当前位置: 仪器信息网 > 行业主题 > >

聚合反应器

仪器信息网聚合反应器专题为您提供2024年最新聚合反应器价格报价、厂家品牌的相关信息, 包括聚合反应器参数、型号等,不管是国产,还是进口品牌的聚合反应器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合聚合反应器相关的耗材配件、试剂标物,还有聚合反应器相关的最新资讯、资料,以及聚合反应器相关的解决方案。

聚合反应器相关的资讯

  • 美科学家制成聚合物纳米纤维反应器
    美国研究人员已开发出一种仅用大约1000个分子即可进行化学反应的新型化学合成方法,该新系统利用的是聚合物纳米纤维相互交织后所产生的微弱的化学反应,该方法已被证明可用于新型药物和工业原料的快速筛选。   研究人员称,这种新工艺还可用于对新的蛋白或DNA识别标签进行高通量测试,以改进目前用于测序的蛋白或DNA识别标签;或用于检测罕见的生物分子,如癌症或其他疾病早期阶段的微量蛋白特性。   目前,研究人员一般使用微流体系统来进行小规模的化学反应,即在一个芯片上通过由微型管路和泵组成的网络来传递化学物质。而美国博林格林州立大学化学家帕维尔安祯贝切尔开发的这个新系统则完全不同,反应在悬浮于干燥的聚合物纳米纤维中进行,且只在纤维相遇时才会相互发生反应。   研究人员使用静电技术研制出了这个纤维反应器。他们将液体聚氨酯装入配有细针的注射器,在针尖处形成一个微小的液滴,然后给针尖施加电压。电荷相斥驱动液滴形成细长的聚合物纤维,每条的直径约在100纳米至300纳米之间。研究人员认为,利用含有少量反应物的聚氨酯溶液所产生的静电,就可编制出一个液态纤维网,这样就创建出了反应器。经向的纤维包含一种反应物,纬向的纤维则包含另一种反应物。当施以微热使这些纤维融合时,结合处的化学物质就混合在一起发生反应。通过荧光成像和质谱等各种方法,这些生成物就可被鉴别出来。   在最近一期《自然化学》杂志上,研究人员介绍了利用该微型反应器对4种不同反应所做的测试。这些反应只发生在具有zepto-mole(10的负21次方摩尔)量级的大约1000个分子间。其中两种反应可用来测试与荧光染料分子相关的方法,这些分子只在经向与纬向相互交织的线上碰到相似的目标分子时才会发光。安祯贝切尔的研究领域之一便是开发可检测特定蛋白片段或DNA碱基的染料,目前他正在开发attoliter(一万亿分之一升)级的反应器纤维,以对这些染料进行高通量筛选。该系统加以改进后就可使用非常小的样本来研究数千个蛋白的相互反应。   研究人员表示,这种纤维反应器的最大优势在于比其他技术费用低廉,低反应量在测试那些目前尚未知晓的物质之间的新反应时也具有优势。更重要的是,反应和生成物仅限于纤维内,它们不会蒸发和泄露,因而更为安全。
  • “小”仪器在聚合反应中的“大”作用
    反相乳液聚合是制备水溶性高聚物的重要方法之一。反相乳液自身具有诸多的优点,这使得反相乳液聚合技术在现代工业中的应用越来越广泛。但由于其稳定性差,因此提高其稳定性成了亟待解决的问题。 目前,提高反相乳液稳定性的方法主要有优化聚合体系的配方和操作条件。西南石油大学化学化工学院先用相转变法制备单体乳液,再进行反相乳液聚合的方法,即相转变-反相乳液聚合。其中对搅拌器的型式要求很高,因为其会直接影响乳液产品的质量。 该研究组人员还利用显微镜、粘度计等考察了双叶弯叶浆(A)、三叶折叶浆(B)、四叶平直浆(C)、锚式(D)、框式(E)搅拌器对相转变-反相乳液聚合体系的散热和聚合物乳液性能的影响。下列是五种搅拌器的简图: 经过一系列的实验验证,最终得出:不同搅拌器下聚合体系达到最高温度的高低顺序为:ACEBD。搅拌器的散热能力越差,聚合物乳液的相对分子质量分布越宽。双叶弯叶桨搅拌器更适于相转变-反相乳液聚合,所得聚合物乳液的静置稳定时间大于90天。
  • 微反应器做微胶囊!医药可以,农药也行
    康宁用“心”做反应研究简介农药微胶囊化是减少环境污染、防止有效成分受到外界因素干扰,提高药效的一种有效方法。目前,常见的有关农药微胶囊的制备以界面聚合法、原位聚合法、凝聚法和溶剂挥发法为主,其中界面聚合法最为常见。界面聚合法通常使用机械搅拌釜式反应器,其具有一定的局限性。由于工艺放大效应和反应的不均匀性,颗粒尺寸大小分布难以精确调整,导致批次之间的重复性差,产品的稳定性低,缓释行为的可控性低。连续流技术可以利用流动液体的剪切力将另一种流动的不相容液体分散成微小液滴,随后这些液滴在微通道中凝固形成颗粒。微通道反应器具有以下优点,非常适合微胶囊的制备。高效传质和传热,有利于物料/颗粒的均匀分散和稳定性;通道尺寸小,精确控制反应参数从而实现对胶囊尺寸、孔隙率、表面形态等的控制,进一步实现其壳厚及药效缓释行为;操作简单扩展性大、清洗方便;康宁AFR无放大效应,可以满足工业化生产要求;有利于提高实验室到工业化生产过程的效率和产品质量稳定性。12月6日南京林业大学的顾晓利教授课题组发表在ACS期刊上的“基于微通道技术,采用4,4-亚甲基二苯二异氰酸酯(MDI)和乙二胺(EDA)界面聚合法制备了二甲戊乐灵微胶囊”,相信可以为读者带来一定的启发。作者研究结果表明,在康宁AFR“心型”微通道反应器中制备的二甲戊乐灵微胶囊表面光滑、单分散性好、包封率高(96.7%),并具有良好的热稳定性。图1. 二甲戊乐灵微胶囊的形成机理1. 微反应1中乳化液滴的形成当分散相流体(将100g二甲戊乐灵加热至60°C以完全熔化,并与5g二苯基甲烷-4,4' -二异氰酸酯(MDI)均匀混合)与微通道I中的连续相流体(90°C下,将5g聚乙烯醇(PVA)和5g表面活性剂SP-27001(苯乙烯马来酸酐共聚物的酯化合物))溶解在90g的去离子水中)接触时,分散相在剪切和挤压力的作用下迅速分散成微小的液滴。同时,在表面活性剂的乳化作用下,得到了由二甲戊乐灵和MDI连续相组成的稳定乳化液滴。2. 微反应II中聚脲壳的形成在进入微通道II后,液滴内的MDI和水溶液中的乙二胺(EDA)在液滴界面上进行界面聚合反应,在二甲戊乐灵核周围固化形成均匀的聚脲壳。图2. 聚脲壳形成的反应方程聚脲壳形成的反应方程如上图所示。聚脲的合成是基于MDI中异氰酸基和EDA中氨基。当水包油(O/W)乳液与EDA水溶液接触时,分散相的MDI单体向油−水界面扩散,与EDA单体在很短的时间内反应形成聚脲。生成的聚脲在表面沉淀,逐渐形成包裹液滴的球形薄膜。随着聚合过程的进行,分子链的长度增加,积累了更多的聚脲,增加了膜层的厚度,最终成为完整的聚脲壳。3. 交联反应形成微胶囊此外,聚脲分子之间可以同时发生交联反应,这使聚脲壳更加紧凑和完整。图3. 微胶囊形成过程机理简图研究过程微通道反应器中工艺条件优化作者研究了微通道结构、反应温度、表面活性剂类型和流体流速的影响。一、微通道结构的影响微通道的结构对液-液非均相的流动状态以及乳化液滴的形成有显著的影响。在不同微通道中制备的二甲戊乐灵微胶囊的粒径分布如下图所示图4. 不同微通道中制备的二甲戊乐灵微胶囊的粒径分布.(a)康宁心型微通道、(b)Y形、(c)T形的微通道制备的微胶囊的粒径分布从图中可以清楚地看出,康宁AFR“心型”微通道制备的微胶囊的分布呈正态分布,且分布范围较窄。由于康宁反应器独特的“心型”微通道结构设计,当分散相和连续相流体进入心形单元时,在“笑脸”结构扰流挡板障碍的作用下,分为两条不同流动方向的支流,两条支流沿微通道流动,在心尖附近再次收敛,流入下一个心形单元。在这一过程中,分散相和连续相通过分散和重组相互扩散和混合,在一个模块中重复了多次。在T形或Y形通道中,分散相和连续相流体向不同的方向流动,只发生了一次碰撞。因此,应用康宁AFR“心型”微通道反应器制备得到的微胶囊具有尺寸均匀、单分散性好等突出优点。图5.不同结构的微通道示意图。(a)康宁心形微通道、(b)Y形、(c)T形的微通道二、表面活性剂的作用表面活性剂能促进分散相和连续相的相互混合,形成完全分散的乳化液,并能防止壳形成后微胶囊的聚集。本文研究探讨了SP-27001、601(三苯基苯酚乙氧基酸)、木质多磺酸钠等不同类型的表面活性剂对二甲戊乐灵微胶囊制备的影响。最终确定表面活性剂SP-27001与聚脲具有良好的吸附性和相容性,有利于保持乳化液的稳定性,抑制液滴的快速聚集。三、温度的影响在不同反应温度(60、65和70°C)下制备的二甲戊乐灵微胶囊都呈球形。图6. 在不同温度下制备的二甲戊灵微胶囊的生物显微镜图像:(a) 60, (b) 65, and (c) 70°C.65℃的微胶囊形态最合适。当温度在60°C时,由于二甲戊乐灵的熔点(56−57°C) 较低,当乳液接触微通道中的冷EDA水溶液时,较低的反应温度会使核心材料更容易结晶和沉淀,部分二甲戊乐灵没有被包封,以晶体的形式分布在微胶囊外。当温度在70°C时,由于热力学扩散效应的加速,加快了聚合反应的速率,微胶囊之间粘附聚结,均匀性变差。四、 二甲戊乐灵微胶囊的大小及形态控制1、粒径作者重点研究了Qc(连续相的流速)对二甲戊乐灵微胶囊粒径的影响。图7.Qc(连续相的流速)对二甲戊乐灵微胶囊粒径的影响如图7所示,微胶囊的平均直径随Qc的增加而增大。当Qc小于3mL/min时,由于连续相对分散相的挤压和剪切作用减弱,难以获得稳定的O/W乳化液滴,没有得到微胶囊。2.包封率当Qc从3mL/min改为5mL/min时,微胶囊的包封率从63.4%提高到96.7%。但当Qc大于5mL/min时,微胶囊的包封率随着Qc的增加逐渐降低。图8.Qc(连续相的流速)对二甲戊乐灵微胶囊包封率的影响作者认为,这一趋势与分散相中二甲戊乐灵的损失有关。当连续相的流速较低时,其在连续相中难以分散并迅速沉降。而当连续相的流速较高时,较多的二甲戊乐灵溶解在水中,而分散相中活性成分的浓度相对较低。在这两种情况下都将导致微胶囊的载药量和包封率不佳 。3.形态由于Qs的流速决定了亲水单体EDA和亲脂性单体MDI的比例,影响了聚脲壳层的聚合反应,所以不同Qs值产生的微胶囊形态有显著差异。图9.不同Qs的流速下微胶囊的SEM图像:(a) 0.3, (b) 0.5, (c) 1.0, and (d) 2.0 mL/min.图9结果可以得出当Qs在0.5mL/min时,微胶囊具有规则的球形,表面光滑,均匀性高(图b),有助于构建有效的控释配方。二甲戊乐灵微胶囊的释药行为和生物性能作者进而研究了二甲戊乐灵微胶囊的释药行为和生物性能。结果表明:通过改变EDA水溶液的流速造成的表面形态的变化,可以调控微胶囊的释放行为;由相同浓度下不同Qs值制备的二甲戊乐灵微胶囊,对杂草的总茎控制效果和鲜草减重效果与二甲戊乐灵EC(市售品)相当;而当Qs分别为0.5或1.0mL/min时,其微胶囊对宽叶杂草的茎控制效果明显高于二甲戊乐灵EC(市售品)。表1. 不同Qs值制备的二甲戊灵微囊对禾本科杂草和阔叶杂草(A、B、C、D分别为:0.3 mL/min、0.5 mL/min、1.0 mL/min和2.0 mL/min)的茎部控制效果
  • 美国麦克推出全自动小型催化反应器
    美国麦克公司推出"Microactivity-Refference"全自动小型催化反应器     美国麦克仪器公司于近日发布了一款全自动小型催化反应器--Microactivity-Refference.它是一款全自动计算机控制的用于催化反应的微型反应器,温度高达1000℃,压力可达100bar。该反应器可实现诸多反应,如加氢裂化,氢化处理,异构反应,加氢反应,加氢脱硫,加氢脱氮,氧化反应,聚合反应,重整(芳构化),水蒸汽重整等等   MICROACTIVITY-Reference该装置为一体结构,包括了电路系统,控制系统和质量流量计系统及置于热箱中的六通阀和反应器。基于具有分布式控制结构的TCP/IP以太通讯技术,系统可以在线远程控制或面板控制。独立于计算机的微处理安全集成控制器。同时,该系统配置了各种选配附件供研究人员选择   如果需要了解更详细的资料,请登陆美国麦克公司中国区网站www.mic-instrument.com.cn或致电中国区各办事处
  • Sanotac高精度平流泵,助力微通道高通量反应器,打造美丽化工
    Sanotac高精度平流泵,助力微通道高通量反应器,打造美丽化工 SANOTAC系列平流泵(柱塞泵,中压恒流泵)产品广泛应用于石油开发评价实验、石油化工的催化反应、聚合反应、食品、制药、液相色谱分析、超临界萃取、分离、原子能科学、环境科学、工艺设备、实验设备中各种液体的精确微量输送。最近,在微通道高通量反应器中应用最为广泛。关键词: 流体输送,耐腐蚀,耐压力,精确度高,脉冲小 SANOTAC系列平流泵能为您解决泵液不连续不稳定问题!提供稳定、连续的输送液体!能为您解决泵液流量不准问题!提供精确流量的输送液体!能为您解决泵的压力脉动高造成基线不稳的问题! 提供低脉动输送系统。当您需要自己搭建微反应器系统,或者给微反应器系统配套平流泵的时候,请记得找我们三为科学,三生万物,为您而来。我们专门配套模块化微反应系统,微通道反应器,管式反应器,釜式反应器,催化评价装置,催化加氢装置,煤化工装置。 微反应器,即微通道反应器是一种借助于特殊微加工技术以固体基质制造的可用于进行化学反应的三维结构元件。微反应器通常含有小的通道尺寸(当量直径小于500 μ m)和通道多样性,流体在这些通道中流动,并要求在这些通道中发生所要求的反应。这样就导致了在微构造的化学设备中具有非常大的表面积/体积比率。 微通道反应器,利用精密加工技术制造的特征尺寸在10到300微米(或者1000微米)之间的微型反应器,微反应器的“微”表示工艺流体的通道在微米级别,而不是指微反应设备的外形尺寸小或产品的产量小。微反应器中可以包含有成百万上千万的微型通道,因此也实现很高的产量。 目前,最新的高通量研发加速技术(HTR&D),高通量研发实验系统,集成了组合化学、机器人技术、自控技术、先进精密仪器、反应器、现代计算机信息处理技术和分析工具以及人工智能等众多前沿科技。 进入21世纪, 化工过程向着更为绿色、安全、高效的方向发展, 而新工艺、新设备, 新技术的开发对于化工过程的进步显得十分重要。在这样的背景下, 微反应器系统的出现吸引了研究者和生产者的极大关注。微反应器系统并非简单的微小型化工系统,而是指带有微反应或微分离单元的新型化工系统。     SANOTAC系列高压恒流平流泵用于微反应器中微流体的输送,使得微通道反应器性能更出色,如虎添翼,更能发挥微通道反应器的魔力,发挥微通道反应器高效,本质安全、智能制造的新技术优势,打造美丽化工的未来。 Sanotac系列平流泵,按流量范围区分有:0.001-10ml/min、0.01-50ml/min、0.1-200ml/min以及0.1-300,0.1-1000ml/min,1-10000ml/min等不同型号。 按压力范围区分有:0-2Mpa、0-10Mpa、0-15Mpa、0-30MPA,0-42Mpa。 按泵头的材质区分有:316L不锈钢、PEEK材料、PTFE聚四氟乙烯,钛金属材料等供您选择。 三为科学,三生万物,为您而来!
