当前位置: 仪器信息网 > 行业主题 > >

电池量热仪

仪器信息网电池量热仪专题为您提供2024年最新电池量热仪价格报价、厂家品牌的相关信息, 包括电池量热仪参数、型号等,不管是国产,还是进口品牌的电池量热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池量热仪相关的耗材配件、试剂标物,还有电池量热仪相关的最新资讯、资料,以及电池量热仪相关的解决方案。

电池量热仪相关的仪器

  • 电池等温量热仪 400-860-5168转4058
    等温恒温条件下,电池充放电等实际使用过程中的本质放热特征 不同温度下,电池充放电容量变化、热管理及性能建模关键数据电池等温量热仪工作原理 根据在不同温度或充放电倍率等条件下电池放热速率及总量定义的电池本质热特性,是设计和评估高性能电池热管理系统 的重要依据。iso-BTC 可在测试全过程控制并保持电池温度恒定,以准确测定电池在各种工况下的实时放热速率/放热总量 iso-BTC 自动控制电池的加热/冷却以保持电池温度恒定,此过程产生的实时热流量直接表征了电池的放热速率及放热总量 iso-BTC 可根据电池形状及尺寸配置多种规格的适配器用于任意规格电池或模组的(等温恒温)量热测试等温恒温条件下电池的放热下图为 45°C 电池充放电过程 iso-BTC 测试的典型数据 测试过程放热速率变化如图中红色曲线所示 电池以 2C (电流 10A) 放电时,随着(内阻增大)电池 SOC 降低,放热速率逐渐增大 电池(充电时的)微弱吸热也能准确地被表征温度的影响 通过相同放电倍率、不同工作温度下电池的等温量热测试, 可以准确评估工作温度对电池放热速率及放热总量的影响 从右图 NMC 三元材料-石墨电池在 0~60℃各温度条件下 的试验数据可以明显看出电池放热速率的差异高达三倍以上放电电流(倍率)的影响 下图为相同的等温恒温条件下,放电电流对(2.2Ah)聚合 物锂离子电池放热速率影响的试验数据,该类数据将有助 于热管理系统的智能化、调整及改善使用温度对电池容量的影响 电池充放电容量随温度的变化也可以根据 iso-BTC 实验 数据进行计算和评估。上述 NMC 三元材料-石墨电池温 度影响试验的充放电容量如右图所示:从不同温度下充放 电容量的变化曲线来看,电池容量**降幅达 70%电池放电过程中的功率曲线的精细结构 从放电过程中电池放热速率曲线的精细结构分析,可以发 现此过程是由许多连贯步骤构成的,其中有放热反应也有 吸热反应,有速率较快的反应也有速率较慢的反应 右图所示为放电过程中锂离子电池放热功率曲线的精细结 构,其过程符合上述规律。深入理解这些反应机理对于电 池改良和安全设计具有非常深远的意义,也是提高电池工 作效率的途径之一
    留言咨询
  • 电池等温量热仪 400-860-5168转1808
    --样品仓尺寸:350 x 350 mm (W x D) --最大补偿功率:200 W --最小检测能力:5 mW --对于大型电池,额外的温度测试点及加热控制器可以定制据在不同温度或充放电倍率等条件下电池放热速率及总量定义的电池本质热特性,是设计和评估高性能电池热管理系统的重要依据。iso-BTC 可在测试全过程控制并保持电池温度恒定,以准确测定电池在各种工况下的实时放热速率/放热总量 iso-BTC 自动控制电池的加热/冷却以保持电池温度恒定,此过程产生的实时热流量直接表征了电池的放热速率及放热总量iso-BTC 可根据电池形状及尺寸配置多种规格的适配器用于任意规格电池的(等温恒温)量热测试等温量热测试温条件下电池的等温恒温条件下电池的放热:45°C 电池充放电过程 iso-BTC 测试的典型数据,测试过程放热速率变化如图中红色曲线所示电池以 2C (电流 10A) 放电时,随着(内阻增大)电池 SOC 降低,放热速率逐渐增大,电池(充电时的)微弱吸热也能准确地被表征。 温度的影响: 通过相同放电倍率、不同工作温度下电池的等温量热测试, 可以准确评估工作温度对电池放热速率及放热总量的影响。 从下图 NMC 三元材料-石墨电池在 0~60℃各温度条件下 的试验数据可以明显看出电池放热速率的差异高达三倍以上 放电电流(倍率)的影响:下图为相同的等温恒温条件下,放电电流对(2.2Ah)聚合 物锂离子电池放热速率影响的试验数据,该类数据将有助 于热管理系统的智能化、调整及改善。 使用温度对电池容量的影响: 电池充放电容量随温度的变化也可以根据 iso-BTC 实验 数据进行计算和评估。上述 NMC 三元材料-石墨电池温 度影响试验的充放电容量如右图所示:从不同温度下充放电容量的变化曲线来看,电池容量最大降幅达 70% 电池放电过程中功率曲线的精细结构:从放电过程中电池放热速率曲线的精细结构分析,可以发 现此过程是由许多连贯步骤构成的,其中有放热反应也有吸热反应,有速率较快的反应也有速率较慢的反应。 下图所示为放电过程中锂离子电池放热功率曲线的精细结构,其过程符合上述规律。深入理解这些反应机理对于电池改良和安全设计具有非常深远的意义,也是提高电池工 作效率的途径之一。 电池充放电循环的温度特性: 电池A在60℃到0℃之间充电(5Amps)和放电(8Amps),得到的电池温度和加热器功率补偿曲线。 对控制器输出的功率热量与和能量释放曲线进行分析随着温度的降低,充放电曲线在形状上都出现了明显的变化,但是,在充电过程中表现得最为明显,充电过程在60℃时完全是吸热的,在0℃时完全是放热的。在中间温度下观察到可检测到重现的过渡行为。在电池充放电循环过程中,峰值功率和能量输出随温度的变化。
    留言咨询
  • 大电池量热仪 400-860-5168转4058
    绝热量热法 预测热危险的危害电池高温危害性测试大电流放电危害性测试电池内部短路的后果电池穿刺危害测试 根据 ‘ 糟糕情况’ 的数据 确立实际使用的安全标准等温量热法防止热危险改进BTM设计的数据电池模型的真实数据深入理解内部机理以改进电池性能便捷而准确地测定在设定等温(恒温)控制 条件下,电池充放电的产热速率及放热总量外形规格:120 x 90 x 198cm (WxDxH)内腔直径:50cm (~20 inches)内腔高度:50cm (~20 inches) 或 30cm (12 inches)样品类型:向下兼容 BTC-130 所有样品 可测试更大规格 (≤ φ450mm x 450mm) 电池如: 动力电池、混合动力电池、非民用电池、飞行器电池操作安全:坚固的多层超厚不锈钢结构 防爆片及自动泄压机械安全 软件自控快速急冷、手动紧急停机等功能 为操作者提供各方面的安全保护
    留言咨询
  • 电池量热仪 400-860-5168转4058
    电池安全与性能测试及产品开发解决方案随着对更高储能密度;更快充电速度;更长使用寿命的追求,在开发大功率电池的过程中,产品的安全性显得至关重要。高能量电池中含有潜在高危险性的化学反应及化学物质,这类电池在工作中会受到各种因素的影响。因此,了解电池的热行为对于控制电池自放热和降低热失控风险显得至关重要。电池的自放热可在正常使用中产生, 也可以在应力条件变化时产生, 这些应力可以广义的定义为机械应力, 电应力及热应力。了解电池的热特性对开发高性能电池也非常关键。因此,了解电池热特性与其电性能的关系,以及电池的特点都是非常必要的研究工作。一般测试可以被分为安全性测试和性能测试。安全性测试会考虑器件、电池、模块或模组对应应力的变化。通常在极端的条件下进行评估,以此来提供适当缓解危害可能性的措施。相比之下,性能测试则侧重于在一系列工作条件下对电池的热特性和电性能进行表征。性能测试在电池开发,质量控制中有着特殊的价值。 此数据还可以被用于指导和制定电池放热管理策略。BTC-130器件风险筛查电池在各种环境条件下使用,正常使用或者应力条件下都承受内部的加热和冷却。因此,在开发早期,了解某个独立的电池器件在一系列温度下的行为至关重要。如果一个新的器件具有低温自加热现象,那么,它可能带来热失控的风险。同样,如果热事件伴随着压力的迅速增加,或者产生有毒气体,这证明需要重新评估这个器件。 BTC-130设备具有较小的测试腔体,适合小体积的电池测试。能够在绝热条件下评估单个电池的热稳定性,并可以就如何进行电池开发做出正确的判断。
    留言咨询
  • 小电池绝热加速量热仪一、技术背景:HS-T600b小型电池绝热加速量热仪是一款***测试含能材料、电池、化合物的爆热及亚稳态材料组分间的反应热和热失控过程测试仪器,主要应用于含能材料、化合物产品工艺、安全控制领域,并对反应过程进行热动力数据分析、热失控分析。二、适用范围:适用于化工、含能材料、亚稳态复合材料、电池等固态或液态可燃物质的材料组分间的反应过程热动力数据分析、热失控分析。 三、符合标准:GBT 36276《电力储能用锂离子电池》ASTM E1981-98(2004)用加速率量热计法评定材料热稳定性的标准指南 GJB770B-2005 《火药试验方法701.2 爆热和燃烧热 恒温法》四、主要技术参数:(1)温度分辨率:0.001K(2)温度检测阀值:≤0.02℃/min(3)温度跟踪速率:≤45℃/min(4)温度范围:RT~540℃(5)容器压力范围:≤20Mpa(7)泄压方式:自动(6)测试功能:绝热加速、充、放电、比热容(选配导热系数、高压充爆短路)(8)测试气氛:氧气 空气 氩气 氮气等(9)外形尺寸: 432×482×415(mm) 五、主要技术特点: 1、采用不锈钢内外桶一体化结构,传热效果好,抗高压,及外加隔热材料组成。 2、完全独立的进口油浴系统,全自动控制恒温或绝热追踪。 3、仪器***设计、防测试气氛污染。 4、测试装置可抵抗爆轰波的冲击,满足高温、高压等复杂条件下使用。 5、电池测试平台,可适应各规格电池型号。 6、程序自动控制电池短路爆热或绝热测量,自动计算结果,自动记录电池热失控起始温度、热失控速率、绝热温升等热行为参数及实时曲 线。 7、采用以太网通信,数据传输稳定、可靠,无需插卡,连机简单。 8、仪器设有多层自动保护装置,如硬件超温、超压、升降机构自动互锁等,确保测试的安全,操作简便。
    留言咨询
