当前位置: 仪器信息网 > 行业主题 > >

电池粉末仪

仪器信息网电池粉末仪专题为您提供2024年最新电池粉末仪价格报价、厂家品牌的相关信息, 包括电池粉末仪参数、型号等,不管是国产,还是进口品牌的电池粉末仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池粉末仪相关的耗材配件、试剂标物,还有电池粉末仪相关的最新资讯、资料,以及电池粉末仪相关的解决方案。

电池粉末仪相关的论坛

  • 锂电池废料分析样品处理

    现在锂电池废料的回收是一个循环经济,有很大的利益空间。废料中钴、镍均为高价元素,在分析时有高温烧的,但会改变组份、结构;有直接研磨的,但后续有黑粉末浮于溶解酸液面。大家在分析前是怎么处理样品的,不妨一起讨论交流。

  • 电池薄膜的重要性

    隔膜是构成电池的基本材料之一,置于电池的正负电极之间,有利于提高电池的比容量和比能量,降低电池的内阻。好的电池隔膜对于电子绝缘性、离子导电性、材料的厚度和均匀性、力学强度、耐碱性、透气性以及电化学稳定性都有要求。电池结构 电池主要由正极、负极、隔板、电解液四部分构成,隔膜是特殊形式的隔板。在使用隔膜之前,浆糊纸曾用作隔板广泛应用于糊式电池和纸板电池中,当电池工业发展到碱性电池、二次电池之后,以前的浆糊纸已经无法满足电池设计的要求,在多种指标上均占优势的 隔膜就成为主要使用的隔板了。电池隔膜的作用 电池隔膜是电池结构中最重要的一部分,它作为电池的正负极之间的隔离板,首先它必须具备良好的电绝缘性,其次由于它在电解液中处于浸湿状态,必须具备良好的耐碱性,并且要有良好的透气性等。因此电池制造商在选择隔膜时多选用在较广的温度范围内(-55℃~85℃)保持电子稳定性、体积稳定性、和化学稳定性,对电子呈高阻,对离子呈低阻,便于气体扩散的尽量薄的隔离板。 隔膜性能的好坏在很大程度上将影响电池的循环寿命和自放电状况,隔膜孔洞、厚度、阻抗的设计也成为判别电池品质好坏的重要指标。对于镍氢电池,如果隔膜的透气性不好,电池过充时正极产生的氧气可能无法被快速复合掉,造成电池内压升高,当压力升高达到一定值后将从安全阀泄压从而造成电解液的损失;隔膜透气性好将有利于电池的氧复合顺利进行,增加电池的耐过充性能。对于锂电池,如果隔膜的透气性不好,将影响锂离子在正负极之间的传递,继而影响锂电池的充放电。对于锂离子电池用隔膜,基本性能参数如下:1、厚度:2、透气率:3、浸润度:4、化学稳定性:5、孔径及分布:一般来说,隔膜为了阻止电极颗粒的直接接触,很重要的一点是防止电极颗粒直接通过隔膜。目前所使用的电极颗粒一般在10微米的量级,而所使用的导电添加剂则在10纳米的量级,不过很幸运的是一般炭黑颗粒倾向于团聚形成大颗粒。一般来说,亚微米孔径的隔膜足以阻止电极颗粒的直接通过,当然也不排除有些电极表面处理不好,粉尘较多导致的一些诸如微短路等情况。6、穿刺强度:7、热稳定性:8、闭孔温度、破膜温度:9、孔隙率:目前,锂离子电池用隔膜的空隙率为40%左右。孔隙率的大小和内阻有一定的关系,但不同种隔膜之间的孔隙率的绝对值无法比较市场情况:目前隔膜供应商主要为以下几家:美国:Celgard(三层PP/PE/PP),Entek(单层PE)荷兰:DSM(单层PE)德国:Degussa(为无机有机复合膜,较厚,主要适用于动力型大电池)日本:Asahi,Tonen(单层PE),UBE(三层PP/PE/PP)此外国内有三到五家在做,但目前产品性能还不尽人意。国内制作的目前主要有以下一些问题:1、孔隙率不够:2、厚度不均3、有针孔4、均匀度不够5、强度不够总结:理想的电池隔膜孔径值应该在100nm左右,但目前国产的电池隔膜孔径值仅在几微米,这就要要求有专业的测试仪器进行相关研究开发,以满足国内市场的空缺。

