当前位置: 仪器信息网 > 行业主题 > >

聚粒子定仪

仪器信息网聚粒子定仪专题为您提供2024年最新聚粒子定仪价格报价、厂家品牌的相关信息, 包括聚粒子定仪参数、型号等,不管是国产,还是进口品牌的聚粒子定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合聚粒子定仪相关的耗材配件、试剂标物,还有聚粒子定仪相关的最新资讯、资料,以及聚粒子定仪相关的解决方案。

聚粒子定仪相关的论坛

  • “上帝粒子”新证据让诺奖评审头疼

    人们翘首以待2012年诺贝尔物理学奖揭幕2012年10月09日 来源: 中国科技网 作者: 张梦然 中国科技网讯 据物理学家组织网10月8日消息称,本年度7月4日欧核中心宣布新发现粒子与“上帝粒子”高度吻合,这项希格斯玻色子最新证据被认为是30年来最伟大科学发现之一,但现在,对于10月9日(北京时间9日17时45分)就要宣布诺贝尔物理学奖的评审们来说,却似乎是一个让人十足头疼的难题。 截至目前,2012年一项最大的科学事件,就是7月4日欧核中心科学家宣布发现可能是希格斯玻色子的新粒子。数年前,欧核中心的大型强子对撞机建造出来的基本任务几乎就是为了寻觅“上帝粒子”的踪迹。因为在这个粒子被预言出来之前,物理界标准模型有一个致命缺陷——它所演绎出的世界里没有质量。直到1964年彼得·希格斯提出了希格斯场的存在,并假设希格斯粒子是物质的质量之源,一切才得以自圆其说。 而正是这般的重要性,让7月份的这次成果宣布具有了足够的历史意义。英国物理研究所主席彼得·奈特评价认为,其在物理界的地位堪比生物界当年发现了DNA。而人们也纷纷议论该发现是否足以赢得一尊诺贝尔物理学奖的奖杯。 在9日结果公布前,没人得知希格斯粒子的新证据能否叩开这扇物理学界最高奖项的大门,不过,由于这一最新发现的粒子还未经官方确认为希格斯玻色子,部分诺贝尔奖项观察家们持保留态度。因为这一新发现粒子并非希格斯玻色子的可能性确实存在,只不过很小很小而已。而伦敦国王学院理论物理学教授约翰·艾里斯指出,希格斯本人肯定终有一天会荣登诺奖宝座,“但不是今年”——因为证据来得太晚,且还未经最终证实。 但有声音认为,如果希格斯粒子被发现的最终答案是肯定的,那么新的问题则是:应该由谁来获此殊荣?从理论的建立来讲,在1964年间,先后有6位物理学家在4个月期间出版了一系列关于该理论的相关文章,每个人的研究都可说是站在其他人的肩膀之上;而从粒子的发现过程来看,则更为复杂,因为有数以千计的物理学家在欧核中心从事相关研究。 因而,让诺奖评审们头疼的问题是,即便能判定该发现有资格得奖,还需决定该奖颁给理论派还是实验派,亦或两方都给予表扬。法国原子能委员会物理学家艾蒂安·克莱因则说,希格斯玻色子最终赢得诺贝尔物理学奖是十拿九稳的事,他建议评审们“冒个险”把奖杯颁给三方:彼得·希格斯、当年构建理论的另一名物理学家弗朗索瓦·格勒特以及欧核中心。目前,一个诺贝尔奖项最多可以有3名得奖人,可以颁给机构,但不颁给已过世者。(张梦然) 《科技日报》(2012-10-09 二版)

  • 物理学基本粒子“上帝粒子”身份获新证据支持

    物理学基本粒子“上帝粒子”身份获新证据支持  新华网日内瓦3月14日电(记者 吴陈 王昭) 欧洲核子研究中心(CERN)14日发布公告称,对更多数据的分析显示,该中心去年宣布发现的一种新粒子“看起来越来越像”希格斯玻色子。  CERN去年7月4日宣布,该中心的两个强子对撞实验项目——ATLAS和CMS发现了同一种新粒子,它的许多特征与科学家寻找多年的希格斯玻色子一致。  物理学标准模型预言了62种基本粒子的存在,其他粒子都已被实验所证实,只有希格斯玻色子未得到确认。由于它极其重要又难以找到,故被称为“上帝粒子”。  根据最新公告,科学家分析了比去年的研究多两倍半的数据,计算新粒子的量子特性以及它与其他粒子之间的相互作用,结果“强有力地表明它就是希格斯玻色子”。  但CERN表示,目前还无法判断它到底是标准模型中的希格斯玻色子,还是其他理论预测的好几个最轻的玻色子的组合。要弄清这个问题,还需要大型强子对撞机搜集更多数据,对各种衰变模式进行分析,“找到这个答案需要时间。”  希格斯玻色子得名于英国爱丁堡大学物理学家彼得·希格斯,他预言了这种粒子的存在。假设中的希格斯玻色子是物质的质量之源,其他粒子在希格斯玻色子构成的“海洋”中游弋,受其作用而产生惯性,最终才有了质量。  对这一重大发现做出重大贡献的大型强子对撞机已于今年2月中旬进入第一次长期停机维护,CERN将对包括大型强子对撞机在内的整个系列加速器装置进行维护和升级。  停机期间很多实验工作将继续进行,其中包括对大型强子对撞机收集的新粒子数据进行分析。大型强子对撞机预计于2015年再次启动,届时其对撞能量将提高到设计最高能量——每粒子束流7万亿电子伏特。

  • 尘埃粒子计数器检定

    您好,我们公司有一台尘埃粒子计数器,每季度用一次,一年用四次,需不需要检定?需要多长时间检定呢?

  • 【讨论】当PP粒子用做制作药品包装材料时质量标准如何制订?

    当聚丙烯塑料粒子(PP粒子)用做药品包装材料使用时该如何制订它的质量标准呢?比如:聚丙烯塑料粒子用做加工包装输液的塑料瓶或塑料袋时,它的质量标准应该参考哪个标准或要求来制订呢? 有人说要按照国家食品药品监督管理局直接接触药品的包装材料和容器中的《聚丙烯输液瓶》的标准制订,有人说要按照行业标准《医用输液、输血、注射器用聚丙烯专用料》的标准来制订。到底应该按照哪种来呢?如果咨询药监局的话应该去咨询哪个部门呢?[em52]

  • 塑料粒子水分含量对产品的影响及水分仪应用

    塑料粒子水分含量对产品的影响及水分仪应用

    在注塑过程中,如果使用水分含量过多的塑料粒子进行生产,则会产生一些加工问题,如表面开裂、反光、有气泡,并且会降低产品的抗冲击性能和拉伸强度等。因此,水分含量的控制对于生产高质量的塑料产品是至关重要的。故而针对上述现象,深圳冠亚水分仪科技有限公司研发部门,研发并生产了SFY系列快速检测塑料粒子水分含量的水分仪器。目前该产品已被广泛引用到塑胶行业不同品种类型的原料、半成品、成品等生产过程中,如:聚碳酸酯(PC)、聚甲醛(POM)、改性聚苯醚、热塑性(PET)、聚苯硫醚(PPS)、液晶聚合物LCP、聚醚醚酮(PEEL)、聚醚酮(PEK)、聚醚砜(PES)、工程塑料--聚砜(PSF)、聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)、ABS树脂(丙烯腈-丁二烯-苯乙烯共聚物)、聚酰胺(PA)通常称为尼龙等。[img=塑料粒子水分检测议,601,450]http://ng1.17img.cn/bbsfiles/images/2017/09/201709011438_01_2233_3.png[/img]SFY系列快速水分测定仪原理深圳冠亚牌“快速水分测定仪”是由深圳冠亚水分仪科技有限公司研发并生产,该仪器具有温度设定、微调温度补偿及自动控制等功能, 采用目前国际通用的热解原理研制而成的新一代快速水分测定仪器。该仪器采用进口自动称重显示系统,人性化系统操作, 无需特殊培训,自动校准功能、自动测试模式,取样、干燥、测定一机化操作SFY系列快速水分测定仪参数1、称重范围:0-100g2、水分测定范围:0.01-100%★★JK称重系统传感器3、称重最小读数:0.001g4、样品质量:0.5-100g5、加热温度范围:起始-200℃6、水分含量可读性:0.01%7、显示参数:7种8、通讯接口:RS 2329、外型尺寸:380×205×225(mm)10、电源:220V±10%11、频率:50Hz±1Hz12、工作环境温度:-5℃-50℃13、相对湿度:≤80[img=塑料粒子水分仪,600,692]http://ng1.17img.cn/bbsfiles/images/2017/09/201709011437_01_2233_3.jpg[/img]SFY系列快速水分测定仪特点●体积小、重量轻;●性能稳定、测试准确●无需安装、调试,拆箱即可使用;●无需培训,操作简单,省却繁琐的使用步骤;●测定时间短、工作效率高,一般样品快速出结果;●全自动测定,测量完毕报警提醒,测定过程无需看管;●用途非常广泛、几乎适用各行业的水分测定;