  • 大电池绝热加速量热仪一、技术背景:HS-T800大型电池绝热加速量热仪是一款***测试含能材料、电池、化合物的爆热及亚稳态材料组分间的反应热和热失控过程测试仪器,主要应用于含能材料、化合物产品工艺、安全控制领域,并对反应过程进行热动力数据分析、热失控分析。二、适用范围:适用于化工、含能材料、亚稳态复合材料、电池等固态或液态可燃物质的材料组分间的反应过程热动力数据分析、热失控分析。 三、符合标准:GBT 36276《电力储能用锂离子电池》ASTM E1981-98(2004)用加速率量热计法评定材料热稳定性的标准指南 GJB770B-2005 《火药试验方法701.2 爆热和燃烧热 恒温法》四、主要技术参数:(1)温度分辨率:0.001K(2)温度检测阀值:≤0.02℃/min(3)温度跟踪速率:≤45℃/min(4)温度范围:RT~1200℃(5)容器压力范围:≤20Mpa(7)泄压方式:自动(6)测试功能:绝热加速、充、放电、比热容(选配导热系数、高压充爆短路)(8)测试气氛:氧气 空气 氩气 氮气等 五、主要技术特点: 1、采用不锈钢内外桶一体化结构,传热效果好,抗高压,及外加隔热材料组成。 2、完全独立的进口油浴系统,全自动控制恒温或绝热追踪。 3、仪器***设计、防测试气氛污染。 4、测试装置可抵抗爆轰波的冲击,满足高温、高压等复杂条件下使用。 5、电池测试平台,可适应各种规格大电池型号。 6、程序自动控制电池短路爆热或绝热测量,自动计算结果,自动记录电池热失控起始温度、热失控速率、绝热温升等热行为参数及实时曲线。 7、采用以太网通信,数据传输稳定、可靠,无需插卡,连机简单。8、仪器设有多层自动保护装置,如硬件超温、超压、升降机构自动互锁等,确保测试的安全,操作简便。
    留言咨询
  • 电池锥形量热仪 400-860-5168转3205
    产品介绍:电池锥形量热仪是一种专门用于评估电池材料燃烧性能的仪器。它结合了锥形量热仪的原理和技术,专门用于模拟电池在火灾或其他热事件中的燃烧行为。它主要基于氧消耗原理来测定材料在火灾中的燃烧参数,如释热速率(HRR)、总释放热(THR)、有效燃烧热(EHC)、点燃时间(TTI)以及烟和毒性参数等。锥形量热仪因其测试结果与实际火灾中材料的燃烧行为相关性好,且测试参数受外界因素影响较小等优点,被广泛应用于阻燃科学与技术的研究中。产品标准:ISO5660、ASTM E 1354、BS 476 Pt.15、GB/T 16172-2007、NFPA 264设备参数:1、标准控制机柜,计算机+Labview智能控制系统,美观大方,易于操作。3、加热锥称重系统柔性连接,可避免设备风机。水泵等震动引起的称重系统测量误差。4、10kV火花点火器,装有安全停火装置。点火器通过连接到关闭机制的杠杆进行自动定位。5、由轴流风机、不锈钢排烟管、扩散板、集烟罩、排气管、孔板流量计及温度计组成。6、包括环形取样器、吸气泵,微粒过滤器,冷阱,排气阀、水分过滤器及CO2过滤器。7、顺磁氧分析器,量程0-25%之间;进口整机顺磁氧分析仪及红外CO2分析仪。8、用激光系统测量烟密度,使用光电极管,0.5 mW氦氖激光,主要及备用光电探测器。同时备有定位支架和0.3,0.8中性密度过滤器用于校准;进口光电池模组测定烟密度。9、称重系统:通过进口高精度承重传感器对试品材料的试验过程重量变化时进行测量。10、控温系统:PID控温,测量辐射锥温度的热电偶3支,直径1mm 另配一只1mm铠装热电偶测量孔板上方100mm处温度。11、美国进口Medtherm热电堆式热流计-用于设定对样晶表面的辐射水平;并配有水冷却系统,安全保护热流计。设计量程0~100kW/m2,热流计的准确度为±3%,重复性为±0.5%。12、燃烧器校正系统,校准仪器测试出的热释放率,使用99.5%纯度的甲烷;进口甲烷质量流量计精确控制甲烷流量。13、实验仪器专用Labview控制系统,界面友好,易于操作,控制精准,能够显示仪器状态,校准仪器和储存校准结果;收集测试数据;计算所需参数;按标准要求方式显示结果;多个测试取平均数值。14、Labview操作软件,界面友好,数据交互性功能强大,更适用于进行科学研究分析。15、软件功能模块化设计,可独立分析各个试验数据的过程曲线。16、热量释放率,总耗氧量;CO2生成量;点燃时间,烟道气体流速,C系数,熄灭时间。17、临界点燃热量、质量损失速率、烟雾释放速率
    留言咨询
  • 电池等温量热仪-锂电池充放电产热测试仪 BIC-400A / 产品概述测试特性:充放电产吸热、比热容适用领域:锂电池基于功率补偿等温量热原理开发的面向各类型锂电池单体产热特性测试的专业仪器,能够实现锂电池充放电产热特性以及热物性参数测量,为电池热仿真、热管理系统设计优化以及电池热安全性能评估提供精确、稳定、可靠的基础热数据。电池等温量热仪-锂电池充放电产热测试仪 BIC-400A / 产品特点在等温环境中,采用功率补偿法,可更加准确地测量电池充放电过程中的吸放热功率、吸放热总量、zui大放热功率等热特性参数具有仪器校准功能,可对不同条件下的充放电产热准确性进行校准具备热容测量功能,采用对比法测量热容,降低热容测试操作要求,可准确测量电池不同温度下的热容集成电池充放电模块,可实现充放电模式切换、恒流/恒压充电模式设置、充电/放电电流设置、实时电池电量计算等功能网络通讯方式实现仪器远程操控、数据远程传输,保障实验人员安全可同步记录电池充放电过程中电压、电流、温度数据选配氮气吹扫模块,确保低温测量准确性,有效抑制低温冷凝水问题技术规格量热仪主体工作环境(5~40)℃,<85%RH油浴控温范围(-40~100)℃实验模式等温功率补偿模式、等温热流模式、比热容模式温度稳定性±0.005℃温度分辨力0.001℃可测电池尺寸L340mm*W230mm*H100mm(支持方形/18650/21700/26650/软包电池)最大补偿功率200W量热灵敏度10mW(功率补偿模式)、0.2mW(热流模式)吸放热焓测量精度±1%(功率补偿模式)、±2%(热流模式)基线噪声10mW(功率补偿模式)、0.2mW(热流模式)加热通道标配2通道测温通道标配8通道仪器接口RJ45可调气体流量(5~25)L/min供电电源AC220V/50Hz最大功率600W油浴设定温度范围(-55~200 )℃温度稳定性±0.01℃显示分辨率0.01℃加热功率3kW制冷功率1.5kW@20℃,1.5kW@0℃,1kW@-20℃,0.3kW @-40℃泵流速(22-26)L/min压力泵(0.4~0.7)bar (双级循环泵,更高的温度均匀性)吸力泵(0.2~0.4)bar浴槽开口/尺寸12×11/16cm充液体积5L通信接口串口(可转RJ45)充放电模块 (选配)充放电电压范围(0~5)V充放电电流范围(-400~400)A充放电通道数4通道充放电模式配备恒压、恒流充放电模式电压测量精度±0.1%FS电流测量精度±0.1%FSSOC测算具有SOC测算功能通讯方式RJ45恒压恒流源(选配)通道1电压电流范围(0-25)V,7A通道2电压电流范围(0-50)V,4A电压回读精度0.05%+5mV电流回读精度0.15%+5mA电压噪声小于500μVrms电流噪声小于2mArms保护功能具有过压过流保护功能通讯方式串口、GPIB(可转RJ45)
    留言咨询
  • BIC-400A 电池等温量热仪BIC-400A 电池等温量热仪是一款基于功率补偿等温量热原理开发的面向各类型锂电池单体产热特性测试的专业仪器,能够实现锂电池充放电产热特性以及热物性参数测量,为电池热仿真、热管理系统设计优化以及电池热安全性能评估提供精确、稳定、可靠的基础热数据。精确测量:电功率补偿与校准,热焓测量精度优于±1%样品兼容:支持软包、方形、18650、21700、26650等多种尺寸电池高精温控:油浴控温范围-40℃~100℃,稳定性优于±0.005℃敏锐监测:兼容功率补偿法与热流法,兼备灵敏度与准确度技术规格量热仪主体工作环境(5~40)℃,85%RH油浴控温范围(-40~100)℃实验模式等温功率补偿模式、等温热流模式、比热容模式温度稳定性±0.005°C温度分辨率0.001℃最大电池尺寸L345mm×W230mm×H100mm(支持方形/18650/21700/26650/软包电池)最大补偿功率200W量热灵敏度10mW(功率补偿模式0.2mW(热流模式)吸放热焓测量精度±1%(功率补偿模式±2%(热流模式)基线噪声10mW(功率补偿模式)0.2mW(热流模式)加热通道标配 2 通道测温通道标配 8 通道仪器接口RJ45可调气体流量( 5-25)L/min供电电源AC220V/50Hz最大功率600W油浴设定温度范围(-55~200) ℃温度稳定性±0.01℃显示分辨率0.01℃加热功率3kW制冷功率1.5kW@20℃,1.5kW@0℃,1kW@-20℃,0.3kW @-40℃泵流速(22-26)L/min压力泵(0.4-0.7)bar (双级循环泵,更高的温度均匀性)吸力泵(0.2-0.4)bar浴槽开口/尺寸12×11/16cm充液体积5L通信接口串口(可转 RJ45)充放电模块 (选配)充放电电压范围(0~5)V充放电电流范围(-400~400)A充放电通道数4 通道充放电模式配备恒压、恒流充放电模式电压测量精度±0.1% FS电流测量精度±0.1% FSSOC 测算 具有通讯方式 RJ45恒压恒流源(选配)通道 1 电压电流范围(0-25)V,7A 通道 2 电压电流范围(0-50)V,4A电压回读精度0.05% + 5 mV电流回读精度0.15% + 5 mA电压噪声小于 500μV rms电流噪声小于 2mA rms保护功能具有过压过流保护功能通讯方式 串口、GPIB(可转 RJ45)
    留言咨询