  • 【资料】电池回收方法

    回收方法:实验室回收方法:普通干电池是圆筒形的,外筒由锌制成,这一锌筒即为电池的负极;筒中央炭棒为正极;筒内为二氧化锰,氯化铵和氯化锌。下面介绍两种废干电池内物质回收利用的方法: (1)提取氯化铵:将电池里的黑色物质放在水里搅拌并过滤,将部分滤液放在蒸发皿中蒸发,得白色固体,再加热,利用“升华”收集较纯的氯化铵。 (2)制取锌粒:将锌筒上的锌片剪成碎片,放在坩埚中强热(锌熔点419度),熔化后小心将锌页倒入冷水中,得锌粒。 工业回收方法: 国际上通行的废旧电池处理方式大致有三种:固化深埋、存放于废矿井、回收利用。 1.固化深埋、存放于废矿井 如法国一家工厂就从中提取镍和镉,再将镍用于炼钢,镉则重新用于生产电池。 其余的各类废电池一般都运往专门的有毒、有害垃圾填埋场,但这种做法不仅花费太大而且还造成浪费,因为其中尚有不少可作原料的有用物质。 2.回收利用 (1)热处理 瑞士有两家专门加工利用旧电池的工厂,巴特列克公司采取的方法是将旧电池磨碎,然后送往炉内加热,这时可提取挥发出的汞,温度更高时锌也蒸发,它同样是贵重金属。铁和锰熔合后成为炼钢所需的锰铁合金。该工厂一年可加工2000吨废电池,可获得780吨锰铁合金,400吨锌合金及3吨汞。另一家工厂则是直接从电池中提取铁元素,并将氧化锰、氧化锌、氧化铜和氧化镍等金属混合物作为金属废料直接出售。不过,热处理的方法花费较高,瑞士还规定向每位电池购买者收取少量废电池加工专用费。 (2)“湿处理” 马格德堡近郊区正在兴建一个“湿处理”装置,在这里除铅蓄电池外,各类电池均溶解于硫酸,然后借助离子树脂从溶液中提取各种金属,用这种方式获得的原料比热处理方法纯净,因此在市场上售价更高,而且电池中包含的各种物质有95%都能提取出来。湿处理可省去分拣环节(因为分拣是手工操作,会增加成本)。马格德堡这套装置年加工能力可达7500吨,其成本虽然比填埋方法略高,但贵重原料不致丢弃,也不会污染环境。 (3)真空热处理法 德国阿尔特公司研制的真空热处理法还要便宜,不过这首先需要在废电池中分拣出镍镉电池,废电池在真空中加热,其中汞迅速蒸发,即可将其回收,然后将剩余原料磨碎,用磁体提取金属铁,再从余下粉末中提取镍和锰。这种加工一吨废电池的成本不到1500马克。 前景展望:四、前景展望 现在,人们的环保意识有了很大提高,比如北京、上海等城市已经安置了废电池投放专用桶。相信不久的将来,废电池回收利用的问题必定会得到很好的解决。