  • 研究称上帝粒子若真实存在 宇宙将百亿年后湮灭

    2013年02月21日 来源: 搜狐科学 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130221/c0cb380a6d61128fa7c30e.jpg 艺术家描绘的作为宇宙诞生之初的大爆炸,目前,科学家研究讨论称,希格斯粒子如果真实存在,数百亿年后宇宙将彻底湮灭 【搜狐科学消息】 据国外媒体报道,近日,科学家表示,如果2012年发现的神秘粒子真实是长期探寻的希格斯粒子,人们将面对的一个坏消息是:宇宙将终结于快速扩张的泡沫死亡之中;而面对的一个好消息是:距离这个宇宙末日来临还有数百亿年时间。 当前,科学家最新理论认为,希格斯粒子对于分配质量至其它基本粒子具有着重要作用,证实发现希格斯粒子将填补标准模型理论的最后空缺。2月18日,物理学家在美国波士顿市召开的美国科学促进会年度会议上讨论了希格斯粒子的状态。 费米实验室理论物理学家约瑟夫-林肯称,希格斯粒子的质量将决定宇宙未来的命运,如果我们使用所有现今知道的物理法则,将能够简单地计算出这个坏消息。宇宙可能处于固有的不稳定状态,在某种情况下,未来数百亿年之后宇宙湮灭消失。 他指出,希格斯质量值以及叫做顶夸克的另一种亚原子微粒质量值等宇宙参数,暗示着我们正处于稳定性边缘,也就是“亚稳定状态”。物理学家关注这种可能性已有30多年,1982年,物理学家迈克尔-特纳和弗兰克-韦尔切克在《自然》杂志上发表一篇文章指出,在没有预警的情况下,真空泡沫将在宇宙某处成核,以光速向外快速移动,在我们察觉之前人类的质子将彻底腐烂。(卡麦拉)

  • 福尔马肼聚合物粒子的Mie散射研究

    【作者】: 【题名】: 福尔马肼聚合物粒子的Mie散射研究【期刊】:【年、卷、期、起止页码】:【全文链接】:https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS801.004.htm

  • 【求助】质谱仪是测定带点粒子质量

    1,质谱仪是测定带点粒子质量和分析同位素的重要工具,在科学研究中具有重要的应用。如图所示是质谱仪工作的原理简图,电容器两极板相距为d,两端电压为U,板间匀强磁场磁感应强度为B1,一束带电量为q的正粒子从图示方向射入,沿直线穿过电容器后进入另一匀强磁场B2,结果分别打在a、b两点(a的距离要比b远点),测得两点间的距离为ΔR,由此可知带点粒子进入磁场B2时的速度v= 打在两点的粒子质量差为Δm= 。(粒子重力不计)2.在倾斜角为α的光滑斜面上,垂直纸面放置一根长为L,质量为m的直导体棒,导体棒中的电流I垂直纸面向里,欲使导体棒静止在斜面上,当外加匀强磁场的磁感应强度为竖直向上时,B的大小为 当外加匀强磁场的磁感应强度方向为水平向左时,B的大小为 。要求:①要过程,我有答案。②像解答题那般详细,③在完美解题后,再最后附上一个思考的大概过程,④谢谢,

  • 上帝粒子的悬念有尽头吗?

    本报记者 张梦然 梦然快语http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130705/021372953844250_change_wangxl3712_b.jpg 霍金常赌常败。本来希格斯粒子一事这么多年没苗头,他是想拿来翻盘的,但在去年的这个时间,他认栽了,随后也很大方的请诺贝尔奖评委会关注一下彼得·希格斯。 2012年的7月4日,希格斯粒子出现的新证据搅动了物理学界。如今一年过去,有人操心起物理学的未来命运;有人依然对新粒子持怀疑及否定态度。在欧核中心(CERN)那边,支持这种亚原子粒子存在的证据正不断增加中。 但到了研究小组成员嘴里,说法几乎没变化。3日物理学家组织网文章援引CERN一位成员的话称:“现在毫无疑问的确定我们多了一枚新粒子,玻色子的一种。但还要再证明它是否就是人们苦苦寻觅的希格斯玻色子。” 爱好物理的网友纳闷道,这怎么还不如去年发布会上来的确定呢。当时CERN主任还对媒体称,如以一个外行人的角度,他们已经发现希格斯玻色子了。 一年的日子里,物理学家们也分析了铺天盖地的信息,数据总量是发现那时的2.5倍。今年3月,CERN小组已对外宣布,新粒子至少有两点“希格斯特征”:一是自旋为零;二是处于低能正宇称态。而且其表现恰如预期,让人越看越觉得它就是一直所企盼的结果。 但为何至今不敢绝对肯定地说,这个具备了希格斯粒子“五脏六腑”的新丁,就是那个答案呢? 因为其中有一些数据的疑点和观点的交锋仍待解决。 数据中不符合期望的值,不久前被判断为不具有影响整体结果的意义。但学派间的争论就没那么容易解决了。传统理论派认为,标准模型的希格斯玻色子是唯一的,只有一个;而诸如弦理论等新锐派提出,这个数字最少也应当是5。 目前CERN搜集到的所有证据都在为“唯一论”提供有力的支持。但不管是多有话语权的实验室还是多么高瞻远瞩的物理学家,都不可能为上帝粒子的唯一性下定论,因为始终有可能存在其他超出强子对撞机乃至人类认知能力的粒子存在。 亦因此,科学家敢于将新粒子存在的证据拿到即将在斯德哥尔摩召开的欧洲物理学会会议上发布,但一致认为要彻底证明新粒子的身份,更庞大的数据才是硬道理。 我们在此必须先赞赏CERN对待科学的严谨(忘了他们和意大利人闹的中微子超光速吧)。只是事态也在走向悲观,新粒子身份的悬念怕是没有揭晓的一天了,它最后成了“两分法悖论”里那个走也走不到终点的路人。 这些科学上的新突破,像是只为了解答“脑子出问题的人才会考虑”的艰涩理论,技术的进步则在为此提供帮助。但理论是不能被证明的——或者说,我们永远不能肯定是否找到了100%正确的理论。就算标准模型因希格斯粒子的确认而趋于完美,那它也仅描述了组成宇宙所有物质的5%而已——常规物质在宇宙中所占的比重。 不过,科学上虽永远无法证明某些事物是正确的,却可以进行相反的论证。其方法只有一个,不断减去那无穷的可能性。然后只要它在数学上是协调的、和人们一直以来的观察是一致的,那么它就有权力给一个长期争论的命题划上休止符。 也不用被此蛊惑的忧心起物理学的未来命运了。量子力学奠基人玻恩曾对一群科学家说:“尽我所知,物理学将在6个月内完结。”说话时是上世纪20年代末。 其实,如我等一般人眼中,上帝粒子这项物理学界“30年甚至40年间最大的发现”,最好有朝一日能变得像地球围着太阳转那样清楚明白,或者哪怕像天圆地方说一样荒谬也行——但恐怕,只有时间才是此事唯一的裁决者。 背景链接: 希格斯玻色子,因其难以寻觅又极为重要,也被称为“上帝粒子”。它是一种由物理学家彼得·希格斯于1964年首次提出的行迹诡秘的粒子。被认为在大爆炸后宇宙冷却之时,赋予了物质“质量”的属性。在它被预言之前,标准模型有一个致命缺陷——它所演绎出的世界里没有质量,而当其他粒子在希格斯玻色子构成的“海洋”中游弋,受其作用而产生惯性,最终才有了质量,这也是标准模型62种基本粒子中最后一块基石。 希格斯玻色子无法直接观测到,但能通过观测到某种粒子衰变之后产生的光子等其他粒子,反推这些光子会不会对撞机中粒子碰撞产生的希格斯玻色子衰变出来的。于是,自2008年起,依照彼得·希格斯本人以及其他重要学者的理论,全世界数以千计的物理学家们以欧核中心的大型强子对撞机为工具,花费三年多时间进行了捕捉上帝粒子的浩大工程。经过对撞机的能级不断调整以及数据经验的累积,在2012年7月4日,研究小组宣布发现了一种与希格斯理论描述高度一致的基本粒子。此被誉为现代物理学的最重要时刻之一,是人们理解自然的一个里程碑。 而著名科学家霍金此前一直对这种粒子不怎么“感冒”,甚至愿意打赌100美金说它不存在。不过,在2012年BBC的采访中,霍金说:看来我是输了这100块钱。 《科技日报》(2013-07-05 二版)

