成一定影响。该项目的研究是为初次从科学研究的角度准确阐述了限制酿酒酵母无法实现高浓度甘蔗糖蜜高浓度乙醇发酵的主要限制因素,其结果对于以甘蔗糖蜜作为底物的生物合成具有重要指导作用。文章链接:https://doi.org/10.1186/s12934-024-02401-5
  • 《AM》清华大学刘凯研究员、张洪杰院士实现高纯稀土产品主动生物合成
    稀土材料在生物医学和高科技领域发挥着不可替代的作用。然而,典型的稀土元素开采和提取方法往往因涉及危险化学品而导致严重的环境问题和资源浪费。尽管生物采矿展示了优雅的替代方案,但由于提取金属的微生物和清除稀土的大分子工具不足,可持续地分离和回收自然界中的稀土仍然面临巨大挑战。为了直接从稀土矿石中获得高性能的稀土材料,需要开发新一代生物合成策略来高效地制备稀土元素(REEs)。在此, 清华大学刘凯研究员、张洪杰院士团队建立了一种微生物合成体系实现了高纯稀土产品的主动生物合成。此外,通过与结构工程蛋白生物偶联的亲和柱,获得了良好的Eu/Lu和Dy/La分离,纯度分别为99.9%(Eu)、97.1%(La)和92.7%(Dy)。更重要的是,原位一锅法合成的稀土依赖的甲醇脱氢酶得到了很好的治理,并独占地吸附了稀土尾矿中的La、Ce、Pr和Nd,具有先进的生物催化作用,具有高附加值的应用前景。因此,开发的新型生物合成平台提供了一个有洞察力的路线图,以扩大生物铸造方面的底盘工程范围,并生产与稀土相关的有价值的生物制品。该研究以题为“The Construction of Microbial Synthesis System for Rare Earth Enrichment and Material Applications”的论文发表在《Advanced Materials》上。在这里,成功地筛选和收集了126株新型稀土吸附菌株,作为轻、中、重稀土的微生物合成系统,实现了高纯度稀土生物产品的制备。新型稀土亲和生物材料通过结构蛋白DLanM的生物偶联,实现了Eu/Lu和Dy/La的良好分离,分别得到99.9%的Eu、97.1%的La和92.7%的Dy。最重要的是,生物工程MDHs可以作为La、Ce、Pr和Nd的选择性吸附剂,显示出在稀土产品中的先进应用。因此,这些生物合成策略为稀土研究建立了一个新的范式,并将促进稀土的高价值应用。图1. 稀土微生物分离筛选及稀土生物材料高值化利用 有效吸附和生物合成稀土的菌株筛选 为了获得能特异吸附稀土进行生物合成的微生物,从所有采集的样品中通过富集培养和鉴定方法分离出126株细菌(命名为清华稀土微生物,TR-1至TR-126)。将获得的菌株的16S rRNA序列与GenBank上的已知序列进行比较分析。结果表明,稀土尾矿场及原矿伴生区中假单胞菌为优势种。假单胞菌属,如铜绿假单胞菌、恶臭假单胞菌、荧光假单胞菌和斯图策尔假单胞菌都能在其微环境中合成无机纳米颗粒。因此,选择收集的菌株(即TR-21、TR-22、TR-27和TR-54)来测试它们对稀土的吸附能力。电感耦合等离子体发射光谱分析结果表明,TR-21对14种稀土元素的吸附能力最强。TR-21对Sm(Ⅲ)、Eu(Ⅲ)和Tb(Ⅲ)具有较高的吸附容量,但对La(Ⅲ)的吸附能力最弱。用Tb(III)、Dy(III)和Ho(III)在细胞外矿化的稀土盐都是细小的线性形状,长度约为100 nm,并在细胞外使用Er(III)、Tm(III)、Yb(III)和Lu(III)形成层状或水凝胶状的生物合成。在HRTEM下没有观察到该生物合成的明显晶格结构。用高分辨电子能谱对所有从TR-21矿化的纳米线、细丝和片状/水凝胶稀土矿物进行了元素分析,结果表明,矿化产物区含有稀土元素(Ⅲ)、磷、氧和碳。这进一步表明,稀土(III)与PO43−结合后,以矿物相的形式与细菌表面的PO43−共存,即合成的稀土盐为REEPO4。此外,该菌株不仅可以通过表面吸附回收稀土元素,还可以在细胞表面以一锅法原位合成稀土磷酸盐。与这些配合物的化学合成方法相比,微生物原位合成稀土磷酸盐不仅可以减少对环境的污染,而且具有较高的成本效益。稀土磷酸盐具有良好的化学稳定性和热稳定性,被广泛应用于发光材料的制备。当稀土离子浓度较低时,稀土元素主要与细菌细胞壁上的磷酸基团结合。随着时间的推移,生物矿化晶体的数量增加,使稀土以纳米线或片状晶体的形式沉积在细胞表面。当TR-21不与稀土元素相互作用时,细菌细胞呈椭圆形,表面光滑。TR-21对稀土的生物合成发生在细菌细胞的外部。微生物合成稀土磷酸盐后,可通过三种方法回收稀土盐。首先,稀土氧化物可以通过燃烧回收。其次,微生物细胞可以通过细胞超声裂解,稀土磷酸盐可以通过离心法回收。第三,稀土磷酸盐可以通过加入海藻糖降解胞外多糖来回收,从而使稀土磷酸盐解离,然后通过离心法回收。图2.有效吸附和生物合成稀土的菌株筛选 熔融DLanM器件的吸附容量和选择性测试 受LanM的启发,设计了一种新型的含有两个拷贝的LanM的新型嵌合蛋白DLanM。由于DLanM有8个EF-Hand,它不仅可以结合更多的稀土元素,而且对稀土具有高选择性,超快的吸附速度,稳定的吸附能力,对非稀土阳离子没有吸附能力。这使得DLanM成为一种很有前途的回收和分离稀土的生物分子。上述优点使其成为高稀土亲和力功能材料的理想候选者。为了促进转化为具有流动形式的稀土回收能力的产品,我们使用氨基的点击化学将DLanM偶联到修饰的琼脂糖凝胶微球上。在25℃下反应16 h后,DLanM的负载率约为83.3%,蛋白密度为0.678±0.004 μmolDLanM/mL琼脂糖凝胶。DLanM偶联材料具有显著的稀土亲和力。特别是,生物共轭色谱柱可以重复使用几十次,对稀土元素的回收表现出很好的性能。用混合溶液测试了DLanM基柱对稀土元素和其他金属元素的选择性。Eu和Dy可以通过DLanM柱和两步解吸的单一吸附过程从Lu和La中分离出来,从而证明了稀土之间分离的可能性。总之,固定化DLanM材料从广泛的金属离子杂质中选择性地富集稀土的功效,甚至到在稀土中分离特定的离子对。这种改进的选择性代表了现有生物吸附方法的替代使用胶囊细胞或聚合物纳米凝胶。图3.熔融DLanM器件的吸附容量和选择性测试 生物合成工具对稀土尾矿的高效利用 TR-21对稀土具有吸附和生物合成作用,对稀土尾矿中的稀土具有浸出和溶解作用。稀土尾矿中金属元素的形态和含量分析表明,稀土含量较低,使其难以恢复和分离。用离子交换法从低浓度尾矿中提取稀土成本高,而用氯化钠、硫酸铵、氯化铵、硫酸镁作浸出剂,对环境有害。相比之下,TR-21的生物浸出过程相对简单,不会产生二次污染。该方法具有环境友好、经济高效等优点,可作为尾矿中稀土有效浸出回收的一种新方法。甲醇脱氢酶(MDH)是AM1菌株甲醇代谢的关键和必需的酶。最近的研究表明,AM1菌株具有以稀土为辅因子的XoxF型MDH。XoxF型MDH的催化机理除依赖于其辅因子外,还与稀土元素的结合有关。AM1菌株不仅能从稀土尾矿中浸出稀土离子,还能从稀土尾矿中提取稀土离子,也可利用尾矿中的部分稀土进行生物合成,XoxF型MDH可以作为稀土的选择性吸附剂来提纯和分离稀土。图4.生物合成工具对稀土尾矿的高效利用【小结】该研究提出了一种新型的生物合成材料体系,以实现稀土元素的高效制造和先进利用。从稀土尾矿中筛选出的昆明菌株可以通过原位合成的方法从细胞外收集稀土生物产品。将新设计的DLanM蛋白与琼脂糖凝胶进行固定化,制备了一系列高亲和力的稀土生物吸附柱。Eu/Lu和La/Dy对的分离效率分别达到99.9%(Eu)、97.1%(La)和92.7%(Dy)。此外,生物吸附柱可重复使用长达19个周期,显示出良好的稀土回收性能。最重要的是,M.extorquens中的工程MDH不仅可以作为La、Ce、Pr和Nd的选择性吸附剂用于稀土的提纯和分离,还可以作为功能稀土-配体组合用于先进的生物合成。与化学提纯方法相比,这些生物合成策略实现了稀土的一锅法高价值利用。该生物制造系统作为新一代灵活的生物铸造,在稀土微生物底盘工程中显示出巨大的前景,特别是当与先进的编辑工具集成时,如CRISPR或同源定向修复,用于先进的生物修复和有价值的稀土生物制品制造。原文链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202303457
  • 变化内容解读∣第三次土壤普查土壤样品制备与检测技术规范(修订版)
    《第三次土壤普查技术规范》从2022年4月份的审议稿、2022年5月份的试行稿、2022年7月份的试行稿、到最后2023年2月的修订稿。每一版都有一些变化,但最终修订版变化最大,我现将最终修订版与7月份试行稿的变化内容做一个总结。一、样品制备变化内容(一)制样场地要求发生变化1、风干室要求增加了:“温湿度适宜,其面积应与承接制样任务数量相匹配,高湿地区根据需要安装除湿设施,如受场所限制不能集中风干,应确保每个分散风干的场所均满足本规范要求,并安排专人负责日常监督管理。”2、样品制备室制样过程全程摄像,保存记录由以前的“不少于3年”变为“不少于1年”。(二)制备流程1、一般样品制备(1)“一般样品”全部改为“表层样品”(2)风干:a、对于黏性土壤的风干更加具体,变为“在土壤样品半干时,戴一次性丁腈或聚乙烯等无污染材质手套将大块土捏碎,以免完全干后结成硬块。”b、把风干 “样品风干后混匀,用以粗磨”一句改为“一部分按照国家级和省级土壤样品库留存量要求,采用四分法分取后装入容器中流转至土壤样品库保存,剩余样品粗磨制成2mm样品,数量要确保样品检测和质控等需要。”说明样品库样品只需要风干即可,不需要粗磨。(3)粗磨:粗磨中去掉了“石砾含量较多时,耕地园地土壤样品应记录风干、粗磨过程中弃去的石砾质量,并计算石砾质量百分数。林地草地土壤样品应记录风干、粗磨过程中弃去的砖瓦石块、石灰结核、石砾质量,并计算碎石和石砾的总体质量百分数。”其实不管耕地园地、林地草地要求是一样的,都需要挑拣、称重、记录,所以去掉了。(4)称重:增加了称重“土壤样品应记录风干、粗磨过程中弃去的碎石和石砾等质量, 并计算质量百分数。”其实就是粗磨中去掉的部分,一句话概括为这一条“称重。”(5)分装:分装不按耕地园地、林地草地分不同要求了,统一变为:“粗磨后样品充分混匀后进行分装,每个表层样品的送检样品不少于800g,留存样品不少于200g,如果送检样品含密码平行样,则不少于1600。”2、剖面样品也不分耕地园地、林地草地,基本参照表层样品风干、粗磨、称重、分装步骤要求。