  • 粉末涂层测厚仪在喷涂施工中的应用

    对于粉末喷涂施工,测量涂层固化前的粉末层厚度也有着重要的意义。粉末涂层测厚仪与湿膜测厚仪的形式有所不同,使用方法也有区别。其中,非接触式粉末厚度测厚仪是一种超声波测厚仪,使用很方便,可以根据粉末的厚度显示出最终涂层的厚度。  传统的粉末涂层测厚仪包括有:干膜测厚仪和湿膜测厚仪。  [b]湿膜测厚仪应用:[/b]  有研究表明,涂层固化过程中会出现应力是不争的事实。大部分涂层在固化过程中会收缩,由此在涂层内部就出现了拉应力 要是在涂层固化过程中涂料分子的结构发生变化,涂层就会膨胀,涂层内部就会存在压应力。  另外,涂层和基材热膨胀系数不同以及各道涂层间性能的差别等因素都会使涂层内部产生应力。如果涂层中的应力超过了涂层的抗拉强度,涂层就会开裂。内应力的存在还可能使涂层的附着力和抗疲劳性能下降,致使涂层的使用寿命缩短。一旦在涂层完全固化后发现涂层厚度不符合设计要求,就很有可能需要将原先的涂层清除干净后重新涂漆,由此造成的损失会很大。因此,我们需要在涂装过程中随时检查涂层的湿膜厚度。  [b]干膜测厚仪应用:[/b]  涂装施工正式结束之前,要按有关要求或标准对涂层的厚度进行全面的检查。检查涂层厚度的方法有很多,但在涂装施工现场,无损检测法是测量涂层厚度最为常用的方法,这种方法操作简便,工作效率高,经济性好,对涂层不会造成破坏性影响。  为了满足用户对粉末涂料固化前的厚度进行非接触、无破坏性测量,TQC新推出一款可用于湿膜和干膜分析的粉末涂层测厚仪,采用光热法,能够非接触,无破坏性对粉末涂料固化前后的厚度进行分析测量。这台轻巧稳健的仪器可快速精准地测量在金属和MDF底材上粉末涂层在固化前后的厚度。测量系统由传感器和显示器组成,通过一条电缆连接。 [b] TQC Powder TAG 粉末涂层测厚仪特点:[/b]  1、操作简便。只需将探头在合适的距离指向测量物品的表面,然后按下“测量”按钮。  2、可测量任意形状和尺寸的样品,包括边框和边缘的样品。  3、测量范围大,测量值极其精准。  4、可测量任意金属底材品如钢、铝及非金属底材如中密度纤维板。  5、适用于固化或未固化粉末涂料。[align=center][url=http://www.tqc-china.com][img=TQC Powder TAG 粉末涂层测厚仪,416,369]http://www.tqc-china.com/system/upload/day_170711/201707111119434805.png[/img][/url][/align][b]关于TQC Powder TAG 粉末涂层测厚仪更多信息,欢迎随时咨询翁开尔热线:400-680-8138,或者登陆:[/b]www.tqc-china.com.

  • 粉末粒度图片

    粉末粒度图片

    帮我看看这个粉末图片,大的和小的都是单个的吗?还是这大尺寸的是好多团在一起的,好难区分。

  • 粉末样品的电化学性能测试?

    我们实验室主要是做粉末样品的形貌研究的,如聚苯胺、氢氧化镍等,最近买了一台电化学工作站CHI660D,但是不太清楚如何进行粉末样品的测试,所以请请教一下做过类似测试的老师和同学。我看文献上有先将样品和乙炔黑、PTFE混合,然后涂到镍网或者玻碳电极上进行测试的,不知道大家是不是这样测试的。还有,想请教下乙炔黑和PTFE那里有购买的,还有镍网,再次感谢~~

  • 日本研制出新型太阳能电池 余热有望充分运用

    北京时间9月20日消息,日本冈山大学研究生院自然科学研究科教授池田直所率小组开发出一种由名为“Green Ferrite(GF)”的氧化铁化合物制成的新型太阳能电池。该太阳能电池的吸光率可达以往硅制太阳能电池的100倍以上。  该太阳能电池有望吸收一直以来无法被吸收的红外线进行发电。池田称:“红外线产生于带热体。除太阳光以外,有望利用家中诸如有火源的厨房天花板以及大街上散发出来的热量进行发电。”他表示,将争取在2013年投入使用。  GF为粉末状,可以薄薄地涂抹在作为媒介的金属上面。发电1千瓦成本目标约为1000日元(约合人民币83元),远远低于以往需耗费约100万日元的硅电池。相比以往的板状太阳能电池,新产品可以实现大幅度的弯曲和伸展,因此可以卷在烟囱及电线杆上等物体上,设置范围比较广泛。  据池田介绍,太阳能电池的发电原理为,太阳能电池由两块带有正负电荷的半导体组合而成,光线被带有负电荷的半导体面吸收后会排斥半导体中带有负电荷的电子。电子通过连接在外部的回路移动到带有正电荷的半导体面从而产生电力。  GF上聚集的电子保持着微妙的平衡,一旦受到光线照射其平衡就会被打破,从而在瞬间使大量的电子发生运动。因此,同量光线的发电量会大幅提高。