  • 【转帖】无机纳米粒子复合乳液的研究进展!

    无机纳米粒子复合乳液的研究进展 王玉玲,邓宝祥 (天津工业大学材料科学与化学工程学院,天津300160) 摘要:对纳米SiO2复合乳液的合成制备作了详细的综述,介绍了共混法、插层法、溶胶-凝胶法和原位分散聚合法,概述了纳米SiO2对复合材料性能的影响及其特性和发展。 关键词:纳米粒子 SiO2 聚丙烯酸 复合乳液 0引言 乳液型复合材料具有价廉、安全无污染及使用方便等特点,在胶粘剂、涂料、皮革、纸张、纤维、纺织等领域已得到广泛应用。但是乳胶膜在某些性能上存在缺点,例如,耐候性差、硬度低、胶膜冷脆热粘等,这样其应用性就会受到限制。如果在聚合物乳液中加入无机纳米粒子制成无机纳米粒子复合乳液,利用纳米材料的特性制备性能优异的复合乳液,则在乳液性能上会有很大的提高,使这种复合乳液比单纯的有机乳液具有更好的应用前景。 这种复合乳液属于有机-无机复合材料,它并非是无机相与有机相的简单加合,而是由无机相与有机相在纳米范围内结合而成,在这两相的界面上有着或强或弱的各种物理键和作用(范德华力、氢键等),这种作用赋予材料各种优异的特性。纳米级材料本身具有的特性效应,SiO2表面具有不饱和的残键及不同键合状态的—OH,促使分子呈现出三维结构形态。同时,也是由于这种三维硅石结构,庞大的比表面积和纳米效应,表面严重的配位不足,表现出极强的活性,所以,对色素粒子的吸附力很强,紧紧包裹在色素粒子的表面,形成屏蔽作用,大大降低了因紫外光的照射而造成的色素衰减,这样就能大大提高涂料的附着力与耐候性。 1纳米粒子的分散方法 纳米粒子由于颗粒小,其表面原子比率很高,比表面积大,所以颗粒间往往会通过范德华力、氢键以及一些共价键的作用而互相吸引,形成二次粒径,三次粒径,即团聚体。这种团聚现象就会使纳米粒子失去其独特性,因此合理经济的分散方法十分重要。 1.1物理机械分散法 利用机械搅拌或超声波的方式使纳米粒子均匀分散。 1.2化学试剂添加法 通过加入表面活性剂等化学试剂降低界面之间的张力,添加吸附稳定剂形成界面膜包覆纳米颗粒,即立体保护作用。 2纳米粒子复合乳液的合成方法 有关纳米复合乳液的制备方法,文献报道最多的有:共混法、插层法、溶胶-凝胶法和原位分散聚合法。 2.1共混法 这种方法是先制备出各种形态的纳米粒子,再通过各种方法(例如机械搅拌、超声波等)将其与制备好的乳液直接共混,是制备纳米杂化材料最简单的方法。为防止纳米粒子团聚,需对其表面进行处理。张宝华等通过超声分散仪将纳米SiO2直接与制备好的PUA离聚物乳液共混制得了复合乳液。用激光粒度分布仪检测表明SiO2在复合乳液中呈现纳米尺寸分布,且发现共混法制得的复合乳液能显著改善涂膜的紫外光吸收性能、热学性能及机械性能。曾丽娟等以无机系硅溶胶为主,有机高分子乳液为辅,二者共混改性硅溶胶苯丙复合涂料,所得的涂料具有无机涂料和有机涂料的特性,又弥补了两者的不足,是非常有前途的环保涂料。并在这篇文章中介绍了最佳共混条件的优化选择,以及颜填料、助剂的选用对涂料性能的影响。 2.2插层法 插层复合法是制备聚合物基无机杂化材料的一种重要方法。利用层状无机物(如硅酸盐类粘土、石墨、V2O5、Mn2O3、二硫化物等)作为无机相主体,将单体或聚合物作为客体插入主体的层间,制得插层型杂化材料。用这种方法制备无机纳米粒子复合乳液主要又分为下面3种。 2.2.1嵌入原位聚合方法 先将高分子单体和层状无机物分别溶解到某一种溶剂中,然后单体在外加条件(如氧化剂、光、热、电、引发剂等)下发生原位聚合,利用聚合时放出的热量克服硅酸盐片层间的库伦力而使其剥离,从而使纳米尺度硅酸盐片层与高分子物基体以化学键的方式结合。王一中、李同年分别以此法制备了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)和聚苯乙烯(PS)/蒙脱土(MMT)嵌入混杂材料 LeewookJang和范宏制备了苯乙烯-丙烯腈(SAN)/MMT纳米复合材料 官同华等合成了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)纳米材料,并对其性能进行了表征 金星等采用双-苯基二甲基十八烷基溴化铵(TBDO)作为有机插层剂对钠基蒙脱土进行了有机化处理,该有机化的蒙脱土粒子在苯乙烯单体中很容易地分散并形成稳定的胶体溶液。通过对分散由蒙脱土的苯乙烯进行自由基聚和制备了聚苯乙烯-蒙脱土纳米复合材料,X衍射和透射电镜研究表明形成了原位插层型和部分插层部分剥离型纳米复合材料。且其与纯聚苯乙烯相比,具有更高的相对分子质量,较低的玻璃化转变温度(Tg)和优良的热稳定性。