3、土壤水稳性大团聚体样品(1)去掉了“一般样品、剖面样品的第1层样品采集时,均需采集土壤水稳性大团聚体样品”要求。(2)水稳性大团聚体送检要求由原来了“送检1000g、含密码1500g”变为:“送检样品不少于1100g,如果送检样品含密码平行,则不少于1600g。”二、样品流转变化内容(一)流转场地增加了流转场地要求:“承担制备任务的实验室应向省级质量控制实验室提供相对独立且配备相关设备设施场地,用于样品转码、组批和流转等,有条件的省级质控实验室也可自行设置专门场地用于样品转码、组批和流转等。”(二)样品组批和装运剖面样品组批要求发生变化,变为:“原则上按照10个剖面样点的全部剖面发生层样品组成一个批次,剖面样点量不足10个时,按照实际样品数量组批,每个批次的密码平行样品和质控样品各不少于1个,其余要求同表层样品。”三、样品保存变化内容(一)留存样品保存留存样品保存条件由原来的“存放温度不高于25℃”变为“实验室保存样品须密封存放,室温保存 (或不高于30 ℃) ”。(二)预留样品保存预留样品统一改为:“每份不少于400g,预留样品须移交本实验室保存室造册保存,保存时间不少于2年,保存条件同留存样品要求。”(三)剩余样品保存剩余样品保存时间由以前的“不少于半年”变为“”不少于1年,保存条件同留存样品要求。”四、样品检测变化内容(一)检测指标1、耕地园地检测指标中去掉了科研部门检测的 “土壤田间持水量”、“凋萎系数”、“矿物组成”,由原来的46项变为43项。林地草地检测指标中去掉了“土壤水稳性大团聚体”和“矿物组成”,由原来的19项变为17项。具体变化见下表1、表2。2、去掉了盐碱地水样检测指标,原备注由省级质量控制实验室检测。表1 耕地园地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√√30%表层土样剖面样品的第一层样品检测,表层样品选择10%检测3可交换酸度√南方酸性土壤区域(pH小于6.0)检测pH√√盐碱土普查涉及的县中均需侧水溶性盐总量、电导率和8大离子。注:水溶性盐总量小于0.1%时,不测电导率和8大离子。全部样品检测水溶性盐总量和电导率,当水溶性盐总量除铁铝土纲不测,其余都测。pH7.0的样品检测6游离铁√仅测定铁铝土纲和淋溶土纲的土样长江以南 (除青藏高原) 所有剖面样品检测,长江以北 (含青藏高原) 水田剖面样品检测7土壤田间持水量√科研部门检测。黑土、棕壤、潮土、栗钙土、黄绵土、紫色土、红壤、黄壤、灰漠土、水稻土各100个土样,环刀法测定。耕地园地采集耕作层、犁底层、心土层3个土层环刀样,林草地采集0-20cm表层、20-40cm亚表层土层环刀样。去掉此项目8凋萎系数√科研部门检测。具体同“4 土壤田间持水量”去掉此项目9矿物组成√科研部门检测去掉此项目表2 林地草地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√去掉此项目3矿物组成√去掉此项目4碳酸钙(无机碳)√除铁铝土纲不测,其余都测pH7.0的样品检测5全铁√pH仅测定铁铝土纲和淋溶土纲的土样长江以南(除青藏高原)所有剖面样品检测(二)检测方法变化以前耕地园地、林地草地的检测方法都是分开的,现在检测方法不分耕地园地、林地草地,统一为土壤样品检测指标方法。具体变化见下表3。表3 检测方法变化序号指标方法标准或规范备注变化内容1机械组成吸管法《土壤分析技术规范》(第二版),5.1吸管法1、仅能用吸管法2、去掉了比重计法2土壤水稳性大团聚体筛分法《土壤检测第19部分:土壤水稳性大团聚体组:成的测定》(NY/T1121.19-2008) (机械筛分方式,详见土壤样品制备与检测技术规范培训教材1、仅能用机械筛分法2、去掉了人工筛分法3阳离子交换量乙酸铵交换法《土壤分析技术规范》(第二版)12.2乙酸铵交换法pH≤7.5的样品1、方法全部变为《土壤技术规范的方法》。2、去掉了NY/T295- 1995和NY/T1121.5-2006两个方法。EDTA-乙酸铵盐交换法《土壤分析技术规范》(第二版)12.1EDTA-乙酸铵盐交换法pH7.5的样品4交换性盐基及盐基总量(交换性钙、交换性镁、交换性钠、交换性钾、盐基总量)乙酸铵交换法等《土壤分析技术规范》(第二版),13.1 酸性和中性土壤交换性盐基组成的测定 (乙酸铵交换法) (交换液中钾、 钠、 钙、 镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH≤7.5的样品测定方法增加了ICP法氯化铵-乙醇交换法等《石灰性土壤交换性盐基及盐基总量的测定》(NY/T1615-2008) (交换液中钾、钠、钙、镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH7.5的样品5水溶性盐(水溶性盐总量、电导率、水溶性钠离子、钾离子、钙离子、镁离子、碳酸根、碳酸氢根、硫酸根、氯根)质量法等《森林土壤 水 溶 性 盐 分 分 析》(LY/T1251-1999) (浸提液中钾、 钠、 钙、 镁离子的测定采用等离子体发射光谱法,硫酸根和氯根的测定增加离子色谱法,详见本规范培训教材)1、浸提液中钾、 钠、 钙、 镁离子的测定只能用ICP法。2、硫酸根和氯根的测定增加了离子色谱法。3、去掉了NY/T1121.16-2006法6有机质重铬酸钾氧化-容量法《土壤检测第6部分:土壤有机质的测定》(NY/T1121.6-2006)增加了元素分析仪法元素分析仪法《土壤中总碳和有机质的测定 元素分析仪法》(农业行业标准报批稿)7碳酸钙气量法《土壤分析技术规范》(第二版)15.1土壤碳酸盐的测定1、仅能用气量法2、去掉了非水滴定法 8全磷酸消解-电感耦合等离子体发射光谱法《森林土壤磷的测定》(LY/T1232-2015) (详见本规范培训教材1、仅能用ICP法2、去掉了氢氧化钠熔融-钼锑抗比色法3、去掉了酸溶-钼锑抗比色9全钾酸消解-电感耦合等离子体发射光谱法《森林土壤钾的测定》(LY/T1234-2015)1、仅能用ICP法2、去掉了碱熔-火焰光度法和原子吸收分光光度法《土壤分析技术规范》(第二版),9.1土壤全钾的测定10全硫硝酸镁氧化-硫酸钡比浊法《土壤分析技术规范》(第二版),16.9全硫的测定1、去掉了燃烧碘量法LY/T 1255-19992、增加了燃烧红外光谱法燃烧红外光谱法本规范培训教材11全硼碱熔-姜黄 素-比色法《土壤分析技术规范》(第二版),18.1土壤全硼的测定去掉了碱溶-亚甲胺-比色法碱熔-等离子体发射光谱法《土壤分析技术规范》(第二版),18.1土壤全硼的测定12全铁酸消解-电感耦合等离子体发射光谱法《固体废物22种金属元素的测定电感耦合等离子体发射光谱法》(HJ781-2016)去掉了碱溶-ICP法HJ974-2018 13全锰14全铝15全钙16全镁17速效钾乙酸铵浸提-火焰光度法《土壤速效钾和缓效钾含量的测定》(NY/T889-2004)前处理统一为2mm粒径样品样品粒径要求由原来的1mm统一变为2mm18缓效钾热硝酸浸提-火焰光度法19有效硼沸水提取-电感耦合等离子体发射光谱法土壤样品制备与检测技术规范培训教材1、仅能用ICP法2、去掉了沸水提取-甲亚胺-H比色法3、去掉了沸水提取-姜黄素-比色法20有效钼草酸-草酸铵浸提-电感耦合等离子体质谱法《土壤检测第9部分: 土壤有效钼的测定》(NY/T1121.9-2023)1、仅能用ICP法2、去掉了示波极谱法NY/T 1121.9-201221总铅酸消解-电感耦合等离子体质谱法《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ766-2015)1、仅能用ICP-MS法2、去掉了ICP法HJ781-20163、去掉了火焰光度法HJ491-20194、去掉了石墨炉原子吸收法GB/T17141-199722总镉23总铬24总镍中国冶金地质总局第三地质中心实验室总工程师 刘桀佳2023年6月22日
  • 化学谜语集锦
    1、说&ldquo 银&rdquo 不是银(打一化学俗称)&mdash &mdash 水银   2、说&ldquo 金&rdquo 不是金(打一化学名词) &mdash &mdash 合金   3、说&ldquo 碱&rdquo 不是碱(打一化学俗称)&mdash &mdash 纯碱   4、贾政质问宝玉(打一微粒名称)&mdash &mdash 质子   5、学而时习之 (打一化学名词)&mdash &mdash 常温   6、望梅止渴  (打一物质名称)&mdash &mdash 硫酸   7、敢怒不敢言。 (打一物质名称)&mdash &mdash 空气   8、丰衣足食(打一化学名词)&mdash &mdash 饱和   9、完璧归赵(打一化学名词)&mdash &mdash 还原   10、小处着眼(打一化学名词)&mdash &mdash 微观   11、引火烧身(打一化学名词)&mdash &mdash 自燃   12、火上加油(打一化学名词)&mdash &mdash 助燃   13、乔太守乱点鸳鸯谱(打一化学名词)&mdash &mdash 复分解   14、药方照旧(打一化学名词)&mdash &mdash 还原剂   15、怒发冲冠(打一化学名词)&mdash &mdash 气态   16、原形毕露(打一化学名词)&mdash &mdash 现象   17、空谷回音(打一化学名词)&mdash &mdash 反应   18、考卷(打一化学名词)&mdash &mdash 试纸   19、腾飞吧!中国(打一化学名词)&mdash &mdash 升华   15、轻而易举解方程。