  • 粉末数据库查询问题?

    如何在粉末数据库中搜索出仅包含某三种元素(比如仅包含P, Gd, N)的所有化合物?单晶库可以,但粉末库没找到这功能,难道只有matching功能?

  • 浅议干筛分测定不规则金属粉末时的问题

    浅议干筛分测定不规则金属粉末时的问题

    [font=宋体] [size=16px]在[/size][/font]GB[font=宋体]∕[/font]T1480-2012[font=宋体]金属粉末干筛分法测定粒度标准中,对适用范围界定是:“不适用于片状金属粉末,及<[/font]45[font=宋体]μ[/font]m[font=宋体]尺寸的金属粉末”,按此不规则金属粉末是适用于该标准的。[/font][font=宋体] 关于不规则粉末,可以简单理解为除正圆形以外的非片状形状粉末。不规则金属粉末在冶金应用中是很广泛的,具有减轻成品重量,及具有良好的透气性。为了保证产品符合性,粒度规格是衡量不规则金属粉末的重要指标。[/font][font=宋体] 标准中,对筛分机的选择是这样描述的:“[/font]6.2 [font=宋体]可用手工筛分也可以用机械筛分机进行筛分。注:在筛子相同、粉末相同的条件下,用不同类型的筛分机筛分时,会得到不同的结果,因此,对某一特定粉末而言,通常可确定出不同筛分机之间的这种对应关系”判定的条件是:“筛分过程可继续到筛分的终点,也可进行到供需双方协商同意的时间。当筛分进行到每分钟通过最大组份的筛面上的数量小于试料量的[/font]0.1%[font=宋体]时,即为达到筛分终点”[/font][font=宋体] 就标准描述而言,看起来很明确,实际操作却比较模糊,不妨看看下面的介绍,就知一二。[/font][font=宋体]一、关于手工筛分和机械筛分。通过实践的情况,手工筛分是存在问题,这个先不考虑每个人体能的情况,如果一组物料需同时组合[/font]3[font=宋体]个或以上不同尺寸的标准筛进行筛分,操作是非常困难的,筛快了可能出现筛子跑出来(标准筛结合面高度也就[/font]5mm[font=宋体])或者物料掉出来;筛慢了老是达不到终点,影响效率;故而在实际检验中,除单一限定,即筛上或筛下不得大于一定数值外,基本不选择手工筛分来判定金属粉末的粒度结果。[/font][font=宋体]二、就筛分终点来讲,在实际操作中也是很难界定的。如[/font]200[font=宋体]μ[/font]m-150[font=宋体]μ[/font]m[font=宋体]的不规则形状粉末,通常[/font]+200[font=宋体]μ[/font]m[font=宋体]上是有[/font]1%[font=宋体]或以上是不可能通过[/font]200[font=宋体]μ[/font]m [font=宋体]的,[/font]0.1%[font=宋体]就是空谈;再者即使全部能通过,临界尺寸粉末通过网面的时间受制于形状及震击强度等因素,相同筛分时间下,可能筛上已符合,也有可能不符合。[/font][font=宋体]三、关于机械筛分的选择。市面上主流机械筛分方式有:顶击、电磁、拍击振筛机。[/font][font=宋体] 顶击振筛机的原理是通过电机带动凸轮和齿轮,产生向上的顶击力和摇摆力,试验时,标准筛中的物料受到顶击力和摇摆力作用,发生跳动和旋转,筛分的同时避免堵网。[/font][font=宋体] 电磁振筛机是由电磁铁产生螺旋震动力,试验时物料受螺旋震动力影响,作周期性旋转和跳动,理论上讲和顶击振筛机的筛分效率应基本相同,但实际使用中发现,物料在筛分时的跳动和旋转幅度较顶击振筛机要小,试验时易发生堵网,从而影响筛分结果。[/font][font=宋体] 拍击振筛机原理同顶击振筛机大致相同,不同的是由顶击振筛机的凸轮产生顶击力,改为凸轮带动顶部的拍击锤。虽然拍击振筛机的介绍是专门针对细粉设计,但根据实际使用情况,多级组合筛分时,底部筛网受到的拍击力较顶击力而言要小,对粒度细、比重轻的金属粉末,堵网的情况较顶击振筛机反而要严重。[img=,690,1015]https://ng1.17img.cn/bbsfiles/images/2023/10/202310141452564530_3128_2462198_3.jpg!w690x1015.jpg[/img][img=,690,1015]https://ng1.17img.cn/bbsfiles/images/2023/10/202310141452564530_3128_2462198_3.jpg!w690x1015.jpg[/img][/font][b] 故而不同的筛分方式也必然导致不同的结果,针对较精确粒度结果时,应注意尽可能选择筛分效率高的振筛机。需要说明的是,根据我的实际使用情况看,虽然顶击振筛机的筛分效率最高,但是部分电磁振筛机和拍击振筛机的筛分效率也可以达到顶击振筛机的效果,无他,制造水平耳,具体请看[font='Calibri','sans-serif'][color=windowtext]DZ/T 0118-1994 [/color][font=宋体][color=windowtext]实验室用标准筛振[/color][/font][font=宋体][color=windowtext]筛[/color][/font][font=宋体][color=windowtext]机技术条件[/color][/font][/font]。