  • 中科院过程所杨超/张庆华:乳液聚合过程中乳胶粒度分布的测定方法
    在乳液聚合过程中,聚合产物粒度分布的演变过程反映了乳液聚合反应的进行程度,对实验的关键现象、聚合机理以及最终产物的性能均有很大影响。本文综述了乳液聚合过程中粒度分布的测量方法,包括现有的离线(off-line)、半在线(on-line)和在线测量(in-line)方法。对比分析了各种测量方法的原理、分辨率、性能、优缺点等。此外,还探讨了在线测量技术的困难和挑战,并给出了几种原理上可行的发展方向或解决方案。乳液聚合颗粒粒径一般小于500 nm,并且为了满足产品性能需求粒径分布可能会出现多峰,因此对测量方法的分辨率有较高要求;同时为满足生产过程中的实时调控,对粒径分布的测量时间提出更严格要求。为了缩短测量粒度分布的时间,开发了半在线和在线测量方法。离线测量方法需要手动采样等准备工作,它们主要包括(但不限于)光散射技术(例如,动态光散射,DLS)、显微镜技术(例如,扫描电子显微镜,SEM)和分离技术(例如,毛细管流体动力学分级,CHDF)。在所有的粒径分布测量方法中,尽管离线测量技术需要诸如采样等耗时的分析准备工作,其仍是使用最广泛的技术,但它不能实时反映乳胶的粒径分布。电子显微镜测量作为一种典型的离线测量方法,其测量结果是绝对且准确的,因此可以用作参考标准。目前,成熟的工业光学显微镜(例如共聚焦光学显微镜)的分辨率可以达到亚微米级(100 nm),其可以在一定的测量范围内代替电子显微镜进行离线粒径分布测量。以DLS为代表的光散射技术是一种相对方便的技术,在离线测量方法中测量时间最短,但不适用于测量多分散性体系。分离技术操作相对简单,适用于几乎所有的多分散体系,但是某些分离测量技术必须使用校准曲线。对于多分散体系,可以先使用分离技术将它们分为几个单分散组,然后再使用DLS技术进行精确测量。由于离线测量方法需要进行手动取样等准备工作,所以其非常耗时;为了缩短测量粒度分布的时间,开发了半在线和在线测量方法。与仅需要一个分析仪器的离线测量方法不同,半在线和在线测量方法通常需要一组设备来构成分析系统。半在线测量是将离线测量仪器连接到反应器以完成自动采样,稀释和其他准备工作。“自动连续在线监测聚合反应(ACOMP)”是一个具有代表性的半在线测量粒径分布系统。半在线测量在一定程度上缩短了测量时间,但仍然无法避免采样和其他准备步骤。在线测量技术不进行采样,其直接使用光学原理等技术来实时监测反应器中的乳液聚合过程以获取粒度分布。由于在线测量技术避免采样等耗时的准备工作,其测量时间进一步缩短;然而,乳液聚合过程中粒度分布的在线测量并不是一种“完善的”测量技术。目前,仅有少数报道尝试探索这种方法用于特定的乳液聚合体系,并且现在还没有成熟的商业应用工具。主要原因是现有仪器缺乏测量精度,无法在高浓度的多相系统中处理来自不同粒子相的重叠信号,或无法捕获运动粒子的清晰图像。论文给出了乳液聚合颗粒粒径分布在线测量的几种可行的发展方向和解决方案,如:(1)直接使用光学原理进行实时测量粒度分布,例如光散射技术。光源发出的激光直接与反应器中的聚合物颗粒相互作用,然后检测器接收光信号并完成光电转换,最后使用特定的算法对光电信号进行分析,以获得粒度分布。该方法的困难在于光散射技术的原理是基于单散射理论,因此对粒子浓度有特殊要求。如果使用此技术实时监控聚合物颗粒的粒度分布,则需修改反应配方以降低聚合物颗粒的浓度,以便消除来自不同颗粒的重叠信号。(2)使用光学显微镜对反应器中的胶乳直接成像并用高速相机拍摄,然后使用图像分析技术进行实时分析,从而实现在线监测粒度分布的演变。电子显微镜分析过程中样品不能含水,因此使用电子显微镜基本上不可能进行在线测量。高分辨率光学显微镜(例如共聚焦显微镜)对样品的要求比电子显微镜要少,因此有可能实现在线测量粒度分布。该测量方案的难点在于高速相机是否可以快速捕获高速移动的纳米级聚合物颗粒。同时,该方案的局限性在于它只能实时监测焦平面中的聚合物颗粒,并且对反应器有很高的要求(例如高透光率)。(3)尽管一些学者认为在线测量应该避免经验模型,但是软传感器技术是一种很有前景的在线测量技术。然而,这种方法的困难在于缺乏精确的在线测量设备去验证模型。一种可行的方法是全面且多方位研究特定乳液聚合反应体系以获得足够的粒度分布数据,然后与大数据或人工智能技术相结合,以预测或计算在新的工作条件下的粒度分布。作者及团队介绍张庆华,男,1980年12月生,中国科学院过程工程研究所副研究员、硕士生导师,中国科学院大学授课教师,中国化工学会过程强化委员会青年委员,中国化工学会混合与搅拌专业委员会委员。2005-2009年中国科学院过程工程研究所攻读博士学位,2019.2—2020.2美国Iowa State University访问学者(美国李氏基金资助),合作导师为国际著名多相流专家Rodney O Fox教授。主持或参加多项国家自然科学基金、863项目、国家重点研发计划等项目。发表论文30多篇,申请专利10余项,撰写专著一章(多相反应器模拟、放大和过程强化,第三章)。长期从事聚合反应工程、多相流的在线测量和数值模拟等研究工作。 杨超,男,1971年8月生,江苏睢宁人。研究员、博士生导师。2010年获国家杰出青年科学基金。科技部“中青年科技创新领军人才”。中国科学院绿色过程与工程重点实验室常务副主任、绿色化学工程研究部主任。1993年南京化工学院化工系毕业后硕博连读,1998年获博士学位(导师为时钧院士和徐南平院士)。1998—2000年中国科学院化工冶金研究所博士后,在陈家镛院士和毛在砂研究员指导下,从事多相过程数值模拟和反应工程研究。2005—2006年美国康奈尔大学高访(美国李氏基金资助)。2019年获国家科技进步二等奖,2016年获何梁何利基金科学与技术创新奖,2015年获国家技术发明二等奖,2014年获中国工程院光华工程科技奖-青年奖,2013年获中国化学会-巴斯夫公司青年知识创新奖,2012年获日本化学工学会亚洲研究奖(SCEJ Asia Research Award),2011年获中国青年科技奖、中国科学院青年科学家奖,2010年获茅以升科学技术奖——北京青年科技奖,2009年获国家自然科学二等奖。2012年被评为全国优秀科技工作者,2015年获评中国科学院先进工作者。已发表SCI论文150余篇,出版英文专著1本,申请专利60余件,计算软件著作权29项。 研究团队多年以来一直应用多相流体力学、传递原理、反应工程等多学科方法,依据机理及验证实验、理论分析、数学模型和数值计算方法,开展多相搅拌反应器、聚合反应器和结晶反应器等的流动、传递、反应和传热的实验和数值模拟相关研究,在计算流体力学和计算传递学新方法、多相传递和反应耦合数学模型和数值模拟、多相体系的测量方法以及搅拌釜反应器内新型桨和内构件设计等方面有丰富的工作积累。获得2009 年的国家自然科学二等奖、2015年的国家技术发明二等奖和2019年国家科技进步二等奖。
  • DNA聚合酶分子马达精确动态工作机理研究获进展
    从细胞最基本的各种功能原件开始,进而精确认识其动态工作机理,是认识生命、有效干预生命过程的第一步。随着冷冻电镜技术的发展,蛋白质静态晶体结构可高效获取,为突破生命科学认知局限提供便利。解析蛋白质分子内部复杂部件的动态反应机理,是生命科学未来亟须解决的难题。明晰DNA/RNA聚合酶等马达分子精确动态工作机理,将为高效研发控制病毒复制的有效药物提供可行性前提。当前,模糊状态的工作机理,使控制病毒的有效药物研发耗时长、投入大、效率低下。  中国科学院物理研究所/北京凝聚态物理国家研究中心软物质物理实验室SM1组研究员谢平运用广义第一性原理进行理论计算和模拟,探索生命活动的核心部件——各种分子马达的工作机理。鉴于生物科学研究手段限制(传统生化实验笼统平均化、晶体结构的数据静态化和新生代单分子实验数据的分散差异性及可观测数据局限性),聚合酶分子马达等功能蛋白分子的精确动态工作机制研究面临困难,至今不甚明了,只能给出卡通画式简单模型加以定性描述。2013年,谢平提出了DNA聚合酶Klenow片段(被广泛研究的高保真聚合酶模型分子)连续动态工作机理的理论模型。该模型解释了当时所有传统生化和单分子技术关于这一马达分子的实验数据,并对国际同行单分子实验结果实现了高度拟合。基于此模型,谢平提出Klenow聚合酶马达分子在受到外力时催化速率精确变化的理论预言。  近日,软物质物理实验室SM1组副研究员刘玉如和李伟,采用单分子操控技术检测该理论预言,实验结果与理论预言完全吻合。科研团队自主设计组装的高通量、高时空分辨率、高计算处理能力单分子磁镊仪器操纵系统,使纳米尺度实时高效测定Klenow聚合酶这一低持续性、多停顿的单分子催化反应速率成为可能。研究运用物理逻辑推理、理论计算与高质量实验结果的高通量分析,解析验证了DNA聚合酶Klenow在外力诱导下的催化活性变化,在实验中精确检测分子马达实时动态合成反应的速率变化。实验发现,在小外力(3.8pN)阻滞下,Klenow聚合酶的合成速率达到峰值,这一反直觉现象反映了高保真DNA聚合酶Klenow分子内部各部件之间的作用机制。  该研究首次诠释了DNA聚合酶Klenow的连续动态自动化工作机理。从DNA聚合酶分子内部原子与DNA之间相互作用隧道和关键位点的理论计算和逻辑推理,得出酶分子在催化位点处(nth position)保持最大相对结合能,从而使得酶分子在反应过程中实现于动态微扰中始终落入起始位点的化学机械偶联机理。今后,该工作在新实验数据基础上继续深化和细化,将为未来高效研发控制病毒、细菌和癌症等重大疾病的有效药物奠定前驱基础。  相关研究结果发表在Chinese Journal of Physics上, 并被选为推荐论文(Editor’s Suggestion)。研究工作得到国家自然科学基金委, 科技部和中科院的支持。  图1.DNA聚合酶(Klenow聚合酶)的自动移位机理图(a),与底物DNA不同结合位点的相对结合能(b),理论预言聚合反应在不同外力下的催化速率(c)。对DNA聚合酶分子内部原子与DNA之间相互作用隧道和关键位点的理论计算和逻辑推理,得出酶分子在催化位点处(nth position)保持最大相对结合能,从而使得酶分子在反应过程中实现于动态微扰中始终落入起始位点的化学机械偶联机理。根据酶分子内部fingers结构域不断开合和与DNA模板相互作用,提出理论预言——外力对Klenow聚合酶的催化速率具有显著影响,如图(c)所示,正向外力对催化速率没有影响;反向外力在小的力值(3.8pN)左右,使催化速率显著升高,更大的反向外力使催化速率降低。  图2.单分子磁镊技术对DNA聚合酶的催化反应进行实时动态监测。(a)和(c)分别为监测反向和正向外力的实验装置示意图;(b)和(d)分别为反向和正向外力作用下酶催化反应的动态曲线;(e)为不同外力作用下的酶催化速率分布统计。  图3.理论预言结果与实验测量结果吻合。实验测量结果为红色圆点表示;运用本研究实验体系微调后的参数拟合理论结果显示为黑色实线;运用历史文献参数拟合的理论结果显示为蓝色虚线。
  • 流动合成仪搭配反应器合成“肽”Easy了!
    近日(1月26日),中国国家药监局(NMPA)官网公示,诺和诺德(Novo Nordisk)司美格鲁肽片的新药上市申请已获得批准,用于成人2型糖尿病治疗。司美格鲁肽片是一款口服GLP-1受体激动剂药物(GLP-1RA),它的出现打破了2型糖尿病患者每天或每周需要接受GLP-1RA注射的格局,为他们控制血糖提供了侵入性更小的便捷治疗选择。 图片来源:中国国家药监局官网多肽药物的发展现状与合成什么是多肽药物?多肽药物作为一种特殊的蛋白质,由多个氨基酸通过肽键连接而成,通常由10~100个氨基酸组成,具有独特的空间结构。相对于小分子和蛋白质药物,多肽药物具有更强的生物活性和特异性,广泛应用于抗肿瘤、内分泌和代谢领域。多肽药物备受医药行业关注全球已有80多种多肽药物上市。GLP-1目前在医药行业可谓备受瞩目,犹如当下备受欢迎的“炸子鸡”。一方面,GLP-1受体激动剂已经取得了显著的市场认可,甚至在2023年超越了胰岛素,成为全球范围内广泛应用于2型糖尿病治疗的主流药物;另一方面,GLP-1受体激动剂在减肥市场上展现出巨大的潜力,使其成为全球范围内备受瞩目的焦点。多肽药物的合成方法尽管技术进步推动了多肽药物的发展,但人工合成的复杂性逐年增加。多肽合成主要采用生物合成法和化学合成法。● 生物合成法包括天然提取法、酶解法、发酵法和基因重组法。然而,工艺开发大多周期长,粗产品收率低;● 肽还可以通过不同的化学途径合成,液相和固相均可,可以批量生产也可以流动合成。流动合成相对于批量方法的优势在于在线光谱监测、高效混合以及对物理参数的精确控制,从而限制副反应的发生。 资料来源:Chemical Reviews,平安证券研究所Vapourtec固相肽合成方案自2017年以来,Vapourtec一直致力于开发受控可变床流动反应器(VBFR),可容纳树脂生长,减少机械损伤,提高偶联和去保护效率。该反应器实时生成内联数据,支持即时调整合成过程,如通过双重偶联提升肽质量和产量。实时监测密度并自动调整填充床,0.5ul分辨率监测体积变化。目前,VBFR反应器在肽和寡糖合成研究中已取得成功! Vapourtec R系列流动合成仪搭配VBFR[1]本文展示了Vapourtec R系列流动合成仪的能力,该系统配备了一种新型流动反应器——可变床流动反应器,用于进行连续流动的固相肽合成。通过选择治疗糖尿病的30氨基酸的类胰高血糖素样肽(GLP-1)作为研究对象,我们通过优化树脂活性位点与泵送的试剂之间的接触表面,保持固体介质的持续填充,实现了更高效的合成。可变床流动反应器的应用不仅减少了溶剂用量,还确保了更高的合成效率。整体方案下,GLP-1 30氨基酸的粗品纯度在不到5小时内达到了82%。方案详情与结论GLP-1是一种30个氨基酸的激素,对糖尿病治疗具有重要意义。在合成中,ChemMatrix树脂被广泛用于保持肽溶解,有助于试剂扩散。该树脂适用于复杂肽合成,因仅由聚乙二醇(PEG)链组成。其相对两亲性使其在化学和机械上稳定,提供比聚苯乙烯树脂更好的性能。SPPS协议已适应两种树脂,确保合成挑战性肽(如GLP-1)具有高粗品纯度和产量。 用于GLP-1的R-Series示意图主要的R2C+泵用于自动加载样品环的自动进样器,传递偶联试剂。次要的R2C+泵传递去保护溶液。VBFR在R4加热模块中设置。双核反应器将去保护和偶联反应器放在一个反应器芯片中。氨基酸在1.6ml反应器体积中活化,哌嗪在0.8ml反应器体积中预热。两个输出连接到VBFR反应器底部。使用SF-10泵作为主动BPR,系统压力保持不变。聚四氟乙烯过滤器确保树脂在VBFR中保持。Vapourtec的扩散板确保试剂均匀流过过滤器。Vapourtec 采用CF-SPPS反应协议,适用于0.08-0.11 mmol规模。VBFR-SPPS使用Dual-CoreTM PFA管反应器和VBFR反应器,装载200 mg树脂。通过流动DMF,使树脂膨胀到1.4ml/min,加热至80℃。系统压力为2.5bar。CF-SPPS方案A和B包括去保护和偶联步骤,采用不同参数。最后,通过DMF、DCM、MeOH洗涤,TFA裂解,分离肽,使用HPLC和质谱分析。典型循环中,VBFR体积在去保护和偶联过程中相应调整。结论流动化学在手工操作、反应速率和转化率方面相对于传统的批量SPPS(固相合成)路径具有多重优势。使用流动化学,GLP-1已经成功在不到5小时的时间内合成,只需少于1升的DMF(二甲基甲酰胺),通过HOBt和DIC激活。最终产物的原始纯度超过82%,产率为71%。总结在整个合成过程中,控制树脂的填充密度至关重要。可见,VBFR在合成困难序列时非常有优势,获得的宝贵数据将为工艺科学家提供指导,对于合成工艺的改进和优化提供了有益的数据。VBFR反应器特点玻璃、聚四氟乙烯(PTFE)、氟聚合物(PFA)和卡尔莱兹(Kalrez)材质与强酸碱有抗腐蚀性;全自动体积变化;可加热和冷却,温度范围:-20℃~150℃;工作体积范围从0.3ml到20ml;有三种规格可选:6.6mm、10mm和15mm孔径的反应器;体积变化测量分辨率为0.5微升(6.6mm孔径反应器);最大工作压力为20bar(6.6mm孔径反应器);VBFR可以与Vapourtec的R-Series软件接口,体积变化可被记录和图表化。Vapourtec VBFR应用领域 在连续流中使用异质试剂(例如有机金属试剂的形成);在易于膨胀的支持体上使用固定的异质催化剂(例如聚苯乙烯树脂);固相合成;捕获和释放的纯化;肽合成(本文中已展示);寡核苷酸合成;糖基组装。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696或点击在线咨询。[1]SLETTEN E T, NUNO M, GUTHRIE D, et al. Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor [J]. Chemical Communications, 2019, 55(97): 14598-601.Vapourtec英国Vapourtec是德祥集团资深合作伙伴之一。Vapourtec成立于 2003年,已有20年生产经验。Vapourtec 作为专业生产流动化学系统的厂家,一直致力生产实验室级别的流动化学系统的研发生产。Vapourtec设计和生产流动化学合成系统持续领先于市场,提供了新的连续化学合成能力,并且始终保持着技术兼容性,从而使得即使最早期的用户仍可利用最新技术发展提供的优势。目前已经Vapourtec流动合成仪证明有效的反应包括:硝化、氧化、还原、偶合、重排、酰胺化、溴化、加氢等。广泛适用于医药,农药,染料,香料,有机光电材料,有机磁性材料,纳米材料,表面活性剂等精细化工中间体和其它特种助剂。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 聚合酶链式反应自动化