(打一化学现象)&mdash &mdash 分解反应 溶解(谐音)   16、杞人忧天(打一化学名词)&mdash &mdash 过滤(虑)   17、三天(打一化学名词)&mdash &mdash 结晶   18、吹胡子瞪眼(打一化学名词)&mdash &mdash 气态   19、下毕围棋(打一化学名词)&mdash &mdash 分子   20、各奔前程(打一化学名词)&mdash &mdash 分解反应   23、父母出门(打一化学名词)&mdash &mdash 离子   24、计算机作题(打一化学名词)&mdash &mdash 电解   25、屡战屡败(打一化学名词)&mdash &mdash 负极   26、三个日本人(打一化学名词)&mdash &mdash 晶体   28、空气流动(打一化学名词)&mdash &mdash 风化   29、死去活来(打一化学名词)&mdash &mdash 再生   30、冰河消尽始行舟(打一化学名词)&mdash &mdash 溶解度(渡)   31、100%的氢氧化钠(打一物质名称)纯碱   32、国君的饮料(打一物质名称)王水   33、端着金碗的乞讨者(打一化学元素)&mdash &mdash 钙   34、石旁伫立六十天(打一化学元素)&mdash &mdash 硼   35、大洋干涸气上(打一化学元素)&mdash &mdash 氧   36、天府之国雾气笼(打一化学元素)&mdash &mdash 氚   37、华盛顿的货币(打一化学元素)&mdash &mdash 镁   38、田(打一微观粒子)&mdash &mdash 中子   39、石阻水断流(打一化学元素)&mdash &mdash 硫   40、一路洒落十升粮(打一化学仪器)&mdash &mdash 漏斗 41、盛酒不是瓶,叫灯照不明。(打一化学仪器)&mdash &mdash 酒精灯 42、铁臂小钢勺,常在火中烧。(打一化学仪器)&mdash &mdash 燃烧匙 43、一人平反(打一化学元素)&mdash &mdash 金   44、即使有水平,自大一点也不好(打一化学元素) &mdash &mdash 溴   45、有心发恶气(打一化学元素)&mdash &mdash 氩   46、金先生的夫人。(打一化学元素) &mdash &mdash 钛   47、水上作业。(打一化学元素) &mdash &mdash 汞   48、江水往下流,流水暗礁留,   沿江筑金塔,气盖黑山头。(打四种元素) &mdash &mdash 汞硫铅氙   49、一气之下回巴蜀(打一化学元素)&mdash &mdash 氚   50、一气之下来劲头(打一化学元素)&mdash &mdash 氢   51、一气攻克(打一化学元素)&mdash &mdash 氪   52、内装针头(打一化学元素)&mdash &mdash 钠   53、丢钱(打一化学元素) &mdash &mdash 铁   54、液面上凸,落地成珠。使用不慎,慢性中毒 (打一化学元素) &mdash &mdash 汞   55、好象一般金属,其实很不常见(打一化学元素) &mdash &mdash 钡   56、黄金交易所 (打一化学元素) &mdash &mdash 锡   57、加班费(打一化学元素) &mdash &mdash 锌   58、标致的钱 (打一化学元素) &mdash &mdash 镁   59、镶金贝雕,入水难捞 (打一化学元素) &mdash &mdash 钡   60、品德高尚(打化学元素三) &mdash &mdash 锌磷镁   61、从天到地,气水变石,黄绿红紫,性格相似(打非金属元素四)&mdash &mdash F2、Cl2、Br2、I2   62、值钱不值钱,,全在加两点 (打一化学元素) &mdash &mdash 金   63、流水褪尽观暗礁 (打一化学元素) &mdash &mdash 硫   64、高温 (打一化学元素) &mdash &mdash 氮   65、每逢佳节念亲人锶镓(打一句唐诗)&mdash &mdash 每逢佳节倍思亲   66、岩旁土迭土 (打一化学元素) &mdash &mdash 硅   67、抵押石头 (打一化学元素) &mdash &mdash 碘   68、煤 (打一化学元素) &mdash &mdash 钨   69、山下有石灰(打一化学元素) &mdash &mdash 碳   70、一气之下孩子跑掉 (打一化学元素) &mdash &mdash 氦   71、丢了孩子又生气(打一化学元素) &mdash &mdash 氦   72、阴沟里的水 (打一化学元素) &mdash &mdash 溴   73、最轻量级(打一化学元素) &mdash &mdash 氢   74、气吞山河(化学元素二)&mdash &mdash 氙氚   75、世界通用货币 (打一化学元素) &mdash &mdash 镁   76、金属之冠(打一化学元素) &mdash &mdash 钾   77、金榜第一 (打一化学元素) &mdash &mdash 钾   78、取而代之。(打一化学反应名称) &mdash &mdash 置换   79、小处着眼。(打一化(哲)学名词) &mdash &mdash 微观   80、山岩碎后归沙砾,米粉团来作饼糕。(猜化学名词二)&mdash &mdash 分解、合成  81、但悲不见九州同(苦于国土为金人所属)(打一化学名词)&mdash &mdash 苦土(氧化镁)、金属   82、冰雪酥(打一化学用语)&mdash &mdash 硬水软化   83、蜡炬成灰泪始干(打一化学术语)&mdash &mdash 滴定终点   84、辞别儿女,外出打工(打一化学名词)&mdash &mdash 离子   85、不阴不阳,身居中央,奔出体外,穿透洞墙(打一化学名词)&mdash &mdash 中子   86、吹断檐间积雨声(打一化学名词)&mdash &mdash 滴定终点   87、囝。(打一微观粒子名称) &mdash &mdash 中子   88、只争朝夕(打一化学名词)&mdash &mdash 中和   89、不要这么多雪(打一化学名词)&mdash &mdash 冷却   90、申公豹填北海眼(打一化学名词)&mdash &mdash 活塞   91、安得猛士兮守四方(打一化学名词)&mdash &mdash 环境保护   92、解冻(打一化学名词)&mdash &mdash 硬水软化   93、不偏不倚/不上不下,不左不右(打一化学名词)&mdash &mdash 正极   94、尝药(打一化学名词)&mdash &mdash 试剂   95、老样子(打一化学名词)&mdash &mdash 固态   96、六十秒/一一说明(打一化学名词)&mdash &mdash 分解   97、团结一起(打一化学名词)&mdash &mdash 化合   98、饥寒交迫(打一化学术语) &mdash &mdash 不饱和   99、助手出力(打一化学名词)&mdash &mdash 副作用   100、换汤不换药(打一化学名词)&mdash &mdash 还原剂   101、应酬终日自忘饥(打一化学名词)&mdash &mdash 不饱和   102、一方都是吃斋人(打一化学名词)&mdash &mdash 同位素   103、公平交易,童叟无欺(打一化学名词)&mdash &mdash 化合价   104、待到重阳日(打一化学术语) &mdash &mdash &mdash 结晶   105、万古云霄一羽毛(打一容量单位)&mdash &mdash 毫升   106、少小离家老大回(打一化学名词)&mdash &mdash 离子 还原   107、故态复萌 (打一化学术语) &mdash &mdash 还原   108、物归原主(打一化学名词)&mdash &mdash 还原   109、内部团结(打一化学名词)&mdash &mdash 中和   110、空谷回音(打一化学名词)&mdash &mdash 反应   111、显影 (打一化学术语) &mdash &mdash 现象   112、点眼麻醉 (猜化学实验操作)&mdash &mdash 滴定   113、 Ag(o),Au(0),Pt(o) (猜四字成语)&mdash &mdash 无价之宝   114、化学元素27 ,20和27,57(猜流行商品)&mdash &mdash Coca-Cola 可口可乐   115、此物能流动,液体数它重,外表银闪光,还有导电性.(打一单质)&mdash &mdash 汞   116、像钴不是钴,含有两元素,可做还原剂,吸了会中毒。(打一无机物)&mdash &mdash 二氧化硅   117、本是一种气,常做还原剂,总想向上升,不愿脚踏地。(猜一种单质)&mdash &mdash 氢气   118、组成半个圆,杀人不见血,追捕无踪影,点火冒蓝烟。(猜一种化合物)&mdash &mdash 氧化碳   119、叫管不通气,叫瓶又太细,装药虽不多,实验手不离。(猜一化学仪器&mdash &mdash )试管   120、头重尾巴轻,外实里头空,浓稀若问我,一个倒栽葱。(猜一化学仪器)&mdash &mdash 密度计   121、弯弯肚肠外有肚皮,肠内肠外互不通气,肠外走冷水,肠内过热气。(猜一化学仪器)&mdash &mdash 冷凝管   122、巨浪(打一化学名词)&mdash &mdash 沸腾123、偷偷过河( 打一化学名词)&mdash &mdash 密度(秘渡)   124、大哥硬度最大,老二层层软滑,三弟面貌多变。(金刚石、石墨、无定形碳)   125、生的滑稽活动头,颈短腿长腰又粗,莫道肚中只有泪,干起活来喜泪流。(打一化学仪器)&mdash &mdash 漏斗   126、一家兄弟三人,老大平易近人,表面明朗似镜 老二喜欢高温,常在空中飞腾 老三生在冬天,性情比较生硬(打三种物质)&mdash &mdash 老大是&ldquo 水&rdquo ,老二是&ldquo 水蒸气&rdquo ,老三是&ldquo 冰&rdquo !   127、雪骨冰肌俏姑娘,衣着入时好打扮,在家之时一身素,下水有换蓝泳庄(打一物质名称)&mdash &mdash 硫酸铜   128、嫩皮软质白腊袍,一生常在水中泡,有朝一日上岸来,不用点火白烟冒(打一物质名称)&mdash &mdash 白磷   129、一种气体真孤僻,不喜交友爱独立,遇到雷公闪红光,用它可做试电笔 (打一化学元素) &mdash &mdash 氖   130、唐僧师徒往西行,一股妖气扑面迎 路旁鲜花全变白,胸闷气紧泪淋淋 悟空慌忙腾空望,远处山顶呈烟云 请君帮忙想一想,到底是个啥妖精?(打一化学物质)&mdash &mdash ( 二氧化硫 )   131、有条变色鬼,原和人比美 变化十几种,比前先下水(打一化学仪器) &mdash &mdash (PH广泛试纸)   132、色与翡翠比美,名居百鸟之上 不能展翅飞翔,奈因石头模样 生来本性怕热,遇火化气飞扬 煅烧泪水汪汪,现出焦黑惨状(打一化学物质)&mdash &mdash 碱式碳酸铜   133、白粉象糖又象盐,不苦不咸也不甜,高温加热隐身去,一缕白烟上九天 假如你还猜不着,请问老农去田间 (打一化学物质)&mdash &mdash 碳铵或氯化铵   134、是金没有金,状态它特别 落地成珍珠,体温表里常有它(打一物质名称)&mdash &mdash 水银   说是宝,真是宝,动物植物离不了 看不见,摸不着,越往高处越稀少(打一物质名称)&mdash &mdash 空气或氧气   135、一对孪生兄弟,相貌性格各异,透明、硬者昂贵,乌黑、软者价低,若遇烈火焚烧,黄泉路上同去。