对于上述三种振筛机,相同标准筛和同一样品的筛分结果如下:[/b] [table][tr][td][size=16px] [b]筛分方式[/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']+250[/font]μ[font='Calibri','sans-serif']m[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']+200[/font]μ[font='Calibri','sans-serif']m[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']+150[/font]μ[font='Calibri','sans-serif']m[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']-150[/font]μ[font='Calibri','sans-serif']m[/font][/b] [/size][/td][/tr][tr][td][size=16px] [b]顶击振筛机[/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']0[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']23.741[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']29.666[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']46.711[/font][/b] [/size][/td][/tr][tr][td][size=16px] [b]拍击振筛机[/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']0[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']25.904[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']30.258[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']43.027[/font][/b] [/size][/td][/tr][tr][td][size=16px] [b]电磁振筛机[/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']0[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']32.818[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']28.724[/font][/b] [/size][/td][td][size=16px] [b][font='Calibri','sans-serif']38.178[/font][/b] [/size][/td][/tr][/table][size=16px][font=宋体]四、关于标准筛。国内标准筛的差异太大,即使同为标杆的[/font]540[font=宋体]厂出品的同一规格,尺寸都有差异,我曾经遇到过[/font]150[font=宋体]目([/font]0.1mm[font=宋体]),测同一个样品,筛下物相差[/font]10%[font=宋体]的情况。且尺寸越小(目数越大)差异越明显,进口筛同样如此,但进口筛的网孔尺寸变化要小的多,这个和网孔尺寸精度是有关系的,此不作赘述,感兴趣的可以研究下[/font]GB/T6005[font=宋体]和[/font]JJF1175[font=宋体]。[/font][font=宋体] 综合上述四点,在针对不规则粉末的干筛分测定中,变化点其实是很多的,如果想保证产品粒度的一致性,单纯在设备上采取措施是不能有效解决问题的,在实际工作中,应做到以下几点:[/font]a[font=宋体]:在产品开发初期,应先与顾客进行多个样品结果对标。无论顾客采取什么方法取得的结果,与自己正常试验的结果对比,必然有个差值,这个差值如在多次或多个样品提交中均可以重复再现,那就是内部控制标准的基础数据。[/font]b[font=宋体]:做好原始样品的保留,定期使用原始样品进行复测比对,并做好比对记录。[/font]c[font=宋体]:发现结果差异超过[/font]3%[font=宋体]时,务必进行振筛机和标准筛的检查,及时更换标准筛或维修振筛机。[/font]d[font=宋体]:有激光粒度仪的,最好同时做激光粒度数据,这样数据的准确性要高很多。[/font][/size]