  • 产品名称:动力电池热管理测试系统-EVARC(加速量热仪)品牌:THT-ARC型号:EVARC产地:英国仪器简介: 英国THT公司是一家专业开发制造量热仪和提供化工领域安全咨询和产品检测服务的公司。其产品ARC或加速绝热量热仪一直以来是检验化学安全领域的标杆,在化学工程领域得到了广泛的应用。可以对液体、固体、泥浆、滤渣、混合物等各种材料的生产、储存、运输的安全性进行测量。新的加速量热仪还增添了安全设计、气体取样、电池安全性测量和低温测量、动力电池热管理测试模块。半自动的数据分析可以得出压力等级、温度等级、自加热速率、离达到Maximum值的时间、不可逆的温度以及其它参数。 当前汽车市场,混合动力汽车正在逐步代替传统的内燃机汽车,实现大规模的商业化。动力电池作为能量储存系统将决定着整个车辆的成本与性能,因此动力电池的产热行为也吸引了诸多研究者的注意。英国THT公司的加速量热仪(ARC)可以实现车载动力热容(Cp)测试及动力电池多点测试等应用,满足车载动力电池热管理研究。 在国外,加速量热仪(ARC)已被广泛应用于锂离子蓄电池的安全性能研究。使用该设备,在绝热条件下记录锂离子电池内的温度、压力及自放热速率和时间的函数关系。 全球范围内的电池厂家如VM,Samsung、LG、Sony、Nokia、Panasonic都采用使用英国THT有限公司生产的加速绝热量热仪及附加设备(KSU) 和 (BSU)检测锂离子电池和电解液使用过程中充放电、滥用以及短路和高温下的热分解,并利用这些数据来量化电池储存和放置等条件下的热稳定特性。 以下是全球范围内的客户信息: 欧洲:Nokia, VW, SAFT, Ultralife, Varta, Valence 日本:Sony, Sanyo, Toshiba, Mitsubishi,Panasonic, GS Battery 韩国:Samsung, LG 美国:NASA, Penn State Univ, GM-Delphi,Motorola, Sandia National Labs, Duracell 中国: 华为科技、深圳比克、天津力神、东莞新能源、天津十八所,上海空间电源研究所(上汽), 厦门大学, 北京理工大学、清华大学 技术参数: 1、温度范围:-40度到500度 2、热量产生速率:0.02度/分钟-200度/分钟 3、灵敏度(HWS)或(heat-wait-seek):0.002 度/分钟或50微瓦/克 4、操作模式:HWS,RAMP,ISO 5、压力范围:真空-1000巴 6、控温精度(iso-soaking):±0.001 oC 主要特点: 1、ARC可以可靠地模拟失控反应,以绝热量热方法对最坏情况下的热危害的描述 2、一次实验,提供给出高灵敏度的全程时间、温度、压力数据。数据描述所有的绝热条件下的放热过程。结果可以以不同尺度范围放大缩小曲线表现。 3、用豪克,到克和千克的样品量对真实景象的模拟,灵敏度优于差热扫描仪1到2个数量级。 4、对不同反应分辨率强 5、高品质的热数据 6、可在量热腔内进行真实爆炸模拟 7、专门设计的可容纳一个完整的爆炸体,比如整节锂离子电池。 ARC应用领域 英国THT有限公司的ARC可以帮助锂离子电池安全工程师或科学家得到针对安全事故评估、锂离子电池工艺研发和产品结构设计、优化以及能量控制几个方面重要结论,如下: 1. 锂离子电极材料(正负极)、电解液的筛选及质量控制 2. 锂离子电极材料分解机理研究,包括不同材料间的自催化、自反应研究 3. 单个电芯的热稳定性研究 4. 不同充电态下的锂电热稳定性研究,包括自放热温度点、放热速率 5. 锂离子电池在滥用状态下的热失控研究,如短路、穿刺、过充(恒流和恒压模式) 6. 锂离子电池使用寿命研究,如循环充放电次数与电池放热量衰减的比例 7. 锂离子电池爆炸极限研究 8. 大尺寸动力电池热稳定性研究(THT ARC的优势) 9. 如何对锂离子电池的热失控过程进行控制 10. 车载动力热容(Cp)测试 11. 动力电池多点测试,可满足车载动力电池热管理研究 12. 动力电池“温度冲击”试验
    留言咨询
  • 功能和优势 &bull 功能和优势: 消除技术障碍,加快工作流程。VSP-300恒电位仪数据和TAM IV等温微量热仪数据可在同一用户界面中执行采集和分析,让您轻松运行实验和分析结果。 &bull 即刻完成实时数据整合: 用户无需等待冗长的实验完成即可查看初步结果。 &bull 可容纳三类常见的电池和多种尺寸: 方便研究人员采用多种电池配置和化学成分获得更优质的数据,并在各种设置条件下节省数月的实验时间。 &bull 纽扣电池(CR2032和CR2325) &bull 圆柱形电池(18650) &bull 软包电池(最大尺寸50 mm x 94 mm) &bull 高通量: 一次可并行循环多达12个电池样品,大幅缩短确认电量真实性所需的实验时间和漫长的等待时间。&bull 缩短实验和培训时间: 借由高效的实验设计和软件功能轻易达成&bull 即插即用式电池量热夹具: 用户友善的设计不需要专门的工程设计,消除了因定制OEM产品的危险操作风险。
    留言咨询
  • 根据在不同温度或充放电倍率等条件下电池放热速率及总量定义的电池本质热特性,是设计和评估高性能电池热管理系统的重要依据。iso-BTC可在测试全过程控制并保持电池温度恒定,以准确测定电池在各种工况下的实时放热速率/放热总量iso-BTC自动控制电池的加热/冷却以保持电池温度恒定,此过程产生的实时热流量直接表征了电池的放热速率及放热总量iso-BTC可根据电池形状及尺寸配置多种规格的适配器用于任意规格电池或模组的(等温恒温)量热测试等温恒温条件下电池的放热 下图为45°C电池充放电过程iso-BTC测试的典型数据测试过程放热速率变化如图中红色曲线所示电池以2C (电流10A) 放电时,随着(内阻增大)电池SOC降低,放热速率逐渐增大 电池(充电时的)微弱吸热也能准确地被表征
    留言咨询
  • BAC-420B大型电池绝热量热仪BAC-420B 大型电池绝热量热仪具备符合 GB/T 36276-2023《电力储能用锂离子电池》“绝热温升特性”实验标准的专用测试模式,是研究长边 100mm~600mm 之间大型电池单体及其小型模组的绝热量热仪,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,精准获取锂电池低温状态下的充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数。仪器可为锂电池及电池模组安全性能评估提供数据支持;为动力电池低温热管理系统提供评价依据。产品特点精准:自放热检测灵敏度远优于标准检测阈值0.02℃/min,绝热性能高,壁样温差小高效:创新加热丝辅助加热方案,实验效率最高可提升5倍安全:炉体安装爆破片及弹簧锁设计,标配抗爆箱,双重防护保证实验人员和装置安全技术规格绝热腔体有效尺寸直径420mm,深520mm自放热检测灵敏度优于0.02℃/min恒温壁样温差≤0.5℃控温范围-25~300℃,标配液氮罐制冷温度追踪速率0.02~15℃/min密封测试罐工作压力范围0~2MPa针刺最大行程行程软件可设置充放电电极柱过流能力-500A~500A参考标准GB/T 36276《电力储能用锂离子电池》UL 9540AUSABC SAND99-0497, July 1999: 3.2 Thermal Stability TestsSAE J2464-R2009: 4.4.2 Thermal Stability TestsFreedom CAR SAND 2005-3123: 4.1 Thermal stabilityASTM E1981-98(2012)SN/T 3078.1-2012 化学品热稳定性的评价指南第 1 部分:加速量热仪法UL 1973
    留言咨询
  • 电池绝热量热仪 400-860-5168转3205
    电池绝热量热仪是研究方形、软包等大尺寸电芯以及小型模组等热失控、热蔓延机制的重要工具。产品特点:为了能够更准确地对锂电池的热安全性能进行评估,研究者希望能够在绝热实验环境下对锂电池进行热失控测试。电池绝热量热仪通过追踪电池温度变化,并动态调节环境温度,可消除电池与环境之间的温差,从技术层面实现系统的热动态封闭。 在这种绝热测试环境下,电池的温度变化必然是自身吸放热导致的。因此通过电池绝热量热仪可以准确测定电池热失控过程中的关键参数。测试标准:USABC SAND99-0497、SAE J2464-R2009、ASTM E1981-98(2012)、SN/T3078.1-2012 、GB/T 36276、UL9540A、UL1973产品功能:大型电池绝热量热仪通过模拟电池热失控过程绝热环境,同步记录各滥用条件下电池状态信息(电压、电流、温度、 时间、外部压力等),经电学、热学、光学数据的协同处理,揭示电池热失控机理,量化电池热稳定性以及致灾危害,能为电池单体及模组安全性能评估、热管理开发、热失控主动防控研究提供可靠的数据来源。大型电池绝热量热仪不仅能够通过程序升温等热滥用方式诱发电池热失控,还可以进行过充、过放、外部短接 等电滥用以及针刺、挤压等机械滥用实验,并测定热失控相关数据,还能通过内置摄像头更直观地观察实验现象。模式:拥有 HWS 模式、比热容恒功率模式、比热容恒速率模式、充放电放热模式、绝热温升测试模式、温差基线模式、 扫描模式、恒温模式,可根据实验需求选择并自定义参数设置。不同模式下,需设置的参数不同,模式选择后,只需填写高亮有效的输入控件。扫描模式,建议用于样品放热未知的情形,用于热行为的初步筛选。在进行 HWS 模式和充放电放热模式实验前,都需要先进行温差基线模式校准。
    留言咨询