(打两种单质)&mdash &mdash 金刚石、石墨   136、玻璃身胶头皮,细身材尖溜溜,批发来零售走,进与出一个口(打一化学仪器)&mdash &mdash 胶头滴管   137、老者生来脾气躁,每逢喝水必发烧,高寿虽已九十八,性情依然不可交(打一化学物质)&mdash &mdash 浓硫酸   138、似雪没有雪花,叫冰没有冰渣,无冰可以制冷,细菌休想安家(打一物质名称)&mdash &mdash (干冰)   139、生来刚直不曲,不怕碰破头皮,为了光明温暖,宁愿牺牲自己(打一物质名称)&mdash &mdash 火柴   140、来自海洋地下,炼得洁白无暇,长期为人服务,调味离不开它(打一物质名称)&mdash &mdash 食盐   141、千锤完万凿出深山,烈火焚烧只等闲,粉身碎骨浑不怕,要留清白在人间(打一物质名称)&mdash &mdash 石灰   142、、一个软来一个硬,两人结成一家人,不怕酸来不怕碱,烈火焚烧只等闲(打一物质名称)&mdash &mdash 石棉   143、双手抓不起,刀斧劈不开,煮饭和洗衣,都要请它来(打一物质名称)&mdash &mdash 水   144、乾隆通宝(打一化学元素) &mdash &mdash 钴   145、金属之冠(打一化学元素) &mdash &mdash 钾   146、财迷(打一化学元素) &mdash &mdash 锶   147、气盖峰峦(打一化学元素) &mdash &mdash 氙   148、金先生的夫人(打一化学元素) &mdash &mdash 钛   149、端着金碗的乞讨者(打一化学元素) &mdash &mdash 钙   150、石旁伫立六十天(打一化学元素) &mdash &mdash 硼   151、大洋干涸气上升(打一化学元素) &mdash &mdash 氧   152、天府之国雾气笼(打一同位素)&mdash &mdash 氚   153、五彩缤纷(打五种元素) &mdash &mdash 铬铕钚铜铯   154、富贵不能淫(打八种化学元素) &mdash &mdash 镓铕金银钚锶镁铯   155、睡觉(打两种化学元素)&mdash &mdash 铋钼   156、金库被盗(打化学元素) &mdash &mdash 铁或铥   157、江水往下流,流水暗礁留,沿江筑金塔,气盖黑山头(打四种元素) &mdash &mdash 汞硫铅氙   158、仙女向往人间(打两种化学元素)&mdash &mdash 锶钒   159、塑料开关。(打一化学名词)&mdash &mdash 化学键   160、上岸。(打一化学名词)&mdash &mdash 脱水   161、炉灶已熄。(打一化学术语) &mdash &mdash 烷   162、手工作坊。(打一化学术语) &mdash &mdash 无机   163、势均力敌。(打一理化名词) &mdash &mdash 平衡   164、完壁归赵。(打一化学名词) &mdash &mdash 还原   165、私人飞机。(燕尾格。打一化学名词) &mdash &mdash 载体   166、空气流动。(秋千格。打一化学名词) &mdash &mdash 风化   167、取而代之。(打一化学反应名称) &mdash &mdash 置换   168、能屈能伸。(打一化学名词) &mdash &mdash 可塑性   169、小处着眼。(打一哲学名词) &mdash &mdash 微观   170、好逸恶劳。(打一化学名词) &mdash &mdash 惰性   171、品德好,身体好,学习好。(打一化学物质俗名) &mdash &mdash 的确良   172、现款存妥。(打一物质名称) &mdash &mdash 铵(盐)   173、100%的氢氧化钠。(打一化学物质俗名) &mdash &mdash 纯碱   174、望梅止渴。(打一物质) &mdash &mdash 硫酸   175、三个零。(打一物质) &mdash &mdash O3   176、敢怒不敢言。(打一物质) &mdash &mdash 空气   177、春眠不觉晓。(打一化学物质俗名) &mdash &mdash 安息香   178、嫩皮软质白蜡袍,一生常在水中泡,有朝一日上岸来,不用火点烟自冒。(打一化学物质) &mdash &mdash 白磷   179、交际不广。(徐妃格。打一物质) &mdash &mdash 硼砂   180、干锤百击出深山,烈火焚烧只等闲 粉身碎骨何所惧,要留清白在人间。(打一种化学物质) &mdash &mdash 石灰   181、无水是生,有水就热。(打一化学物质) &mdash &mdash 石灰   182、空中妈妈。(打一矿物) &mdash &mdash 云母  183、老者生来脾气燥,每逢喝水必高烧,高寿虽己九十八,性情依然不可交。 (打一化学物质) &mdash &mdash 浓硫酸实验仪器、操作   184、先服一帖药,看看有无效。(打一化学实验用品)&mdash &mdash 试剂   185、考卷。(打一化学实验用品)&mdash &mdash 试纸   186、斟字写成甚。(打一化学实验仪器)&mdash &mdash 漏斗   187、杞人忧天。(打一化学实验操作) &mdash &mdash 过滤   188、睡到三更就起床。(徐妃格。打一实验操作)&mdash &mdash 搅拌   189、失之千里。(徐妃格。打一化学仪器配件) &mdash &mdash 砝码   190、笔直小红河,风吹不起波,冷热起变化,液面自涨落。(打一实验仪器) &mdash &mdash 温度计   191、不在外面住。(打一科学家名) &mdash &mdash 居里   192、东方欲晓。(打一明代科学家名) &mdash &mdash 徐光启   193、火上加油&mdash &mdash 助燃   194、助人为乐,促成姻缘 身居闹市,一尘不染&mdash &mdash 催化剂   195、行情未定&mdash &mdash 变价   196、雌雄同体 &mdash &mdash 两性   197、合二为一&mdash &mdash 化合   198、顶替&mdash &mdash 置换   199、耳朵按摩&mdash &mdash 摩尔   200、组成半个圆,杀人不见血,追捕无踪影,点火冒蓝烟&mdash &mdash CO   201、白粉象糖又象盐,不苦不咸也不甜,高温加热隐身去,一缕白烟上九天 假如你还猜不着,请问老农去田间&mdash &mdash 碳铵或氯化铵   202、唐僧师徒往西行,一股妖气扑面迎 路旁鲜花全变白,胸闷气紧泪淋淋 悟空慌忙腾空望,远处山顶呈烟云 请君帮忙想一想,到底是个啥妖精?&mdash &mdash 二氧化硫   203、有条变色鬼,原和人比美 变化十几种,比前先下水&mdash &mdash PH广泛试纸   204、似蜡非蜡亮又黄,不声不响水中藏,有朝一日出水面,化作迷雾白茫茫&mdash &mdash 白磷   205、黑面老子白脸娘,高温电炉是产房 身骨硬棒似爹样,灰不溜秋不象娘 遇水化气能燃烧,留下水浆又成娘&mdash &mdash 电石或碳化钙   206、无水是生,有水为熟&mdash &mdash 生石灰   207、闻闻臭煞人,遇酸结成根&mdash &mdash 氨气   208、头等好酒不能喝&mdash &mdash 甲醇   209、调味佳品,来自海中 清水一冲,无影无踪&mdash &mdash 食盐   210、老汉生来脾气躁,每逢喝水发高烧 高寿虽已九十八,性情依旧不可变&mdash &mdash 浓硫酸   211、盲目出售&mdash &mdash 芒硝   212、鄙人全身色紫红,传热导电有奇功 投入仙水棕烟起,绿水翻滚吾消溶 波涛涌上铁架山,水过山波一片红。(打两个化学反应)&mdash &mdash 铜与浓硝酸反应,硝酸铜与铁反应   213、黑块块,烧就红,投进宝瓶仙气中 金光耀眼银光闪,无踪无影瓶中空 一杯钙泉入宝座,化作牛奶无人用。(打一个化学实验)&mdash &mdash 红热的碳块与氧气的燃烧,然后在集气瓶中加进澄清的石灰水   以下打化学仪器 :   a.吹不响的喇叭&mdash &mdash 漏斗   b.盛酒不是瓶,叫灯不照明 &mdash &mdash 酒精灯   c.玻璃身子橡皮头,苗条身子尖尖足,大量收进再零卖,进出都从一个口&mdash &mdash 胶头滴管   d.身上一把尺,肚里一条线,天热与天冷,线儿长短变&mdash &mdash 温度计   e.叫管不通气,叫瓶又太细,装药虽不多,实验手不离&mdash &mdash 胶头滴管   f.形似葫芦底却平,导管活塞里外通,开口肚子就生气,闭口气泡无影踪&mdash &mdash 启普发生器   g.弯弯肚肠外有肚皮,肠内肠外互不通气 肠外走冷水,肠内过热气&mdash &mdash 冷凝管   h.透明葫芦底儿平,固液气体葫心贮,不能加热不能摔,制取气体它内行&mdash &mdash 启普发生器   i.玻璃身体直心肠,一条红线居中央,从来赴汤不蹈火,专门为你试冷热&mdash &mdash 温度计   k.铁臂小铜勺,常在火中烧&mdash &mdash 燃烧匙
  • 麻雀虽小,五脏俱全——奥豪斯与电池世界的不解之缘
