当前位置: 仪器信息网 > 行业主题 > >

颗粒强度仪

仪器信息网颗粒强度仪专题为您提供2024年最新颗粒强度仪价格报价、厂家品牌的相关信息, 包括颗粒强度仪参数、型号等,不管是国产,还是进口品牌的颗粒强度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合颗粒强度仪相关的耗材配件、试剂标物,还有颗粒强度仪相关的最新资讯、资料,以及颗粒强度仪相关的解决方案。

颗粒强度仪相关的资讯

  • 马尔文NanoSight NS300纳米颗粒跟踪分析仪促进纳米颗粒表征
    (2014年6月30日,中国上海)作为全球材料表征领域创新企业,英国马尔文仪器公司最新一代纳米颗粒跟踪分析仪NanoSight NS300自面世以来深受好评。该多功能仪器采用杰出的纳米颗粒跟踪分析(Nanoparticle Tracking Analysis,即NTA)技术,配备全新的增强型荧光检测能力,为从事纳米颗粒表征的科研人员提供更加丰富便捷的解决方案。迄今,在全球已有超过700个用户贡献了1000篇以上第三方NanoSight应用文献。  英国马尔文仪器公司始终致力于以国际领先的技术和多元化的产品系列满足快速变化的市场需求。而最新款NanoSight NS300纳米颗粒跟踪分析仪基于出色的纳米颗粒跟踪分析技术,在分辨能力、检测能力、操作便捷性以及纳米颗粒计数分析等方面整合了独特的创新设计,可对宽分布体系纳米颗粒进行快速实时动态检测。其独特的检测能力在蛋白质聚集、药物传输、外泌体和微泡、纳米颗粒毒理、病毒和疫苗等研究领域具有广泛应用。  &diams 超高分辨率  马尔文NanoSight NS300纳米颗粒分析仪所采用的NTA技术具有独特的高分辨率,提供动态纳米颗粒检测技术,能对悬浮液中粒径范围10nm-2000nm范围颗粒进行粒径、散射光强、计数及荧光检测。相较于传统技术,马尔文NanoSight系列产品的检测分辨率提高了1-2倍。同时,由于对大、小颗粒的敏感程度相同,马尔文NanoSight NS300可帮助科研人员轻松区分出100nm、200nm、400nm、600nm混合体系中不同颗粒粒径分布,结合颗粒的散射强度,绘制出粒径、对应数量分布强度和散射强度的三维图谱,清晰区分粒径相同但材质不同的样品。图:NanoSight超高分辨率  &diams 直观可视  马尔文NanoSight NS300所采用的NTA技术利用激光光源照射纳米颗粒悬浮液,配以全黑背景增强信号对比度,用户通过显微镜就能直接清晰地观察到带有散射光颗粒的布朗运动,并及时获得布朗运动下移动颗粒的视频文件,为未来的进一步研究留存第一手资料。  &diams 荧光识别检测  马尔文NanoSight NS300的另一项优势在于其增强型荧光检测技术,对颗粒进行整体分析。在复杂的检测环境体系中,科研人员可通过荧光过滤片选择性地标记特定颗粒,并利用NTA技术单独对这些颗粒进行定向检测和分析,而不受复杂组分溶液环境影响。此外,完全由软件控制的6位滤光轮自动分析多个荧光标记物,从而节省科研人员的宝贵时间,提升工作效率。  &diams 系统高度集成  除将软硬件设备、摄像头及显微镜等多项设备集于一体外,马尔文NanoSight NS300还整合强大的颗粒检测功能与纳米颗粒分析技术,为纳米颗粒表征提供易于使用的可重复平台。在40cm x 25cm的设备主机内集成了超高灵敏度科研级sCMOS光电传感器、温控单元以及一个四种可选波长的激光。样品池和激光模块也是一个整体,便于移动、清洁,适合高通量检测。  英国马尔文仪器中国区总经理秦和义先生谈及马尔文的核心竞争力时说:&ldquo 马尔文始终坚持以用户为中心,脚踏实地不断探索市场、深入了解客户需求,持续将具有革新意义的各项创新技术带到中国,让客户买到的不只是一个硬件,而是一整套解决方案。&rdquo   马尔文和马尔文仪器是马尔文仪器有限公司的注册商标。  ---完---  关于马尔文仪器  马尔文仪器提供材料表征技术和专业知识,使得科学家和工程师们能够了解和控制分散体系的性质,这些体系包括蛋白质和聚合物溶液、微粒和纳米粒子悬浮液和乳液,以及喷雾和气溶胶、工业散装粉末和高浓度浆料等。