  • 小电池绝热量热仪-锂电池热失控测试仪 BAC-90A / 产品概述在绝热加速量热仪基础上研发的面向小型电池安全测试的绝热量热仪,通过同步采集各种滥用条件下电池电压、电流、电量、温度、压力、时间数据,能帮助电池及电池组研发和测试人员实现专业的安全性能评估。小电池绝热量热仪-锂电池热失控测试仪 BAC-90A / 产品特点模拟理想绝热环境,可直接测得更加准确的电池热失控起始温度、ZUI大热失控速率、绝热温升等热行为参数集成电池充放电模块可实现充放电模式切换、恒流/恒压充电模式设置、充电/放电电流设置、实时电池电量计算电池电压、电流、温度、压力数据同步采集,用于分析电池热失控过程中的电流/电压变化兼容经典绝热加速量热仪功能,可实现电解液等电池材料热稳定性评估具备充放电放热模式,可准确反映电池在充放电过程放热量及 放热速率具备恒功率、恒速率两种比热测试模式,通过DU特的比热测试 流程提升电池比热测试准确性具有超压、超温报警功能,炉盖自动升降,保证安全,方便操作测试标准:ASTM E1981-98 SN/T3078.1技术规格量热主体工作环境(5~40)℃,85%RH控温范围室温~500℃温控模式恒温、扫描、HWS、比热容恒功率模式、 比热容恒速率模式、充放电放热模式温度检测阈值(0.005~0.02)℃/min温度跟踪速率(0.005~40)℃/min温度显示分辨率0.001℃炉腔尺寸直径90mm,深110mm接口USB或RJ45电源220V/50Hz功率≤3000W电池比热测试模块测试方法支持对比法测试测试模式支持恒功率、恒速率测试模式校准量块具有比热测试校准量块,可定期校准控制及数据分析软件功能所有设备数据传输方式通过网络实现,远距离操控,保证实验人员安全数据记录多维数据同步记录,利于各诱因下的热失控机制研究比热容计算功能具有热分析功能具有热力学和热动力学计算功能气压测量及气体采集模块(选配)密封罐种类18650、小型电池压力密封罐密封罐承压范围优于0~10bar压力测量范围(0~20000)kPa压力分辨率1kPa压力检测精度≤0.05%气体收集功能可采集不同阶段电池热失控尾气,用于组分及燃爆特性测定充放电管理模块(选配)充电电压可达5V充放电电流可达20A测试通道可实现8通道同时测量充放电模式配备恒压、恒流充放电模式电压、电流监测功能具有电压测量精度±0.1%FS电流测量精度±0.1%FSSOC 测算功能具有设备工作模式设置和数据采集接口RJ45
    留言咨询
  • 大电池绝热量热仪-锂电池热失控测试仪 BAC-800B / 产品概述具备符合 GB/T 36276-2023《电力储能用锂离子电池》“绝热温升特性”实验标准的专用测试模式,是研究长边 100mm~900mm 之间大型电池单体及其小型模组的绝热量热仪,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,精准获取锂电池低温状态下的充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数。仪器可为锂电池及电池模组安全性能评估提供数据支持;为动力电池低温热管理系统提供评价依据。该仪器具备绝热热失控-产气联合测试、绝热热失控、气体收集及压力测试、加热丝辅助加热、热/电/机械滥用、比热容测试、充放电产热测试、低温测试、多点温度测量、视频监控等功能。大电池绝热量热仪-锂电池热失控测试仪 BAC-800B / 产品特点精准:自放热检测灵敏度远优于标准检测阈值0.02℃/min,绝热性能高,壁样温差小高效:创新加热丝辅助加热方案,实验效率最高可提升5倍安全:具备爆破片、泄压阀等安全防护措施,专业报警系统设计,全方位保障人员和设备安全创新:具备创新的绝热热失控-产气联合分析功能,全面获取电池热失控特征参数参考标准:GB/T 36276-2023《电力储能用锂离子电池》、UL 9540A、ASTM E1981-98(2012)、SN/T 3078.1-2012 化学品热稳定性的评价指南第 1 部分:加速量热仪法、USABC SAND99-0497, July 1999: 3.2 Thermal Stability Tests、SAE J2464-R2009: 4.4.2 Thermal Stability Tests、Freedom CAR SAND 2005-3123: 4.1 Thermal stability、UL 1973、GB 38031-2020 电动汽车用动力蓄电池安全要求技术规格绝热腔体有效尺寸直径800mm,深520mm自放热检测灵敏度优于0.02℃/min恒温壁样温差≤1℃控温范围RT~300℃,配置低温模块可达-25℃温度追踪速率(0.02~15)℃/min密封测试罐工作压力范围(0~2)MPa针刺最大行程200mm,行程软件可设置充放电电极柱过流能力(-500~500)A
    留言咨询
  • 大电池绝热量热仪-锂电池热失控测试仪 BAC-800A / 产品概述具备符合 GB/T 36276-2023《电力储能用锂离子电池》“绝热温升特性”实验标准的专用测试模式,是研究长边 100mm~900mm 之间大型电池单体及其小型模组的绝热量热仪,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,精准获取锂电池低温状态下的充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数。仪器可为锂电池及电池模组安全性能评估提供数据支持;为动力电池低温热管理系统提供评价依据。该仪器具备绝热热失控、气体收集及压力测试、热/电/机械滥用、比热容测试、充放电产热测试、多点温度测量、视频监控、加热丝辅助加热等功能。大电池绝热量热仪-锂电池热失控测试仪 BAC-800A / 产品特点精准:自放热检测灵敏度远优于标准检测阈值0.02℃/min,绝热性能高,壁样温差小高效:创新加热丝辅助加热方案,实验效率最高可提升5倍安全:具备爆破片、泄压阀、抗爆箱等安全防护措施,专业报警系统设计,全方位保障人员和设备安全创新:具备创新的绝热热失控-产气联合分析功能,全面获取电池热失控特征参数参考标准:GB/T 36276-2023《电力储能用锂离子电池》、UL 9540A、ASTM E1981-98(2012)、SN/T 3078.1-2012 化学品热稳定性的评价指南第 1 部分:加速量热仪法、USABC SAND99-0497, July 1999: 3.2 Thermal Stability Tests、SAE J2464-R2009: 4.4.2 Thermal Stability Tests、Freedom CAR SAND 2005-3123: 4.1 Thermal stability、UL 1973、GB 38031-2020 电动汽车用动力蓄电池安全要求技术规格绝热腔体有效尺寸直径800mm,深520mm自放热检测灵敏度优于0.02℃/min恒温壁样温差≤1℃控温范围RT~300℃,配置低温模块可达-25℃温度追踪速率(0.02~15)℃/min密封测试罐工作压力范围(0~2)MPa针刺最大行程200mm,行程软件可设置充放电电极柱过流能力(-500~500)A
    留言咨询
  • 大电池绝热量热仪-锂电池热失控测试仪 BAC-420B / 产品概述具备符合 GB/T 36276-2023《电力储能用锂离子电池》“绝热温升特性”实验标准的专用测试模式,是研究长边 100mm~600mm 之间大型电池单体及其小型模组的绝热量热仪,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,精准获取锂电池低温状态下的充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数。仪器可为锂电池及电池模组安全性能评估提供数据支持;为动力电池低温热管理系统提供评价依据。该仪器具备绝热热失控、加热丝辅助加热、气体收集及压力测试、热/电/机械滥用、比热容测试、充放电产热测试、多点温度测量、视频监控等功能。大电池绝热量热仪-锂电池热失控测试仪 BAC-420B / 产品特点精准:自放热检测灵敏度远优于标准检测阈值0.02℃/min,绝热性能高,壁样温差小高效:创新加热丝辅助加热方案,实验效率最高可提升5倍安全:炉体安装爆破片及弹簧锁设计,标配抗爆箱,双重防护保证实验人员和装置安全参考标准:GB/T 36276-2023《电力储能用锂离子电池》、UL 9540A、ASTM E1981-98(2012)、SN/T 3078.1-2012 化学品热稳定性的评价指南第 1 部分:加速量热仪法、USABC SAND99-0497, July 1999: 3.2 Thermal Stability Tests、SAE J2464-R2009: 4.4.2 Thermal Stability Tests、Freedom CAR SAND 2005-3123: 4.1 Thermal stability、UL 1973、GB 38031-2020 电动汽车用动力蓄电池安全要求技术参数绝热腔体有效尺寸直径420mm,深520mm自放热检测灵敏度优于0.02℃/min恒温壁样温差≤0.5℃控温范围(-25~300)℃,标配液氮罐制冷温度追踪速率(0.02~13)℃/min密封测试罐工作压力范围(0~2)MPa针刺最大行程行程软件可设置充放电电极柱过流能力(-500~500)A
    留言咨询
  • 大电池绝热量热仪-锂电池热失控测试仪 BAC-420A/ 产品概述具备符合 GB/T 36276-2023《电力储能用锂离子电池》“绝热温升特性”实验标准的专用测试模式,是研究长边 100mm~600mm 之间大型电池单体及其小型模组的绝热量热仪,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,精准获取锂电池充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数。仪器可为锂电池及电池模组安全性能评估提供数据支持;为动力电池热管理系统提供评价依据。该仪器具备绝热热失控、加热丝辅助加热、GB/T 36276绝热温升测试、气体收集及压力测试、热/电/机械滥用、比热容测试、充放电产热测试、多点温度测量、视频监控等功能。大电池绝热量热仪-锂电池热失控测试仪 BAC-420A/ 产品特点精准:自放热检测灵敏度远优于标准检测阈值0.02℃/min,绝热性能高,壁样温差小高效:创新加热丝辅助加热方案,实验效率最高可提升5倍安全:炉体安装爆破片及弹簧锁设计,标配抗爆箱,双重防护保证实验人员和装置安全参考标准:GB/T 36276-2023《电力储能用锂离子电池》、UL 9540A、ASTM E1981-98(2012)、SN/T 3078.1-2012 化学品热稳定性的评价指南第 1 部分:加速量热仪法、USABC SAND99-0497, July 1999: 3.2 Thermal Stability Tests、SAE J2464-R2009: 4.4.2 Thermal Stability Tests、Freedom CAR SAND 2005-3123: 4.1 Thermal stability、UL 1973、GB 38031-2020 电动汽车用动力蓄电池安全要求技术规格绝热腔体有效尺寸直径420mm,深520mm自放热检测灵敏度优于0.02℃/min恒温壁样温差≤0.5℃控温范围RT~300℃温度追踪速率(0.02~13)℃/min密封测试罐工作压力范围(0~2)MPa针刺最大行程行程软件可设置充放电电极柱过流能力(-500~500)A