    作为人类活动的物质基础,能源就如一只扼住人类社会发展咽喉的手,我们的日常生活处处离不开能源的使用。而在这个能源有限的蓝色星球,能源的发展,能源和环境,能源的存储和再生,是全世界、全人类共同关心的问题。随着科学技术的不断发展,诸如多晶硅太阳能电池,电动汽车,生物质能等新能源技术如同雨后春笋般在我们的生活中流行开来,人们对便携式能源存储设备的需求比以前更加庞大,并继续保持指数级增长。 为了顺应这种潮流,电池技术的发展和生产变得越来越多样化,以满足人们对电池全面功效的需求。小到随身携带的电子设备,大到出行的交通工具,电池几乎遍布于我们生活的每一个角落。今天,小编就来给大家说道说道这小小电池世界里的大学问! 步入有趣的电化学世界 在电池世界里面,首先要提到的就是使用普遍的且有着近150年发展历史的铅酸电池,其广泛应用于交通、通信、电力、军事、航海、航空等领域。从结构上来说,铅酸电池的电极主要由有毒的重金属铅及其氧化物制成,电解液是腐蚀性很强的硫酸溶液。铅酸电池在放电状态下,正极主要成分为二氧化铅,负极主要成分为铅;充电状态下,正负极的主要成分均为硫酸铅。 铅酸电池在耐用性、便携性和环保性方面有比较大的局限。一般深充深放电在300次以内,且有记忆,寿命在两年左右,并且电池内的液体在消耗一段时间后,如果发现电池发烫或者充电时间变短,就需要补充液体;同时,一般铅酸电池的重量是16~30公斤,体积较大,不易携带;此外,电池在生产过程或回收过程容易造成环境污染。 为了倡导可持续发展,对环境无毒害的绿色电池技术正在成为主流。最常见的有碱性电池和锂电池。碱性电池也称碱性干电池、碱性锌锰电池、碱锰电池,是锌锰电池系列中性能最优的电池品种,适用于需放电量大及长时间使用。相比铅酸电池,碱性电池在某些应用中被证明是一种更有效率和安全的替代品,因为它们不含有剧毒和腐蚀性的成分。 碱性电池在结构上采用了与普通电池相反的电极结构,采用二氧化锰与石墨粉的混合物为正极,锌和其他添加物为负极,增大了正负极间的相对面积,而且用高导电性的氢氧化钾溶液替代了氯化铵、氯化锌溶液为电解液,允许离子在两极间移动。特别是负极锌也由片状改变成粉末状,增大了负极的反应面积,加之采用了高性能的电解锰粉,所以电性能得以很大提高。 总的电池反应式为:Zn+MnO2+2H2O+4OH-=Mn(OH)42-+Zn(OH)42- 碱性电池是成功的高容量干电池,也是最具性价比的电池之一。由于它的防漏性相当好,所以可被使用在任何环境。 最后来带大家来看看目前电子设备中流行最广泛的锂电池。锂系电池可分为锂金属电池和锂离子电池。由于金属锂非常活泼的化学性质导致的安全问题尚未完全突破,因此目前广泛使用的锂系电池均为锂离子电池,而非锂金属电池。 锂离子电池是一种充电电池。一般是使用锂合金金属氧化物为正极材料,石墨为负极材料,使用非水电解质的电池。主要依靠锂离子在正负极之间的往返嵌入和脱嵌来工作,实现能量的存储和释放。锂离子电池常见的正极材料主要有钴酸锂、锰酸锂、镍酸锂、磷酸铁锂等。在这里,我们拿拥有较好安全性的磷酸铁锂电池举例。 磷酸铁锂晶体中的P-O键稳固,难以分解,即便在高温或过充时也不会像钴酸锂一样结构崩塌发热或是形成强氧化性物质。电池分左右两边,左边是橄榄石结构的LiFePO4组成的电池正极,由铝箔与电池正极相连,中间是把正、负极隔开的聚合物隔膜,锂离子Li+可以通过而电子e-不能通过;右边是由石墨组成的电池负极,由铜箔与电池的负极相连。电池的上下端之间是电池的电解质,主要成分是六氟磷酸锂LiPF6,整个电池由金属外壳密闭封装。充电时,正极中的Li+通过聚合物隔膜向负极迁移;放电时,负极中的Li+通过隔膜向正极迁移。 锂电池耐用性较强,消耗慢,寿命长,且无记忆,同时便于携带。虽然价格相对比较昂贵,但是非常绿色环保,是一款清洁的能源存储设备,是电池行业的发展趋势。 水分仪跟电池也能扯上关系? 看完了上面对电池知识的普及,是不是有种回到了似曾相识的化学课堂的感觉?其实在电池生产过程中,还有一项指标对电池的性能和可制造性起到至关重要的作用,这就是电池的水分含量。有人会觉得匪夷所思了吧~ 拿碱性电池来说,电池正负极材料成分被混进一种黏性物质,形成并产生合适的形状以构造电池。黏性混合物必须符合严格而又精确的水分含量规定,如果水分含量过多,导电性就会变差,因而电池容量就会不足;反之,如果水分含量不足,电池就很难成形。 全国乃至全球许多的电池生产商都信任奥豪斯的水分测定仪用来测定电池中的水分含量。下面拿来自我国华东地区的一家生产磷酸铁锂电池的客户举例。据相关实验显示,锂电池循环性能及倍率性能与电极水分含量密切相关,当电极水分含量超过0.06%时,电池循环性能和倍率性能降低,放电比容量严重衰减,循环200周后容量衰减近40%,且电池内阻增大,电化学阻抗增加。同时,电池极片在实际生产中的专配环节也会吸收水分,导致其电化学性能衰减。【1】因此在锂电池的生产当中,电极材料需要极其严格地控制水分。 奥豪斯MB 120水分测定仪配有全新的加热腔设计,同时精确控制的卤素加热系统可快速升温并均匀加热,结合高精度称重传感器可确保样品水分测试可读性达到0.01%/1mg。客户在电池生产过程中,每次仅需对电极材料粉末取样3~5g,根据样品的特性选择合适的温度进行测定,很快就能显示精准而又稳定的测定结果。整个过程不仅大大提升了测量的准确性,更节约了时间并提高了产能。 奥豪斯的设备不仅能在实验室中提供快速和重复性的结果,而且也能在工业环境中提供值得信赖的日常测量服务。如果你有更多关于工业生产中原料及成品水分测定方面的疑难咨询,或正在寻求更专业细致的水分仪选型指导,请及时联系我们,我们专业的工程师们届时将会在第一时间为您提供最满意的解答! 参考文献:【1】牛俊婷,孙琳,康书文,赵政威,马紫峰. 电极水分对磷酸铁锂电池性能的影响[J]. 电化学,2015,21(5):465-470.
  • 十三种污水处理基础指标的分析方法汇总
    p    span style=" color: rgb(0, 112, 192) " strong 一、化学需氧量(CODcr)的测定 /strong /span /p p   化学需氧量:指在强酸并加热条件下,用重铬酸钾作为氧化剂处理水样时所消耗氧化剂的量,单位为mg/L。而我国一般采用重铬酸钾法作为依据。 /p p   1、方法原理 /p p   在强酸性溶液中,用一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵溶液回滴。根据硫酸亚铁铵的用量算出水样中还原性物质消耗氧的量。 /p p   2、仪器 /p p   (1)回流装置:带250ml锥形瓶的全玻璃回流装置(如取样量在30ml以上,采用500ml锥形瓶的全玻璃回流装置)。 /p p   (2)加热装置:电热板或变组电炉。 /p p   (3)50ml酸式滴定剂。 /p p   3、试剂 /p p   (1)重铬酸钾标准溶液(1/6 =0.2500mol/L:)称取预先在120℃烘干2h的基准或优级纯重铬酸钾12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。 /p p   (2)试亚铁灵指示液:称取1.485g邻菲啰啉,0.695g硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内。 /p p   (3)硫酸亚铁铵标准溶液:称取39.5g硫酸亚铁铵溶于水,边搅拌便缓慢加入20ml浓硫酸,冷却后移入1000ml容量瓶中,加水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。 /p p   标定方法:准确吸收10.00ml重铬酸钾标准溶液与500ml锥形瓶中,加水稀释至110ml左右,缓慢加入30ml浓硫酸,混匀。冷却后,加入三滴试亚铁灵指示液(约0.15ml)用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色至红褐色及为终点。 /p p   C[(NH4)2Fe(SO4)2]=0.2500× 10.00/V /p p   式中,c—硫酸亚铁铵标准溶液的浓度(mol/L) V—硫酸亚铁铵标准滴定溶液的用量(ml)。 /p p   (4)硫酸-硫酸银溶液:与2500ml浓硫酸中加入25g硫酸银。放置1-2d,不时摇动使其溶解(如无2500ml容器,可在500ml浓硫酸中加入5g硫酸银)。 /p p   (5)硫酸汞:结晶或粉末。 /p p   4、注意事项 /p p   (1)使用0.4g硫酸汞络合氯离子的最高量可达40mL,如取用20.00mL水样,即最高可络合2000mg/L氯离子浓度的水样。若氯离子浓度较低,亦可少加硫酸汞,是保持硫酸汞:氯离子=10:1(W/W)。如出现少量氯化汞沉淀,并不影响测定。 /p p   (2)水样去用体积可在10.00-50.00mL范围之间,但试剂用量及浓度按相应调整,也可得到满意结果。 /p p   (3)对于化学需氧量小于50mol/L的水样,应该为0.0250mol/L重铬酸钾标准溶液。回滴时用0.01/L硫酸亚铁铵标准溶液。 /p p   (4)水样加热回流后,溶液中重铬酸钾剩余量应为加入少量的1/5-4/5为宜。 /p p   (5)用邻笨二甲酸氢钾标准溶液检测试剂的质量和操作技术时,由于每克邻笨二甲酸氢钾的理论CODCr为1.167g,所以溶解0.4251L邻笨二甲酸氢钾与重蒸馏水中,转入1000mL容量瓶,用重蒸馏水稀释至标线,使之成为500mg/L的CODCr标准溶液。用时新配。 /p p   (6)CODCr的测定结果应保留三位有效数字。 /p p   (7)每次实验时,应对硫酸亚铁铵标准滴定溶液进行标定,室温较高时尤其注意其浓度的变化。 /p p   5、测定步骤 /p p   (1)将取回的进水样、出水样摇匀。 /p p   (2)取3个磨口锥形瓶,编号0、1、2 向3个锥形瓶中分别加入6粒玻璃珠。 /p p   (3)向0号锥形瓶中加20mL蒸馏水(用胖度移液管) 向1号锥形瓶中加5mL进水样(用5mL的移液管,要用进水润洗移液管3次),然后再加入15mL蒸馏水(用胖度移液管) 向2号锥形瓶中加20mL出水样(用胖度移液管,要用进水润洗移液管3次)。 /p p   (4)向3个锥形瓶中分别加入10mL重铬酸钾非标液(用10mL的重铬酸钾非标液移液管,要用重铬酸钾非标液润洗移液管3次)。 /p p   (5)将锥形瓶分别放到电子万用炉上,然后打开自来水管将水充满冷凝管(自来不要开的过大,凭经验)。 /p p   (6)从冷凝管上部向3个锥形瓶中分别加30mL硫酸银(用25mL的小量筒),然后分别摇匀3个锥形瓶。 /p p   (7)插上电子万用炉插头,从沸腾开始计时,加热2小时。 /p p   (8)加热完毕后,拔下电子万用炉插头,冷却一段时间后(多长时间凭经验)。 /p p   (9)从冷凝管上部向3个锥形瓶中分别加90mL蒸馏水(加蒸馏水原因:1.从冷凝管上加水,使加热过程中冷凝管内壁的残留水样流入锥形瓶,减小误差。