  • 【转帖】暗物质粒子证据被发现 神秘物质相撞产伽马射线

    【转帖】暗物质粒子证据被发现 神秘物质相撞产伽马射线

    http://ng1.17img.cn/bbsfiles/images/2010/12/201012151306_267198_2193245_3.jpg银河核心深处神秘物质相撞在一起产生的伽马射线 据国外媒体报道,宇宙学家表示,他们已经在银河核心深处发现与暗物质粒子有关的最令人信服的证据。该地的这种神秘物质相撞在一起产生伽马射线的次数,比天空中的其他临近区域更频繁。  最近几年,科学杂志上不断出现类似研究,不过要证实信息来源一直非常困难。然而费米实验室和芝加哥大学的宇宙学家、最新研究的第一论文作者丹·霍普表示,10月13日出现在arXiv.org网站上的这项最新研究与此不同。他说:“除了暗物质以外,我们考虑每一个天文学来源,然而我们了解的知识无法解释这些观测资料。也没有与之密切相关的解释。”这一断言还没得到其他科学家的严格审查,不过看过这篇论文的人表示,他们还需要对该成果进行更多讨论。  费米实验室的天体物理学家克雷格·霍甘并没参与这项研究,他说:“这是我所知道的第一项通过一个简单粒子模型,把少量与暗物质的证据有关的线索拼接在一起的研究。虽然它还没有充足证据,但它令人兴奋,值得我们去追根究底。”暗物质从137亿年前开始在庞大的能量膨胀——宇宙大爆炸过程中形成。能量冷却后形成普通物质、暗物质和暗能量,目前它们在宇宙中的比例分别是4%、23%和73%。  跟普通物质一样,暗物质具有引力,几十亿颗恒星正是在它们的帮助下聚集到星系里。但是这种物质很难与普通物质发生互动,人们看不到它。微中子是唯一一种曾在实验室里发现的暗物质粒子,但是它们几乎是零质量,而且在暗物质的宇宙能量部分里仅占很小比例。天体物理学家认为,剩下的很大一部分是由弱相互作用大质量粒子(WIMP)构成,这种粒子的能量大约比质子多10到1000倍。如果两个暗物质粒子撞在一起,它们就会彼此摧毁对方,产生伽马射线。  霍普和他的科研组通过对费米伽马射线太空望远镜在两年多时间里传回地球的数据进行分析,发现这种高能死亡信号。费米太空望远镜是美国宇航局的伽马射线望远镜,主要用来扫描银河的高能活跃区。他们发现,发出信号的相撞在一起的暗物质粒子,比质子大约重8到9倍。霍普说:“它比我们大部分人猜测的结果可能更轻一些。迄今为止我们很擅长这方面。不过人们猜测的暗物质粒子的重量范围不会一成不变。”  该科研组在银河核心处一个直径100光年的区域收集到的数据里发现这些信号。霍普解释说,他们之所以会关注这个区域,是因为它是暗物质最喜欢的聚集地,银河这个区域的暗物质密度,是银河边缘的10万倍。简而言之,银河核心就是一个暗物质大量聚集在一起,经常相撞的地方。  然而,其他科学家希望看到卡尔·萨根的名言“不同凡响的发现需要不同凡响的证据”能变成现实。也就是说,他们希望看到从自然界和实验室两方面获得的证据。芝加哥大学的宇宙学家迈克尔·特纳没参与这项研究,他说:“没人提供像萨根提到的那种证据。接受这一观点最困难的部分是,你必须拒绝接受天体物理学解释。大自然非常非常聪明,这可能是我们至今从没思考过的事情。”  特纳表示,好消息是几项有希望的暗物质探测试验目前正在进行。相干锗中微子技术(CoGeNT)等深埋地下的探测器可助霍普一臂之力。该探测器近几年可能已经发现弱相互作用大质量粒子的迹象。特纳说:“这十年是暗物质的十年。这个问题即将解决。现在所有这些探测器都在观测正确方位。”霍普同意两人的观点,不过他表示,与他交谈过的天体物理学家,没人能解释清楚这一现象。他认为,在他的发现得到支持或痛批前,也许只要数周时间就能在实验室里验证暗物质是否存在。他说:“我从没像现在一样为自己是一名宇宙学家而感到激动不已。”

  • 【讨论】“上帝粒子”是否存在,仪器说了算!

    近日,一种疑似为“上帝粒子”的东东出现在了科学家的视野。这种粒子据说是与之前预言构成质量的“上帝粒子”、即希格斯玻色子(可简称希格斯子)特征“一致”。若最终确定此次发现的新亚原子粒子就是希格斯玻色子,那么粒子物理学中缺失的重要一环将会填补,支撑现代物理学的奠基性理论标准模型距离将被验证,万物质量来源之谜或许可解开。目前还无法确定这枚粒子就是科学家苦苦追寻半个多世纪的“上帝粒子”。初步结果鉴定,这是一颗新的粒子,而且应该是一种玻色子,但还必须经过反复的研究和核校。发现这枚粒子的CERN,即欧洲原子核能中心,有着世界上最大的实验装置——大型强子对撞机,其主要目的就是为了寻找这颗“上帝粒子”。而且,CERN里的ATLAS和CMS两大研究组,配备来自世界各国的7000多名最有声望的科学家参与工作。尽管还有诸多揣测,但这项新的发现可能,足以让全球物理界一片沸腾。因为,大半个世纪以来,科学家苦苦追求真理的脚步从未停歇。他们废寝忘食,夜以继日地奋战在科学领域,任何一件微小的分子,都不能看做是一次偶然。也许,在我们普通人看来,会觉得不可思议。因为研究这么生涩的项目,既不能带来巨大的利润,也不能改变世界,研究这些东西看不出任何意义的。但科学讲究的是一种无上的信仰,就像牛顿看到了苹果坠地时的灵感乍现,我们无法用常人的思维去判断。要证明这枚新的粒子就是科学家苦苦追寻的上帝粒子,除了需要反复的数据推敲,还得依赖于专业的科研检测仪器。精准的数据是决定其成为上帝粒子的关键因素。益择网www.51select.com 鉴于当前形势,联合国内外各大品牌仪器供应商,特别推出多款新式科研检测仪器,期待能够在证实“上帝粒子”的道路上贡献自身的一份心力。强大的后台数据库支持,详细齐全的仪器参数比对服务,为科研工作者研究科学技术提供了无限可能,让核校粒子的道路不再漫长!

  • 尘埃粒子计数器是什么仪器

    尘埃粒子计数器是什么仪器

    [size=16px]  尘埃粒子计数器是一种用于测量空气中悬浮颗粒物(尘埃)数量和大小的仪器。它们通常用于环境监测、室内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量评估、洁净室控制等应用。这些仪器能够快速准确地检测空气中的微小颗粒,从而帮助监测环境中的颗粒物污染水平。  尘埃粒子计数器的工作原理通常涉及以下步骤:  抽取空气:仪器通过一个抽风系统将空气引入,使空气中的颗粒物被悬浮在检测区域内。  分散颗粒:颗粒物可能在空气中聚集在一起,尘埃粒子计数器使用某种方法将它们分散开来,确保它们均匀分布在检测区域内。  检测计数:仪器使用不同的技术,如激光光散射、光学传感器等,来探测和计数空气中的颗粒物。这些技术能够根据颗粒物的大小和光学特性来确定颗粒物的数量。  数据显示和分析:尘埃粒子计数器通常具有显示屏,可以实时显示颗粒物的数量和大小分布。收集的数据可以用于分析空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量状况,评估污染水平,或者用于调整环境控制设备。  尘埃粒子计数器的类型和功能各不相同,一些高级的型号甚至可以区分不同种类的颗粒物,如细菌、花粉等。它们在医疗、制药、电子制造等领域也具有重要应用,因为这些领域对空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量和洁净度要求很高。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308291405494847_9216_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 磁性纳米粒子在生物医学方面的应用