    留言咨询
  • BTC 绝热加速量热仪是为测试各种规格的电池及电池材料、组件的安全性而设计的热安全性测试仪器。BTC-130电池绝热量热仪是传统'ARC'绝热量热仪的升级改进版的仪器,是为日趋重要的能源储存领域特别设计的适用性更强、更先进的热安全评估工具。 •Accelerating Rate Calorimeter -HWS是(Heat Wait Seek) ,五种测试模式可选 Adiabatic /HWS/Ramp/isothermal /Single HWS •绝热最大操作温度温度可至500 ℃ •绝热温升追踪速率 30℃/min (ARC ) •测试池: 130mm Æ , 200mm h (可用于检测直径120mm高度190mm的电池等样品) •样品类型:小型电池 及 电池材料:阳极,阴极,固体/液体电解质 •操作安全 :坚固的多层不锈钢外壳结构 ,紧凑防爆的设计,可安装于标准通风橱内,手套箱内使用。 •样品池材料:不锈钢/铪氏合金/玻璃样品池。提供绝热量热模式和恒温量热模式两种可选,可选择不同的设备,或在一台设备中实现两种功能模式。产品简介产品简介BTC-130电池测试量热仪是HEL公司经典绝热加速量热仪PhiTEC(ARC)系列针对电池测试应用的升级版本——将经典应用扩展至重要性越来越突出的储能载体的热危害测试以及电池热管理系统性能评估领域。随着电池组体积的不断增大,其发生热失控导致火灾或爆炸的危险性与过去相比的后果严重性也与日俱增。HEL 特据此提供多种型号ARC绝热量热仪以满足不同客户的精确需求。作为真正具有实用价值的热危害和热管理系统安全评估工具,BTC能帮助电池设计和生产机构更科学、从容地应对不断增长的对大体积高性能电池的市场需求。BTC-500大电池测试量热仪可为多次充放电循环过程提供稳定的温度控制,对各种规格电池的热效应评估和潜在危险性分析提供准确数据。一套设备即可完成所有测试可精确测试小电池组件、18650电池的相关数据。领先技术 绝热量热“绝热”的字面意思为“热量不可传递”,在热力学中我们用它指代一个热量无法传入及传出的系统,在实验室测试中,它是通过将测试池所处的环境温度调节到到与测试池本身相同的温度来实现的。此时,测试池及其环境温度之间没有温差,从技术层面实现了系统的热动态密闭,即测试池内的任何热量变化必然是其内部化学反应过程所导致。 非常有趣的理论,却代表着热稳定性研究的一大突破。为什么要关心绝热量热呢?——为了安全。在大型化工厂中,化学反应放热的速度远胜于工厂冷却设备散热的速度。在这种情况下,反应系统就具备了一定的绝热特性——究其本质,容器内化学反应产生的所有热量都积聚在自身体系中,这往往会导致严重的潜在危害性甚至恶性事故的发生。 因此,在大型化工厂进行工艺放大或是生产规模扩大之前,研究其化学反应的绝热特性至关重要!HEL独家的在线绝热校准PhiTEC (ARC)系列绝热加速量热仪基于HEL海量的热危害研究实验数据,采用复杂精准的多维数学模型,仅需在每次实验开始阶段进行一个30分钟的标准校准步骤,结合各温度台阶下的动态修正,即可实现对体系的精确绝热控制。它可以精确测定不同规格或形状测试池及样品在不同测试条件下的热损失情况,并进行反馈补偿,无需对系统或测试池进行改变、无需复杂费时且不准确的“空弹校准”*。 HEL资深的化学家和风险评估咨询师经过多年努力,将1970年代晚期陶氏化学基于绝热量热原理的ARC设备的技术性能推进到一个新的高度。HEL持续地致力于将其丰富的热危害评估和化学反应研究经验注入其远比传统ARC更精良的专业化PhiTEC (ARC) 设备,为客户提供一系列的的高性能绝热安全工具,作为构建现代安全实验室的重要技术支柱。 PhiTEC系列产品自1987年起,根据客户安全咨询的需求不断进行改进,现已发展成为涵盖从初级水平至专业水平的系列全套产品,足以满足安全领域所有的专业应用需求。 PhiTEC I (ARC) 绝热加速量热仪 PhiTEC I (ARC) 是经典型的绝热量热仪,采用8~11毫升高压玻璃、不锈钢或合金测试池,可用于测试化学物质,如各种液体、粉末、浆液,以及上述物质混合、以及测试过程中加入液体或气体等样品,以获取热力学和动力学数据,如SADT、TMR等参数,并据此确定加工、贮存和运输的安全条件。 该设备也可应用于测试小规格电池(最大支持26650电池)和电池原材料的热稳定性及安全性。 PhiTEC II 绝热加速量热仪 PhiTEC II型绝热加速量热仪是低热惰性因子绝热加速量热仪,适用于原位模拟大规模反应的实际热危害过程、泄爆口设计、热失控反应分析,可直接得到动力学和热力学数据。向下兼容TSU及PhiTEC I (ARC) 型仪器全部功能,可使用标准ARC测试池进行测试,但其独一无二的优势在于可使用薄壁大体积测试池,通过在测试池外进行自动压力跟踪补偿来确保测池内外压力一致,避免测试池爆裂及意外发生。 PhiTEC II的薄壁测试池意味着测试体系可以达到非常低的"phi"因子(亦称绝热因子或热惰性因子)——可以精准预测化工厂大型反应装置的安全性及潜在危险性。BTC-130电池测试绝热加速量热仪BTC-130电池测试量热仪是HEL公司经典绝热量热仪 PhiTEC (ARC) 系列针对电池测试的升级版本——将经典应用扩展至重要性越来越突出的储能载体设备测试BTC是PhiTEC I (ARC) 的电池测试专业版,保留了PhiTEC I (ARC)的所有优点,该系统适用于测试各种类型的电池,从普通的AA电池到车辆电池至军事或航空专用电池都可轻松应对。 特点和优势特色 BTC-130电池绝热量热仪的设计 绝热 HWS模式测试及在线校准模式。兼具 Adiabatic /HWS/Ramp/isothermal /Single HWS p紧凑的设计(台式设计) 安全可靠的样品容器可选附件可编程充电/放电功率设置 手套箱中隔绝空气环境测试Cp比热测试附件 短路测试模块穿刺测试模块100HZ 高速温度采集卡 安全控制设计坚固的多层环形不锈钢抗爆结构外壳,耐压高达30MPa自动泄压阀及防爆片双重保护自动紧急停车自动快速冷却模块(选配) 测试应用成品电池电池元件( Anode, Cathode, Electrolyte, SEI)任何充放电状态的电池(包括过充和过放) 绝热量热HEL独家在线校准在每个实验开始前仅需30分钟即可自行完成,可在实验运行过程中多次重复10分钟的校准过程并实时修正,该方式可使仪器长期保持精准的校准状态并可自动适应不同规格及形状的测试池、电池及其他样品。充放电测试集成全功能软件集成控制的充放电循环装置,供电功率/电流载荷可控范围广,可自动测试各种充电、放电、短路和其他常规操作下电池的相关数据及安全性能,也可与用户自己提供的辅助测量设备配套使用。测试实验 系统提供4种测试方法,其中2种为标准测试稳定性测试电池安全基本筛选方法,用于初步分析样品热稳定性。仪器匀速升温直至放热反应开始 - 类似于DSC测试加热-等待-扫描 (H-W-S)几十年来,陶氏化学的经典绝热加速量热仪ARC被广为使用,PhiTEC沿用其标准设计, 样品以阶梯态势升温,每次升温之间间隔足够的时间以“搜索”放热反应发生的起始点(Onset),其探测结果与设备灵敏度有关。一旦探测到放热反应,系统会自动启用绝热追踪模式,用于精确评定样品安全性能。 该测试模式用于评估电池的热稳定性:BTC可准确测定电池自放热起始温度“onset”点、反应动力学参数、反应释放的总能量等定量信息,从而对电池热安全/热危害进行全面的评估。测试数据也可用于电池的设计和研发。破坏性试验也可将电池置于耐高压的绝热腔中进行破坏性实验——通过测量密闭空间分解反应的气体产生速度和温升数值、温升速率等评估其安全性或危害性。以上应用包括滥用测试——评价物理性损坏(如穿刺或挤压损坏)造成的电池性能改变,可选配标准穿刺/挤压组件或和用户定制组件。放热量和比热测定BTC可用于电池平均比热Cp的测定,并可进一步对电池的自放热(self-heating)参数进行定量分析,用于表征电池自放热反应的能量输出。
    留言咨询
  • BAC-90A 小型电池绝热量热仪BAC-90A小型电池绝热量热仪是杭州仰仪科技有限公司在绝热加速量热仪基础上研发的面向小型电池安全测试的绝热量热仪,其通过集成热滥用、电滥用、机械滥用等功能,将绝热加速量热仪的应用扩展至电池热安全评估领域。技术规格量热主体工作环境5℃~40℃,85%RH控温范围室温~500℃温控模式恒温、扫描、HWS、比热容恒功率模式、 比热容恒速率模式、充放电放热模式温度检测阈值0.005℃/min~0.02℃/min温度跟踪速率0.005℃/min~40℃/min温度显示分辨率0.001℃炉腔尺寸直径 90mm,深 110mm接口USB 或 RJ45电源220V/50Hz功率≤3000W电池比热测试模块测试方法支持对比法测试测试模式支持恒功率、恒速率测试模式校准量块具有比热测试校准量块,可定期校准控制及数据分析软件功能所有设备数据传输方式通过网络实现,远距离操控,保证实验人员安全数据记录多维数据同步记录,利于各诱因下的热失控机制研究比热容计算功能具有热分析功能具有热力学和热动力学计算功能 气压测量及气体采集模块(选配)密封罐种类18650、小型电池压力密封罐密封罐承压范围优于 0~10bar压力测量范围0~20000kPa压力分辨率1kPa压力检测精度≤0.05%气体收集功能可采集不同阶段电池热失控尾气,用于组分及燃爆特性测定充放电管理模块(选配)充电电压可达 5V充放电电流可达 20A测试通道可实现 8 通道同时测量充放电模式配备恒压、恒流充放电模式电压、电流监测功能具有电压测量精度±0.1%FS电流测量精度±0.1%FSSOC 测算功能具有设备工作模式设置和数据采集接口 RJ45功能特点模拟理想绝热环境,可直接测得更加准确的电池热失控起始温度、最大 热失控速率、绝热温升等热行为参数集成电池充放电模块可实现充放电模式切换、恒流/恒压充电模式设置、 充电/放电电流设置、实时电池电量计算电池电压、电流、温度、压力数据同步采集,用于分析电池热失控过程中的电流/电压变化兼容经典绝热加速量热仪功能,可实现电解液等电池材料热稳定性评估具备充放电放热模式,可准确反映电池在充放电过程放热量及放热速率具备恒功率、恒速率两种比热测试模式,通过独特的比热测试流程提升电池比热测试准确性具有超压、超温报警功能,炉盖自动升降,保证安全,方便操作。