2.加定量的蒸馏水,使滴定过程中的显色反应更加明显)。 /p p   (10)加入蒸馏水后会放热,取下锥形瓶冷却。 /p p   (11)彻底冷却后,向3个锥形瓶中分别加3滴试亚铁灵指示剂,然后分别摇匀3个锥形瓶。 /p p   (12)用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。(注意全自动滴定管的使用方法。滴定完一个要记得读数,并将自动滴定管液位升至最高处,进行下一个滴定)。 /p p   (13)记录读数,计算结果。 /p p   span style=" color: rgb(0, 112, 192) " strong  二、生化需氧量(BOD5)的测定 /strong /span /p p   生活污水与工业废水中含有大量各类有机物。当其污染水域后,这些有机物在水体中分解时要消耗大量溶解氧,从而破坏水体中氧的平衡,使水质恶化。水体因缺氧造成鱼类及其他水生生物的死亡。 /p p   水体中所含的有机物成分复杂,难以一一测定其成分。人们常常利用水中有机物在一定条件下所消耗的氧,来间接表示水体中有机物的含量,生化需氧量即属于这类的一个重要指标。 /p p   生化需氧量的经典测定方法,是稀释接种法。 /p p   测定生化需氧量的水样,采集时应充满并密封于瓶中。在0——4摄氏度下进行保存。一般应在6h内进行分析。若需要远距离转运。在任何情况下,贮存时间不应超过24h。 /p p   1、方法原理 /p p   生化需氧量是指在规定条件下,微生物分解存在水中的某些可氧化物质、特别是有机物所进行的生物化学过程中消耗溶解氧的量。此生物氧化全过程进行的时间很长,如在20摄氏度下培养时,完成次过程需要100多天。目前国内外普遍规定于20加减1摄氏度培养5d,分别测定样品培养前后的溶解氧,二者之差即为BOD5值,以氧的毫克/升表示。 /p p   对某些地面水及大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以降低其浓度和保证有充足的溶解氧。稀释的程度应使培养中所消耗的溶解氧大于2mg/L,而剩余溶解氧在1mg/L以上。 /p p   为了保证水样稀释后有足够的溶解氧,稀释水通常要通入空气进行曝气,便稀释水中溶解氧接近饱和。稀释水中还应加入一定量的无机营养盐和缓冲物质,以保证微生物生长的需要。 /p p   对于不含或少含微生物的工业废水,其中包括酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BOD5时应进行接种,以引入能分解废水中有机物的微生物。当废水中存在着难于被一般生活污水中的微生物以正常速度降解的有机物或含有剧毒物质时,应将驯化后的微生物引入水样中进行接种。 本方法适用于测定BOD5大于或等于2mg/L,最大不超过6000mg/L的水样。当水样BOD5大于6000mg/L,会因稀释带来一定的误差。 /p p   2、仪器 /p p   (1)恒温培养箱 /p p   (2)5——20L细口玻璃瓶。 /p p   (3)1000——2000ml量筒 /p p   (4)玻璃搅棒:棒的长度应比所用量筒高度长200mm。在棒的底端固定一个直径比量筒底小、并带有几个小孔的硬橡胶板。 /p p   (5)溶解氧瓶:250ml到300ml之间,带有磨口玻璃塞并具有供水封用的钟型口。 /p p   (6)虹吸管,供分取水样和添加稀释水用。 /p p   3、试剂 /p p   (1)磷酸盐缓冲溶液:将8.5磷酸二氢钾,21.75g磷酸氢二钾,33.4七水合磷酸氢二钠和1.7g氯化铵溶于水中,稀释至1000ml。此溶液的PH应为7.2 /p p   (2)硫酸镁溶液:将22.5g七水合硫酸镁溶于水中,稀释至1000ml。 /p p   (3)氯化钙溶液:将27.5无水氯化钙溶于水,稀释至1000ml。 /p p   (4)氯化铁溶液:将0.25g六水合氯化铁溶于水,稀释至1000ml。 /p p   (5)盐酸溶液 :将40ml盐酸溶于水,稀释至1000ml。 /p p   (6)氢氧化钠溶液 :将20g氢氧化钠溶于水,稀释至1000ml /p p   (7)亚硫酸钠溶液:将1.575g亚硫酸钠溶于水,稀释至1000ml。此溶液不稳定,需每天配制。 /p p   (8)葡萄糖—谷氨酸标准溶液:将葡萄糖和谷氨酸在103摄氏度干燥1h后,各称取150ml溶于水中,转入1000ml容量瓶内并稀释至标线,混合均匀。此标准溶液临用前配制。 /p p   (9)稀释水:稀释水的PH值应为7.2,其BOD5应小于0.2ml/L。 /p p   (10)接种液:一般采用生活污水,在室温下放置一昼夜,取上清液使用。 /p p   (11)接种稀释水:分取适量接种液,加入稀释水中,混匀。每升稀释水中接种液加入量为生活污水1——10ml 或表层土壤侵出液20——30ml 接种稀释水的PH值应为7.2。BOD值以在0.3——1.0mg/L之间为宜。接种稀释水配制后应立即使用。 /p p   4、计算 /p p   1、不经稀释直接培养的水样 /p p   BOD5(mg/L)=C1-C2 /p p   式中:C1——水样在培养前的溶解氧浓度(mg/L) /p p   C2——水样经 5 天培养后,剩余溶解氧浓度(mg/L)。 /p p   2、经稀释后培养的水样 /p p   BOD5(mg/L)=[(C1-C2)—(B1-B2)f1]∕f2 /p p   式中:C1——水样在培养前的溶解氧浓度(mg/L) /p p   C2——水样经 5 天培养后,剩余溶解氧浓度(mg/L) /p p   B1——稀释水(或接种稀释水) 在培养前的溶解氧浓度 (mg/L) /p p   B2——稀释水(或接种稀释水) 在培养后的溶解氧浓度 (mg/L) /p p   f1 —— 稀释水(或接种稀释水)在培养液中所占比例 /p p   f2 —— 水样在培养液中所占比例。 /p p   B1——稀释水在培养前的溶解氧 /p p   B2——稀释水在培养后的溶解氧 /p p   f1——稀释水在培养液中所占比例 /p p   f2——水样在培养液中所占比例。 /p p   注:f1,f2的计算:例如培养液的稀释比为3%,即3份水样,97份稀释水,则f1=0.97,f2=0.03。 /p p   5、注意事项 /p p   (1)水中有机物的生物氧化过程,可分为二个阶段。第一阶段为有机物中的碳和氢、氧化生成二氧化碳和水,此阶段称为碳化阶段。完成碳化阶段在20摄氏度大约需20天左右。第二阶段为含氮物质及部分氮,氧化为亚硝酸盐及硝酸盐,称为硝化阶段。完成硝化阶段在20摄氏度时需要约100天。因此,一般测定水样BOD5时,硝化作用很不现著或根本不发生硝化作用。但对于生物处理池的出水,因其中含有大量的硝化细菌。因此在测BOD5时也包括了部分含氮化物的需氧量。对于这样的水样,,可以加入硝化抑制剂,抑制硝化过程。为此目的,可在每升稀释水样中加入1ml浓度为500mg/L的丙烯基硫脲或一定量固定在氯化钠上的2-氯带-6-三氯甲基啶,使TCMP在稀释样品中的浓度大约为0。5 mg/L。 /p p   (2) 玻璃器皿应彻底清洗干净。先用洗涤剂浸泡清洗,然后用稀盐酸浸泡,最后依次用自来水,蒸馏水洗净。 /p p   (3) 为检查稀释水和接种液的质量,以及化验人员的操作水平,可将20ml葡萄糖-谷氨酸标准溶液用接种稀释水稀释至1000ml,按测定BOD5的操作步骤。测得BOD5的值应在180—230mg/L之间。否则应检查接种液、稀释水的质量或操作技术是否存在问题。 /p p   (4) 水样稀释倍数超过100倍时,应预先在容量瓶中用水初步稀释后,再取适量进行最后稀释培养。 /p p    span style=" color: rgb(0, 112, 192) " strong 三、悬浮性固体物质(SS)的测定 /strong /span /p p   悬浮固体表示水中不溶解的固体物质的量。 /p p   1、方法原理 /p p   测定曲线内置,通过测定样品对特定波长的吸光度 转换为待测参数的浓度值,并通过液晶显示屏显示。 /p p   2、测定步骤 /p p   (1)将取回的进水样、出水样摇匀。 /p p   (2)取1支比色管加入25mL进水样,然后用蒸馏水加至刻度线(因进水SS较大,若不稀释可能会超过悬浮物测试仪的最大限度,使结果不准。当然进水取样量不固定,若进水太脏就取10mL,用蒸馏水加至刻度线)。 /p p   (3)开启悬浮物测试仪,向类似于比色皿的小盒内加入蒸馏水至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,若不为零则按清零键,将仪器清零(测一次即可)。 /p p   (4)测进水SS:将比色管内的进水样倒入小盒内润洗3次,然后将进水样加至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,测三次,求取平均值。 /p p   (5)测出水SS:将出水样摇匀,润洗三次小盒?(方法同上) /p p   3、计算 /p p   进水SS的结果为:稀释倍数*测进水样读数 出水SS的结果直接为测出水样仪器读数 /p p    span style=" color: rgb(0, 112, 192) " strong 四、总磷(TP)的测定 /strong /span /p p   1、方法原理 /p p   在酸性条件下,正磷酸盐与钼酸铵、酒石酸锑氧钾反应,生成磷钼杂多酸,被还原剂抗坏血酸还原,则变成蓝色络合物,通常集成磷钼蓝。 /p p   本方法最低检出浓度为0.01mg/L(吸光度A=0.01时所对应的浓度) 测定上限为0.6mg/L。可适用于测定地面水、生活污水及日化、磷肥、机加工金属表面磷化处理、农药、钢铁、焦化等行业的工业废水中的正磷酸盐分析。 /p p   2、仪器 /p p   分光光度计 /p p   3、试剂 /p p   (1)1+1 硫酸。 /p p   (2)10%(m/V)抗坏血酸溶液:溶解10g抗坏血酸于水中,并稀释至100ml。该溶液储存在棕色玻璃瓶中,在冷处可稳定几周。如颜色变黄,则弃去重配。 /p p   (3)钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24· 4H2O]于100ml水中。