马尔文的材料表征仪器用于研究、开发和制造的所有阶段,提供帮助加快研究和产品开发、改善和保证产品品质以及优化过程效率的关键信息。  马尔文的产品体现了最新技术创新的动力以及充分利用现有技术的承诺,应用领域从医药和生物医药到化学品、水泥、塑料和聚合物、能源及环境等。  马尔文的产品和系统被用于检测颗粒大小、颗粒形状、Zeta电位、蛋白质电荷、分子量、分子大小和构象、流变性能和化学组分测定。  马尔文仪器公司总部位于英国马尔文,在欧洲、北美、中国、日本和韩国等主要市场都设有分支机构,在印度设有合资企业,拥有遍布全球的经销网络和应用实验中心。  更多信息,请访问www.malvern.com.cn。
  • 业界的一颗璀璨明星——液体颗粒计数器
    业界的一颗璀璨明星 液体颗粒计数器,无疑是业界的一颗璀璨明星,它以其卓越的性能、精准的检测和广泛的应用领域,赢得了广大用户的青睐与信赖。在精密仪器制造领域中,这款设备如同一颗熠熠生辉的宝石,熠熠生辉地展示着其独特的技术魅力。 作为液体颗粒检测领域的佼佼者,液体颗粒计数器拥有高精度的传感器和强大的数据处理能力,可以实时监测并精确分析液体中微小颗粒的数量、大小及分布。无论是用于药品生产、食品加工还是半导体制造等领域,它都能为用户提供准确、可靠的检测数据,助力企业提升产品质量,确保生产安全。 此外,液体颗粒计数器还具备智能化、自动化的特点,能够大大减轻操作人员的劳动强度,提高工作效率。通过先进的软件技术,用户可以轻松设定检测参数,实时查看检测结果,甚至可以在市场上,液体颗粒计数器以其卓越的性能和品质赢得了广泛的赞誉。它以其高可靠性、高稳定性和高重复性等特点,为用户提供了强有力的技术支持,推动了行业的持续发展。综上所述,液体颗粒计数器作为业界的一颗璀璨明星,以其卓越的性能、广泛的应用领域和智能化的特点,为液体颗粒检测领域注入了新的活力。我们有理由相信,在未来的发展中,它将继续闪耀光芒,为行业的进步贡献更多的力量。
  • 药玻颗粒耐水性人工制样与玻璃颗粒耐水性自动制样仪价格相差较大,该如何选
    在药品包装材料的质量控制过程中,耐水性测试是评估材料稳定性和可靠性的重要指标之一。药玻颗粒耐水性人工制样与玻璃颗粒耐水性自动制样仪是两种不同的制样方法,它们在操作便利性、测试精度、成本效益等方面存在差异。药玻颗粒耐水性人工制样优点:成本较低:人工制样通常需要的初始投资较少,适合预算有限的实验室或小规模生产环境。灵活性:人工操作提供了更大的灵活性,可以根据具体需求调整制样过程。缺点:效率较低:与自动化设备相比,人工制样速度慢,劳动强度大,可能影响整体的测试效率。一致性:人工操作可能导致制样的一致性较差,影响测试结果的准确性和重复性。数据记录:需要手动记录数据,增加了出错的可能性。玻璃颗粒耐水性自动制样仪优点:高效率:自动化设备可以快速完成制样,大幅提升工作效率。一致性:自动制样仪能够提供更加一致的样品,从而提高测试结果的准确性和重复性。数据管理:自动设备通常配备有数据自动记录和分析功能,减少了人为错误。缺点:成本较高:自动制样仪的购置和维护成本较高,可能不适合预算紧张的实验室。技术要求:操作和维护自动设备需要一定的技术知识和培训。如何选择在选择药玻颗粒耐水性人工制样与玻璃颗粒耐水性自动制样仪时,应考虑以下因素:预算:评估实验室或生产环境的财务状况,确定可承担的成本。测试频率:如果测试需求量大,自动化设备可能更具成本效益。测试精度要求:对于需要高重复性和准确性的应用,自动制样仪更为合适。操作人员技能:考虑操作人员的技术水平和培训需求。未来发展:考虑实验室或生产环境的长期发展计划,选择能够适应未来发展的设备。结论药玻颗粒耐水性人工制样与玻璃颗粒耐水性自动制样仪各有优势,选择时应基于实际需求和长期规划。如果预算有限且测试量不大,人工制样可能更加合适。反之,如果追求高效率和高精度,且预算允许,自动制样仪将是更好的选择。在做出决策时,还应考虑设备的品牌、售后服务和升级能力等因素。
  • 单颗粒ICP-MS应用:水中银纳米颗粒的归宿