    留言咨询
  • 大电池绝热量热仪-锂电池热失控测试仪 BAC-1000A / 产品概述具备符合 GB/T 36276-2023《电力储能用锂离子电池》“绝热温升特性”实验标准的专用测试模式,是研究长边 100mm~1500mm 之间大型电池单体及其小型模组的绝热量热仪,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,精准获取锂电池低温状态下的充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数。仪器可为锂电池及电池模组安全性能评估提供数据支持;为动力电池低温热管理系统提供评价依据。该仪器具备绝热热失控-产气联合测试、绝热热失控、气体收集及压力测试、加热丝辅助加热、热/电/机械滥用、比热容测试、充放电产热测试、低温测试、多点温度测量、视频监控等功能。大电池绝热量热仪-锂电池热失控测试仪 BAC-1000A / 产品特点精准:自放热检测灵敏度远优于标准检测阈值0.02℃/min,绝热性能高,壁样温差小高效:创新加热丝辅助加热方案,实验效率最高可提升5倍安全:具备爆破片、泄压阀等安全防护措施,专业报警系统设计,全方位保障人员和设备安全创新:具备创新的绝热热失控-产气联合分析功能,全面获取电池热失控特征参数参考标准:GB/T 36276-2023《电力储能用锂离子电池》、UL 9540A、ASTM E1981-98(2012)、SN/T 3078.1-2012 化学品热稳定性的评价指南第 1 部分:加速量热仪法、USABC SAND99-0497, July 1999: 3.2 Thermal Stability Tests、SAE J2464-R2009: 4.4.2 Thermal Stability Tests、Freedom CAR SAND 2005-3123: 4.1 Thermal stability、UL 1973、GB 38031-2020 电动汽车用动力蓄电池安全要求技术规格绝热腔体有效尺寸直径1000mm,深1200mm自放热检测灵敏度优于0.02℃/min恒温壁样温差≤1℃控温范围RT~300℃,配置低温模块可达-25℃工作压力范围(0~2)MPa温度追踪速率(0.02~15)℃/min针刺最大行程200mm,行程软件可设置充放电电极柱过流能力(-500~500)A
    留言咨询
  • 两状态法热参数测试仪-电池导热系数测试仪-TCA 2SC-080 / 产品概述测试特性:导热系数适用领域:方形电池、圆柱电池基于红外热像仪非接触式测温的三维传热模型反演分析技术开发的一款热参数分析仪器,适用于检测非均质核壳结构样品,可直接对硬壳锂电池单体的导热系数和内部热阻进行不拆解测试。两状态法热参数测试仪-电池导热系数测试仪-TCA 2SC-080 / 产品特点无需破坏制样,原位准确测试电池样品多维度上的导热系数可测试的样品尺寸范围大,对样品的表面平整度要求低实验参数根据样品信息自动设置,根据测试过程自动调整适合各种不同规格、表面硬度、粗糙度、孔隙率的均质或非均质样品仪器基于三维传热模型进行测试和反演分析,可同时测量卷芯面向导热系数、卷芯纵向导热系数及整体等效导热系数等参数非接触测量,自动补偿表面散热、支架散热等干扰,测试结果更准确支持外接电池充放电设备,真实模拟充放电产热工况支持样品冷板温度、流速可调,模拟不同放热条件6面冷板均温,高精度油槽控温,环境温度可调仪器操作简单,实验开启和运行全自动进行 技术规格测试对象方形电池、圆柱电池测试参数电芯面向/纵向导热系数、芯体和外壳接触热阻、总体等效导热系数最大样品尺寸400mmx250mmx80mm测试时间≤15min测试重复性≤8%测试准确性卷芯面向导热系数:≤8%卷芯纵向导热系数:≤10%总体等效面向导热系数:≤10%总体等效纵向导热系数:≤10%测试温度范围(0~80)℃温度稳定性0.03℃温度精度0.1℃尺寸750mm*1500mm*1200mm重量300kg
    留言咨询
  • BAC-800A大型电池绝热量热仪BAC-800A 大型电池绝热量热仪具备符合 GB/T 36276-2023《电力储能用锂离子电池》“绝热温升特性”实验标准的专用测试模式,是研究长边 100mm~900mm 之间大型电池单体及其小型模组的绝热量热仪,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,精准获取锂电池低温状态下的充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数。仪器可为锂电池及电池模组安全性能评估提供数据支持;为动力电池低温热管理系统提供评价依据。产品特点精准:自放热检测灵敏度远优于标准检测阈值0.02℃/min,绝热性能高,壁样温差小高效:创新加热丝辅助加热方案,实验效率最高可提升5倍安全:具备爆破片、泄压阀、抗爆箱等安全防护措施,专业报警系统设计,全方位保障人员和设备安全创新:具备创新的绝热热失控-产气联合分析功能,全面获取电池热失控特征参数技术规格绝热腔体有效尺寸直径800mm,深520mm自放热检测灵敏度优于0.02℃/min恒温壁样温差≤0.5℃控温范围RT~300℃,配置低温模块可达-25℃温度追踪速率0.02~15℃/min密封测试罐工作压力范围0~2MPa针刺最大行程行程软件可设置充放电电极柱过流能力-500A~500A 参考标准 GB/T 36276-2023《电力储能用锂离子电池》UL 9540AUSABC SAND99-0497, July 1999: 3.2 Thermal Stability TestsSAE J2464-R2009: 4.4.2 Thermal Stability TestsFreedom CAR SAND 2005-3123: 4.1 Thermal stabilityASTM E1981-98(2012)SN/T 3078.1-2012 化学品热稳定性的评价指南第 1 部分:加速量热仪法UL 1973
    留言咨询
  • BAC-1000A大型电池绝热量热仪BAC-1000A 具备符合 GB/T 36276-2023《电力储能用锂离子电池》“绝热温升特性”实验标准的专用测试模式,是研究长边 100mm~1500mm 之间大型电池单体及其小型模组的绝热量热仪,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,精准获取锂电池低温状态下的充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数。仪器可为锂电池及电池模组安全性能评估提供数据支持;为动力电池低温热管理系统提供评价依据。产品特点精准:自放热检测灵敏度远优于标准检测阈值0.02℃/min,绝热性能高,壁样温差小高效:创新加热丝辅助加热方案,实验效率最高可提升5倍安全:具备爆破片、泄压阀等安全防护措施,专业报警系统设计,全方位保障人员和设备安全创新:具备创新的绝热热失控-产气联合分析功能,全面获取电池热失控特征参数 技术规格 绝热腔体有效尺寸直径420mm,深520m自放热检测灵敏度优于0.02℃/min恒温壁样温差(0.02~15)℃/min控温范围-25~300℃,标配液氮罐制冷温度追踪速率0.02~15℃/mi密封测试罐工作压力范围0~2MPa针刺最大行程行程软件可设置充放电电极柱过流能力-500A~500A 参考标准GB/T 36276-2023 《电力储能用锂离子电池》UL 9540AUSABC SAND99-0497, July 1999: 3.2 Thermal Stability TestsSAE J2464-R2009: 4.4.2 Thermal Stability TestsFreedom CAR SAND 2005-3123: 4.1 Thermal stabilityASTM E1981-98(2012)SN/T 3078.1-2012 化学品热稳定性的评价指南第 1 部分:加速量热仪法UL 1973
    留言咨询
  • BTC 绝热加速量热仪是特别为测试各种规格的电池包括大电池,及电池材料、组件的安全性而设计的热安全性测试仪器。BTC-500大电池绝热量热仪是传统' ARC' 绝热量热仪的升级改进版的仪器,是为日趋重要的能源储存领域特别设计的适用性更强、更先进的热安全评估工具。 提供绝热量热模式和恒温量热模式两种可选,可选择不同的设备,或在一台设备中实现两种功能模式 BTC-500大电池测试量热仪是HEL公司经典绝热加速量热仪PhiTEC(ARC)系列针对电池测试应用的升级版本——将经典应用扩展至重要性越来越突出的储能载体的热危害测试以及电池热管理系统性能评估领域。 随着电池组体积的不断增大,其发生热失控导致火灾或爆炸的危险性与过去相比的后果严重性也与日俱增。HEL 特据此提供多种型号ARC绝热量热仪以满足不同客户的精确需求。作为真正具有实用价值的热危害和热管理系统安全评估工具,BTC能帮助电池设计和生产机构更科学、从容地应对不断增长的对大体积高性能电池的市场需求。BTC-500大电池测试量热仪可为多次充放电循环过程提供稳定的温度控制,对各种规格电池的热效应评估和潜在危险性分析提供准确数据。一套设备即可完成所有测试可精确测试小电池组件、18650电池、大电池及大电池组的相关数据。 “绝热”的字面意思为“热量不可传递”,在热力学中我们用它指代一个热量无法传入及传出的系统,在实验室测试中,它是通过将测试池所处的环境温度调节到到与测试池本身相同的温度来实现的。此时,测试池及其环境温度之间没有温差,从技术层面实现了系统的热动态密闭,即测试池内的任何热量变化必然是其内部化学反应过程所导致。 标配大体积绝热腔(Φ35×35或Φ50×50 cm)用于测试大电池及大体积元件,并兼容材料及小规格电池测试可选配标准规格绝热腔,更方便快捷地用于电池材料、小电池(18650、26650等)测试