    聚合酶链式反应 (The polymerase chain reaction ,PCR) 彻底改变了 DNA 分析和扩增的方式。自 20 世纪 80 年代推出以来,PCR 已发展成为分子生物学中最重要的技术之一。它是一种快速、定向扩增特定 DNA 序列的方法,基于 DNA 变性、引物杂交和耐热 DNA 聚合酶合成 DNA 的原理。PCR 在科学和医学领域有着广泛的应用。在基因表达分析中,它可用于量化特定基因的表达并研究其调控。在基因分型中,PCR 能够识别基因变异并将基因型分配给特定性状或疾病。在法医 DNA 分析中,PCR 还可用于放大 DNA 的微小痕迹,并利用它们来识别嫌疑人或分析亲属关系。PCR也用于传染病的诊断。这样可以快速、准确地检测病毒或细菌等病原体,从而实现早期诊断和针对性治疗。在产前诊断中,PCR 还用于识别未出生婴儿的遗传异常或染色体疾病。PCR 基础知识PCR 由几个步骤组成。在第一步变性中,双链 DNA 通过加热分离,形成单链。当溶液冷却时,短的合成 DNA 引物特异性结合两条单链并标记要扩增的区域(退火)。在随后的延伸过程中,DNA 聚合酶与标记位点结合并沿着模板合成新的 DNA 链。该酶通过添加核苷酸(DNA 的组成部分)来激活。通过重复变性、退火和延伸步骤,复制的 DNA 片段数量可以呈指数增长。因此,经过多次PCR循环后,原始DNA序列可以被扩增成数千或数百万个拷贝。PCR 可以通过多种方式进行修改,以适应特定的应用,例如,通过使用特定的酶或标记。PCR 具有许多优点,使其成为现代分子生物学中不可或缺的工具。这里首先要提到的是高灵敏度和低材料要求。PCR 可以扩增最少量的 DNA 或 RNA,从而可以非常灵敏地检测病原体或特定序列。为此只需要少量的 DNA 或 RNA,这简化了采样和样品制备,并减少了所需起始材料的数量。通过使用与精确定义的 DNA 或 RNA 序列结合的特异性引物,PCR 可以非常具有特异性并选择性地扩增目标材料。快速获得结果;扩增过程通常可在数小时内完成。自动化 PCRPCR 的最大优势之一是其自动化能力,可以更轻松地检查大量样本并减少相关工作量。自动化 PCR 包括自动化系统和仪器执行的所有经典子步骤。所需试剂(DNA 模板、引物、DNA 聚合酶、核苷酸和缓冲溶液)的精确配量和添加是在受控环境中进行的,以最大程度地减少污染。热循环仪用于精确控制温度循环,包括变性(将 DNA 分离成单链)、退火(引物与目标 DNA 结合)和延伸(由引物合成互补 DNA 链)的步骤。 DNA 聚合酶)。现代自动化 PCR 系统可以实时检测和评估 PCR 结果。这可以使用与特定 DNA 序列反应的荧光探针或染料来完成。该系统在 PCR 过程中检测荧光信号,以确定目标 DNA 的存在和定量。使用特殊软件分析从自动 PCR 获得的数据。该软件可以解释 PCR 结果、计算扩增曲线、确定阈值以及对目标 DNA 进行定量。市场上有各种各样的自动化 PCR 仪器,每种仪器都提供不同的功能和功能。Thermo Fisher Scientific(美国沃尔瑟姆)是提供各种自动化 PCR 系统的领先供应商之一,其中包括 Veriti Dx 96 孔热循环仪以及 Applied Biosystems QuantStudio 3 和 5 实时 PCR 系统。这些系统具有从实时 PCR 到数字 PCR 的各种功能,可用于研究实验室和临床环境。Bio-Rad(美国赫拉克勒斯)也是著名的实验室仪器制造商,提供自动化 PCR 系统,例如 CFX Opus 实时 PCR 检测系统和 QX200 微滴式数字 PCR 系统。除此之外,这些系统能够实时或以数字液滴格式进行精确的 DNA 扩增和检测。Roche Diagnostics(瑞士巴塞尔)提供用于实时 PCR 的 LightCycler 仪器。这些仪器可快速扩增和检测 DNA 序列,广泛应用于分子诊断。Illumina(美国圣地亚哥)是新一代测序 (NGS) 领域的领先公司,其产品组合中拥有自动化 PCR 系统。MiseqDx 仪器是一款自动测序仪,可在一个集成系统中实现基于 PCR 的扩增和 DNA 测序。为了进一步提高自动化程度,可以通过提取、清洗和选择性片段化来制备 DNA。Maxwell 仪器(Promega,麦迪逊,美国)等适合此目的,因为它能够自动提取和纯化可用于 PCR 的核酸。QIAcube 自动化系统(Quiagen,希尔登,德国)还可以自动纯化 DNA 样品。还有许多其他制造商提供自动化 PCR 系统。该领域的市场正在迅速发展。因此,在选择系统时,建议考虑具体要求、所需功能以及与计划应用程序的兼容性。自动化 PCR 系统应具有几个重要特性,以实现高效可靠的 PCR 结果。这首先包括精确的温度控制。它对于正确实施 PCR 各个步骤(变性、退火和延伸)至关重要。该系统应提供对温度循环的精确控制并保持严格的耐受温度范围。自动化 PCR 系统必须提供可靠的检测技术来测量 PCR 结果。这可以通过荧光探针、染料或其他检测方法来实现。检测的高灵敏度、特异性和重现性对于准确的 PCR 结果至关重要。质量保证和污染控制机制还应结合起来,以确保结果的准确性和可靠性。这可以通过使用阴性对照、自动移液、封闭反应管或其他方式来实现。其他要求包括灵活性和适应性。该系统应支持不同的 PCR 格式(例如实时 PCR、数字 PCR 或等温 PCR),并提供设置和定制不同 PCR 反应和方案的可能性。根据应用,必须保证与常用试剂和耗材的适当兼容性。与不同 PCR 试剂盒制造商和试剂的兼容性是能够使用各种测定和方案的优势。自动化 PCR 系统还应该具有可扩展性,以适应 PCR 反应的通量以满足要求。它们应该提供并行处理大量样品以实现高通量的可能性。用户友好的软件具有直观的用户界面,是易于操作的标准配置。该软件应该能够对 PCR 方案进行编程、监测反应进度并分析数据。通常内置用于量化、阈值和分析扩增曲线的强大数据分析功能。与手动实施相比,自动 PCR 具有多种优势。通过使用热循环仪和 PCR 机器人等自动化系统可以提高 PCR 的准确性和重现性。温度循环的精确控制和试剂的准确剂量可以提高效率并减少错误和污染。此外,自动化允许同时进行多个 PCR 反应,从而节省大量时间。自动化还可以实现复杂的 PCR 方案,例如多重 PCR [1] 和巢式 PCR [2],广泛应用于研究和诊断。图 1:自动 PCRPCR 技术的最新发展 尽管 PCR 是分子生物学中的一项成熟技术,但它仍在不断得到进一步发展,以提高效率、灵敏度和应用领域。与经典 PCR 相比,等温 PCR 保持恒定温度,这使得过程更容易、更快 [3]。环介导等温扩增 (LAMP) 等等温 PCR 技术无需热循环仪即可扩增 DNA。这些方法用于快速诊断传染病和遗传性疾病。此外,数字PCR(dPCR)的发展进一步扩大了PCR的可能性[4]。DNA 不是在单个反应中扩增,而是被分解为数千或数百万个单独的反应。对结果进行统计分析可以精确确定 DNA 拷贝的绝对数量。dPCR 可用于检测癌症中的微小残留病、测定基因拷贝数以及准确测定病毒载量等应用。数字液滴 PCR (ddPCR) 是数字 PCR 的一种变体,其中 PCR 反应分为数千或数百万个水滴 [5]。每个液滴都含有一个或几个 DNA 拷贝。通过分析阳性和阴性液滴可以精确确定DNA拷贝的绝对数量。ddPCR 具有高灵敏度、精确度和重现性,可用于非侵入性产前诊断和癌症液体活检等应用。小型便携式 PCR 系统的开发使得 PCR 可以在实验室外使用。即时 PCR 设备用于医疗诊断,特别是在偏远地区或快速诊断传染病。这些系统易于使用,不需要复杂的基础设施,并能在短时间内提供可靠的结果。PCR 和 NGS 技术的结合彻底改变了 DNA 测序 [6]。通过使用基于PCR的方法,例如测序前的PCR扩增,可以有针对性地扩增和分析特定的DNA序列。这样可以识别突变、遗传变异,并对 DNA 序列进行详细研究。参考文献[1] Hasan, M. R., Kalikiri, M. K. R., Mirza, F. (2021). Real-Time SARS-CoV-2 Genotyping by High-Throughput Multiplex PCR Reveals the Epidemiology of the Variants of Concern in Qatar. International Journal of Infectiuos Diseases. 112, pp. 52-54. DOI: 10.1016/j.ijid.2021.09.006.[2] Green, M.R. (2019). Nested Polymerase Chain Reaction (PCR). Cold Spring Harbor Protocols. DOI:10.1101/pdb.prot095182.[3] Asielle, P. J., Baeumer, A. J. (2012). Miniaturized isothermal nucleic acid amplification, a review. Lab Chip, 11, pp. 1420-1430, DOI:10.1039/C0LC00666A.[4] Morley, A.A. (2014). Digital PCR: A brief history, Biomolecular Detection and Quantification, 1(1), pp. 1-2, DOI: 10.1016/j.procbio.2012.11.007.[5] Kojabad, A. A., Farzanepour, M. Galeh, H. E. G. et al. (2021). Droplet digital PCR for viral DNA/RNA, current progress, challenges, and future perspectives. Journal of Medical Virology, DOI: 10.1016/j.bdq.2014.06.001.[6] Ladetto, M., Brüggemann, M., Monitillo, L. et al. (2013). Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders, Leukemia, 28, 1299-1307, DOI: 10.1038/leu.2013.375.关于作者Kerstin ThurowCenter for Life Science Automation, Universität Rostock, Rostock, DeutschlandRostock, Germany教授、博士、工程师。于 1995 年在慕尼黑路德维希马克西米利安大学获得博士学位。1999 年,她取得了测量与控制工程的资格。同年,她被任命为罗斯托克大学工程学院“实验室自动化”教授。自 2004 年以来,她一直担任罗斯托克大学“自动化技术/生命科学自动化”系主任,并担任罗斯托克大学生命科学自动化中心主任。她的研究主题包括生命科学过程的自动化、机器人技术、移动机器人技术以及系统集成和系统工程。原文:Automation of Polymerase Chain Reaction (PCR),Wiley Analytical Science newsletter,8 February 2024供稿:符 斌
  • 仪器新应用,科学家利用多种表征揭示新型纯有机二维编织聚合物材料!
    【科学背景】二维材料自2004年通过机械剥离法从石墨中剥离出石墨烯以来,因其独特的超薄片状形态和极高的比表面积,引起了广泛关注,并在凝聚态物理学、材料科学和化学领域展示了优异的性能和应用前景。然而,构建纯有机分子纤维的无瑕二维编织图案仍然是一个重大挑战,尽管这种可能性已经被多次提出。主要问题在于如何精准地将纯有机分子纤维编织成无瑕的二维双轴编织图案,并获取精确的结构信息,如键长、键角和聚合物网络中原子的空间位置。有鉴于此,浙江大学黄飞鹤团队、李光锋研究员、美国德州大学奥斯汀分校Jonathan L. Sessler教授和浙江工业大学化工学院朱艺涵教授合作提出了通过配位B&minus N键驱动的编织聚合方法,来构建纯有机二维编织聚合物网络(2DWPNs)。研究中,科学家们通过定义基于1,4-二(苯并二噁硼)苯(BDBB)和1,2-二(4-吡啶基)乙烯(BPE)编织聚合的两上两下编织图案,成功获得了2DWPN单晶,并通过单晶X射线分析揭示了其明确定义的编织拓扑结构。此外,使用Scotch Magic Tape从分层晶体中成功剥离出了自由悬挂的二维单层纳米片。相关成果在Nature Chemistry发题为“Single crystals of purely organic free-standing two-dimensional woven polymer networks”研究论文。这些研究成果展示了纯有机编织聚合物网络的精确构建,并突显了在二维有机材料中应用编织拓扑结构的独特机会,开创了纯有机自由悬挂二维编织聚合物网络(2DWPNs)作为功能材料的新方向。这些发现不仅推动了纯有机二维材料的发展,还为理解其形成机制和结构-性能关系提供了新的视角。【科学亮点】1. 纯有机二维编织聚合物网络的合成:本文成功合成了纯有机自由悬挂的二维编织聚合物网络(2DWPN),这是通过配位B&minus N键驱动的编织聚合反应实现的。该网络具有无瑕的二维双轴编织结构,为纯有机材料领域带来了新的突破。2. 精确的编织拓扑结构:通过X射线衍射分析,揭示了该编织聚合物网络的精确拓扑结构。单晶的获得和结构的明确定义展示了编织拓扑在分子层面上的精确构建。3. 自由悬挂二维单层的制备:利用Scotch Magic Tape从块状晶体中成功剥离出自由悬挂的二维单层纳米片,这在二维编织材料中较为少见。此方法为进一步探索二维编织聚合物的表面和结构特征提供了便利。4. 高分辨率电子显微镜成像:通过低剂量和低温电子显微镜技术,研究了二维编织聚合物的表面特征,揭示了其分子层面的细节。这些成像技术帮助确认了2DWPN的表面结构和特性。5. B&minus N键驱动的编织机制:本研究展示了利用B&minus N配位键的内在构象柔性来调节聚合物网络的拓扑结构。该机制利用了配位B&minus N键在溶液中的动态性和固态中的稳定性,为编织结构的形成提供了有效的控制方法。6. 新型二维材料的潜力:通过本研究,展示了二维编织聚合物网络在材料科学中的潜在应用前景。编织拓扑结构为二维有机材料提供了独特的应力分散路径和改善刚性晶体的柔韧性,开辟了功能性材料的新方向。【科学图文】图1:标记为2DWPN-1的二维瓦普材料(2DWPN)的示意图。图2:NWPN-1和2DWPN-1拓扑形成机制。图3:原子级薄2DWPN-1薄片的制造和表征。图4:二维瓦普材料(2DWPN-1)晶体的低温低剂量高分辨透射电子显微镜(HRTEM)图像。图5:2DWPN-1和NWPN-1的机械性能研究。【科学结论】本文的研究展示了利用配位B&minus N键驱动的二维编织聚合物网络(2DWPN)的创新设计和合成方法。这一方法不仅突破了传统材料设计的局限,还提供了一种新颖的合成策略,通过调节配位B&minus N键的角度,精确控制了聚合物网络的拓扑结构。这种从分子层面调控材料结构的能力,为未来在合成新型功能性材料时提供了宝贵的经验。其次,成功制备和表征自由悬挂的二维单层纳米片展示了编织聚合物网络在实际应用中的潜力。通过使用Scotch Magic Tape剥离技术和低温电子显微镜,研究团队揭示了纳米片的表面特征和结构细节。这一成果不仅证明了二维编织材料的制备可行性,还为二维材料的性能优化和应用拓展提供了新的实验手段。此外,编织拓扑结构在应力分散和提升材料柔韧性方面的优势也为材料科学领域带来了新的视角。研究表明,编织结构能够有效缓解应力集中,提升刚性材料的柔韧性,这一发现开辟了材料设计的新方向,尤其是在高性能和耐用材料的开发中具有重要意义。文献详情:Xiao, D., Jin, Z., Sheng, G. et al. Single crystals of purely organic free-standing two-dimensional woven polymer networks. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01580-3
  • 分批补料微型生物反应器设计的最新进展