  • 关于粉末衍射制样为什么一定小到一定尺度的不解?

    关于粉末衍射制样为什么一定小到一定尺度的不解?

    要粉末只是一个择优取向的问题?但是,如果设想我的样品本身是在纳米尺度上,比如50nm,我过筛到150um块体。如图,在块体中,在微观尺度上排列取向本身也是一个随机分布的。因此为什么拿块体材料去测XRD有相对强度改变的问题呢?还是说通过压片从小到大制样不会带来相对强度的改变?反过来,纳米材料在材料制备过程中,即使得到的是块体,在微观上应该也是随机分布的,因此照成相对强度的不同,到底是什么原因照成的呢?http://ng1.17img.cn/bbsfiles/images/2011/10/201110100154_322561_2319715_3.jpg

  • 求教TEM.做粉末样品的事项

    本人新手,室里面新进一台FEI TF20,刚刚调试完毕,现在要开始做样有些关于样品的问题请教各位前辈问题一:矿物样品,如辉长岩,是磨成粉末放在铜网观察好呢?,还是切片减薄观察比较好?问题二:粉末样品如大气颗粒物一般选择什么尺寸的铜网比较合适?,是空铜网还是带碳支持膜的?问题三:磁性粉末样品如针铁矿,可以做吗,怎么制样??恳请各位不吝赐教,拜谢!

  • 【讨论】最新产品——PFT粉末流动测试仪

    美国brookfield公司最新推出了一款PFT(Powder Flow Tester)粉体流动测试仪,因对散体粉末材料的流变研究较为少见、特提出来请大家交流讨论一下:PFT粉体流动测试仪:BROOKFIELD 粉体流动测试仪可对工业加工设备中粉体的流动行为进行快速且简便的分析;评估粉体从储存容器中的流出性;快速定性新配方的流动性能和组分调整,以满足特定产品的流动特性。对粉体的流动函数、时间固结、壁面摩擦、松装密度等进行评估分析。多种粉体流动特性数据输出:流动指数、弓状尺寸、鼠孔尺寸、料斗半角、壁面摩擦角、松装密度曲线等。应用最大颗粒尺寸:5mm, 90% 3mm混合型饮料建筑材料:- 水泥- 粉煤灰- 石膏- 熟石灰化妆品洗涤剂食品:- 谷类食物- 巧克力- 面粉- 调味品- 香料 & 调味剂矿物医药淀粉

  • 【讨论】关于制粉末样品的一些经验

    一般讲,尺寸细且均匀,颗粒成球状,性质比较稳定的粉末样品是比较理想的。关于压制样品:一般的粉末样品最好能够盖满整个样品槽,较少的时候沿着与光源垂直的方向成一个线状分布也可以,压得时候不要用太大的力气,对于一些粘性比较大的样品可以先蒙上一张称量纸,上面用玻璃片轻轻压平,然后将称量纸轻轻取下来即可。 需要注意的问题:对于同一系列的样品,如果力道差别很大,就会引起样品密度的变化,从而会使衍射的强度受到影响。关于样品的研磨:颗粒比较大的样品一般需要研磨,现碾碎然后研磨,力道不用太大,可以研细即可,理论上1平方厘米的面积上颗粒的个数要超过1100万衍射的数据才有统计意义,这样颗粒的大小大概在10微米左右,一般情况下用手感觉起来像面粉一样,有点滑腻感即可。对于特变脆或者松散的样品,可以适当加点酒精(确保样品和酒精没有反应),磨5到10分钟即可。

  • 【求助】怎样做粉末样品

    现需要做一粉末样品,粉末粒度为1~5微米,脆性粉末,其内部包含有异质纳米颗粒.想看到粉末内的纳米颗粒,怎么制样?现有G1胶,请高人指点!