    磁性纳米粒子/磁性纳米颗粒(Magnetic Nanoparticles, MNPs)是近年来发展迅速且极具应用价值的新型材料,在现代科学的众多领域如生物医药、磁流体、催化作用、核磁共振成像、数据储存和环境保护等得到越来越广泛的应用。 在科学家、工程师、化学家和物理学家的共同努力下,纳米技术使得生命科学和健康医疗领域在分子和细胞水平上取得很大的进展。磁性纳米粒子是纳米级的颗粒,一般由铁、钴、镍等金属氧化物组成的磁性内核及包裹在磁性内核外的高分子聚合物/硅/羟基磷灰石壳层组成。最常见的核层由具有超顺磁或铁磁性质的Fe3O4或γ-Fe2O3制成,具有磁导向性(靶向性),在外加磁场作用下,可实现定向移动,方便定位和与介质分离。最常见的壳层由高分子聚合物组成,壳层上偶联的活性基团可与多种生物分子结合,如蛋白质、酶、抗原、抗体、核酸等,从而实现其功能化。因此磁性纳米粒子兼具磁性粒子和高分子粒子的特性,具备磁导向性、生物兼容性、小尺寸效应、表面效应、活性基团和一定的生物医学功能。 由于其独特的物理、化学特性,磁性纳米粒子可以简化繁琐复杂的传统实验方法,缩短实验时间,是一种新型的高效率的试剂。目前,磁性纳米粒子在生物医药方面主要应用在磁性分离、磁性转染、核酸/蛋白质/病毒/细菌等的检测、免疫分析、磁性药物靶向、肿瘤热疗、核磁共振成像和传感器等。下文将具体介绍磁性纳米粒子的性质及在生物医学领域的主要应用, 并列出对应于不同应用的具体产品。 磁性纳米粒子的性质 磁性纳米粒子有一系列独特而优越的物理和化学性质。随着合成技术的发展,已成功生产出一系列形状可控、稳定性好、单分散的磁性纳米粒子。磁性纳米粒子具有的磁性使其易于进行富集和分离,或进行定向移动定位。磁效应由具有质量和电荷的颗粒运动形成。这些颗粒包括电子、质子、带正电和负电的离子等。带电颗粒旋转产生磁偶极,即磁子。磁畴指一个体积的铁磁材料中所有磁子在交换力的作用下以同一方向排列。这个概念将铁磁与顺磁区别开来。铁磁性材料有自发磁化强度,在无外加磁场时,也具有磁性。铁磁材料的磁畴结构决定磁性行为对尺寸大小的依赖性。当铁磁材料的体积低于某个临界值时,即成为单磁畴。这个临界值与材料的本征属性有关,一般在几十纳米左右。极小颗粒的磁性来源于基于铁磁材料磁畴结构的尺寸效应。这个结论的假设是铁磁颗粒在具有最低自由能的状态对小于某个临界值的颗粒有均匀的磁性,而对较大颗粒的磁性不均匀。前者较小颗粒称为单磁畴颗粒,后者较大的颗粒称为多磁畴颗粒。当单磁畴颗粒的直径比临界值更进一步降低,矫顽力变成零,这样的颗粒即成为超顺磁。超顺磁由热效应造成。超顺磁纳米粒子在外加磁场作用下具有磁性,而在外加磁场移除后不具有磁性。在生物体内,超顺磁颗粒只在有外加磁场时具有磁性,这使得它们在生物体内环境中具有独特优点。铁、钴、镍等晶体材料都有铁磁性,但由于氧化铁磁铁(Fe3O4)是地球上天然矿物中最具磁性的,且生物安全性高(钴和镍等材料具有生物毒性),因而在多种生物医学应用中,超顺磁形式的氧化铁磁性纳米粒子最常见。 铁磁流体(磁流体)是在外加磁场作用下变得具有很强磁性的液体,它是既具有磁性又具有流动性的新型功能材料。铁磁流体是由纳米级的铁磁或亚铁磁构成的胶体溶液,颗粒悬浮于载体溶液中,载体溶液通常为有机溶剂或水。纳米颗粒完全被表面活性剂包裹以防止聚合成团。铁磁流体通常在无外加磁场时不保持磁性,因而被归类为超顺磁。铁磁流体中的纳米粒子在正常条件下由于热运动不发生沉降。 球形颗粒的磁性纳米粒子的比表面积(表面积与体积之比)与直径成反比。对于直径小于0.1um的颗粒,其表面原子的百分数急剧增大,此时表面效应显著。颗粒直径减小,比表面积显著增大,同时表面原子数迅速增加。当粒径为1nm时表面原子数为完整晶粒原子总数的99%,此时构成纳米粒子的几乎所有原子都分布在表面上,在表面原子周围形成很多悬空键,具有不饱和性,易与其他原子结合形成稳定结构,表现出高化学活性。因此,固定目标分子/原子效率高。[font='

  • “上帝粒子”希格斯玻色子六问

    2012年07月04日 14:04 新浪科技微博 http://i1.sinaimg.cn/IT/2012/0704/U5385P2DT20120704140352.jpg位于瑞士和法国边境的大型强子对撞机(LHC)设备,它是全世界最强大的粒子加速器设备  新浪科技讯 北京时间7月4日消息,据国外媒体报道,欧洲粒子物理研究所的科学家近日表示,他们已经接近发现希格斯-玻色子。研究人员们已经捕捉到一些线索,目前的工作就是做进一步的努力去最终确定这一发现。那么究竟什么是希格斯-玻色子?它又为何如此重要?以下是一些常见问题的解答:  什么是希格斯-玻色子?  希格斯粒子是一种亚原子粒子,也就是说,理论上认为它应当是构成宇宙的最基本组成部件之一。但是它仍然有待实验观测证实。科学家们提出的物理学标准模型预言了这种粒子的存在,其作用是解释为何其它粒子会拥有质量。根据这一理论,在宇宙大爆炸之后,一种看不见的力,即希格斯场和与之相对应的粒子——希格斯-玻色子一同形成。正是这个场赋予其它基本粒子以质量的属性。  为何这一粒子如此重要?  希格斯场赋予整个宇宙中其它粒子以质量的方式可以用游泳者在水池中受到的水的阻力来做比喻。如果粒子没有质量,它们便可以在宇宙中以光速前进,因为质量的本质便是对物体改变其速度的制约性。  这种粒子最早是什么时候被提出来的?  有关这一粒子的理论最早是在1964年由6位物理学家共同提出来的,其中就包括英国爱丁堡的皮特·希格斯(Peter Higgs)教授。他们当时提出这一粒子的目的就是为了解释质量的起源。  理论上,这一粒子的存在将正好补全描述整个宇宙如何运行的物理学标准模型的缺陷,因此它便显得尤其重要。但是和其它构成宇宙基础构建的基本粒子不同,希格斯粒子至今仍然隐匿无踪,没有能在实验中被观察到。  如何对其进行搜寻?  欧洲核子中心的大型强子对撞机(LHC)是人类有史以来建造的最强大的粒子加速器,它的工作原理是将两束质子流以接近光速的速度迎头相撞,在此过程中得到其它粒子。  在1989年至2000年之间,科学家们也曾使用同样位于欧洲核子中心的另一台加速器LEP进行搜寻工作,而在今年年初由于经费不足被关停之前,美国的Tevatron加速器也进行过对这一神秘粒子的搜寻工作。物理学家们表示,目前所收集的数据仍处于分析阶段,或许它们最终将会对搜寻玻色子产生有益的影响。  那么科学家们如何能知道自己究竟是否发现了这样的粒子呢?  如果在LHC加速器中进行的数以十亿计的对撞实验中真的产生了希格斯-玻色子,根据预测,它应当是不稳定的,会迅速衰变为更加稳定,质量更小的粒子。物理学家们需要对这些衰变产物进行分析,并且通过分析来推断这种被称为“上帝粒子”的神秘粒子是否存在。  在分析过程中,希格斯粒子是否存在会从数据图形的峰值中体现出来。然而即便科学家们发现了这样的峰值,他们也不能就此宣布发现了希格斯粒子,只有当他们确认这一信号是统计误差的概率低于100万分之一时才能比较有把握的宣布发现结果。  如果最终发现,或者没有发现这样的粒子存在,意味着什么?  如果希格斯粒子最终被证实完全符合理论预期,那么这样可能会让物理学家们有一点点失望,因为他们原本指望此次在LHC的实验将会拓展人类对于宇宙的认识。但是从另一方面来讲,如果实验确认这样的粒子实际上并不存在,那么现有的标准模型将需要彻底改写,而我们对于宇宙的认识也将发生革命性的改变。(晨风)