    前沿先进的分批补料微生物反应器可降低扩大规模的风险,并更接近模拟工业培养实践。近年来,已经开发了高通量微量补料策略,无论实验预算如何,都可以提高微量分批补料培养的可及性。该综述探讨了这些技术及其在加速生物过程开发中的作用。扩散和酶控制的补料可实现基质的连续供应,且简单实惠。更复杂的补料曲线和更强的过程控制需要额外的硬件。自动液体处理机器人可被编程为预定义的补料曲线,并具有响应过程参数偏差的灵敏度。研究显示,微流体技术可促进连续和精确补料。将自动化高通量分批补料培养与实验设计和基于模型的优化相结合的整体方法极大地增强了过程理解,同时最大限度地减少了实验负担。为在线优化补料条件引入实时数据可进一步细化筛选。尽管该综述中讨论的技术有望实现高效、低风险的生物过程开发,但自动化培养平台的费用和复杂性限制了其广泛应用。未来的关注点应该集中在开源软件的开发上,减少硬件的排他性。介绍许多公司依赖于不可再生的石化原料以及更复杂工艺的天然产品所需的大量步骤可能会阻碍经济可行性,将可再生原料生物转化为此类天然产物的微生物细胞工厂的建设,引起了人们的极大兴趣。生物工艺开发的初始阶段涉及广泛筛选各种菌株和工艺参数。使用简单的批量微量滴定板(MTP)或摇瓶培养在此阶段仍然很普遍,这主要是由于与实验室规模的搅拌反应器相比,它们的成本相对较低且通量较高。然而,由于体积小和缺乏用于在线监测和控制基础设施,分析通常限于端点分析,限制了过程洞察力。在这种情况下,先进的微型生物反应器MBR 系统越来越多地被采用,其目的是克服这些关键的瓶颈。使用新的混合策略,尽管空间和资源要求显著降低,但仍有可能有效模拟较大的实验室生物反应器。许多装置可以并行运行,便于高通量筛选应用。通过将 MBR 技术与战实验设计(DoE)方法相结合,可以进一步最大化过程洞察力,同时最小化实验负担。DoE 促进了对生物系统中无处不在的因素相互作用的系统评估,以及对设计空间的更广泛探索。为确保工业规模的最佳性能,应在生物过程开发的早期阶段应用 DoE 同时优化遗传和环境。微规模培养和工业规模培养之间的培养策略的主要不一致性可导致在生物过程开发的最早阶段选择次优菌株和过程条件。因此,必须将过程控制策略和分批补料操作纳入高通量筛选,以确保更接近地模拟工业规模的培养条件。最近开发了几种具有内置补料、控制和采样能力的新型 MBR,以克服这一关键瓶颈。已经研究了创新的内部和外部补料策略及其模仿不同常用工业补料策略的潜力,例如脉冲、指数、修正指数和线性补料。内部分批补料策略包括扩散和酶控制的补料,通常涉及由半透膜分开的双相培养基和多糖基质的生物催化分解。通过使用微流体和自动化液体处理系统(LHSs)。这种系统提供了改进的补料控制,允许更有效地模仿工业相关的脉冲、线性和指数进给策略。引入基于模型的优化算法以实时分析过程数据并重新确定最佳培养策略也获得了极大的兴趣,以进一步加快生物过程开发。将新型分批补料 MBR 与统计 DoE 和基于模型的优化策略相结合的整体方法可能是稳健菌株开发和优化的最佳方法。通过对大量遗传和环境因素组合进行战略性高通量筛选,可以确保设计质量,同时监测和控制工业相关工艺参数。与传统方法相比,这种增加的过程洞察力有可能通过减少所需的筛选阶段的数量来大大加快生物过程的开发。内部补料策略在内部分批补料系统中,基质在培养容器内逐渐释放,无需外部补料。这些系统的主要特点是它们与现有基础设施的兼容性。由于不需要先进的微型泵、微流体或液体处理机器人技术,因此可以显著降低成本和复杂性。这种系统通常利用扩散或催化现象。2.1扩散控制补料扩散控制进料涉及将截留的营养物从聚合物吸附剂或通过人工膜缓慢释放。培养基中的营养物质扩散穿过半透性透析膜,然后被细胞利用。Philip 等人 2017年阐明了作为影响补料速率的关键因素的两个参数,储器中的初始基质浓度和膜几何形状。这有助于更好的补料速率控制,并且发现尽管培养体积放大了 100 倍。然而,使用透析膜的扩散控制补料方法的一个主要限制是其对摇瓶培养的限制, 这限制了生产量。Jeude等人2006 年开发了 FeedBead® 技术,这项技术最初也是为了在摇瓶中使用而开发的,但 Scheidle 等人 2009 年证明了 FeedBead® 技术适用于 MTP 应用。Keil 等人于 2019 年开发了一种 MTP FeedPlate® 系统,该系统在每个孔的底部包含一个固定的固体有机硅基质和嵌入的葡萄糖晶体。在这些 FeedPlates® 中,GFP 产量提高了 245 倍。该板以 24、48 或 96 孔形式上市,允许以分批补料模式直接进行高通量培养。然而,培养基 pH、温度和渗透压等外部因素对葡萄糖释放速率有主要影响。因此,使用该技术时,对基质释放速率的精确控制受到限制。2016 年,Flitsch 等人研发了一种改进的 μ-RAMOS 设备,其目的是克服原始设备的瓶颈。更新后的系统在 48 孔 MTP 的每个孔中配备了气体入口和出口阀以及光学传感器,便于对所有 48 种培养物同时进行 OTR 监测。该技术最近被进一步扩展用于 96 孔深孔 MTP,使研究人员能够实现比原始摇瓶规模的RAMOS 系统增加 15 倍的实验通量。Habicher 等人 2020 年证明了最先进的 μ- RAMOS 和 FeedPlate® 对于工程化用于蛋白酶生产的地衣芽孢杆菌菌株的葡萄糖限制培养的兼容性。OTR 的在线监测极大地改善了 MTP 培养物的信息含量,发现其在 MTP 和摇瓶规模下的性能相当。使用该平台生成的数据可用于在开发的最早阶段生成数学模型,从而根据设计原则显著改善了过程质量。Wilming 等人 2014 年使用 96 孔 MTP 开发了一种替代的基于扩散的分批补料系统。每个培养孔通过填充有聚丙烯酰胺水凝胶的扩散通道连接至储层孔,便于每个平板进行多达 44 次平行分批补料培养。用浓缩基质溶液填充储器,以实现逐步扩散驱动补料。通过改变储器中的浓度并由此改变驱动浓度梯度。然而, 发现补料浓度和葡萄糖释放速率之间的关系是非线性的。这种使补料速率微调复杂化的非线性归因于水的反向扩散。尽管如此,板的透明底座提供了与板读取技术兼容的主要优势,例如用于通过散射光测量生物量和荧光的 BioLector 系统(mp2-Labs,德国)。使用该系统证明了大肠杆菌和多形嗜血杆菌菌株的分批补料培养。与分批对照相比,用最佳 300g/L 葡萄糖补料进行大肠杆菌的分批补料培养分别导致生物量和基于黄素单核苷酸的荧光报告蛋白信号增加约5 倍和14 倍。2.2酶控补料淀粉在液体培养基中的溶解度差,需要在原始 EnBase® 工艺中使用固相。为了消除对双相系统的需求,开发了具有完全可溶性聚合物基材的 EnBase® Flo。葡萄糖释放方法与矿物盐和复杂培养基添加剂的精心优化组合相结合,以产生高细胞密度和产品滴度。Glazyrina 等人 2012 年通过在 3mL 至 60L 的范围内培养经工程改造过量生产模型酶醇脱氢酶的大肠杆菌菌株,研究了 EnBase® Flo 系统的可扩展性。在所有测试规模下均实现了相当的增长率和蛋白质滴度,突出了可扩展性。在所有测试规模上都实现了可比的生长速率和蛋白质滴度,突出了可扩展性。EnBase® 系统还提供了在大型生物反应器的初始培养阶段控制葡萄糖释放的额外好处,完全消除了溢出代谢。EnBase® 技术还以方便的片剂形式在市场上销售。该 EnPresso® 系统与 D- optimal DoE 方法相结合,可优化 24 孔板中工程大肠杆菌的缬诺霉素生产。与原始分批培养相比,DoE 驱动的平行分批补料培养策略使缬氨霉素滴度提高了 33 倍。2.3内部补料策略小结扩散和酶控制的补料策略提供了一种相对简单和低成本的方法来模拟更大规模的分批补料过程。它们提供了恒定基质补料的关键优势,但在整个培养过程中通常不可能精确控制补料速率。结果,更复杂(例如指数)的进给曲线不能使用内部补料策略。此外,补料通常限于单一基质,这可能导致培养基中的其他营养物变得有限。特别是基于酶的补料依赖葡萄糖作为碳源,这可能不是所有过程的最佳选择。此外,在此类系统中,酸和碱补料通常是不可能的,从而限制了过程控制能力。曼森平行生物反应器分批补料应用曼森采用Watson-malow 400A高精度泵头,16 路补料,平均每个罐有四路补料,蠕动泵流量可设定,连续可调;每个蠕动泵的功能可单独分配,可以作为酸泵、碱泵、补料泵、消泡泵、液位控制泵。信息来源:https://www.sciencedirect.com/science/article/pii/S0734975021001944?ref=pdf_download&fr=RR-2&rr=747c4db53ee4ddb1文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • 对话化学界“瑜伽大师”—电化学反应器如何实现键合新突破?
    在本文,德祥将带您一起探索电化学的魅力,揭秘Vapourtec流动合成仪中的离子电化学反应器。这项创新反应器技术引领着有机卤化物交叉偶联领域,实现了Csp2-Csp3键合的突破。通过优化关键反应,预期产物收率达到81%! 背景电化学作为与分子相互作用密切相关的方法之一,近年来受到广泛关注。有机卤化物交叉偶联的电化学途径,特别是Csp2-Csp3键合,对于拓展合成方法学、实现选择性和功能性、推动可持续化学发展以及在医药和材料科学中的应用具有重要的研究意义。2017年,辉瑞公司提出了一种还原型交叉偶联反应,用于在批处理电化学系统中构建Csp2-Csp3键。电化学方案被用来还原镍催化剂(根据文献,将NiII还原为Ni0或将NiIII还原为NiII)。 图1:苯基碘化物和烷基碘化物之间的还原型交叉偶联反应在下面为大家分享的实验案例中,利用Vapourtec Ion电化学反应器在连续流条件下对该反应进行了优化。实验设置所有实验都是使用配备R2C+泵模块以及新型离子电化学反应器的Vapourtec R系列进行的。 图2:实验装置示意图实验反应物 配体2-氨基吡啶盐酸盐(L1); 烷基碘化物; NiCl2(DME); NaI以及芳基碘化物。实验准备 1. 所有材料除了配体L1外,均从商业供应商购买。 2. 试剂溶液的制备在一个被真空处理后的20ml瓶中进行,加入各类试剂后混合搅拌。实验操作 1. 工作电极使用碳电极作为阴极,锌电极作为阳极; 2. 反应是在恒电流(0.02A)进行; 3. 工作温度:30℃和50℃,实验样品通过泵送模块泵入盘管反应器,再通过离子电化学反应器进行反应。 表1:反应条件与收率对比实验结果实验结果显示,当在室温下使用一定量的镍配合物和配体时,反应的产率仅为18%。而提高反应温度或者延长停留时间可以得到更高的产率。使用吡啶甲酰胺衍生物L1作为配体,可以得到最好的效果,产物产率最高可达81%。温度,反应时间和配体的选择都是影响产率的关键因素。使用离子电化学反应器成功地进行了试剂的转化和产物的收集,通过优化实验条件,实现了较高的收率。整个实验过程轻松简便,极大提高实验效率。Vapourtec Ion电化学反应器 Vapourtec推出与R和E系列流动化学系统兼容的Ion电化学反应器。这一创新设备利用流动微反应器提供的极大表面积与体积比,使得反应更加高效。Ion电化学反应器的多功能性使其成为研究者的理想选择: # 可加热或冷却(-10°C至100°C) # 可在高达5 bar的压力下工作(允许在溶剂沸点以上和气体混合物中工作) # 反应器体积可轻松调整,从0.15毫升到1.20毫升 # Vapourtec提供20种不同的电极,同时还可以获取特殊电极。离子电化学反应器控制器 Vapourtec流动合成仪的Ion电化学反应器为有机卤化物交叉偶联提供了一种前沿技术。通过这一创新反应器设备,化学家们能够更高效地构建Csp2-Csp3键合,开启全新的合成途径。Vapourtec英国Vapourtec是德祥科技旗下代理品牌之一。英国Vapourtec公司专业致力于研发和生产流动合成仪。目前在世界*制药公司中都有了Vapourtec的产品。其生产的R系列产品质量可靠、性能成熟,高效能模块系统可随您的流动化学生产能力的扩大而扩大,确保能满足您的业务发展需求。既能即刻发挥目前投资的效益,也能保障未来有足够大的选择地。新型的E 系列操作界面清晰、简单、触摸屏操控,开机即用式、无需培训或少量培训即可上手使用。同时针对性的反应器提高对应反应的效率。产品包含了E系列和R系列流动合成仪、光化学反应器、离子电化学反应器等。德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为卓越的科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度*代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为*的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每*都在使这个世界变得更美好!参考文献:[1] M. Yan, Y. Kawamata, and P. S. Baran, "Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance," Chem. Rev., vol. 117, no. 21, pp. 13230–13319, Nov. 2017.[2] R. J. Perkins, D. J. Pedro, and E. C. Hansen, "Electrochemical Nickel Catalysis for Sp2-Sp3 Cross-Electrophile Coupling Reactions of Unactivated Alkyl Halides," Org. Lett., vol. 19, no. 14, pp. 3755–3758, Jul. 2017.[3] M. Atobe, H. Tateno, and Y. Matsumura, "Applications of Flow Microreactors in Electrosynthetic Processes," Chem. Rev., vol. 118, no. 9, pp. 4541–4572, May 2018.[4] E. C. Hansen, D. J. Pedro, A. C. Wotal, N. J. Gower, J. D. Nelson, S. Caron, and D. J. Weix, "New ligands for nickel catalysis from diverse pharmaceutical heterocycle libraries," Nat. Chem., vol. 8, p. 1126, Aug. 2016.
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom® P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom® P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom® P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom® P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 快来围观!康宁反应器技术在山东有新布局!
    “四面荷花三面柳,一城山色半城湖”,今日在美丽的泉城济南,高新区新泺大街颖秀路1666号齐盛广场2号楼1510室内欢声笑语,多方宾客共聚一堂庆祝康宁反应器技术有限公司济南办事处(以下简称济南办事处)正式成立!京博控股集团高级副总裁蔡颖辉,河北建新化工股份有限公司常务副总经理朱秀全以及山东师范大学化学化工与材料科学院,山东省化工研究院,烟台远东精细化工有限公司、齐鲁制药、北京海菲尔格与济南龙行翱翔等客户及合作伙伴代表作为嘉宾到场祝贺济南办事处成立。康宁反应器技术有限公司总裁兼总经理、中国化学品安全协会常务理事姜毅博士主持成立仪式并做主要发言。姜博士向与会嘉宾介绍了康宁公司及康宁反应器技术进入中国的发展历程和显著成绩。并重点提到了康宁本质安全的反应器技术在山东地区的应用与发展。山东区域的客户一直勇于创新,敢于拥抱新技术,在康宁尝试工业化道路的开始便协力同行!康宁的多套G4、G5万吨级工业化装置已经稳定运行多年。现在,在化工、制药与新材料行业加快产业整合向绿色高质方向发展的大环境下,本质安全、绿色低碳的微通道反应器技术工业化的进程在不断加快,客户急需要更加全面的技术与服务支持,济南办事处正是应这一需求而成立的。京博控股集团高级副总裁蔡颖辉作为揭牌嘉宾与康宁反应器技术有限公司总裁兼总经理姜毅博士共同为康宁反应器技术有限公司济南办事处揭牌!济南办事处的成立也是康宁反应器技术全国战略布局的至关重要的一步。它的成立将 更全面地支持区域客户进行工业装置长期验证协助客户进行微通道反应器技术工艺快速开发利用全球经验优化和提高工程服务质量与效率集合新成立的康宁连续流技术培训中心以及科研高校合作伙伴的力量为区域客户培养和输送连续流技术专业人才助力客户实现安全、高质、绿色创新与发展。姜博士还展望了康宁反应器技术在山东的发展前景。他提到绿色微化工为国家“双碳”目标提供了有效技术路径。山东作为化工和能源使用大省,在实现这个双碳目标的过程中承担重要的责任和使命,高效利用能源,技术创新与发展势不可挡。康宁反应器技术将携手山东区域的合作伙伴与客户在共同承担这一历史使命的同时让客户获得发展,让广大人民享受绿色化工技术带来的安全、绿色的产品与服务。最后姜博士表达了对当地政府、客户、高校研究所以及合作伙伴的诚挚谢意!从左到右依次为康宁反应器技术有限公司马俊海(区域商务总监)、王金远(区域技术经理)、姜毅(总裁兼总经理)、常宝磊(技术销售经理)、贾柏峰(商务副总裁) 康宁反应器技术有限公司商务副总裁贾柏峰先生表示:“为了更好的服务当地客户,济南办事处除了配备有康宁主要产品系列的样机进行展示,还会着力加强当地技术服务团队建设。办事处将依托康宁领先连续流技术和市场支持,加强与当地客户的联系,及时响应当地客户对于工艺开发和工业化技术服务需求,高效服务,使当地客户快速获得创新技术带来的应用成果!” 同时贾总携北方区区域商务总监马俊海、济南办事处技术销售经理常宝磊和区域技术经理王金远等诚挚邀请和欢迎当地客户只要有涉及到连续流技术应用、工艺开发、放大的任何问题,来办事处与我们一对一地面谈交流。
  • 改变微反应器材质! 连续流工艺转化率从60%提升到99%!