    留言咨询
  • BTC 绝热加速量热仪是特别为测试各种规格的电池包括大电池,及电池材料、组件的安全性而设计的热安全性测试仪器。BTC-500大电池绝热量热仪是传统' ARC' 绝热量热仪的升级改进版的仪器,是为日趋重要的能源储存领域特别设计的适用性更强、更先进的热安全评估工具。 提供绝热量热模式和恒温量热模式两种可选,可选择不同的设备,或在一台设备中实现两种功能模式。产品简介产品简介BTC-500大电池测试量热仪是HEL公司经典绝热加速量热仪PhiTEC(ARC)系列针对电池测试应用的升级版本——将经典应用扩展至重要性越来越突出的储能载体的热危害测试以及电池热管理系统性能评估领域。随着电池组体积的不断增大,其发生热失控导致火灾或爆炸的危险性与过去相比的后果严重性也与日俱增。HEL 特据此提供多种型号ARC绝热量热仪以满足不同客户的精确需求。作为真正具有实用价值的热危害和热管理系统安全评估工具,BTC能帮助电池设计和生产机构更科学、从容地应对不断增长的对大体积高性能电池的市场需求。BTC-500大电池测试量热仪可为多次充放电循环过程提供稳定的温度控制,对各种规格电池的热效应评估和潜在危险性分析提供准确数据。一套设备即可完成所有测试可精确测试小电池组件、18650电池、大电池及大电池组的相关数据。可选配自动变焦内置高清实时监控/成像系统,全程记录PhiTEC BTC仪器内部电池样品在热危害测试/充放电过程中的表观现象,实现测试过程的可视化,提供更多直观信息方便数据解读。领先技术 绝热量热“绝热”的字面意思为“热量不可传递”,在热力学中我们用它指代一个热量无法传入及传出的系统,在实验室测试中,它是通过将测试池所处的环境温度调节到到与测试池本身相同的温度来实现的。此时,测试池及其环境温度之间没有温差,从技术层面实现了系统的热动态密闭,即测试池内的任何热量变化必然是其内部化学反应过程所导致。 非常有趣的理论,却代表着热稳定性研究的一大突破。为什么要关心绝热量热呢?——为了安全。在大型化工厂中,化学反应放热的速度远胜于工厂冷却设备散热的速度。在这种情况下,反应系统就具备了一定的绝热特性——究其本质,容器内化学反应产生的所有热量都积聚在自身体系中,这往往会导致严重的潜在危害性甚至恶性事故的发生。 因此,在大型化工厂进行工艺放大或是生产规模扩大之前,研究其化学反应的绝热特性至关重要!HEL独家的在线绝热校准PhiTEC (ARC) 系列绝热加速量热仪基于HEL海量的热危害研究实验数据,采用复杂精准的多维数学模型,仅需在每次实验开始阶段进行一个30分钟的标准校准步骤,结合各温度台阶下的动态修正,即可实现对体系的精确绝热控制 。它可以精确测定不同规格或形状测试池及样品在不同测试条件下的热损失情况,并进行反馈补偿,无需对系统或测试池进行改变、无需复杂费时且不准确的“空弹校准”*。 HEL资深的化学家和风险评估咨询师经过多年努力,将1970年代晚期陶氏化学基于绝热量热原理的ARC设备的技术性能推进到一个新的高度。HEL持续地致力于将其丰富的热危害评估和化学反应研究经验注入其远比传统ARC更精良的专业化PhiTEC (ARC) 设备,为客户提供一系列的的高性能绝热安全工具,作为构建现代安全实验室的重要技术支柱。 PhiTEC系列产品自1987年起,根据客户安全咨询的需求不断进行改进,现已发展成为涵盖从初级水平至专业水平的系列全套产品,足以满足安全领域所有的专业应用需求。 PhiTEC I (ARC) 绝热加速量热仪 PhiTEC I (ARC) 是经典型的绝热量热仪,采用8~11毫升高压玻璃、不锈钢或合金测试池,可用于测试化学物质,如各种液体、粉末、浆液,以及上述物质混合、以及测试过程中加入液体或气体等样品,以获取热力学和动力学数据,如SADT、TMR等参数,并据此确定加工、贮存和运输的安全条件。 该设备也可应用于测试小规格电池(最大支持26650电池)和电池原材料的热稳定性及安全性。 PhiTEC II 绝热加速量热仪 PhiTEC II型绝热加速量热仪是低热惰性因子绝热加速量热仪,适用于原位模拟大规模反应的实际热危害过程、泄爆口设计、热失控反应分析,可直接得到动力学和热力学数据。向下兼容TSU及PhiTEC I (ARC) 型仪器全部功能,可使用标准ARC测试池进行测试,但其独一无二的优势在于可使用薄壁大体积测试池,通过在测试池外进行自动压力跟踪补偿来确保测池内外压力一致,避免测试池爆裂及意外发生。 PhiTEC II的薄壁测试池意味着测试体系可以达到非常低的"phi"因子(亦称绝热因子或热惰性因子)——可以精准预测化工厂大型反应装置的安全性及潜在危险性。BTC 大电池测试绝热加速量热仪BTC电池测试量热仪是HEL公司经典绝热量热仪 PhiTEC (ARC) 系列针对电池测试的升级版本——将经典应用扩展至重要性越来越突出的储能载体设备测试,最大可容纳Φ50 x 50cm规格的样品。BTC是PhiTEC I (ARC) 的电池测试专业版,保留了PhiTEC I (ARC)的所有优点,同时采用了适应大电池(例如EV 或 HEV)的大测试舱室。该系统适用于测试各种类型的电池,从普通的AA电池到车辆电池至军事或航空专用电池都可轻松应对。 特点和优势特色PhiTEC BTC-500大电池绝热量热仪的设计 标配大体积绝热腔(Φ35×35或Φ50×50 cm)用于测试大电池及大体积元件,并兼容材料及小规格电池测试可选配标准规格绝热腔,更方便快捷地用于电池材料、小电池(18650、26650等)测试精确的温度控制——多组跟踪加热器确保均匀加热直接测量样品温度可扩展8组或16组不同的温度数据采集通道,详尽反映实验全貌可选配穿刺模拟、短路模拟及过充模拟测试组件可选配电池内外压测试组件 安全控制设计坚固的多层环形不锈钢抗爆结构外壳,耐压高达30MPa自动泄压阀及防爆片双重保护自动紧急停车自动快速冷却模块(选配) 测试应用成品电池电池元件( Anode, Cathode, Electrolyte, SEI)任何充放电状态的电池(包括过充和过放) 绝热量热HEL独家在线校准在每个实验开始前仅需30分钟即可自行完成,可在实验运行过程中多次重复10分钟的校准过程并实时修正,该方式可使仪器长期保持精准的校准状态并可自动适应不同规格及形状的测试池、电池及其他样品。充放电测试集成全功能软件集成控制的充放电循环装置,供电功率/电流载荷可控范围广,可自动测试各种充电、放电、短路和其他常规操作下电池的相关数据及安全性能,也可与用户自己提供的辅助测量设备配套使用。测试实验 系统提供4种测试方法,其中2种为标准测试稳定性测试电池安全基本筛选方法,用于初步分析样品热稳定性。仪器匀速升温直至放热反应开始 - 类似于DSC测试加热-等待-扫描 (H-W-S)几十年来,陶氏化学的经典绝热加速量热仪ARC被广为使用,PhiTEC沿用其标准设计, 样品以阶梯态势升温,每次升温之间间隔足够的时间以“搜索”放热反应发生的起始点(Onset),其探测结果与设备灵敏度有关。一旦探测到放热反应,系统会自动启用绝热追踪模式,用于精确评定样品安全性能。 该测试模式用于评估电池的热稳定性:BTC可准确测定电池自放热起始温度“onset”点、反应动力学参数、反应释放的总能量等定量信息,从而对电池热安全/热危害进行全面的评估。测试数据也可用于电池的设计和研发。破坏性试验也可将电池置于耐高压的绝热腔中进行破坏性实验——通过测量密闭空间分解反应的气体产生速度和温升数值、温升速率等评估其安全性或危害性。以上应用包括滥用测试——评价物理性损坏(如穿刺或挤压损坏)造成的电池性能改变,可选配标准穿刺/挤压组件或和用户定制组件。放热量和比热测定BTC可用于电池平均比热Cp的测定,并可进一步对电池的自放热(self-heating)参数进行定量分析,用于表征电池自放热反应的能量输出。 PhiTEC BTC的低温应用 PhiTEC BTC-500大电池绝热加速量热仪超低温/低温应用越来越多的锂离子电池研究工作需要在低温环境下进行,而标准的热筛选量热仪仅可在室温以上工作。HEL公司的PhiTEC系列绝热加速量热仪最新扩展了低温测试功能,能够测试超低温环境下电池的性能,最低测试温度可达-80℃,这一突破性的功能取决于以下两个重要组件的性能优势:此性能得益于:1.系统机械性能的设计改进,炉体及测试池部分能够通过制冷设备进行简单快速的控温冷却,最低可操作温度由其外接制冷设备的性能决定(注:采用介质制冷,远优于“风冷”,不会产生扰流、湍流等影响样品本身热性能测试的问题)。2.全自动软件控制使得仪器可以从任何起始温度开始进行稳定测试,无需任何额外的空弹校准。事实上,以上两个特性的结合,使得PhiTEC(ARC) 系统可立即连接制冷设备扩展其工作温度范围。这意味着PhiTEC (ARC) 的低温模块设计与标准模块设计完全融为一体,完美地实现了从超低温/低温、到室温、直至高温测试性能的一致性。热敏感化学物质、电池、电池组或电池原件的低温绝热测试典型数据如下图所示,测试起始温度为-20℃,采用标准HWS测试模式,直至仪器探测到放热反应,从该温度点(大约为20℃)开始,样品进入自放热阶段。
    留言咨询
  • 方案介绍电池失控产气速率测试仪是在通过模拟电池失控条件,实时监测和分析电池失控过程中产生的气体速率,从而评估电池的安全性能。这对于预防电池安全事故、提高电池产品质量具有重要意义。 目前常用的方法是通过防爆燃烧弹进行电池热失控时,依据理想气体方程PV=nRT,通过压力和温度的变化量进行产气量n 的计算。但此种方法违背了理想气体方程需要在稳态下使用才有效的原则。故该种方法测试的产气速率并不准确。 我司最新推出的电池热失控产气速率测试仪是我司与清华大学车辆学院合作研发的专用于电池产气速率测试。此方法摆脱了理想气体方程的应用局限性,可实时测量电池失效全过程的产气速率及产气总量,并通过清华大学车辆工程实验室的实际验证。 该方案可同时连接FTIR气体分析仪进行实时在线气体成分和浓度分析
    留言咨询