  • 激光尘埃粒子检测仪如何使用

    激光尘埃粒子检测仪如何使用

    [size=16px]  激光尘埃粒子检测仪如何使用  使用激光尘埃粒子检测仪可以按照以下步骤进行:  按下电源按钮并等待仪器启动。  根据仪器说明书进行校准操作,确保数据的准确性。  通过仪器的操作界面或按钮选择测量模式和粒径范围,根据实际需要设置采样时间和采样间隔。  将仪器放置在待测空气中,确保其稳定且不受干扰。  启动仪器开始测量,观察仪器显示屏上的实时数据,根据实际情况,可以连续监测或设置测量时间。  测量完成后,停止仪器。  此外,使用激光尘埃粒子检测仪时,需要注意以下几点:  在开始采样前应先自净,以确保仪器内部无残留粒子,要使用设备自带的清零过滤器进行清零,当仪器上面每一项的数值均为0的时候表示清零完成!  采样时一定要用等动能取样头,并注意采样管不要堵塞、弯死,采样管不要太长。  在使用过程中,应避免仪器受到强烈的机械振动和外部强光的干扰。  在使用过程中,应保持仪器的清洁和干燥,避免水滴、灰尘等杂质进入仪器内部。  在使用过程中,应严格按照仪器说明书进行操作,避免错误操作导致仪器损坏或测量结果不准确。  综上所述,使用激光尘埃粒子检测仪需要注意多个方面的问题,包括仪器的启动和校准、测量模式和粒径范围的选择、仪器的放置和测量、以及仪器的保养和维护等。只有正确使用仪器,才能获得准确的测量结果。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/02/202402040951364042_3693_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【求助】纳米粒子能进GCMS吗

    请问大家 我的样品是用一种纳米粒子催化剂催化而来 纳米粒子经离心后大部分已除去 但因离心机达不到那么高的转速 还有一定量的残留 而且这种纳米粒子会团聚 我这样的样品可以进GCMS吗

  • 关于尘埃粒子计数器

    尘埃粒子计数器,采样量28.3L/min,我想问下哪些厂商比较好(最好三家比对),不是代理商。还有 我们是做洁净室,洁净台,生物安全柜检测的,我想问下关于检漏和洁净度这块,尘埃粒子计数器,光度计,还有计数检漏仪该如何选择?还是每一个都必须配备?请做过这块的大神指点一二!谢谢

  • 科学家发现疑似上帝粒子:物质为何有质量

    2012年07月04日 16:05 新浪科技微博http://i0.sinaimg.cn/IT/2012/0704/U5385P2DT20120704170330.jpg欧洲核子研究中心(CERN)宣布上帝粒子最新进展发布会现场  新浪科技讯 北京时间7月4日下午消息,据路透社报道,欧洲核子研究中心(CERN)的科学家们发现了一种新的亚原子粒子,这可能是难以捉摸的希格斯玻色子(上帝粒子),而希格斯玻色子被认为是宇宙形成的关键。  英国科学技设施委员会行政长官约翰-沃默斯利在伦敦举行的一个发布会上表示:“我可以证实,一个粒子已被发现,这个粒子与希格斯玻色子理论所描述的粒子是一致的。”  寻找希格斯玻色子的两个小组中的一个小组的发言人乔-因坎迪拉在日内瓦附近的欧洲核子研究中心对人们说:“这是一个初步的结果,但我们认为这个结果非常强,非常坚实。”  希格斯玻色子是一种亚原子粒子,理论上认为它应当是构成宇宙的最基本组成部件之一,被认为是物质的质量之源。由于它难以寻觅又极为重要,因此被称为“上帝粒子”。  希格斯玻色子的理论最早是在1964年由6位物理学家共同提出来的,其中就包括英国爱丁堡的皮特·希格斯(Peter Higgs)教授。他们当时提出这一粒子的目的就是为了解释为何其它粒子会拥有质量。根据这一理论,在宇宙大爆炸之后,一种看不见的力,即希格斯场和与之相对应的粒子——希格斯-玻色子一同形成。正是这个场赋予其它基本粒子以质量的属性。  理论上,希格斯玻色子的存在将正好补全描述整个宇宙如何运行的物理学标准模型的缺陷,因此它便显得尤其重要。对于今天的结果,CERN总监罗夫·霍雅(Rolf Heuer)说:“今天是人类自然观的一个里程碑。疑似希格斯波色子的发现,使我们有机会进行更加详尽的研究,也对统计规模提出了更高要求,以确定新粒子的性质,使探索宇宙的其他秘密获得一缕曙光。”(孝文)

  • 带电粒子在四极杆内的运动轨迹

    正弦或余弦驱动四极杆滤质器的理论离子的运动方程按照理论计算可知,在数字化四极杆滤质器的各工作参数保持不变的情况下,质量数为1271和624的离子在x轴上轨迹稳定,在y轴上轨迹不稳定;质量数为578的离子在x轴和y轴上都有稳定的轨迹;质量数为565和529的离子则在轴上有稳定轨迹,在yx轴上轨迹不稳定。 离子的受力分析设相邻极杆间电势差为02φ,其中0cosUVtφω=u数字化四极杆滤质器的理论计算令(cosekUVr ωω=−,ux其中()(kTk ξξ+=ua,若为正值时,离子在kx方向上所受到的力就是回复力,即离子在x方向上的运动就可以看做是简谐振动,而在y方向上所受到的力却是随着位移的增加而增加,所以是振幅逐渐增加的振动。若这与之前的分析完全吻合。k为负值时,离子在x方向上的运动就是振幅逐渐增加的振动,而此时y方向上离子的运动则是简谐振动。由于0φ是交流电势,因此值交替正负,这样就将离子的轨迹束缚在“稳定”状态。通过不断的改变k值,而使得离子在x方向和y方向上不断的交替进行简谐振动,使得离子能够在xy平面内具有稳定的轨迹。在四极杆工作时在其电极上施加射频电压和直流电压以形成随时间变化的四极场。离子在该电场中的运动轨迹稳定性会因质量数的不同而不同,因此可根据轨迹稳定性的不同分离离子。然而迄今为止,质谱仪的电源驱动信号都是正弦或余弦波周期信号。这就使得通常各种四极质谱仪中都有一个高频振荡器,用于产生高频电压,由于电压幅值正比于被分析离子的质量数,因此在分析大质量数的离子时,常需要提供几千甚至上万伏的高频高压。这不仅增加了电路的复杂性(例如大电压下谐振点飘移问题),也可能导致器件内的放电问题,这样就对真空度提出了更高的要求以避免产生放电现象。分析四极场的特征可知利用电势变化频率实现质量分析可以降低高频电压的要求。然而正如前面所提,传统四极质谱仪上的高频高压是通过谐振网络得到的,因此很难实现利用频率变化进行质量分析。其实,驱动四极质谱仪工作并不一定是正弦或余弦波周期。E.Sheretov很早就提出脉冲射频电压驱动双曲场质谱仪的理论。现今数字技术的发展推动了分析仪器的数字化。数字化电压简单地说即为矩形波电压来驱动四极杆滤质器。这样以来,在软件的控制下,频率和波形可独立调节,使得实现频率扫描,避免了电压过高带来的种种弊端。而且它能够允许波形延时或暂停,可灵活地对离子进行控制(如引入、引出离子),所以数字化四极杆滤质器具有传统正弦波驱动时无法实现地优越性。在此基础上介绍正弦或余弦波驱动四极杆滤质器的理论计算,包括离子运动轨迹、稳定曲线和稳定图以及质量扫描图。最后是本章将着重阐述矩形波驱动四极杆滤质器的理论计算,以证明矩形波不仅能够完全代替正弦或余弦波驱动四极杆实现滤质功能,而且还能够实现正弦或余弦波所不能实现的频率扫描。 四极场理论 离子的空间束缚场首先考虑怎样才能将一个带电离子动态束缚在一个有限的空间内。一个类似的物理原型给出了提示。这个物理原型就是简谐振动,最为简单的就是弹簧振子。小球所受到的回复力使得它在一维空间上的一段有限距离内往复做周期振动。其回复力的数学表达式如所示: K=KX从公式能定性的看出,小球所受到的回复力总是和它的位移方向相反。因此小球的运动始终被回复力提供的力场束缚在一个有限距离的空间内。这也就给出了一个方向寻找将电离子束缚在有限空间内的场。随时间变化的四极场实现了这一功能。理想的随时间变化的四极场能将带电离子束缚在一个有限的空间内[ 四极场的数学形式四极场可以表示成它在笛卡尔坐标系中位置的线性组合形式值得注意的是,该场在0Ex,y和三个方向上不相关。这使得离子运动分析变得简单,因此四极场还可以用公式表示根据xExφ∂=−∂、yEyφ∂=−∂和zEzφ∂=−∂