  • 【资料】积分下载-IEC 60086 一组电池标准

    IEC 60086-1-2006 原电池.第1部分:总则 http://www.instrument.com.cn/download/shtml/063266.shtmlIEC 60086-2-2007 原电池组.第2部分:物理和电气规范http://www.instrument.com.cn/download/shtml/063268.shtml IEC 60086-3-2004 原电池组.第3部分:钮扣电池 http://www.instrument.com.cn/download/shtml/063271.shtmlIEC 60086-4-2007 原电池.第4部分:锂电池的安全性http://www.instrument.com.cn/download/shtml/063277.shtml IEC 60086-5-2005 原电池组.第5部分:电解质为水溶液的电池组的安全http://www.instrument.com.cn/download/shtml/063281.shtml

  • 电池绝缘膜

    各位好! 请问哪位知道镍氢电池的绝缘膜哪里有卖?非常感谢!

  • 【原创大赛】如何制备粉末样品

    【原创大赛】如何制备粉末样品

    [color=#222222]如今,粉末材料在 3D 打印、陶瓷、锂电池、超硬材料、药物等领域中都很常见。粉末样品也是是扫描电镜所经常涉及到的样品门类,甚至有些单位采购电镜的主要目的就是为了观察、分析粉末材料。而实际操作中,却经常由于样品制备方法不当,无法达到预期的观察效果。在这里,小编给大家分享一下自己最常用的粉末制样方法。[/color][color=#222222][/color][color=#cc0000]准备工作[/color][color=#cc0000][/color][color=#cc0000][color=#222222]手套、剪刀、导电胶、样品台、样品台基座、牙签、吹扫气罐[/color][/color][color=#cc0000][color=#222222][/color][/color][align=center][color=#cc0000][color=#222222][img=,550,398]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091000450762_8142_3963489_3.png!w690x500.jpg[/img][/color][/color][/align][align=center][color=#cc0000][color=#222222][/color][/color][/align][align=left][color=#cc0000][b]第一步[/b][color=#222222] 把样品台插在基座上,裁剪合适尺寸的导电胶,贴于样品台,适当碾压,确保黏贴牢固[/color][/color][/align][align=left][color=#cc0000][color=#222222][color=#222222][/color][/color][/color][/align][align=center][color=#cc0000][color=#222222][color=#222222][img=,550,309]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091002271274_2960_3963489_3.jpg!w690x388.jpg[/img][/color][/color][/color][/align][align=center][color=#cc0000][color=#222222][color=#222222][/color][/color][/color][/align][align=left][color=#cc0000][b]第二步[/b][color=#222222] 戴上手套,用牙签挑取少量粉末,转动牙签,把粉末倒在导电胶上[/color][/color][/align][align=left][color=#cc0000][color=#222222][/color][/color][/align][align=center][color=#cc0000][color=#222222][img=,550,309]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091003278349_4551_3963489_3.jpg!w690x388.jpg[/img][/color][/color][/align][align=center][color=#cc0000][color=#222222][/color][/color][/align][align=left][color=#cc0000][b]第三步[/b][color=#222222] 手持基座,在桌面上下震动,使粉末振散铺开[/color][/color][/align][align=left][color=#cc0000][color=#222222][color=#222222][/color][/color][/color][/align][align=center][color=#cc0000][color=#222222][color=#222222][img=,550,309]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091004262086_5053_3963489_3.jpg!w690x388.jpg[/img][/color][/color][/color][/align][align=center][color=#cc0000][color=#222222][color=#222222][/color][/color][/color][/align][align=left][color=#cc0000][b]第四步[/b][color=#222222] 翻转基座,继续上下震动,使不牢固的粉末脱落[/color][/color][/align][align=left][color=#cc0000][color=#222222][/color][/color][/align][align=center][color=#cc0000][color=#222222][img=,550,309]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091005517196_987_3963489_3.jpg!w690x388.jpg[/img][/color][/color][/align][align=center][color=#cc0000][color=#222222][/color][/color][/align][align=left][color=#cc0000][b]第五步[/b][color=#222222] 竖直持握压缩气罐,吹扫样品;调整方向,继续吹扫[/color][/color][/align][align=left][color=#cc0000][color=#222222][/color][/color][/align][align=center][color=#cc0000][color=#222222][img=,550,309]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091007170286_1398_3963489_3.jpg!w690x388.jpg[/img][/color][/color][/align][align=center][color=#cc0000][color=#222222][/color][/color][/align][align=left][color=#cc0000][color=#222222]经过上述步骤,得到的样品看起来就是不明显的薄薄一层,有时甚至用肉眼很难看到。但是在电镜下面依旧可以观察到很多粉末颗粒。[/color][/color][/align][align=left][color=#cc0000][color=#222222][/color][/color][/align][align=left][color=#cc0000][color=#222222]所有的颗粒都与导电胶充分接触,并且单层分布,几乎不会有多层堆叠的情况。如下是一些粉末样品的照片:[/color][/color][/align][align=left][color=#cc0000][color=#222222][/color][/color][/align][align=center][color=#cc0000][color=#222222][img=,180,191]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091009037609_8603_3963489_3.png!w264x281.jpg[/img] [img=,180,190]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091009268366_3363_3963489_3.png!w264x279.jpg[/img] [img=,180,191]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091009436686_6618_3963489_3.png!w264x281.jpg[/img][/color][/color][/align][align=center][color=#cc0000][color=#222222][img=,180,191]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091010070219_1373_3963489_3.png!w264x281.jpg[/img] [img=,180,191]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091010239549_3655_3963489_3.png!w264x281.jpg[/img] [img=,180,191]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091011214616_2414_3963489_3.png!w264x281.jpg[/img][/color][/color][/align][align=center][color=#cc0000][color=#222222][color=#222222][img=,180,191]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091011551579_6357_3963489_3.png!w264x281.jpg[/img] [img=,180,191]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091012231539_7387_3963489_3.png!w264x281.jpg[/img] [img=,180,191]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091012409756_5075_3963489_3.png!w264x281.jpg[/img][/color][/color][/color][/align]