溶解0。35g酒石酸锑氧钾[K(SbO)C4H4O6· 1/2H2O]于100ml水中。在不断的搅拌下,将钼酸铵溶液徐徐加到300ml(1+1)硫酸中,加酒石酸锑钾溶液并且混合均匀。试剂贮存在棕色的玻璃瓶中于冷处保存。至少稳定2个月。 /p p   (4)浊度-色度补偿液:混合两份体积的(1+1)硫酸和一份体积的10%(m/V)抗坏血酸溶液。此溶液当天配制。 /p p   (5)磷酸盐贮备溶液:将磷酸二氢钾(KH2PO4)于110° C干燥2h,在干燥器中放冷。称取0.217g溶于水,移入1000ml容量瓶中。加(1+1)硫酸5ml,用水稀释至标线。此溶液每毫升50.0ug磷。 /p p   (6)磷酸盐标准溶液:吸取10.00ml磷酸盐贮备液于250ml容量瓶中,用水稀释至标线。此溶液每毫升含2.00ug磷。临用时现配。 /p p   4、测定步骤(仅以测进、出水样为例) /p p   (1)将取回的进水样、出水样摇匀(生化池上点的水样要摇匀放置一段时间取上清液)。 /p p   (2)取3支具塞刻度管,第一支具塞刻度管加蒸馏水加至上部刻度线 第二支具塞刻度管加5mL进水样,然后用蒸馏水加至上部刻度线 第三支具塞刻度管 /p p   的盐酸浸泡2h,或用不含磷酸盐的洗涤剂刷洗。 /p p   (3)比色皿用后应可以稀硝酸或铬酸洗液浸泡片刻,以除去吸附的钼蓝呈色物。 /p p   span style=" color: rgb(0, 112, 192) " strong  五、总氮(TN)的测定 /strong /span /p p   1、方法原理 /p p   在60℃以上的水溶液中过硫酸钾按如下反应式分解,生成氢离子和氧。 K2S2O8+H2O??KHSO4+1/2O2 KHSO4& amp #8594K++HSO4_ HSO4& amp #8594H++SO42- /p p   加入氢氧化钠用以中和氢离子,使过硫酸钾分解完全。在120℃-124℃的碱性介质条件下,用过硫酸钾作氧化剂,不仅可将水样中的氨氮和亚硝酸盐氮氧化为硝酸盐,同时将水样中大部分有机氮化合物氧化为硝酸盐。而后用紫外分光光度法分别于波长220nm与275nm处测定其吸光度,按下式计算硝酸盐氮的吸光度: A=A220-2A275 从而计算总氮的含量。其摩尔吸光系数为1.47× 103 /p p   2、干扰及消除 /p p   (1)水样中含有六价铬离子及三价铁离子时,可加入5%盐酸羟胺溶液1-2ml,以消除其对测定的影响。 /p p   (2)碘离子及溴离子对测定有干扰。碘离子含量相对于总氮含量的0.2倍时无干扰。溴离子含量相对于总氮含量的3.4倍时无干扰。 /p p   (3)碳酸盐及碳酸氢盐对测定的影响,在加入一定量的盐酸后可消除。 /p p   (4)硫酸盐及氯化物对测定无影响。 /p p   3、方法的适用范围 /p p   该方法主要适用于湖泊,水库,江河水中总氮的测定。方法检测下限为0.05mg/L 测定上限为4mg/L。 /p p   4、仪器 /p p   (1)紫外分光光度计。 /p p   (2)压力蒸汽消毒器或家用压力锅。 /p p   (3)具塞玻璃磨口比色管。 /p p   5、试剂 /p p   (1)无氨水,每升水中加入0.1ml浓硫酸,蒸馏。收集流出液于玻璃容器中。 /p p   (2)20%(m/V)氢氧化钠:称取20g氢氧化钠,溶于无氨水中,稀释至100ml。 /p p   (3)碱性过硫酸钾溶液:称取40g过硫酸钾,15g氢氧化钠,溶于无氨水中,稀释至1000ml,溶液存放在聚乙烯瓶内,可储存一周。 /p p   (4)1+9盐酸。 /p p   (5)硝酸钾标准溶液:a、标准贮备液:称取0.7218g经105-110℃烘干4h的硝酸钾溶于无氨水中,移至1000ml容量瓶中定容。此溶液每毫升含100毫克硝酸盐氮。加入2ml三氯甲烷为保护剂,至少可稳定6个月。b、硝酸钾标准使用液:将贮备液用无氨水稀释10倍而得。此溶液每毫升含10毫克硝酸盐氮。 /p p   6、测定步骤 /p p   (1)将取回的进水样、出水样摇匀。 /p p   (2)取3个25mL的比色管(注意不是大的比色管)。第一支比色管加蒸馏水加至下部刻度线 第二支比色管加1mL进水样,然后用蒸馏水加至下部刻度线 第三支比色管加2mL出水样,然后用蒸馏水加至下部刻度线。 /p p   (3)分别向3个比色管加5mL碱式过硫酸钾 /p p   (4)将3个比色管放入到塑料烧杯内,然后放到高压锅内加热。进行消解。 /p p   (5)加热完毕,拆开纱布,自然冷却。 /p p   (6)冷却后,再向3个比色管分别加1mL1+9的盐酸。 /p p   (7)向3个比色管分别加蒸馏水至上部刻度线,摇匀。 /p p   (8)使用两种波长,用分光光度计测。首先用波长275nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数 再用波长220nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数。 /p p   (9)计算结果。 /p p    span style=" color: rgb(0, 112, 192) " strong 六、氨氮(NH3-N)的测定 /strong /span /p p   1、方法原理 /p p   典化汞和典化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在教宽的波长范围不内具强烈吸收。通常测量用波长在410—425nm范围。 /p p   2、水样的保存 /p p   水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时加硫酸水样酸化至PH& lt 2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氨而遭致污染。 /p p   3、干扰及消除 /p p   脂肪胺、芳香胺、醛类、丙酮、醇类和有机氮胺类等有机化合物,以及铁,锰,镁和硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可以酸性条件下加热以除去对金属离子的干扰,还可以加入适量的掩蔽剂加以消除。 /p p   4、方法的适用范围 /p p   本法最低检出浓度为0.025mg/l(光度法),测定上限为2mg/l.采用目视比色法,最低检出浓度为0.02mg/l。水样作适当、预处理后,本法可适用于地面水,地下水、工业废水和生活污水。 /p p   5、仪器 /p p   (1)分光光度计。 /p p   (2)PH计 /p p   6、试剂 /p p   配制试剂用水均应为无氨水。 /p p   (1)纳氏试剂 /p p   可选择下列一种方法制备 /p p   1、称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,该为滴加饱和的二氧化汞溶液,并充分搅拌,出现朱红色沉淀不在溶解时,停止加氯化汞溶液。 /p p   另称取60g氢氧化钾溶于水中,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静至过夜,将上清液移入聚乙烯瓶中,密塞保存。 /p p   2、称取16 g氢氧化钠,溶于50ml水中,充分冷却至室温。 /p p   另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 /p p   (2)酸钾钠溶液 /p p   称取50g酒石酸钾钠(KNaC4H4O6.4H2O)溶于100ml水中,加热蒸沸以除去氨,冷却,定溶至100ml。 /p p   (3)铵标准贮备溶液 /p p   称取3.819g经100摄氏度干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 /p p   (4)铵标准使用溶液 /p p   移取5.00ml胺标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 /p p   7、计算 /p p   从校准曲线上查得氨氮含量(mg) /p p   氨氮(N,mg/l)=m/v*1000 /p p   式中,m——由校准查得氨氮量(mg),V——水样体积(ml)。 /p p   8、注意事项 /p p   (1)钠氏试剂碘化汞与碘化钾的比例,对显色反映的灵敏度有较大影响。静止后生成的沉淀应除去。 /p p   (2)滤纸中长含痕量铵盐,使用时注意用无氨水洗涤。所有玻璃器皿应避免实验室空气中氨的沾污。 /p p   9、测定步骤 /p p   (1)将取回的进水样、出水样摇匀。 /p p   (2)将进水样、出水样分别倒入到100mL的烧杯内。 /p p   (3)向两个烧杯内分别加入1mL 10%的硫酸锌和5滴氢氧化钠,用2个玻璃棒分别搅拌。 /p p   (4)静置3分钟后开始过滤。 /p p   (5)将静置后的水样倒入到滤斗内,过滤部分后将底下烧杯内的滤液倒掉,然后再用此烧杯接漏斗内剩余的水样,直到过滤完毕再次将底下烧杯内的滤液倒掉。(换言之用一漏斗的滤液洗两次烧杯) /p p   (6)分别过滤完烧杯内的剩余水样。 /p p   (7) 取3个比色管。第一支比色管加蒸馏水加至刻度线 第二支比色管加3--5mL进水样滤液,然后用蒸馏水加至刻度线 第三支比色管加2mL出水样滤液,然后用蒸馏水加至刻度线。(所取进、出水样滤液的量不固定) /p p   (8)分别向3个比色管分别加1mL酒石酸钾钠和1.5mL纳氏试剂。 /p p   (9)分别摇匀,计时10分钟。用分光光度计测,用波长420nm,20mm的比色皿。记数。 /p p   (10)计算结果。 /p p    span style=" color: rgb(0, 112, 192) " strong 七、硝酸盐氮(NO3-N)的测定 /strong /span /p p   1、方法原理 /p p   水样在碱性介质中,硝酸盐可被还原剂(戴氏合金)在加热情况下定量被还原为氨,经蒸馏后被吸收于硼酸溶液中,用纳氏试剂光度法或酸滴定法测定。 /p p   2、干扰及消除 /p p   亚硝酸盐在此条件下,亦被还原为氨,需预先除去。水样中的氨及氨盐亦可在加入戴氏合金以前,预蒸馏使除去。 /p p   本法尤适用于严重污染的水样中硝酸盐氮的测定,同时,亦可作为水样中亚硝酸盐氮的测定(由水样在碱性预蒸馏去除氨和铵盐后,测定亚硝酸盐总量,减去单独测定的硝酸盐量后,即为亚硝酸盐量)。 /p p   3、仪器 /p p   带氮球的定氮蒸馏装置。 /p p   4、试剂 /p p   (1)氨基磺酸溶液:称取1g氨基磺酸(HOSO2NH2)溶于水,稀释至100ml。 /p p   (2)1+1盐酸 /p p   (3)氢氧化纳溶液:称取300g氢氧化纳溶解于水,稀释至1000ml。 /p p   (4)戴氏合金(Cu50:Zn5:Al45)粉剂。 /p p   (5)硼酸溶液:称取20g硼酸(H3BO3)溶于水,稀释至1000ml.。 /p p   5、测定步骤 /p p   (1)将取回的3号点和回流点的样摇匀后放置澄清一段时间。 /p p   (2)取3个比色管。第一支比色管加蒸馏水加至刻度线 第二支比色管加3mL3号点样上清液,然后用蒸馏水加至刻度线 第三支比色管加5mL回流点么上清液,然后用蒸馏水加至刻度线。 /p p   (3)取3个蒸发皿,降3个比色管中的液体对应倒入蒸发皿中。 /p p   (4)向3个蒸发皿中分别加入0.1mol/L的氢氧化钠调节PH至8。(使用精密PH试纸,范围为5.5—9.0之间的。每个约需氢氧化钠20滴左右) /p p   (5)开启水浴锅,将蒸发皿放到水浴锅上,温度设定为90℃,直至蒸干为止。(约需2小时) /p p   (6)蒸干后,取下蒸发皿冷却。 /p p   (7)冷却后分别向3个蒸发皿中加1mL酚二磺酸,用玻璃棒研磨,使试剂与蒸发皿中的残渣充分接触,静置片刻后,再研磨一次。放置10分钟后,分别加入约10mL的蒸馏水。 /p p   (8)分别向蒸发皿中边搅拌边加入3--4mL氨水,然后将其移到对应的比色管中。分别加蒸馏水至刻度线。 /p p   (9)分别摇匀,用分光光度计测,用波长410nm,10mm的比色皿(普通玻璃的、稍新的)。并记数。 /p p   (10)计算结果。 /p p   span style=" color: rgb(0, 112, 192) " strong  八、溶解氧(DO)的测定 /strong /span /p p   溶解在水中的分子态氧称为溶解氧。天然水中的溶解氧含量取决于水中与大气中氧的平衡。 /p p   一般采用采用碘量法测溶解氧 /p p   1、方法原理 /p p   水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀,加酸后,氢氧化物沉淀溶解并与碘离子反应释放出游离碘。以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,可计算溶解氧的含量。 /p p   2、测定步骤 /p p   (1)用广口瓶取回的9号点的样,静置十几分钟。(注意用的是广口瓶,并注意取样方法) /p p   (2)用玻璃弯管插入广口瓶样内,用虹吸法向溶解氧瓶中吸入上清液,先少吸一些,润洗溶解氧瓶3次,最后再吸入上清液注满溶解氧瓶。 /p p   (3)向满的溶解氧瓶中加入1mL硫酸锰和2mL碱性碘化钾。(注意加的时候的注意事项,从中部加入) /p p   (4)盖上溶解氧瓶的瓶盖,上下摇匀,隔几分钟再摇,摇匀三次。 /p p   (5)再向溶解氧瓶中加入2mL浓硫酸,摇匀。放在暗处静置五分钟。 /p p   (6)向碱式滴定管(带橡胶管、玻璃珠的。注意酸式、碱式滴定管的区别)倒入硫代硫酸钠至刻度线,准备滴定。 /p p   (7)静置5分钟后,取出放在暗处的溶解氧瓶,将溶解氧瓶中的液体倒入到100mL的塑料量筒内,润洗3次。最后倒至量筒的100mL刻度线。 /p p   (8)将量筒内的液体倒入到锥形瓶中。 /p p   (9)用硫代硫酸钠向锥形瓶中滴定至无色,然后加入一滴管淀粉指示剂,再用硫代硫酸钠滴定,直至褪色,记录读数。 /p p   (10)计算结果。 /p p   溶解氧(mg/L)=M*V*8*1000/100 /p p   M为硫代硫酸钠溶液浓度(mol/L) /p p   V为滴定时消耗硫代硫酸钠溶液的体积(mL) /p p   span style=" color: rgb(0, 112, 192) " strong  九、总碱度 /strong /span /p p   1、测定步骤 /p p   (1)将取回的进水样、出水样摇匀。 /p p   (2)将进水样过滤(若进水较干净,则不需过滤),用100mL的量筒取滤液100mL到500mL的三角烧瓶中。用100mL的量筒取摇匀后的出水样100mL到另一个500mL的三角烧瓶中。 /p p   (3)分别向两个三角烧瓶中加3滴甲基红-亚甲基兰指示剂,呈浅绿色。 /p p   (4)向碱式滴定管(带橡胶管、玻璃珠的,50mL的。而溶解氧测定中用到的碱式滴定管是25mL的,注意区分)倒入0.01mol/L的氢离子标液至刻度线。 /p p   (5)分别向两个三角烧瓶中用氢离子标液滴定呈现淡紫色,记录所用的体积读数。(切记滴定完一个之后读数,并加满滴定另一个。进水样约需四十多毫升,出水样约需一十多毫升) /p p   (6)计算结果。用氢离子标液的用量*5即为体积。 /p p    span style=" color: rgb(0, 112, 192) " strong 十、污泥沉降比(SV30)的测定 /strong /span /p p   1、测定步骤 /p p   (1)取一个100mL的量筒。 /p p   (2)将取回的氧化沟9号点的样摇匀,倒入量筒至上部刻度线处。 /p p   (3)开始计时30分钟后,读出分界面的刻度读数并记录。 /p p span style=" color: rgb(0, 112, 192) " strong   十一、污泥体积指数(SVI)的测定 /strong /span /p p   SVI的测定是用污泥沉降比(SV30)除以污泥浓度(MLSS)即为结果。但要注意换算单位。SVI的单位为mL/g。 /p p    span style=" color: rgb(0, 112, 192) " strong 十二、污泥浓度(MLSS)的测定 /strong /span /p p   1、 测定步骤 /p p   (1)将取回的9号点的样和回流点的样摇匀。 /p p   (2)将9号点的样和回流点的样各取100mL到量筒中。(9号点的样用测污泥沉降比所取得即可) /p p   (3)用旋片式真空泵分别过滤量筒内9号点的样和回流点的样。(注意滤纸的选用,所用的滤纸是提前称好的滤纸。若当天9号点的样要测MLVSS,过滤9号点样就要选用定量滤纸,反正选用定性滤纸。另外注意定量滤纸与定性滤纸的的区别) /p p   (4)取出过滤的滤纸泥样放到电热鼓风干燥箱,干燥箱温度升至105℃开始计时干燥2小时。 /p p   (5)取出干燥后的滤纸泥样放到玻璃干燥器内冷却半小时。 /p p   (6)冷却后用精密电子天平称量并记数。 /p p   (7)计算结果。污泥浓度(mg/L)=(天平读数-滤纸重量)*10000 /p p    span style=" color: rgb(0, 112, 192) " strong 十三、挥发性有机物质(MLVSS)的测定 /strong /span /p p   1、测定步骤 /p p   (1)将9号点的滤纸泥样用精密电子天平称量后,将滤纸泥样放入到小的瓷坩埚内。 /p p   (2)开启箱式电阻炉,温度调至620℃,将小瓷坩埚放入到箱式电阻炉内约2小时。 /p p   (3)两小时后,关闭箱式电阻炉,冷却3小时后将箱式电阻炉的门开一点小缝,再次冷却半小时左右,确保瓷坩埚温度不超过100℃。 /p p   (4)取出瓷坩埚放到玻璃干燥器内再次冷却半小时左右,放到精密电子天平上进行称量,并记录读数。 /p p   (5)计算结果。 /p p   挥发性有机物质(mg/L)=(滤纸泥样重+小坩埚重-天平读数)*10000。 /p p br/ /p
  • 中关村材料试验技术联盟立项《多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法》等9项团体标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)标准化领域委员会审查,CSTM标准化委员会批准(具体标准如下,详细公告内容请至CSTM官网查看),特此公告。序号标准名称标准立项号所属委员会1多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法CSTM LX 2000 01429.1—2024FC202多钒酸铵分析方法 第2部分:硅含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.2—2024FC203多钒酸铵分析方法 第3部分:铁、磷 硫含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.3—2024FC204多钒酸铵分析方法 第4部分:氧化钾、氧化钠含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.4—2024FC205多钒酸铵分析方法 第5部分:烧得率的测定 高温煅烧法CSTM LX 2000 01429.5—2024FC206民用大型客机 热固性液体垫片材料 热循环稳定性测试方法CSTM LX 6600 01430—2024FC667泵组碳足迹核算与碳标签评价规范CSTM LX 9500 01431—2024FC958零碳建造评价规范CSTM LX 9500 01432—2024FC959水质 急性毒性现场快速监测 发光细菌法CSTM LX 9803 01433—2024FC98/TC03联系方式如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。CSTM标准化委员会秘书处联系方式联系人:陈鸣,范小芬办公电话:010-62187521手机:13011072266,13426028810邮箱:chenming@ncschina.com,fanxiaofen@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制