  • 实验流场评估——数字粒子图像测速仪(DPIV)使用数字粒子图像测速仪(DPIV)

    实验流场评估——数字粒子图像测速仪(DPIV)使用数字粒子图像测速仪(DPIV),可以分析装置附近的脉动流条件,以确定心血管装置是否符合监管标准。疾病的触发因素(如剪切应力和停滞区域)可以高度精确地量化。先进的方法,包括适当的正交分解,也捕捉感兴趣的隐式流体力学现象。检查法ViVitro实验室测试为2D提供了关于设备周围流动的定量和定性的高速信息。定性输出包括基于颗粒条纹的流动评估,评估和描述任何流动分离、流动停滞、涡流形成、喷射性质、回流和其他流体机械现象的发生。定量输出包括心动周期不同阶段的速度、剪切应力和粒子停留时间。在心脏瓣膜手术期间,停滞流动可能导致潜在的血凝块形成。装置附近的高流速可能导致潜在的溶血和血小板活化。测量参数速度剪切应力(粘性剪切应力、雷诺剪切应力)停滞地区定性分析:湍流区域,流动分离,涡流形成,喷流计算的粒子停留时间(如果需要)范围经导管瓣膜;TMVR TAVI生物、聚合物、机械瓣膜:刚性或柔性静脉瓣膜和导管瓣膜导管腔静脉过滤器辅助心室装置任何植入流动模型中装置服务水平标准服务全方位服务适用标准ISO 5840-2:2021心血管植入物心脏瓣膜假体第2部分:外科植入的心脏瓣膜替代物ISO 5840-3:2021心血管植入物心脏瓣膜假体第3部分:心脏瓣膜[img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304301015561812_3608_1602049_3.png[/img]

  • 大型强子对撞机最新发现“美丽粒子”

    http://photocdn.sohu.com/20120504/Img342377026.jpg大型强子对撞机的紧凑渺子线圈探测器发现了Xi(b)*存在的证据  【搜狐科学消息】据国外媒体报道,大型强子对撞机(LHC)最近在进行原子粉碎实验时检测到了一个新的亚原子粒子,这是一个美丽的粒子。新发现的粒子早已被理论所预言,但从未被发现。  新的粒子被称为Xi(b)* ,是一个重子。据悉,重子是由三个更小的被称为夸克的物质组成。组成原子核的质子和中子也是重子。Xi(b)* 粒子属于所谓的美重子,其包含一个底夸克,亦称美夸克。虽然发现Xi(b)*未必见得是一个惊喜,但这一发现应有助于科学家解决“物质是如何形成的”这一更大的难题。进行大型强子对撞机实验的美国康奈尔大学的物理学家詹姆斯•亚历山大(James Alexander)说:“这是墙上的另一块砖。”  不同于质子和中子,美重子的寿命极其短暂,Xi(b)*存在不到一秒钟就衰变成其它21个短命粒子。美重子需要极高的能量才能创造出来,所以它在地球上除了原子加速器的中心,如坐落于日内瓦欧洲核子研究中心(CERN)的大型强子对撞机,其它地方都找不到。  大型强子对撞机的科学家不是直接发现这个新的粒子,而是他们看到了它衰变的证据,大型强子对撞机的紧凑渺子线圈(Compact Muon Solenoid,CMS)探测器捕捉到新粒子在质子和质子碰撞后的凌乱余波中衰变的过程。CMS的物理学家文森佐•奇欧奇阿(Vincenzo Chiochia)说:“寻找这个粒子真的很辛苦,在这样一个混乱的状况下寻找这种复杂的衰变,使我们对自己的能力充满信心,未来我们也可以找到其它新粒子。”  CMS的科学家表示,这个新粒子的存在已被证实,研究人员有99.99%的信心认为这一结果不是因为偶然。没有参与这项研究的费米实验室的科学家帕特里克•卢肯斯(Patrick Lukens)说:“这一发现进一步证实物理学家对夸克如何结合在一起的理解在本质上是正确的。”  这个粒子曾被物理学中非常成功的理论模型预言,被称为量子色动力学(quantum chromodynamics),该模型演示了夸克如何结合,以及如何创造更重的粒子。然而,卢肯斯说,发现Xi(b)*对寻找希格斯玻色子没有影响。希格斯玻色子可以解释为什么质量存在于宇宙中,它也是由量子色动力学模型所预言的粒子。(尚力)

  • “上帝粒子”的性质尚需进一步探究

    “上帝粒子”的性质尚需进一步探究

    http://ng1.17img.cn/bbsfiles/images/2012/07/201207061220_376118_1644522_3.jpg 俯瞰大型强子对撞机http://ng1.17img.cn/bbsfiles/images/2012/07/201207061220_376119_1644522_3.jpg CMS紧凑μ子线圈探测器http://ng1.17img.cn/bbsfiles/images/2012/07/201207061221_376120_1644522_3.jpg CMS紧凑μ子线圈探测器发言人宣布新玻色子的发现http://ng1.17img.cn/bbsfiles/images/2012/07/201207061221_376121_1644522_3.jpg现年83岁的彼得·希格斯教授http://ng1.17img.cn/bbsfiles/images/2012/07/201207061221_376123_1644522_3.jpg大型强子对撞机将在年底验证新玻色子的自旋特性 腾讯科技讯(Everett/编译)据国外媒体报道,昨天欧洲核子研究中心的科学家宣布了关于希格斯玻色子,即被喻为“上帝粒子”发现结果,严格地说CMS紧凑μ子线圈探测器和ATLAS超导环场探测器得出的结果还存在500万至1000万分之一的证伪概率,也就是说从概率学统计上看,“上帝粒子”并没有得到100%的确认。但科学家认为这样的结果已经足够可以对外宣布发现了希格斯玻色子的存在,这是全世界最想得到的粒子,目前已经被人类发现了。 狂热的掌声、口哨声以及欢呼声荡漾在位于瑞士与日内瓦边界上的欧洲核子研究中心总部礼堂内,这里是高能物理、粒子对撞实验的研究基地。早在五十年前左右,英国爱丁堡大学教授彼得·希格斯就曾预言了该粒子的存在,希格斯玻色子的发现意味着粒子物理学标准模型可以解释所有已知的粒子和力场,现在已经发展完整了。 科学家认为希格斯玻色子位于125至126 GeV质量区间内,由欧洲核子研究中心大型强子对撞机CMS紧凑μ子线圈探测器与ATLAS超导环场探测器进行对撞分离试验,其标准差需达到5西格玛的水平。从该标准差角度看,即使按照粒子物理学家的严格标准,这样统计学概率也足以确认新粒子的发现。 在当地时间上午九时许,欧洲核子研究中心总干事罗尔夫豪雅(Rolf Heuer)对一场激烈的研讨会做了最后的总结,认为我们已经发现了希格斯玻色子的存在。现在,在澳大利亚墨尔本举行的高能物理国际会议受到了越来越多人的关注,来自欧洲核子研究中心的科学家成为了会议的焦点人物。但是,位于伊利诺伊州芝加哥市附近的美国国家费米实验室主任、物理学家皮耶·奥登(Pier Oddone)对欧洲核子研究中心宣布希格斯玻色子被发现一事表达了自己的见解:他认为欧洲核子研究中心对希格斯玻色子的判断还需要进一步确认,并评论到:“这看起来像是一只鸭子,而且走起路来也像只鸭子,因此我们也打算将其确认为鸭子”。 根据CMS紧凑μ子线圈探测器科学家乔·因坎代拉(Joe Incandela)以及ATLAS超导环场探测器科学家法比奥拉·贾诺蒂(Fabiola Gianotti)在一份报告中提到,我们发现了在125至126 GeV质量区间内存在于理论上希格斯玻色子相符合的神秘粒子,他们都声称CMS紧凑μ子线圈探测器与ATLAS超导环场探测器达到了5西格玛的标准差,这两个公告得到了热烈的欢呼。这个结果与较早前的发现大致相同,在去年12月份的对撞机研究中,至少两个科学家小组报告了类似的希格斯玻色子的提示信息。 在欧洲核子研究中心的礼堂外,发布日前晚十一点多久开始有人排队等待进入发布礼堂中,由于没有足够的房间,许多人只能在门外守候。在过去的几天内,一连串的谣言、秘闻透露以及炒作层出不穷,而事实上该发现仅是一个简单的数据收集,我们有自信认为目前的发现是最好的预期结果。 科学家认为希格斯玻色子赋予了所有基本粒子以质量,允许物质的存在事件发生,这是一个基本的物质或者量子单元,不论是希格斯场还是所有普通的实体,都必须允许所有的粒子通过,但是一些像光子就可以不受阻碍,因为它们是无质量的。这就如同一只被困在蜜糖中的苍蝇,必须顽强地奋斗。希格斯粒子与希格斯场在标准模型中存在,但在欧洲核子研究中心的报告出来前,还没有被确定探测到。 在欧洲核子研究中的研讨会上充满了各种情绪和兴奋,比如彼得·希格斯教授(Peter Higgs),他在1964年假设了希格斯玻色子的存在,他认为今天在他的一生中发生了一件不可思议的事情。ATLAS超导环场探测器科学家法比奥拉·贾诺蒂认为该粒子与标准模型中的玻色子质量符合的非常好,但许多物理学家更倾向于称其为“新玻色子”,而不是希格斯玻色子。 这是因为我们还不知道该粒子的具体属性,即便是在质量区间上与标准模型中的希格斯玻色子符合得很好,但是还不能确认我们所发现的粒子与希格斯玻色子之间还存在那些相似属性。欧洲核子研究中心总干事罗尔夫豪雅认为:这是一次长途旅行,我们下一步将着手调查新发现粒子的所有属性,其中一个特性为粒子的自旋,在标准模型中希格斯玻色子的自旋应该为零。根据CMS紧凑μ子线圈探测器科学家奥利弗·巴奇木勒尔(Oliver Buchmueller)介绍:“大型强子对撞机将在2012年底确认希格斯玻色子的自旋特性。” 我们目前所知道的标准模型是不完整的,其中并不包含暗物质和引力,因此非标准模型的希格斯子可能会更令人感到兴奋。欧洲核子研究中心总干事罗尔夫豪雅对此评论为:每个人都不只是对发现感到兴奋,而是关心这项发现的应用前景。