    改变微反应器材质,连续流工艺转化率从60%提升到99%!康宁用“心"做反应研究背景水合肼及其衍生物产品在许多工业应用中得到广泛的使用,如化学产品、医药产品、农化产品、水处理、照相及摄影产品等。肼的衍生物可用作药品、杀虫剂和化学发泡剂等。要连续制备3-苯基-1H吡唑- 5-胺(化合物1),在传统间歇釜式条件下,一般通过将水合肼、腈化合物2和乙酸乙酯的混合物在乙醇中回流得到(方案1)。美国抗癌药和孤儿药研制公司Agios制药公司,2021年在OPR&D杂志上报道了:高温下肼缩合反应的连续流工艺的研究。与传统的间歇工艺相比,该方法可以更安全、并可以更好的控制杂质。研究中,作者发现微反应器材质对反应收率有着极大的影响。并且,溶剂选择对连续流工艺的成功至关重要。方案1:合成1图1.合成1基本方案反应器材质及溶剂对反应的影响1. 不锈钢 316/316L 管式反应器的连续流工艺探讨如下图2所示,2的甲醇流与甲醇中的水合肼一起流入预热温度为150°C的316L SS管式反应器,经过20分钟反应后,进入降温单元再接后处理。结果反应混合物的过程控制(IPC)显示背压调节器(BPR)释放大量气体,转化率为60%。增加水合肼的停留时间或当量并不能提高转化率。图2:不锈钢316/316L管式反应器连续流工艺流程图经分析由于不锈钢 316/316L 管不适合在高温下处理水合肼溶液,因其钼含量高,会显着降低肼的分解温度。所以肼在高温下与不锈钢流动反应器不兼容。2. 聚四氟乙烯泵头进料,PFA材质的盘管反应研究者选择使用聚四氟乙烯作为水合肼的进料泵,反应器选用PFA材质的盘管对该工艺进行了研究。图3: 合成1的连续流工艺将化合物2的2-甲基四氢呋喃(2-MeTHF)溶液和水合肼的乙醇溶液分别流过浸没在70°C水浴的管道。1-2 分钟的停留时间后,两股物料在三通混合器处混合,并流入放置在 140 °C的烘箱中的管道反应器(停留时间20-60 分钟)。然后经过冷却管道冷却后,通过背压阀(BPR)后从连续流反应器系统中流出,出料口设有过程控制样品(IPC)取样口。在适合条件下,使用了 1.4 当量的水合肼,停留时间30 分钟,在两次 100g 规模运行,得到 99% 的LC 纯度和几乎接近满级的LC收率。3. 溶剂对反应的影响在实验中研究者发现起始化合物2在 MeOH 中不稳定,在环境温度下保持溶液3天后,明显形成类聚合物沉淀和新杂志的产生,纯度从 99.9% 降低到 98%。一方面该不溶性沉淀物不溶于大多数有机溶剂,可能导致泵头故障和流动系统堵塞。另一方面新杂质的产生,这可能会影响所生产的1的质量。这促使研究者寻找替代溶剂系统。首先通过检查溶液外观和纯度随时间的变化来评估2在10 种以上的 II 类和 III 类溶剂中的稳定性。初步筛选鉴定出 MTBE、1,4-二恶烷和 2-MeTHF,在 25 °C 下搅拌 15-120 小时后,观察到外观和纯度几乎没有变化。表1:溶剂筛选然后评估了1和2在每种溶剂中的溶解度。如表1所示,原料2在1,4-二恶烷和2-MeTHF中表现出良好的溶解性。然而,MTBE 至少需要 20V才能完全溶解2(条目 1),并且在工艺效率方面并不理想。已知 1,4-二恶烷(条目 2)具有致癌性,2- MeTHF似乎是特有前途的溶剂,然而,它与水合肼不混溶,这可能导致管式反应器内的传质效率低下。为了解决这个问题,引入EtOH 作为共溶剂溶解水合肼并使肼溶液与2的2-MeTHF 溶液混溶。此外,1 和 2 在 2-MeTHF/EtOH 混合物中都显示出良好的溶解性(v/v= 5:1,条目 4)。在适合条件下,使用了 1.4 当量的水合肼,停留时间30 分钟,在两次 100g 规模运行,得到 99% 的LC 纯度和几乎100%的LC收率。4. 工艺的可扩展性和稳定性研究为了评估该工艺的可扩展性和稳定性,在之前的基础上进行了 3 公斤规模的测试运行。见下图,包括1的连续流合成、分批后处理和结晶的总体工艺图。图4. 工艺可扩展性和稳定性测试-3kg示范运行工艺流程图如图4所示。将起始材料2(3.1 kg)溶解在2-甲基四氢呋喃(31 L)中。水合肼(1.5 kg,65 wt%)溶解于乙醇(6.2 L)中。化合物2的2-甲基四氢呋喃溶液和水合肼的EtOH溶液的流速分别设置为83ml/min和20ml/min。两股物料通过浸入70°C水中的预热管道,进行预热。然后,两股物料进入温度为140°C的烘箱内的管道反应器内。从烘箱流出的反应混合物经过后冷却回路,然后经过BPR(压力设定140 psi),然后在氮气保护下收集反应混合液。该连续流系统连续稳定运行6小时后,收集到了37.74 kg反应混合物。该工艺在整个生产过程中,没间隔30分钟取一个样品进行分析,所得混合也中化合物1的含量均为99%。所收集混合液,分2批进行后处理和结晶后,以87%的收率获得3kg灰白色固体1。分离出的固体纯度 99.5%,残留肼仅有 5-10 ppm,符合生产要求。结果与讨论作者开发了一种用于肼缩合反应的连续制造工艺,以生产高质量的医药中间体1在研究中发现反应器材质及进料泵的材质对反应的稳定性和收率有着极大的影响;作者对溶剂体系进行了研究,确定最佳溶剂为 2-MeTHF/EtOH 混合物(v/v= 5:1);与原始工艺相比,连续流工艺更安全、更实用;连续制造过程易于实现放大,生产运行稳定,产品完全合格。Reference: Org. Process Res. Dev. 2021, 25, 199−205编者语连续流工艺开发过程中,反应介质与反应器材质有可能发生反应,或者有着严重的腐蚀。对于连续流工艺开发,有时反应器材质的选择是工艺成功的因素之一。目前常用的反应器材质有碳化硅、玻璃和金属等。康宁反应器选用了康宁特种玻璃和高化学稳定性的康宁Unigrain™ 碳化硅 (SiC)材质。康宁反应器具有优秀的抗腐蚀、耐高温高压(-60-200℃,18个大气压),适用于多种化学反应。康宁玻璃反应器可视化的特点,适用于需要光化学反应。连续流工艺开发,溶剂的选择非常重要。一个看似无法进行连续流操作的工艺,通过溶剂的选择可以使反应顺利进行,并取得非常好的结果,这对未来多步反应的全连续过程至关重要。
  • 喜讯 - 康宁反应器技术有限公司荣获“zui具社会责任感企业”称号
    新年伊始,喜讯来报。在刚刚闭幕的2019年度石油和化工行业十大新闻暨行业影响力人物发布盛典上,康宁反应器技术荣获2019年度“中国石油和化工• 企业公民楷模榜 - zui具社会责任感企业”称号。图1. 康宁反应器技术有限公司中国区商务副总裁贾柏峰上台领奖图2.中国化工报社党委书记兼社长崔学军和康宁反应器技术有限公司总裁兼总经理姜毅为获奖单位颁奖中国石油化工联合会携手中国化工报为促进中国石油和化工行业健康可持续发展,营造良好的行业发展社会舆论环境,开展2019年度“中国石油和化工企业公民楷模榜”活动。通过树立并大力宣传推介勇担社会责任的行业楷模,倡导更多企业走上积极创新、绿色环保、安全可靠、回馈社会的可持续发展道路。图3. 中国石油化工联合会党委书记、会长李寿生(中)与康宁反应器技术有限公司总裁兼总经理姜毅(左)及康宁反应器技术有限公司中国区商务副总裁贾柏峰(右)合影由中国化工报社邀请行业专家组成专门的推介委员会,综合企业申报材料、媒体报道、社会评价、现场考察等多重考察。2020年1月11日在北京授予2019年度在转型升级、科技创新、节能减排、安全环保、社会公益等方面表现突出,致力于改善行业形象的企业“社会责任感企业”荣誉,颁发奖牌,向社会推介。 图4.康宁“zui具社会责任感企业”奖牌 康宁获此殊荣,一方面感谢行业专家对康宁反应器技术的认可及中国石油化工联合会及中国化工报一直以来对康宁的支持。另一方面也是康宁追求企业良性增长与和谐发展,具备创新意识与责任担当。康宁是一家160多年创新性的公司,具有全球化视野和布局。一直以来,康宁与世界最领xian科技持续公司密切合作,打造化工、医药企业的研发和生产的前瞻性可持续创新技术。康宁已经将产学研结合当做公司的社会责任,帮助整个生态链来进行教学推广也是企业的社会责任之一。目前,全球范围内康宁已与超过50所高校在不同层面进行合作,包括教学合作、共建平台、科研合作、项目合作以及实习和工作机会等。康宁希望从多层面与中国高校进行合作,尽快地让更多的学校能够享受这一先进成果。这也是康宁选择在进博会期间正式发布教学平台的一个原因,这是一个共建、共享和共赢的舞台,也是康宁对社会和客户的承诺,推动先进技术在中国的实施和普及,提升中国医药和精细化工可持续、高质量发展。康宁公司在过去的169年来一直致力于改变生活的突破创新,用技术创新改变人类的生活。大规模电灯泡的生产给世界带来了一片光明;优质光纤的发明和生产让现代通信的发展成为可能;而康宁大猩猩玻璃,让移动通信跃上了新台阶。 2017年9月,在由上海市政府新闻办公室、市商务委员会和市环境保护局指导,解放日报(上海观察)、上海日报和东方网联合主办的"迈向2040:企业创新与城市可持续发展力"zui佳案例评选中,康宁中国凭借其环境科技事业部的陶瓷载体和DuraTrap® GC过滤器对环境治理作出的贡献,荣获“2017可持续行动典范奖”。 多年来,康宁除了用技术实现对社会的责任关怀之外,康宁中国也通过与外部相关组织机构的合作来开展项目,实践企业社会责任。从2005年到2012年,康宁与国际美慈组织,中国扶贫基金会合作开展的小额扶贫贷款项目,重点帮扶了福建省霞浦县盐田乡西胜村的村民脱贫致富。该项目历时八年,期间,从捐助善款、学生用品和生活用品到修建道路、捐助小学图书馆,康宁始终支持和帮助霞浦县盐田乡西胜村的村民改善生活,脱离贫困。2013年12月16日,中国扶贫基金会在北京大学召开了“国际社会责任民间论坛”,康宁中国被授予“zui佳实践案例奖”,康宁中国的企业社会责任项目也入选《中外企业履行国际社会责任优xiu案例集》。康宁公司多年来积ji致力于各种公益活动,康宁将继续坚持对企业社会责任的长期承诺,秉持企业社会责任的理念,与合作伙伴共同践行企业社会责任。
  • 浙江大学定制聚同/JTONE品牌多管控温光化学反应器成套设备
    浙江大学定制聚同/JTONE品牌多管控温光化学反应器成套设备浙江大学是一所历史悠久、声誉的高等学府,坐落于中国历史文化名城、风景旅游胜地杭州。作为浙江本土企业,杭州聚同电子有限公司很荣幸能为浙大高等学府提供高标准,严要求的实验室仪器,同时能得到老师的肯定也说明了聚同/JTONE品牌的设备产品质量过硬。杭州聚同电子有限公司已陆续为浙江大学提供多款实验室设备,其中不乏有样品前处理中的氮吹仪、喷雾干燥机,低温恒温槽、高低温恒温一体机。此次按照浙大老师特殊的要求,再次定制成套多试管控温光化学反应器,得益于我们公司强大的技术研发团队及完善的售后服务保障体系,从了解老师需求,到开发程序及提供解决方案,并以合理的价格赢得了老师的认同与肯定。杭州聚同电子有限公司一直致力于科技创新,用事实和品质说话,让用户买得放心,用得安心。
  • 康宁反应器技术新产品“连续流微通道光化学反应器“
    康宁连续流微通道光化学反应器 具有160多年历史的康宁-创新永无止尽。康宁公司应市场的需求,经过康宁反应器技术欧洲研发中心精心的研究和反复的实验推出了可用于光化学反应的“可控-高效-连续流”微通道光化学反应器。康宁在Advanced-Flow? 反应器技术方面的成功为连续流光化学合成领域带来了技术突破。康宁? Advanced-Flow? G1光化学反应器是基于康宁? Advanced-Flow? G1反应器和专门设计的高效光源系统,确保光化学合成能够在分布非常均匀的紫外光照射下,取得: 1.更好的反应性能 2.更高的收率 3.更优的生产效率 4.更均匀地吸收通过反应器通道的光能。 康宁? Advanced-Flow? G1光化学反应器一方面能够满足用户对光化学反应以及特定光源的要求,另一方面让用户享受Advanced-Flow? 反应器优秀的换热和传质性能带来的收益。如果您对光化学反应有兴趣,请与我们联系 0519-81166118或通过邮件 reactor.asia@corning.com 康宁将竭诚为您服务。 关于康宁中国康宁积极参与中国的发展已有30多年,以其专业人才及本土知识开发并应用突破性的技术从而改善了人们的生活。今天,康宁在中国的投资与该地区新兴市场的趋势紧密结合,在大中华区的总投资额已达30亿美金,员工总人数超过5,000人。 请访问www.corning.com.cn,了解更多关于康宁中国的信息。 关于康宁反应器技术在大中华地区推广康宁正在大中华地区努力帮助众多医药化工和精细化工企业以及相关科研院所进行微通道连续流反应工艺的技术可行性认证,并且帮助企业迅速培训微通道反应的技术人员,支持他们进行连续流工艺优化,和工业化示范试验。让更多人见证这一新技术的成效,尽快享受这一新技术给企业清洁安全高效生产和社会效益所带来的回报。如果您想了解康宁反应器技术以及康宁反应器在研发和生产中的应用实例,请访问康宁公司相关网页www.corning.com/reactors 如果您想和康宁反应器技术人员探讨有关工艺的技术可行性,请与我们联系 0519-81166118或通过邮件 reactor.asia@corning.com 康宁将竭诚为您服务。
  • 纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)助力复合聚合物领域实现新突破
    背景简介聚合物纳米复合材料是以聚合物为基体连续相,以纳米填充物为分散相的一种复合材料,具有易加工、摩擦和磨损率小、表面硬度高以及成本低廉等特点,在工业中具有广泛应用,受到诸多科学家的关注。研究聚合物复合材料的内部结构是一种综合性认知材料聚集形态形成和物质组成分布的有效方法。通常,科学家通过透射电子显微镜(TEM)研究颗粒的内部结构及聚集形态。但是,电子显微镜并不能对轻质元素(C, H, N和O) 进行元素识别及表征,而这些元素正是水体系聚合物主链单元的主要组成元素。同时,电子显微镜对聚合物功能团的识别强烈依赖于选择性染色,需要将电子密度高的重金属离子引入聚合物链。因此,通过扫描透射电子显微镜-电子能量损失谱方法(STEM-EELS)或者TEM相衬度法来研究聚合物纳米材料的形态结构及元素分布仍然存在一些争议,特别是在研究水溶性主链的聚合物体系中染色带来的误差和衬度失真尤为严重。近年来,迅速发展的纳米分辨傅里叶红外光谱与超分辨光学成像技术(nano-FTIR & neaSNOM)能够实现在10 nm的空间分辨率下对材料的化学组成和结构进行表征。与电子显微镜与电子能谱结合的方法相比,光学探测技术具有无损伤、无需染色标记、快速且适用性广等优点,可以研究材料化学组分,微观结构、电学、力学、高分子取向与构象以及物质相互作用等信息。研究进展近期西班牙纳米科学研究中心的Rainer Hillenbrand团队通过nano-FTIR & neaSNOM对聚全氟辛基丙烯酸酯-基丙烯酸酯-丙烯酸丁酯(PMB)形成的纳米复合颗粒进行研究[1]:证明了颗粒内部形成了复杂的Core-Shell-Shell结构。进一步,通过nano-FTIR对全氟取代共聚物(POA)和丙烯酸共聚物(MMA/BA)在三层结构中的分布及比例进行定量研究,发现本该富集在Core部分的疏水POA在三层结构中都存在,并且在inner-Shell的比例高度达到了65%。结合聚合反应动力学研究,nano-FTIR & neaSNOM可以呈现复合聚合物颗粒Core-Shell-Shell结构在形成过程中各化学组分生成时间、相分离及迁移的具体路径以及疏水、亲水相互作用,有助于提升对纳米材料复杂高次结构的理解和设计。需要指出的是:由于不同的域(核,壳)显示出显着不同的机械性能和形貌(图1a),其他方法(例如PiFM和AFM-IR)得到的红外信息会跟局域的机械性能有一定关联,造成一些数据假象。而nano-FTIR对于这种材料系统的优点是部与样品之间的纯光学相互作用决定了信号,因而得到的信号与材料的机械性能无关。 精彩结果展示图1 PMB嵌段聚合物截面光学超分辨成像。(a)s-SNOM原理示意图。通过激发光(Einc)聚焦照射AFM探针,在针周围形成增强的局域近场,进一步AFM探针以Ω轻敲振动频率调制针散射(Esca)的近场信号,从而获取纳米尺度下聚合物截面的光学图像。(b)纯poly(POA) 与poly(MMA-co-BA)的nano-FTIR光谱,用作对比参考光谱。垂直的蓝色虚线表示记录在图(d)和(e)中的近场光学图像的红外频率。(c) PMB颗粒的拓扑结构成像。(d, e) 近场红外的相位图对应了样品分别在1250 cm−1 (d)和在1736 cm−1 (e)处的吸收。图像的积分时间为每个像素6 ms 图像获取时间为24 min。图2 nano-FTIR&neaSNOM对PMB单颗截面Core-Shell-Shell结构中POA/ARC(MMA-co-BA)的高光谱及纳米红外光谱研究(左);图3 对多个PMB聚合物颗粒化学组分的统计研究,定量给出了Core-Shell-Shell的比例分布(右)。结论作者展示了无需化学染色标记的一种纳米成像与纳米光谱表征方法(s-SNOM& nano-FTIR),该方法确认了PMB聚合物复合颗粒内部结构并证明了新型的核-壳-壳复杂结构的存在。进一步通过对参比样品光谱进行线性叠加拟合,定量的计算出核-壳-壳结构中各个组分的定量比例及分布。这种同时表征材料微观纳米结构与对应化学成分的方法是前所未见的,有助于帮助科学找到影响材料性能的关键参数以及终材料聚集形态形成的动力学路径,依此来设计和调控材料所需的宏观性能。 研究利器上述研究中的纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)是由德国Neaspec公司利用其有的散射型近场光学技术发展出来的,使纳米尺度化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,可以在纳米尺度下实现对几乎所有材料的化学分辨。由此开启了现代化学分析的纳米新时代。该设备还具有高度的可靠性和可重复性,已成为纳米光学领域热点研究方向的重要科研设备!图4 neaspec纳米傅里叶红外光谱仪-Nano-FTIR 参考文献:[1]. Cross-Sectional Chemical Nanoimaging of Composite Polymer Nanoparticles by Infrared Nanospectroscopy, Macromolecules, 2021, 54 (2), 995-1005, DOI: 10.1021/acs.macromol.0c02287
  • 中科院大连化物所基于聚合物光催化剂提升了光合成过氧化氢效率