  • 粉末涂层测厚仪在喷涂施工中的应用

    粉末涂层测厚仪在喷涂施工中的应用

    [color=#333333]对于粉末喷涂施工,测量涂层固化前的粉末层厚度也有着重要的意义。[color=#333333]有研究表明,涂层固化过程中会出现应力是不争的事实。大部分涂层在固化过程中会收缩,由此在涂层内部就出现了拉应力 要是在涂层固化过程中涂料分子的结构发生变化,涂层就会膨胀,涂层内部就会存在压应力。另外,[color=#333333]涂装施工正式结束之前,要按有关要求或标准对涂层的厚度进行全面的检查。检查涂层厚度的方法有很多,但在涂装施工现场,无损检测法是测量涂层厚度最为常用的方法,这种方法操作简便,工作效率高,经济性好,对涂层不会造成破坏性影响。[/color][/color][/color][color=#333333][color=#333333]TQC新推出一款[color=#333333]可用于湿膜和干膜分析的粉末涂层测厚仪,采用光热法,能够非接触,无破坏性对粉末涂料固化前后的厚度进行分析测量。[/color][/color][/color][align=center][color=#333333][color=#333333][color=#333333][url=http://www.tqc-china.com/][img=,690,690]http://ng1.17img.cn/bbsfiles/images/2017/07/201707111649_01_2818848_3.png[/img][/url][/color][/color][/color][/align][color=#333333][color=#333333][/color][/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制