  • 黑洞可化身新型粒子探测器 科学家提出证明“轴子”存在新方法

    中国科技网讯 据物理学家组织网6月18日报道,寻找新的粒子通常需要很高的能量,因此需要构建大型加速器等设备,其可将粒子加速至接近光速的速度,但也存在着其他创造性的粒子找寻方式:维也纳技术大学的科学家就提出了一种方法,能够证明假想的亚原子粒子——“轴子”的存在。这些轴子能够在黑洞周围积聚,并从中汲取能量。这一过程将放射重力波,并能被探测出来。相关研究报告发表在近期出版的《物理评论D》杂志上。 维也纳技术大学理论物理系的丹尼尔·格鲁米勒表示:“轴子的存在一直未被证明,但学界普遍认为它很可能存在。”轴子的质量极其微小,根据爱因斯坦的理论,质量与能量直接相关,因此生成轴子只需要极低的能量。 在量子物理中,每个粒子都被描述为一种波。波长则与粒子的能量相关。较重的粒子波长较短,而低能量的轴子的波长可达数千米。格鲁米勒等人的计算结果显示,轴子能环绕在黑洞周围,就像电子能围绕原子核运动一样。而与连接电子和原子核的电磁力不同,万有引力才能将轴子和黑洞联系起来。 此外,原子中的电子和环绕黑洞的轴子仍存在着巨大的不同:电子是费米子,这意味着两个电子永远不会处于同一个态;而轴子属于玻色子,这表示大多数轴子都能在同一时间占据相同的量子态。它们能在黑洞周围创造出“玻色子云”,这种云将连续不断地从黑洞中汲取能量,从而增加云中的轴子数量。 格鲁米勒表示,这种云并不十分稳定,其也能够突然崩塌。而最令人兴奋的是,坍缩时很可能测量到“玻色—新星”(bose-nova)爆发,即由玻色—爱因斯坦凝聚态所诱发的、非常小的、超新星状的爆发。这一事件能够催生时空的振动,放射出重力波。科学家因此可借助相关探测器,对其进行捕获。新的计算结果也显示,这些重力波不仅能够为我们提供有关天文学的新见解,也有助于科研人员更好地了解新型粒子的特性。(张巍巍) 《科技日报》(2012-6-21 二版)

  • 欧核中心仍不能确定发现了“上帝粒子”

    中国科技网讯 据《新科学家》杂志网站12月14日(北京时间)报道,欧洲核子研究中心7月4日曾宣布发现了高度疑似希格斯玻色子(“上帝粒子”)的消息令整个物理学界为之欢呼,不过研究人员仍反复强调只是发现了一种新粒子,至于其是否为希格斯玻色子,还有待更深入的数据分析加以确认。现在,来自ATLAS(超环面仪器)项目组的最新结果发现,新粒子在质量以及衰变为双光子的速率等属性上与粒子物理学标准模型的预测有一定偏差,这使得新粒子为“上帝粒子”的身份依旧存疑。 欧核中心有两个寻找希格斯玻色子的实验在同时进行,一个是ATLAS项目,另一个是CMS(紧凑缪子线圈)项目。研究人员并没有直接探测到希格斯玻色子,而是利用最后观测到的光子等其他粒子来反推它们是否是由大型强子对撞机中粒子碰撞产生的希格斯玻色子衰变而成的。ATLAS项目组在分析衰变而成的两个光子时发现,新粒子的质量比以其衰变为Z玻色子来计算要多大约3GeV(1GeV=10亿电子伏特)。 CMS项目组主要成员阿尔伯特·勒克认为这个不一致的结果令人费解。但他说,之所以出现不一致,几乎可以肯定是在测量方面出了问题。 “有可能是由于大的统计涨落,才导致数据异常。”美国罗格斯大学的马特·斯特拉斯勒说。他表示,这个问题可能会影响到其他的分析结果。 此外,ATLAS项目组还发现,希格斯玻色子衰变为双光子的速率比粒子物理学标准模型预言的要快。其实早在7月,研究人员就已经发现了这一现象,但当时还缺乏足够的数据。如果希格斯粒子衰变为光子的速率过快,或将为新物理的研究方向提供一些线索,解释长久以来困扰人们的一些谜团,比如暗物质、引力和宇宙中反物质的缺失等。 斯特拉斯勒称,新的研究结果“非常有趣,吊人胃口”,但他补充说,这仍不足以确定地说明什么。在斯特拉斯勒看来,新粒子的质量大于标准模型预测的问题可能传递了一个信号,他们不应该相信测量到的高得不同寻常的衰变速率。“随着处理的数据越来越多,我对于通过光子信号测算出多余的质量越来越信心不足。” “我猜(大家)现在非常期待CMS的结果。”勒克说。CMS项目组还没有公布他们的关于新粒子衰变成双光子的数据,理由是他们需要更多的时间去做分析。 下周,大型强子对撞机将再次提升能级,然后准备在2013年年初关闭,进行设备升级。 (记者陈丹) 总编辑圈点 当初争分夺秒、信心满满,几乎“言之凿凿”;小半年之后,却变得一个赛一个地出言谨慎。看到这条消息,比起是不是希格斯玻色子本身,科学精神是否会渐行渐远更加让人担忧。当拥有一项成就,可以和财富、地位、荣誉等过多“欲望”关联过大之时,在本该严肃、严谨的科技领域,“先下手为强”成了很多人当仁不让,抑或别无他选的“战术”。当然,作为媒体,面对所谓的“重大发明、发现”,更应该多一些理性的思考——就算新发现是希格斯玻色子,它也不是“上帝”;即便不是,也不能否定科学家为之付出的心血。 《科技日报》(2012-12-15 一版)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制