    近日,中科院大连化学物理研究所微纳米反应器与反应工程学创新特区研究组(05T7组)刘健研究员团队在利用聚合物光催化剂生产H2O2研究方面取得新进展,基于对间苯二酚—甲醛(RF)树脂的电荷分离能力的提升,以及光催化反应路径的调控,提升了RF树脂的光催化产H2O2性能,使其太阳能到化学能(SCC)的转化率达到1.2%。利用聚合物光催化剂将氧气和水转化为H2O2的方法具有低能耗、环境友好等特点,是非常有潜力的生产H2O2的方法。然而,在分子水平上设计光催化剂,调节光生载流子行为仍具有挑战。本工作中,该团队提出从分子尺度设计调控RF树脂中电子供体(D)与电子受体(A)比例的策略,将缺电子的1,4-二羟基蒽醌(DHAQ)分子引入到RF的骨架中。研究发现,DHAQ作为电子受体可以有效调节RF中的D/A比例,增强其电荷分离能力,同时调整了反应路径,通过水氧化和氧还原的双路径共同生产H2O2,使得该材料展现优异的光催化生产H2O2的催化活性,SCC效率达到1.2%,是目前文献报道最高的SCC效率。此外,团队与中科院大连化学物理研究所超快时间分辨光谱与动力学研究组(1110组)合作,结合飞秒瞬态吸收光谱等技术、原位表征实验以及理论计算模拟,阐析了DHAQ掺杂的RF树脂的微观结构以及促进电荷分离和双路径生产H2O2的机制。上述研究成果为在分子水平上设计高效人工光合作用的聚合物光催化剂提供了新思路。RF树脂作为一种窄带隙半导体聚合物,近年来在光催化生产H2O2方面展现出潜力。刘健团队长期致力于酚醛树脂纳米材料的合成策略创新及功能化研究,取得了系列代表性成果:发展了扩展St?ber法合成单分散的酚醛树脂微球(Angew. Chem. Int. Ed.,2011),制备了一系列孔径及粒度可控的多孔微球,以及中空结构、蛋黄—蛋壳结构、碗形酚醛树脂聚合物微纳材料(Nat. Commun.,2013;Adv. Mater.,2019;no.1c09864"ACS Nano,2022),发展了化学剪裁策略有效调控酚醛树脂微球的内部结构及功能基团分布(Adv. Mater.,2022)等。相关研究以“Molecular Level Modulation of Anthraquinone-containing Resorcinol-formaldehyde Resin Photocatalysts for H2O2 Production with Exceeding 1.2% Efficiency”为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。该工作的第一作者是中科院大连化学物理研究所05T7组博士研究生赵陈。以上工作得到了国家自然科学基金等项目的支持。
  • 上新 | IKA 正式发布HABITAT 生物反应器
    /// HABITAT 生物反应器能对多种细胞进行重复性和标准化培养。它集生物反应器、光生物反应器和发酵罐于一体,符合人体工程学设计并可高效运行。IKA 推出一款新的生物反应器。HABITAT 生物反应器能对多种细胞进行重复性和标准化培养。它集生物反应器、光生物反应器和发酵罐于一体,符合人体工程学设计并可高效运行。HABITAT 生物反应器整合了 IKA 核心产品研发能力,在混合、温控、自动化、安全和设计上都实现了创新。HABITAT 作为 IKA 第一款自主研发的生物反应器,该机器在设计和操作上都有显著改善。提供罐盖支架的生物反应器HABITAT 是一款提供支架的实验室生物反应器。支架可让罐盖永远不用放下。马达可挂在支架的侧面,传感器亦可安全存放于支架上。所有这些都确保了符合人体工程学的工作、整洁的实验室台面和更快的组装操作。创新混合模式IKA 工程师开发了一种新的混合模式,专门用于 HABITAT 生物反应器。在Chaotic Mode(混沌模式)下,反应器内容物的混合遵循混沌动力学系统的数学原理。这确保了更快、更有效的混合。单独的 PID 处理器单独的 PID 处理器为实验室反应过程提供控制选项。管理员也不必是有经验的专家。如果温度值被改变,软件就会检查这种改变对过程的影响并进行调控。广泛的应用根据培养细胞的类型,实验室可将 HABITAT 用作生物反应器,或与 IKA 恒温器结合用作发酵罐。通过连接 LED 灯板,HABITAT 甚至变成了一个光生物反应器。在同类生物反应器中,HABITAT 是一款马达尺寸与罐体体积匹配的生物反应器。操作简单易上手从第一次操作开始,可与主机分离的平板电脑和直观的操作软件都让工作变得更容易。HABITAT 的智能校准管理使温度、pH和DO传感器的校准变得简单。软件可存储所有测试条件(反应器尺寸、搅拌器等)和所有测量值。四个集成的蠕动泵有助于收获细胞。因此,整个操作都很简单,学习时间短。长时间的实验可在无人值守条件下安全运行。体验 HABITATHABITAT 现已上市。使用适当的设备也可通过VR虚拟实验室体验 HABITAT 的性能与构造。体验HABITAT,请与我们联系:info@ika.cn,了解更多产品信息。关于 IKA IKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场领导者。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、移液器、研磨机、旋转蒸发仪、加热板、恒温循环器、粘度计、量热仪、实验室反应釜等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与全球知名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。
  • 2018康宁反应器技术交流年会(第八届)
    打造本质安全一体化连续合成制造工艺Integrated Continuous Manufacturing via Inherently Safer Flow Synthesis Technology【会议展望】康宁反应器技术的年会已成为微通道连续流行业的盛会。2017年,600多嘉宾汇聚一堂的盛况仍历历在目。2018年3月29日,又将迎来新一届的盛典。每年的康宁反应器技术交流年会,不只是当下国内外新的微反应器应用成果,更是世界级连续流专家传播化工新的理念及新发展趋势的平台。今年我们非常有幸邀请到美国科学院和工程院两院院士、麻省理工学院Klavs F. Jensen教授及众多知名学者及专家。国内外连续流大咖聚集一堂,注定是一场不寻常的年会。以国际化的视野,交流微通道连续化学研发和制造的现状。展望这一“颠覆性”技术,能够推动本质安全和智能制造的化工产业转型。 【演讲嘉宾】Martin J. Curran 康宁创新官,高级副总裁,Executive Vice President & Corning Innovation OfficerMartin J. Curran 康宁创新官,高级副总裁负责康宁的新兴业务。康宁新兴创新团队将康宁非凡的材料和工艺特性与新市场机遇联系在一起,打造可带来新产品和业务的创新。 演讲嘉宾:Klavs F. Jensen 教授 美国麻省理工学院(MIT)教授Dr. Klavs JENSEN, Warren K Lewis Professor and Head of Chemical Engineering Department, MITKlavs F. Jensen 教授 - 美国科学院,工程院两院院士;美国麻省理工学院(MIT)化工系教授和材料科学与工程系教授;世界微反应器研究,开发,应用领域领袖人物;拥有500多篇论文,30多项专利。演讲嘉宾:骆广生教授清华大学 博士生导师Dr. Guangsheng LUO, Director of the State Key Lab of Chem Engineering, Tsinghua University.骆广生教授,1988年本科毕业于清华大学,1993年获清华大学化学工程博士学位。1995—1996年在法国 CAEN 大学从事博士后研究工作。2001—2002年在 美国MIT 化工系作访问科学家。2005年获得国家杰出青年科学基金。2009年受聘教育部“长江学者”特聘教授。主要研究领域为微化工技术、分离科学与技术、功能材料可控制备等。在核心刊物上发表论文300余篇,获授权发明专利50余项,曾获国家和省部委科技奖励多项,荣获全国优秀科技工作者、全国优秀博士学位论文指导教师、北京市优秀教师等称号。演讲嘉宾:卫宏远教授,天津大学 博士生导师Dr.Hongyuan Wei, Tianjin University, Director of the Tianjin University - AstraZeneca Joint Laboratory for process safety.卫宏远教授,国际著名工艺放大、过程安全、流体混合和工业结晶专家,国家千人计划特聘专家,主持并顺利完成了多个国家级重大项目。 1997 年博士毕业于英国曼彻斯特理工大学,并任英国 BHR 公司高级顾问多年,现为天津大学聘为特聘教授。卫宏远教授一直活跃在化学工程及制药工程领域,有很高的国际知名度。兼任中国精细化工专业委员会副主任、中国化工系统工程专业委员会委员。天津大学-阿斯利康过程安全联合实验室主任。演讲嘉宾:姜毅博士,康宁大中华区创新官兼康宁反应器技术全球业务总监Dr.Yi Jiang Innovation Officer, Corning Greater China, & Business Director- Advanced Flow Reactors姜毅博士负责美国康宁公司反应器技术在全球的业务以及康宁新产业在亚洲的开发和推广,2011年由总部派驻上海。此前派驻过康宁欧洲技术中心(法国)任康宁全球反应器技术和应用工程总监。派驻法国之前, 姜博士曾在美国康宁公司的研发总部(纽约州)担任多年的研究部经理和项目经理。加盟康宁之前, 姜博士曾在美国效力于杜邦公司和康-菲石油公司, 开发用于化工能源工业的新型高效反应器技术姜毅拥有美国华盛顿大学(圣路易斯)化学工程博士学位, 十多项发明专利, 三十多篇国际一流化工期刊论文。在美国化工工程师协会AIChE曾担任了多年的新型反应器技术年会分会主席。演讲嘉宾: 朱建军博士, 中化集团化工事业部创新管理部总经理中化国际(控股)股份有限公司研发管理部总经理Dr.Jianjun Zhu, General Manager of the Departmentof innovation management, Ministry of chemical industry, Sinochem Sinochemical International (holding) general manager of research and development management of Limited by Share Ltd朱建军博士先后在常州大学、丹麦技术大学、荷兰大学、林德集团、中国中化集团从事研究及管理工作。先后在等国际权威杂志及国内核心期刊发表研究论文多篇;共申请专利多项,其中获得授权专利项。获得省部级科技进步二等奖两项。现任中化集团化工事业部创新管理部总经理中化国际(控股)股份有限公司研发管理部总经理。【颁奖晚宴】2018年度颁奖晚宴和晚会抽奖活动"康宁-国际流动化学成就大奖”"康宁反应器技术应用楷模榜-绿色创新奖”“康宁反应器优秀供应商奖” 【圆桌会议】颠覆性技术推广关键是人才的培养。微反应器技术应用人才的培养是康宁所肩负的社会责任。在过去的几年间,欧美各高校已培养了不少的研究人员,微反应技术的研究也成为各高校的热门课题。相比之下,中国高校的连续流人才培养还远远不能适应化工研发和生产的需求。本次年会,康宁会邀请有意向发展连续流技术的高校院长和Jensen教授一起探讨人才培养计划,帮助高校及科研单位有效地培养现代化连续流化学专家。3月30日 连续流化学化工教学院长圆桌会议(08:15-13:00)地址:江苏常州希尔顿酒店主持人:马旭 康宁反应器技术中国及远东区商务总监嘉宾:Klavs Jensen 麻省理工学院化工系,材料科学系,两院院士嘉宾:骆广生博士,清华大学教授嘉宾: 卫宏远教授,天津大学教授、博士生导师嘉宾:姜毅博士, 康宁大中华创新官兼康宁反应器全球运营总监 【技术培训】微化学工程与技术是当前化工行业科技创新的热点和重点之一。国家安全监管总局关于加强精细化工反应安全风险评估工作的指导意见中明确指出:“对于反应工艺危险度为4级和5级的工艺过程,尤其是风险高但必须实施产业化的项目,要努力优先开展工艺优化或改变工艺方法降低风险,例如通过微反应、连续流完成反应”。 该培训就微化工技术从化学品的研发着手,从源头改变思路。把智能化、绿色化融入到产品的设计、研发中。用机器代替大量的人工操作、减少人为误差、缩短产品研发周期;同时探讨如何把连续流技术开发的产品进行工业化转化;最后就大家关心的目前全球连续流技术的工业化应用状况及应用实例做详细的分析。 3月30日 连续流技术专题培训(08:30-12:00)地址:常州科教城 1.报告题目:实验室中的智能化-Lab Reactor带您进入连续流世界主讲人:伍辛军博士,美国康宁公司反应器技术中心(中国)经理 2. 报告题目:微通道反应器技术-强化传质传热,成就绿色化工主讲人:王艳华,康宁反应器技术高级工程师 3. 报告题目:智能制造-连续流工业化应用现状及投资案例分析主讲人:欧阳秋月,康宁公司反应器技术(中国区)总工 【现接受电子报名】一年一度的康宁微反应器技术的盛会,会议内容精彩纷呈,不容错过。现接受报名!今年将采取电子报名的方式,报名成功,审查合格后将收到二维码将用于签到和抽奖。因为会议名额的限制,每单位限两名免费名额,额外名额需收取会务费2000元/人。先到先得,额满为止。 扫描上面二维码,即可报名。
  • ​【印度新材料案例】康宁反应器合成纳米磁性氧化铁
    研究背景纳米氧化铁在催化、药物传递、光吸收材料等前沿研究中扮演者不可或缺的角色。纳米氧化铁的尺寸大小和粒径分布对材料性能表现非常重要。因此,高效制备一系列小粒径(<10 nm)且平均粒径均一的纳米氧化铁颗粒变得尤为重要。康宁反应器印度团队与印度国家理工学院的研究人员合作,使用康宁微反应器合成氧化铁纳米颗粒(NPs),研究了不同操作参数对获得的NP特性的影响。氧化铁NPs的合成基于使用硝酸铁(III)前体和氢氧化钠作为还原剂的共沉淀和还原反应。使用透射电子显微镜(TEM)、傅里叶变换红外光谱和X射线衍(XRD)分析对氧化铁纳米颗粒进行了表征。简介近年来,由于在磁存储设备、生物技术、水净化和生物医学应用领域的广泛应用,如热疗、化疗、磁共振诊断成像、磁感染和药物递送等,对高效合成磁性氧化铁NP的兴趣显著增加。该工作涉及使用Corning AFR微通道反应器通过共沉淀和还原法合成胶体氧化铁纳米颗粒,氧化铁纳米颗粒的XRD和TEM分析分别证实了其晶体性质和纳米尺寸范围。另外使用电子自旋共振光谱研究了氧化铁纳米颗粒的磁性,康宁微通道反应器制备的氧化铁纳米颗粒表现出超顺磁性行为。结果和讨论一. 氧化铁纳米颗粒形成的反应原理1.控制两个反应器中氧化铁纳米颗粒形成的总沉淀还原反应如下:2.随后,按照以下反应生成氧化铁:二. 共沉淀和还原反应生成氧化铁纳米颗粒共沉淀和还原反应是获得氧化铁纳米颗粒的最简单和最有效的化学途径。在通过反应器的过程中,九水合硝酸铁(III)被氢氧化钠还原,形成还原铁,随后稳定为氧化铁纳米颗粒。图1. AFR实验装置表1 康宁微反应器中的操作条件和结果在康宁AFR反应器中,氧化铁(磁铁矿Fe3O4或磁铁矿γ-Fe2O3)在室温下将碱水溶液添加到亚铁盐和铁盐混合物中形成。在反应器中,由于铁还原加速而形成黄棕色沉淀物,得到胶体氧化铁纳米颗粒如图1所示。在AFR反应器中合成氧化铁纳米颗粒的实验条件Fe(NO₃ )₃ 9H₂ O和NaOH溶液的流速在20- 60 ml/h。对于所有实验,还原剂与前体的摩尔比保持恒定为1:1。图2. 在AFR中具有不同流量的氧化铁np的紫外吸收光谱&trade .实验显示了在AFR反应器中不同流速所对应的结果:在CTAB表面活性剂存在下获得的λ最大值在480和490 nm之间;AFR中的心形设计使混合更佳;氧化铁NP的平均粒径通常随着流速的增加而减小,在50 ml/h的流速下获得最小粒径。在60和50 ml/h的较高流速下,分别观察到窄PSD超过6.77&minus 29.39 nm和3.76&minus 18.92 nm,如图3和表1所示;另一方面,在20 ml/h的较低流速下,在10.1&minus 43.82 nm,如图5和表1所示。从图5B所示的数据也可以确定,由于纳米粒子的引发和成核在50 ml/h下比在60 ml/h时发生得更快。因为颗粒大小取决于纳米粒子在反应器中的成核过程和停留时间,这也通过图5所示的TEM图像得到证实,图5显示制备的颗粒大小在2~8nm;图3所示数据&minus 对于表1中报告的PSD和平均粒径,可以确定粒径随着进料流速的增加而减小,这归因于较低的停留时间。在反应器中的较大停留时间(较低流速)为颗粒的团聚和晶体生长提供了更多的时间,从而获取更大的颗粒尺寸。图4A、B所示的TEM图像也证实。图3. 不同流速下氧化铁纳米颗粒的粒度分布(PSD)图4:50 ml/h的微反应器中合成的氧化铁纳米颗粒的透射电子显微镜图像图5:(A,B)使用CTAB作为表面活性剂在AFR中合成的氧化铁NP的TEM图像。总结通过共沉淀还原方法,在Corning AFR微通道设备中成功制备了稳定的胶体氧化铁纳米颗粒;流速即反应停留时间和混合模式的差异对所获得的氧化铁NP的粒度和PSD有显著影响,这反过来也影响材料稳定性和磁性;CTAB的使用,有助于合成稳定的氧化铁NP;反应流速是决定NP的平均粒径以及粒径分布的关键参数。氧化铁NP的平均粒径随着反应物流速的增加而减小;通过ESR光谱分析和基于使用永磁体的研究证实,制备的氧化铁NP表现出超顺磁性行为。总的来说,当前的工作证明了使用康宁微通道反应器,合成了更小更均一粒径的磁性氧化铁纳米颗粒。这项研究为后续其它纳米科学相关领域的研究提供里有效的实验支持和指导。参考文献:Green Process Synth 2018 7: 1–11
  • 发布spinchem旋转床酶反应器新品
    基本信息:品牌:SpinChem产地:瑞典特点:实验室机械旋转床酶反应器 Mag RBR主要用于实验室酶催化反应条件优化及筛选,反应体积5-100 mL。产品介绍:MagRBR体系包括MagRBR筛选试剂盒、反应管、磁力搅拌器、搅拌控制单元和管架。MagRBR筛选试剂盒是预先将酶或酶载体固定化,并封装到带磁性的密封盒内,酶或其他生物催化剂条件优化或筛选时,将MagRBR筛选试剂盒直接投入反应容器中即可,通过调节磁力搅拌器,控制MagRBR旋转速度,可同时筛选1-6个甚至更多反应条件。反应过程中可快速取样监测,反应结束后,无需过滤,可快速直接分离反应产物。 MagRBR筛选试剂盒包括:CalB immo筛选试剂盒、MagRBR脂肪酶immo筛选试剂盒、MagRBR ECR筛选试剂盒和MagRBR单树脂筛选试剂盒,也可以定制试剂盒。工作原理:SpinChem MagRBR旋转床反应器将酶或酶载体固相封装在旋转盒中作为填充床,当RBR旋转时,快速从旋转盒底部吸入反应溶液,使其渗透到固相中,与固相接触过的溶液因离心作用再次返回到容器中,连续循环此过程,直到反应结束。应用领域:主要应用领域:酶固定化树脂的筛选,酶反应条件优化。常用的酶固定化树脂,性质如下:酶固定树脂类型官能团固定化作用环氧丙烯酸甲酯环氧基共价键(亲水)环氧/丁基丙烯酸甲酯环氧基共价键(疏水)氨基C2丙烯酸甲酯NH2短链共价键(疏水)或离子作用十八烷基丙烯酸甲酯十八烷基吸附大孔苯乙烯无吸附DVB/丙烯酸甲酯无吸附详细应用资料及应用视频请浏览我司官网-新闻资讯-应用研发模块。规格参数: 磁力搅拌器技术参数:材质:不锈钢高度:26 mm长度:140 mm宽度:102 mm温度:-20 – +50℃搅拌控制单元技术参数:材质:不锈钢(外壳)高度:38 mm长度:200 mm宽度:15 mm温度:0 – +40℃电源:100 – 240 V频率:50/60 HZ转速:100 – 2000 rpm试管架技术参数:材质:不锈钢高度:67 mm长度:143 mm宽度:109 mm孔数:6试剂盒技术参数:材质:聚酰胺高度:7.3 mm直径:18 mm孔径:44 μm体积:0.5 mL创新点:酶催化,通过反应容器的智能设计,使轴向混合和对流运动最大化,传质高效化,反应时间最小化,产品收率大大提高 spinchem旋转床酶反应器