  • 锂电池材料水分含量测定仪 MKC-710M+MKV-710B+ADP-611 库仑法卡尔费休水分测定仪MKC-710M/S GB/T 19282-2014 六氟磷酸锂产品分析方法(水分的测定)GB/T 27801-2011 碳酸亚乙烯酯(水分的测定)HG/T 4066-2015 六氟磷酸锂(水分的测定)HG/T 4067-2015 六氟磷酸锂电解液(水分的测定)HG/T 4790-2014 氟代碳酸乙烯酯(水分的测定)HG/T 5157-2017 工业用碳酸二乙酯(水分的测定)HG/T 5158-2017 工业用碳酸甲乙酯(水分的测定)HG/T 5391-2018 工业用碳酸乙烯酯(水分的测定)HG/T 5786-2021 工业用碳酸丙烯酯(水分的测定)SJ/T 11568-2016 锂离子电池用电解液溶剂(水分的测定)SJ/T 11723-2018 锂离子电池用电解液(水分的测定)SJ/T 11724-2018 锂原电池用电解液(水分的测定)SJ/T 11732-2018 超级电容器用有机电解液规范(水份的测试)YS/T 1302-2019 动力电池电解质双氟磺酰亚胺锂盐(水分的测定)T/CI 236-2023 钠离子电池用电解液(水分的测定)T/CIESC 0042-2022 工业用硫酸乙烯酯(水分含量的测定) 库仑法卡尔费休水分测定仪MKC-710M/S+卡尔费休干燥炉ADP-611 GB/T 24533-2019 锂离子电池石墨类负极材料(附录B 水分含量的测定方法)GB/T 37386-2019 超级电容器用活性炭(水分)GB/T 38823-2020 硅炭(水分含量)GB/T 38887-2020 球形石墨(水分)GB/T 43114-2023 硬炭(水分)YB/T 4911-2021 球形石墨(水分)HG/T 5628-2019 双草酸硼酸锂(水分的测定)DB44/T 1372-2014 电动汽车用锂离子动力蓄电池正负极材料通用技术要求(水分的测定)T/SGX 002-2018 动力锂离子电池用 陶瓷涂覆隔膜 第2部分: 水分含量T/CPPIA 10-2021 新能源汽车动力锂电池隔膜(陶瓷涂覆隔膜水分含量的测定) 容量法卡尔费休水分测定仪MKV-710B GB/T 20252-2014 钴酸锂(水分含量)GB/T 26031-2010 镍酸锂(水分含量)GB/T 30835-2014 锂离子电池用炭复合磷酸铁锂正极材料(水分含量)GB/T 30836-2014 锂离子电池用钛酸锂及其炭复合负极材料(水分含量)GB/T 33818-2017 碳纳米管导电浆料(无水体系的含水量测定)GB/T 33822-2017 纳米磷酸铁锂(水分的测定)GB/T 37202-2018 镍锰酸锂(水分含量)GB/T 6283-2008 化工产品中水分含量的测定 卡尔费休法(通用方法)YS/T 677-2016 锰酸锂(水分含量的测定)YS/T 798-2012 镍钴锰酸锂(水分含量的测定)YS/T 825-2012 钛酸锂(水分测定)YS/T 1027-2015 磷酸铁锂(水分含量的测定)YS/T 1030-2017 富锂锰基正极材料(水分含量)YS/T 1125-2016 镍钴铝酸锂(水分含量的测定)YS/T 1127-2016 镍钴铝三元素复合氢氧化物(水分含量的测定)YS/T 1448-2021 包覆型镍钴锰酸锂(水分含量)DB37/T 2393-2013 二次锂离子电池电解液(水分)DB37/T 2751-2016 高压实镍钴锰酸锂正极材料通用技术要求(水分)T/CGIA 032-2020 锂离子电池用石墨烯导电浆料(水分含量)T/CIAPS 0008-2020 锂离子电池用镍钴铝酸锂(NCA)(水分含量)T/CIESC 0041-2022 工业用二氟磷酸锂(水分含量的测定)T/CSTM 00341-2020/SPSTS 014-2019 石墨烯导电浆料(水分含量)T/ZSA 46-2020 锂离子电池用石墨烯导电浆料(水分含量)T/ZZAS 004-2019 二次锂电池电解液(水分) 库仑法卡尔费休水分测定仪MKC-710M 主要特点: 1. 采用大型8.4英寸彩色液晶触摸屏,操作控制。 2. 触摸屏透过无线蓝牙操作,更加安全且降低危险性。 3. 触摸屏MCU-710连接蓄电池后,实现携带操控。 4. 用户权限设定功能,防止错误设置,管控方便。 5. 测量过程中实时显示滴定曲线、水分含量和参数。 6. 快速2.6mgH2O/min的电解速度,缩短测量时间。 7. 测量结果可存储在U盘,可生成PDF实验报告。 8. 连接卡氏炉ADP-611,自动判断适合的加热温度。 库仑法卡尔费休水分测定仪MKC-710M/S 技术参数: 名称和型号: 卡尔费休水分测定仪MKC-710M。 仪器组成: MCU-710M/S+MKC-710+溶剂交换单元(选购)。 测量方法: 卡尔费休库仑滴定法。 测量范围:水分含量: 1μg~300mgH2O(1000mg),溴值溴指数含量。 测定池: 隔膜式测量池或无隔膜式测量池。 准确度: 相对标准差: 小于0.3%(n=10),依据标准测量方法和标准物质。 显示分辨率: 0.1μg。 控制方法: 定电流脉冲时间控制。 终点检测: 双铂检测电极交流极化法。 终点判定方法: 漂移稳定判定,或设定测量时间。 试剂需求量: 阳极液: 100mL(150mL),阴极液: 5mL。 测量方法: 120组测量方法。 输入设置: 触摸屏输入。 显示: 8.4英寸彩色液晶屏,中/英/日/韩/俄/西/德/法八种语文,四个通道同时显示。 计算: 浓度计算, 统计计算。 数据储存: 500组样品结果。 GLP认证: 登记操作者/使用群组管理,试剂管理,性能检查,时间管理。 外部输出: RS-232C(打印机/天平/数据软件/卡氏炉),USB(U盘/热敏打印机/A4打印机/键盘/条码机/脚踏开关/USB集线器),LAN(电脑)。 扩充功能: 四台测量单元,水分蒸发器ADP-611或多样品自动进样器CHK-501。 使用环境: 温度: 5~35°C,相对湿度: 85%RH以下。 电源: AC100~240V ±10%,50Hz/60Hz。 耗电量: 主机: 约30瓦,打印机: 约7瓦。 尺寸: 触摸屏: 225(W)×190(D)×42(H)mm,滴定单元: 141(W)×292(D)×244(H)mm,搅拌器: 107(W)×206(D)×340(H)mm。 重量: 触摸屏: 约1.5公斤,滴定单元: 约3.0公斤,搅拌器: 约2.0公斤。 容量法卡氏水分测定仪MKV-710B 主要特点: 1. 紧密简约的滴定管驱动部位设计,占地面积仅A4尺寸。 2. 操作非常简单,仅按PRE-TITR.和START键即可测量。 3. 搭载1/20000高分辨率滴定管,气泡不易附着于管壁中。 4. 测量结果可存储在U盘,测量结果生成PDF实验报告。 5. 内置一组滴定管单元,不增加空间情况下可扩充为两组。 6. 滴定管单元可以快速更换和维护,方便不同滴定剂使用。 7. 通过与MCU-710连接,进行库仑法和容量法水分仪同时测定。 容量法卡氏水分测定仪MKV-710B 技术参数: 名称和型号: 卡尔费休水分测定仪MKV-710B。 仪器组成: MKV-710+溶剂交换单元(选购)。 测量方法: 卡尔费休容量滴定法。 测量范围: 1)水分含量: 0.1~500mgH2O,2)水分浓度: 10ppm~100%H2O。 滴定管精度: 滴定管体积: 10mL,准确度: ±0.015mL,重复性: ±0.005mL。 终点判断: 分极电位持续时间在指定范围内判断终点,终点时间: 1~99秒。 滴定形式: 正滴定/反滴定(需增购第二组滴定管)。 溶剂需求量: 30mL~100mL(S型滴定杯)。 测量方法: 20组测量方法。 输入设置: 按键输入。 显示: LCD液晶显示,中/英/日/韩/俄/西六种语文。 计算: 浓度计算, 统计计算,自动输入空白值和滴定度。 数据储存: 100组样品结果。 GLP认证: 登记操作者/使用群组管理,滴定剂管理,性能检查,时间管理。 外部输出: RS-232C(打印机/天平/数据软件/卡氏炉),USB(U盘/热敏打印机/键盘/条码机/脚踏开关/USB集线器/安卓设备),SS-BUS(APB)。 扩充功能: 第二组滴定管驱动单元。 全自动卡尔费休干燥炉ADP-611 主要特点:1. 连接卡氏水分测定仪,由卡氏水分测定仪控制操作程序。2. 试样舟利用磁力方式,自动送入加热炉,减少湿气影响。3. 样品蒸发温度自动扫描功能,寻找试样适合的加热温度。4. 加热炉至滴定杯的管路具加热保温装置,防止低温凝结。全自动卡尔费休干燥炉ADP-611 技术参数: 温度控制范围: 50~300°C。 加热器装置: 派热克斯玻璃管,内径30X长度335mm。 气体传送: 1) 氮气,2) 空气泵(另购配件)。 气体干燥: 沸石干燥剂X2。 气体流量: 70~300 mL/min。京都电子(KEM)中国分公司 客服热线: 400-820-2557
    留言咨询
  • ZY-4534电池热冲击试验机用途:各类型电池产品、航空航天产品、信息电子仪器仪表、材料、电工、车辆、金属、电子产品、各种电子元器件在高温环境下、检验其各性能项指针及其安全性能。符合标准:GB/T 36276-20XX 电力储能用锂离子电池(征求意见稿)GB/T 36276-2018 电力储能用锂离子电池技术参数温度范围:RT+10℃~+150℃;升温速率:0~5℃/min 线性可调;温度分辨率:0.1°C温度偏差:≤2℃温度均匀度:≤2℃温度波动度 :±0.5°C机器外观图(以实际为准,图片仅供参考)箱体结构:内箱使用钢板加强并形成框式结构,并使用方管加以辅助加强,搭配使用组高强度不锈钢铰链与试验箱门连接形成刚性整体,并搭配泄压装置,抗爆能力强,可有效防护测试冲击;外箱材质冷轧钢板静电喷涂处理机台左侧安装有∮100mm 测试孔一个,并配相应密封装置,供通电测试时引线使用。防爆观察窗口,附带可拆卸式不锈钢防撞网制冷方式:自然冷却。照明系统:试验箱内部顶部靠观察窗侧安放高亮度照明灯。自动防爆泄压装置:具有防爆泄压功能,箱体后部安放泄压门, 当强气流冲击时,泄压门自动打开,减轻爆炸冲击力,利于冲击压力的及时释放, 避免对设备本体、内部电路及控制系统等带来损伤。灭火系统:机器内搭配二氧化碳灭火器热失控试验(摘自GB/T 36276-20XX 电力储能用锂离子电池(征求意见稿)
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制