  • 梅特勒托利多举办在线研讨会
    在全自动实验室反应器(ALR)的精确控制下,原位在线分析系统可以对聚合反应进行很好的监测。许多聚合反应都是在高温和/或压力下进行,有些聚合反应对氧极其敏感,有些则涉及有害试剂的使用。所有这些因素采用离线取样都存在问题,更不用说在取样中还可能引入其他杂质。 用实时在线反应分析系统ReactIR™ 对聚合反应进行监测,对于确定反应动力学、控制和监测聚合度(消除胶化批次)、消除与离线取样相关的安全问题存在极高价值。全自动实验室反应器能够精确地控制反应温度,即使是剧烈放热的聚合反应过程,实现高度重复的批次生产。梅特勒-托利多的全自动实验室反应器还提供反应热、传热性能、反应速率以及动力学方面的信息,所有这些都可用于反应的设计和安全放大。精确的反应控制和实时在线原位监测也提供了反应变量和产品的质量以及性能之间的关系。均相和非均相聚合都已经进行了研究。 这次研讨会的重点是在线反应分析系统ReactIR™ 和全自动实验室反应器技术在聚合过程中进行成功开发的案例。 聚合反应优化与控制在线研讨会的主持人是梅特勒-托利多技术应用顾问黄莎华博士,她拥有丰富的反应器技术和化学反应知识。 在大约30分钟的在线研讨会中,将同您展开进一步的分析和讨论。 点击这里填写在线反馈 在线研讨会 日期/时间 聚合反应的优化与控制,2009年7月29日,北京时间上午10点 聚合反应的优化与控制,2009年7月29日,北京时间下午3点 反应量热器技术 实时在线反应分析系统ReactIR™ 梅特勒托利多对所有市场活动拥有最终解释权。
  • 平行生物反应器 | 英国Cleaver Scientific公司生物反应器
    如需获取原文献/补充资料 请关注曼森生物公众号英国Cleaver Scientific是由Adie Cleaver创立,proSET是Cleaver Scientific旗下的产品,该系统是台式规模的,具有大型彩色触摸屏面板和用户友好的界面。1proSET 平行发酵系统proSET Parallel Fermentation System无论是需要同时进行两个相同的实验还是不同的实验,双重加热系统都允许同时运行两个恒温器加热、两个干式加热或一个恒温器和一个干式加热。远程控制软件可以控制 16 个容器,以实现真正的并行操作。产品特点:🔻一个控制器用于两个容器;🔻用于独立或同时控制的单容器或双容器;🔻用于恒温器和干式加热兼容性的双加热系统;🔻标准包中包含免费的远程控制软件;🔻与所有可选设备完全兼容。2proSET One 发酵系统proSET One Fermentation SystemproSET One System 体积小巧,作为标准仪器提供了所有必要的工具。双重加热系统允许为任何应用需求选择高达 10L 的任何容器类型。可选的扩展模块允许添加额外的设备以增强系统的功能。所有必需品,如温度、消泡剂、pH 和 DO 探头都包含在标准包装中。PC 软件可同时连接16 个系统 16 个容器。 产品特点:🔻基于 Linux 的系统;🔻尺寸:250x510x500mm;🔻最大容量为 10 升;🔻三档速度可调,蠕动泵控制不同流量的进料;🔻SCADA 软件就绪;🔻扩展模块可用于系统升级支持可选设备。3proSET Evo 发酵系统proSET Evo Fermentation SystemproSET Evo 可提供一体化发酵解决方案和终极自动化体验,它与 0.5 至 20L 的容器完全兼容,为大多数细胞系的培养提供了广泛的覆盖范围。proSET Evo System配备最新的控制软件;这款用户友好、直观的软件结合了许多高级功能,可提高实验效率。除了手动控制搅拌、温度、pH、DO 水平和进料外,还可以对上述参数进行 15 步预定顺序控制以及 pH 和 DO 反馈控制。此外,还提供多种即插即用可选设备。产品特点: 🔻用于细胞培养和微生物学研发的通用系统; 🔻可互换的五种耐高压灭菌玻璃容器; 🔻从单个界面控制十六个系统; 🔻兼容小型中试规模 15L 和 20L 玻璃容器。4曼森生物平行生物反应器前几期已经介绍了曼森JOY4-500和JOY4-1000型号的平行生物反应器,本期介绍JOY1-2400型号反应器。JOY1-2400高通量微型生物反应器专为菌种高通量筛选、配方开发、工艺优化、原材料质量评价等研究需求设计;与摇瓶、试管、孔板、微流控芯片相比,与生产罐结构更加一致,通过参数分析获得的工艺条件,可以直接进行放大,使试验室的成果迅速获得转化;高通量微型生物反应器与实验室传统的生物反应器相比,其软件设计更加合理,除了实现一键设定参数、一键同时校准外,还可以将编制好的工艺策略一键下发到每个罐上,提高操作效率,另外通过生物反应器的平行性设计和验证,使得用户的试验结论更加可靠。高通量微型生物反应器因为体积小,所以除了节约占用空间外,还可减少试验人员和原料成本,极大的降低研发成本。 产品特点:🔻一个单元模块由1个2400ml微型反应器组成,多个模块可以并联,组成高通量微型发酵罐组;🔻每个2400ml微型反应器的参数可独立设定和控制;🔻每个反应器对应4路蠕动泵,每个泵的转速单独可调;🔻一台电脑控制所有反应器,完成参数设置、命令执行、数据记录和曲线浏览;🔻一体化设计,不需要外接其他管路和设备,插电即用;🔻具有10个基本在线参数和30个可扩展参数;🔻有参数运行中自我诊断功能;信息来源:https://www.cleaverscientific.com/electrophoresis-products/proset-parallel-fermentation-system/https://www.cleaverscientific.com/electrophoresis-products/proset-one-fermentation-system/https://www.cleaverscientific.com/electrophoresis-products/proset-evo-fermentation-system/由于篇幅受限,关于上述生物反应器具体参数详见公众号右下角底部菜单栏→补充资料,自动跳转获取Mediacenter Editor | 曼森编辑文章来源:本文由上海曼森生物整理提供排版校对:刘娟娟编辑 内容审核:郝玉有博士-END-
  • 诚邀报名|康宁反应器成都技术交流会邀请函
    尊敬的客户:今年3月,康宁反应器技术(西南)的正式揭牌,在当地引起了巨大反响。西南地区成为了康宁反应器未来发展的又一发展要地。为让西南客户能够更高效的享受连续流技术服务,快速获得创新技术带来的应用成果,康宁反应器技术携手多位连续流领域专家相聚成都,与大家分享连续工艺开发和工业化生产应用的宝贵经验。现场不仅能有机会与会嘉宾面对面交流连续流最新趋势,聆听专家对行业热点和难点的解读,还能零距离接触康宁微通道反应器。经过3月份一整个月的意见征集,我们综合了多位客户建议,最终决定第一次客户技术交流会定于4月23日13:00在成都市武侯区天府生命科技园召开。成都办公室地址:武侯区交子大道365号中海国际中心 F座14楼02室会议报名 会议日期:2021年4月23日会议时间:13:30-17:00会议地点:成都市武侯区科园南路 天府生命科技园管理楼1楼会议厅报名方式:进入康宁反应器技术公众号,点击4月8日发布的邀请函,进行报名。 嘉宾简介
  • 生物反应器在细胞培养中的应用与产品设计(上)
    生物反应器的应用生物反应器在生物技术,工艺开发和研究中发挥着至关重要的作用,其主要应用包括:1. 细胞株开发:台式生物反应器可用于评估各个细胞株的性能,包括生长和表达效率,这有助于确定最适合进行进一步工艺开发和放大的候选细胞株。2. 工艺开发:台式生物反应器广泛应用于工艺开发的早期阶段,包括了参数优化和工艺放大两方面,首先在较小规模上优化温度,pH,DO等工艺控制参数,然后再进行工艺放大研究,降低放大至较大体积的生物反应器中可能存在的成本和风险。更复杂的工艺开发包括了增强型工艺,例如灌流培养和连续培养。3. 培养基优化:台式生物反应器可以用于优化培养基和补料策略,以改善细胞生长、活力和蛋白质表达,有助于实现高效,稳定且成本可控的大规模细胞培养。4. 工艺表征:台式生物反应器可进行工艺缩小研究,在较小规模上模拟较大生物反应器的条件,有助于了解和解决工艺放大过程中可能出现的限制性因素,如氧气传质、混合效率、CO2分压和剪切力。5. 质量源于设计(QbD):可以在台式生物反应器规模实施QbD开发原则,系统地研究和优化关键工艺参数,以确保产品质量的一致性。6. 临床样品制备:符合GMP要求的台式生物反应器系统,可用于临床前研究或早期临床试验中的小规模生产,以快速、经济地生产小批量的治疗性产品。Reference:cell culture bioprocess engineering, second edition细胞生长所处的生理压力生物制药中,CHO细胞作为常用的重组蛋白的表达体系,优化其生长和产物表达效率至关重要,然而生物反应器中CHO细胞却面临着多方面的生理压力,包括培养条件、营养供应和环境参数有关的各种因素,因此需要反应器提供良好的工艺参数控制,以维持合适的细胞生长微环境。 营养限制:CHO细胞的能量和生物合成严重依赖葡萄糖,葡萄糖浓度过低会导致细胞新陈代谢压力和活力降低;氨基酸是蛋白质合成所必需的,特定氨基酸含量不足会影响细胞生长和蛋白表达;细胞培养基中的生长因子、维生素和微量元素的不足也会影响 CHO 细胞的生理机能。 温度:温度波动会影响细胞的新陈代谢,对于细胞生长和蛋白表达通常所需最适温度不同,需要制定针对性控制策略。 pH值波动:pH 值的变化会导致培养基的酸化,影响分子的电离状态,并影响细胞的新陈代谢,维持pH值在最佳范围内对细胞活力和表达至关重要。 溶解氧浓度:溶解氧浓度过低会导致供氧不足,造成细胞应激,影响细胞生长和蛋白质表达。 二氧化碳分压:二氧化碳分压影响了pH控制,细胞代谢和生理功能,需要加以及时的检测和有效的控制策略。 渗透压:代谢物积累或营养浓度过高导致的高渗透压会对细胞造成压力,这会影响细胞体积大小调节和整体细胞功能。 剪切力:生物反应器中的搅拌和通气产生的能量耗散会对细胞造成剪切应力,过大的剪切应力会损伤细胞结构并影响其生产率。 代谢副产物:细胞新陈代谢产生的有毒副产物(如乳酸、氨)的积累会对细胞活力和蛋白表达产生不利影响。 细胞密度:高细胞密度和细胞聚集会导致营养和氧气的限制,造成压力,有效的混合和充分的氧气供应对防止这些问题至关重要。理解细胞所处的生理压力环境对于工艺条件优化,增强细胞活率,获得高表达产物和目标质量属性非常关键。工艺过程参数的控制在了解了细胞所处的生理压力之后,遵循质量源于设计(QbD)的指导原则,通过风险评估的方式确定关键工艺过程参数(CPP), 重要工艺过程参数(KPP)及非重要过程控制参数(Non-KPP),制定参数各自的设定空间(DS),并在操作范围内进行控制,这整体上需要工艺过程分析技术(PAT)及生物反应器所配置过程控制策略,以提供一致的工艺性能和产品质量(CQA)。图片来源于网络生物反应器常用控制策略 开环控制:开环控制系统应用一组预定义的控制输入或设定点,而不连续测量实际输出,系统假定输入将实现所需的输出,而无需实时反馈。该控制策略的准确度依赖于高精度及快速响应的硬件配置。 闭环(反馈)控制:闭环控制使用传感器持续监测系统输出,将其与所需设定点进行比较,并实时调整控制输入以保持所需的条件。这种方法能更好地适应过程中的变化和干扰。该控制策略的准确度依赖于控制器模式,参数的预设和调节。 前馈控制:前馈控制可预测系统中的干扰,并在干扰影响输出之前调整控制输入。它是对反馈控制策略的补充。生物反应器控制器策略的应用 PID控制:PID 控制是一种闭环控制策略的实现形式,通过比较设定值和实际值(误差),使用比例、积分和微分项来计算控制输出。比例部分使用增益(Gain)乘以误差进行输出;积分部分累积 CV(控制输出)随时间变化的程度,以纠正误差;微分部分分析参数过去的变化率,并将其推断到未来,其动作单位为秒(你想推断多远),可以让回路在发生突发事件时迅速做出反应,但很容易受到测量噪音的影响。 PID同时可以结合死区(DB, Dead Band)来使用,例如pH的PID控制,细胞对于pH有一个适应范围,设定合适的DB值,避免酸,碱的反复添加和渗透压的升高。 级联控制:级联控制涉及主控制器与子控制器,主控制器的输出作为子控制器的设定值,从而更好地抑制干扰;子控制器可以为一个或多个,通过顺序级联或同时级联,以满足不同复杂程度工艺的需求。例如DO控制中,主控制器为DO PID控制器,子控制器为Air,O2,搅拌等控制器。 Profile控制:为控制器的设定值设定随时间变化的程序,控制器接受该设定值进行开环或闭环控制。例如补料泵的控制中,根据预测的细胞密度增加情况调整补料速度供给率,从而实现对营养物质浓度的前瞻性控制。复杂工艺应用需求常见的细胞培养方式为补料分批工艺(Fed Batch),需要多级的种子扩增步骤,主反应器中也需生长至稳定期进行蛋白表达,因此所需设备成本高,占地空间大,生产效率较低且产品质量一致性存在差异。随着灌流培养基,细胞截留设备及PAT技术等方面的发展,增强型工艺(Process Intensification)在生物制药中逐渐得以应用。根据对细胞和蛋白的截留,增强型工艺分为Concentrate Fed Batch, Dynamic perfusion及Continuous Perfusion等不同形式。Reference:Perfusion Cell Culture Processes for Biopharmaceuticals灌流工艺的开发通常在台式反应器中进行,相比Fed Batch系统具有如下组成及特点: 反应器从结构设计到工艺验证上应能支持系统长时间无菌培养的要求。 反应器的通气及搅拌系统配置应当满足高细胞密度培养对于传质和混合的要求,并进行充分的表征,以评估放大过程中的限制性因素。 细胞截留装置:支持切向流或声学细胞截留装置的无菌连接,截留装置控制器可选择接受生物反应器控制,细胞在截留装置中所受的生理压力(剪切力,温度变化,溶解氧浓度等)应当加以控制。 PAT整合:系统应当支持额外的电极整合,实时监控细胞密度、活力、二氧化碳分压等关键参数。 外置设备的拓展:可拓展外置天平等设备。 自动化控制系统:系统应配置自动化灌流程序或配方,实现高精度自动化的灌流速率,反应器液位及细胞密度控制,减少灌流工艺长时间培养过程中复杂的人为操作所带来的风险。英赛斯NestoBR台式生物反应器NestoBR是一款基于生物工艺进行设计和研发的先进型台式生物反应器系统,应用于生物制药及生物技术等方向的工艺研究和开发,系统设计满足生物行业对于反应器的高性能及法规方面的要求,可降低用户实验的批次失败风险,提高工艺开发能力,加速生命科学的研究发现,实现稳健化的技术转移。NestoBR产品特点紧凑化的结构设计:集成式工业控制器,直观的用户界面与交互;减少设备空间需求,易于使用。严格的材料选择及处理:高硼硅玻璃,耐高温,耐腐蚀;316L不锈钢,表面抛光及钝化处理,,易清洗,易清洁;垫圈采用EPDM材质,符合cGMP要求。基于工艺理解的产品设计:从细胞生所处的生长微环境出发,进行功能设计,拓展工艺可操作空间,保障批次稳定。丰富的高性能硬件配置:灵活的硬件配置方案,满足不同细胞或工艺在培养体积、温度控制、搅拌控制、通气控制等工艺方面的差异化要求。高级自动化软件架构:ISA88批处理控制高级自动化软件架构,将物理硬件、操作程序和个性化工艺的紧密的结合,为控制系统提供安全性,稳定性保障。符合cGMP法规要求: 根据用户需求,提供从设计、测试、验证、文件等一系列技术服务;系统设计与验证遵循ISPE GAMP5。快速稳定的自动化参数控制:控制系统配置不同的控制策略,实现快速,稳定,灵活的工艺过程参数自动化控制完善的批次过程监控与管理:系统配置趋势图,批次报告,用户管理,审计追踪功能满足复杂工艺应用需求:NestoBR提供长时间运行的无菌保障,完善的设备表征数据,可集成PAT,外置设备与灌流装置,可新增控制回路实现自动化灌流工艺操作。全面的安全性保障:提供生物反应器在使用,批次,软件,数据,工艺等方面全方位的安全保障。
  • 一次性生物反应器技术及产品简介
    p    strong span style=" color: rgb(0, 112, 192) " 一次性生物反应器(SUB)概念 /span /strong /p p   一次性生物反应器(single-use bioreactor)或用后可弃生物反应器(Disposablebioreactor)是使用一次性袋的生物反应器,代替由不锈钢或玻璃制成的培养容器。简称SUB。 /p p   一次性袋通常由三层塑料箔制成。一层由聚对苯二甲酸乙二醇酯或LDPE制成,以提供机械稳定性。中间层由PVA或PVC制成,用作气体屏障。最后,与细胞培养物接触的接触层由PVA或PP制成。包裹着一次性袋的是永久硬性支撑结构(通常为摇动支座或长方体或圆柱形钢筒)。此结构可以确保在培养过程中一次性袋的设计特性不变化。一次性袋需要完全适合其保持装置,以防止由于设置期间展开不完全或者不正确而导致的和传统反应器的不可比性。 /p p   商业一次性生物反应器自二十世纪九十年代末已经开始应用,并且向着更加广泛普遍的趋势发展。从小规模液体储存和运输开始,到现在逐渐占据上风。调查显示越来越多药厂希望器材供应商加大对一次性生物反应器的研发力度。 /p p    strong span style=" color: rgb(0, 112, 192) " 一次性生物反应器的种类以及产品 /span /strong /p p   波浪式生物反应器和搅拌式生物反应器是目前市场上的标准。 /p p   波浪式生物反应器通过摇摆的动作来混合。此类型不需要在一次性袋中使用任何机械搅拌器。适合于各种各样的细胞培养应用,包括常规批次、补料批次和灌注培养工艺。常见的有WAVETM生物反应器 如下: /p p    span style=" text-decoration: underline " strong ReadyToProcess WAVE 25 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/6c0179ac-6560-41f3-b895-c2a3075af3fa.jpg" title=" 图1_副本.jpg" / /p p    span style=" text-decoration: underline " strong WAVE Bioreactor System 200 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/484cd322-3883-4bcc-939e-4a600b7997c9.jpg" title=" 图2_副本.jpg" / /p p    span style=" text-decoration: underline " strong WAVE Bioreactor System 500/1000 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/c1625a8d-9823-4605-9fcc-3d729341f431.jpg" title=" 图3_副本.jpg" / /p p   搅动生物反应器使用像传统生物反应器相似的搅拌器,但是搅拌器被整合在塑料反应袋中,通常也使用塑料材质。封闭的袋子和搅拌器预先灭菌处理,通常使用伽马射线。使用时,将一次性袋安装在固定生物反应器支撑中,再将搅拌器机械地或磁性地连接到驱动器即可。 /p p   一些商业可用的一次性搅拌式生物反应器有: /p p    span style=" text-decoration: underline color: rgb(255, 0, 0) " strong XDR – Xcellerex /strong /span /p p    span style=" text-decoration: underline " strong XDR-10Bioreactor System, Single Vessel /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/86d62f42-9788-4a3f-9636-4bf0d29af3a7.jpg" title=" 图4_副本.jpg" / /p p    strong span style=" text-decoration: underline " XDR-50 to 2000Single-Use Bioreactor /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/cc91d0ce-5c9d-429f-87d6-20475e9977f4.jpg" title=" 图5_副本.jpg" / /p p    span style=" text-decoration: underline " strong span style=" text-decoration: underline color: rgb(255, 0, 0) " Mobius –Merck /span /strong /span /p p    span style=" text-decoration: underline " strong Mobius& reg 3 L Bioreactors /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/a93c924e-f6e8-4e0b-95de-32d54aee137d.jpg" title=" 图6_副本.jpg" / /p p    strong span style=" text-decoration: underline " Mobius& reg 50 and 200 L Bioreactors /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/be7abf3e-5717-4c55-a80e-1f4cc6ba7e90.jpg" title=" 图7_副本.jpg" / /p p    span style=" text-decoration: underline " strong Mobius& reg 1000 and 2000 LSingle-use Bioreactors /strong /span /p p span style=" text-decoration: underline " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/4c1cd397-fb6f-45d6-b5da-cf2dbb6ad0aa.jpg" title=" 图8_副本.jpg" / /p p span style=" text-decoration: underline " /span br/ /p p    span style=" text-decoration: underline " strong span style=" text-decoration: underline color: rgb(255, 0, 0) " CelliGen BLU – eppendorf /span /strong /span /p p span style=" text-decoration: underline " strong span style=" text-decoration: underline color: rgb(255, 0, 0) " /span /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/50366f96-4694-4b2d-9c7c-560e935b3b8a.jpg" title=" 图9_副本.jpg" / /p p span style=" text-decoration: underline " strong span style=" text-decoration: underline color: rgb(255, 0, 0) " /span /strong /span br/ /p p    span style=" text-decoration: underline " strong span style=" text-decoration: underline color: rgb(255, 0, 0) " Hyclone S.U.B - Thermo Scientific /span /strong /span /p p span style=" text-decoration: underline " strong span style=" text-decoration: underline color: rgb(255, 0, 0) " /span /strong /span /p p    strong span style=" text-decoration: underline " Open Architecture Single-Use Bioreactors /span /strong /p p style=" text-align: left "    /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/49335412-f334-4d20-b0fd-29011842a55a.jpg" title=" 图10_副本.jpg" / /p p    span style=" text-decoration: underline " strong Integrated Single-Use Bioreactors /strong /span /p p span style=" text-decoration: underline " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/4ccfd3c7-639b-4711-a441-75e00a65f813.jpg" title=" 图11_副本.jpg" / /p p span style=" text-decoration: underline " /span br/ /p p    strong span style=" color: rgb(0, 112, 192) " 一次性生物反应器的优缺点 /span /strong /p p    strong 优点: /strong /p p   减少工艺认证难度,无需清洁认证 /p p   缩短停机时间和周转时间: /p p   举例,产品切换时间也取决制造模式,使用一次性生物反应器(包括进行所有连接所需的时间)的2小时切换时间将等同于同一产品的不锈钢生物反应器的6-10小时切换时间。假如是不同产品转换,后者则需要3周左右。对于在混合系统中的不同产品(上游生产采用一次性设备,下游纯化采用不锈钢系统的组合),切换时间大约为两周。如果生产线上的一次性生物反应器连接到一次性过滤器和使用一次性无菌连接器的袋子,则完整的产品转换将不会超过48小时。 /p p   显着控制不定期微生物或产品交叉污染的批次间污染的可能性 /p p   减少运营成本和资本投资,节省空间和劳动力需 /p p   消除由CIP和SIP要求规定的传统不锈钢容器的设计要素 /p p   易于安装。空闲时轻松移动。 /p p    strong 缺点: /strong /p p   体积可扩展性是一个问题:市场目前还不能满足2000升以上级别的大规模生物反应器需求 /p p   在波浪式式一次性生物反应器中,非常规摇摆运动的运动原理限制了这种培养袋的使用,可控制参数较少 /p p   在现有的一次性生物反应器中氧转移系数(kLa)较低,所以只适用于哺乳动物细胞培养,不适用于细菌或者酵母这种需氧量更大的上游生产 /p p   无法储存较热液体,以防可浸出和可萃取材料所带来的问题 /p p   一次性袋有被穿刺的风险 /p p   垃圾处理费用增加。 /p p   正如一句商业用语所说,“It’s not the big that eat the small but the fast that eat the slow”,商业竞争不是大吃小而是快吃慢。本文所述的新型搅拌的一次性生物反应器可以显着改善动物细胞培养过程,使得细胞培养操作更加灵活,便宜,而且耗时更少。在制药业拼速度的今天,一次性生物反应器的市场需求正以每年21%至40%的速度增长着。不可否认的,一次性生物反应器将会是上游生产的未来。 /p p br/ /p
  • 使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(中)
    本篇承接上文,《使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(上)》(点击查看)。2.2反应性光遗传控制和酵母连续培养的单细胞解析特性作者首次应用ReacSight策略的动机是酵母合成生物学应用。在这种情况下,精确控制合成路径并在定义明确的环境条件下测量其输出,并具有足够的时间分辨率和范围是至关重要的。光遗传学为控制合成路径提供了一种极好的方法,生物反应器支持的连续培养是对环境条件进行长时间严格控制的理想方法。为了测量单个细胞的路径输出,细胞术提供了高灵敏度和高通量。因此,借助ReacSight策略,利用台式细胞仪作为测量设备,组装了一个完全自动化的实验平台,实现了对酵母连续培养物的反应性光遗传学控制和单细胞解析表征(图2a)。补充说明2提供了平台硬件和软件的详细信息,此处仅讨论关键要素。八个反应器与移液机器人相连,这意味着每个时间点都会填满一列取样板。虽然机器人可以接触到三列细胞仪输入板,但作者仅使用一列,由机器人进行广泛清洗,以实现小于0.2%的残留,使用免疫磁珠进行验证。通常在机器人平台上安装两个倾翻箱和两个取样板(2×96=192个样本),因此,在没有任何人为干预的情况下,八个反应器中的每一个都有24个时间点。为了实现基于细胞数据的反应性实验控制,作者开发并实施了算法,以在重叠荧光团之间执行自动选通和光谱反褶积(图2b)。作者首先通过对组成性表达来自染色体整合转录单位的各种荧光蛋白的酵母菌株进行长期恒浊培养来验证平台的性能(图2c)。荧光团水平的分布是单峰的,随着时间的推移是稳定的,正如在具有组成型启动子的稳定生长条件下所预期的那样。mNeonGreen和mScarlet-I在单色和三色菌株之间的分布完全重叠。这与从强pTDH3启动子表达一个或三个荧光蛋白对细胞生理学的影响可以忽略不计的假设是一致的,并且三色菌株中转录单位的相对位置(mCerulean第一,mNeonGreen第二,mCarlet-I)对基因表达的影响很小。与单色品系相比,三色品系中测得的mCerulean水平略高(~15%)。这可能是由于反褶积中的残余误差造成的,与自荧光和mNeonGreen相比,mCerulean的亮度较低加剧了这种误差。为了验证平台的光遗传学能力,作者构建了一个基于EL222系统17的光诱导基因表达路径并对其进行了表征(图2d)。正如预期的那样,应用不同的蓝光开-关时间模式导致荧光团水平的动态分布覆盖范围很广,从接近零水平(即几乎无法与自体荧光区分)到超过强组成启动子pTDH3获得的水平。高诱导表达水平的细胞间变异性也很低,变异系数(CV)值与pTDH3启动子相当(0.22vs0.20)。作者组装的第一个平台使用了一个预先存在的定制光生生物反应器阵列。这种设置有几个优点(可靠性、工作容量范围广),但其他实验室无法轻易复制。由于ReacSight架构的模块化,可以通过将这个定制的生物反应器阵列与最近描述的开放硬件、光遗传学就绪的商用Chi.生物反应器(图2a(右图))交换,快速构建具有类似功能的平台的第二个版本。为了验证该平台的另一版本的性能,作者使用图2d中相同的菌株进行了光诱导实验,并获得了各种光诱导曲线的极好的反应器到反应器再现性。图2基于ReacSight的自动化平台组装,实现对酵母连续培养物的反应性光遗传学控制和单细胞解析表征。a平台概述。OpentronsOT-2移液机器人用于将支持光基因的多生物反应器连接到台式细胞仪(GuavaEasyCyte14HT,Luminex)。机器人用于稀释细胞仪输入板中的新鲜培养样本,并在时间点之间清洗。“点击”Python库pyautogui用于创建细胞仪仪器控制API。定制算法是在Python中开发和实现的,用于实时自动选通和去卷积细胞数据。使用定制的生物反应器装置(左图)或Chi生物反应器(右图)组装了两个版本的平台。b选通和反褶积算法说明。例如,显示了重叠荧光团mCerulean和mNeonGreen之间的反褶积。c多代单细胞基因表达分布的稳定性。从pTDH3启动子驱动的转录单位中组成性表达mCerulean、mNeonGreen或mCarlet-I的菌株(“三色”菌株),整合到染色体中,在浊度调节器模式下生长(OD设定值=0.5,上限图),每小时采集一次细胞仪(垂直绿线)。所有时间点的荧光强度分布(通过高斯核密度估计进行平滑)(选通、反褶积和前向散射归一化后,FSC)用不同的颜色阴影绘制在一起(下图)。RPU:相对启动子单位(见方法)。为了简单起见,未显示“三色”的OD数据,与其他类似。d基于EL222系统的光驱动基因表达电路的特性。应用三种不同的开-关蓝光时间剖面图(底部),每45分钟采集一次细胞仪。门控、去卷积、FSC标准化数据的中位数如图所示(顶部)。此图中显示的所有生物反应器实验均在同一天与定制生物反应器平台版本并行进行。源数据作为源数据文件提供。2.3使用光实时控制基因表达为了展示平台的反应性光遗传控制能力,作者开始动态适应光刺激,以便将荧光团水平保持在不同的目标设定点。这种用于体内基因表达调控的电子反馈有助于在存在复杂细胞调控的情况下剖析内源性路径的功能,并有助于将合成系统用于生物技术应用。作者首先构建并验证了光诱导基因表达的简单数学模型(图3a)。将三个模型参数与图2d的表征数据进行联合拟合,得到了良好的定量一致性。考虑到模型假设的简单性,这一点值得注意:光激活下的mRNA生成速率恒定,每mRNA的翻译速率恒定,mRNA(大部分降解,半衰期为20分钟)和蛋白质(大部分稀释,半衰率为1.46小时)的一级衰变。因此,当实验条件得到很好的控制并且数据得到适当的处理时,人们可以希望用一小套简单的过程来定量地解释生物系统的行为。然后,作者将拟合模型合并到模型预测控制算法中(图3b)。该算法与ReacSight事件系统一起,实现了对不同反应器中不同目标的荧光水平的精确实时控制(图3c)。为了进一步证明平台的稳健性和再现性,作者在几个月后进行了另一个单8反应器实验,涉及两个荧光团目标水平的四个重复反应器运行。所有的重复都能很好地跟踪目标,并且控制算法决定的光分布在相同目标的重复之间非常相似,但并不完全相同。作者还研究了之前使用的诱导系统在更长时间尺度上的遗传稳定性。遗传稳定性是工业生物生产的一个重要因素。作者观察到,EL222驱动的mNeonGreen蛋白的诱导可以持续5天以上,并且具有很好的稳定性(图3d顶部)。更进一步,作者测试了同一蛋白的分泌版本是否表现出类似的表达稳定性。作者观察到,诱导约2天后细胞水平显著降低。细胞异质性也增加了(图3d右侧)。为了弥补细胞水平的下降,作者将表达盒整合成多个拷贝(三次,串联染色体插入)。诱导后,获得了非常高的荧光水平(图3d底部)。令人惊讶的是,这些水平比非分泌蛋白高一个数量级,并伴随着强烈的应激,正如未折叠蛋白应激报告所反映的那样(pUPRmScarletI)。诱导后,细胞内蛋白质水平逐渐下降。细胞内蛋白质水平显示出明显的双峰分布,强烈的遗传不稳定性迹象(图3d右侧)。最后,当以最大诱导水平的三分之一诱导时,相同的三重拷贝结构表现出非单调行为:高水平初始反应,随后细胞内水平缓慢下降,如完全诱导的三重结构,随后长期内部高蛋白水平的非预期缓慢恢复(图3d底部)。这种恢复可以通过细胞适应高生产需求来解释,或者更可能的是,通过选择高产亚群来解释,该亚群能够更好地保存HIS3选择标记,即使在完全培养基中也具有轻微的生长优势。这个实验证明了作者的平台能够执行长时间的实验,并以相对较高的时间分辨率提供单小区信息。此外,它促使探索和利用营养素可用性对健康和压力的影响。图3闭环:使用光实时控制基因表达。a光驱动基因表达电路的简单ODE模型拟合到图2d的表征数据。拟合参数为γm=2.09h−1,σ=0.64RPU小时−1,γFP=0.475小时−1km被任意设置为等于γm,以仅允许从蛋白质中值水平识别参数。b实时控制基因表达的策略。每小时进行一次细胞仪采集,在选通、反褶积和FSC归一化后,数据被送入模型预测控制(MPC)算法。该算法使用该模型搜索10个周期为30分钟的工作循环(即5小时的后退地平线)的最佳占空比序列,以跟踪目标水平。c四种不同目标水平的实时控制结果,在不同的生物反应器中并行执行(自定义设置)。左:单个单元格的中位数(控制值)。右:单细胞随时间的分布。请注意,所有绘图都使用线性比例。d表达系统的长期稳定性和蛋白质分泌的影响。表达EL222驱动的mNeonGreen荧光报告子的细胞,无论是否分泌,在浊度调节器中生长5天,每2小时进行一次细胞仪测量。表示整个实验期间的平均表达水平。荧光分布也显示在选定的时间点(诱导后0、6、48和120小时)。细胞也有分泌应激的荧光报告子(pUPRmScarlet-I)。还提供了三个拷贝中整合的mNeonGreen报告蛋白的分泌形式的结果。相关蛋白(mNeonGreen水平)和应激水平(mCarlet-I水平)分布的时间演变如补充图11和12所示。源数据作为源数据文件提供。曼森生物高通量菌株筛选平台技术上海曼森生物科技公司专注于高通量、自动化、智能化实验室技术产品开发,逐步形成了全自动化的高通量菌株筛选平台技术,可根据用户需求定制化高通量全自动菌株筛选平台。每天筛选通量可从几千到10万,是人工通量的几十倍上百;在传统生物技术上,加速工业化菌株的遗传进化,帮助提高底物转化率和产量提升;在合成生物技术上,可为选择的平台化合物表达菌株的遗传稳定性、表观遗传进化提升效率。此外高通量筛选必须有高通量的自动化分析检测技术支撑方能发挥最大价值。曼森高通量自动样品检测机器人文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制