    过去二十年中,随着工程纳米材料产量和使用量迅速增加, 它们向环境中释放带来了潜在危害。因此,研究他们对环境影响至关重要。对环境中工程纳米材料进行合适的生态危害评价和管理,需要对工程纳米材料准确定量暴露和影响,由于环境介质中纳米粒子浓度非常低,大多数分析技术并非适合。一直以来,颗粒尺寸采用光散射(DLS)和透射电子显微镜(TEM)测量颗粒尺寸,这些常规技术对测定复杂水体中存在低浓度的胶体形态非常有限。单颗粒ICP-MS可快速有效并提供更多信息的技术。它能够测定颗粒尺寸分布、颗粒数量浓度、溶解金属比例等,检测ppb级(ng/L)浓度纳米颗粒。而且,它能够区分不同元素粒子。Ag,是一种是最常见被用于消费品并释放至环境中的低浓度纳米材料。本工作目的是调查SP-ICP-MS测定和定性环境水体中金属纳米粒子。图1. 地表水中银纳米粒子可能的归宿:(A) 溶解过程导致自由离子释放和更小颗粒;(B) 团聚成更大颗粒,根据团聚尺寸而沉淀离开水体;(C,D) 释放Ag+和纳米银吸附于水中其它固相;(E)形成可溶性复杂产物;(F)同水中其它成分反应导致共沉淀;(G)继续稳定的纳米银。样品地表水采自于加拿大蒙特利尔Rivière des Prairies河,0.2μm滤纸过滤后添加银纳米粒子。水样中纳米银悬浮物加入浓度2.5至33.1μg/L,并缓慢摇匀。在SP-ICP-MS分析前,样品稀释低于0.2μg/L Ag。悬浮银纳米粒子购于Ted Pella公司:柠檬酸包裹(40和80nm直径)和裸露(80nm直径)纳米银悬浮物(产品编号. 84050-40, 84050-80和15710-20SC)。实验实验数据采集使用珀金埃尔默NexION系列ICP-MS和纳米应用Syngistix模块软件,并使用下表的参数。实验结果上图为Syngistix数据采集交互界面,显示了地表水中银纳米离子(裸露纳米银,标称直径60nm,金属总浓度200.8ng/L)信号强度与采集时间关系图。每个纳米颗粒会形成一个脉冲信号,软件将信号的积分强度自动转换成颗粒的粒径信息。整体样品中不同粒径的颗粒信息就会如上图中显示出来,横坐标代表粒径,纵坐标代表相应半径颗粒的含量。以上三图分别为纯水和地表水中,柠檬酸包裹的80nm银颗粒,裸露的80nm银颗粒,和柠檬酸包裹的40nm银颗粒的平均粒径和颗粒状态比例,随时间的变化。所有情况下,纳米粒子的平均颗粒尺寸保持相对稳定。是否包裹,对纳米粒子溶解情况几乎无严重影响,5天均下降了20%左右。相同时间,柠檬酸包裹纳米银中可溶性银比率更高一些。裸露的80nm纳米银,地表水中平均颗粒直径和颗粒百分比高于去离子水。柠檬酸包裹纳米银,二者无明显差别。这可能是由于单独纳米粒子比柠檬酸包裹纳米粒子更易团聚。但总体来说,并未观察到严重地团聚现象。结论采用Syngisitx纳米应用模块研究地表水中银纳米颗粒的行为,无需使用任何手工数据处理过程。该技术允许有效选择性测定颗粒尺寸,团聚和一定时间内溶解低浓度范围。SP-ICP-MS可提供环境水体中低浓度的金属纳米颗粒归宿信息的唯一合适的技术。尽管这项研究只代表在特定情况下河水中纳米银颗粒测定技术的有效性,毫无疑问,也可应用于各种复杂基体中其它类型金属和金属氧化物纳米粒子。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • TSI 公司举办“大气环境颗粒物、超细颗粒物检测进行技术交流会”
    美国TSI 公司于2016年11月4日在广西南宁举办了“大气环境颗粒物、超细颗粒物检测进行技术交流会”,此次交流会邀请了当地的环境监测部门、高校科研机构和当地仪器代理商。TSI公司现场介绍和展示了大气气溶胶检测的系列产品,特别是关于1nm 扫描电迁移率粒径谱仪,该款产品将气溶胶研究和检测提升到新的一个量级。交流会还就气溶胶粒径谱在关于灰霾源解析和常规大气环境监测中的重要作用进行探讨以及对粒径谱监测数据收集和处理进行了交流。交流会后还参观了广西环科院大气PM2.5研究监测站。TSI最新推出的SMPS™ 扫描电迁移粒径谱仪,被广泛用于测量1微米以下的气溶胶粒径分布的测量标准。选配3777型纳米增强仪以及3086型DMA差分电迁移分析仪(1nm-DMA)组件后,SMPS粒径谱仪能够测量纳米的粒径范围扩展至1nm。 3321 空气动力学粒径谱仪(APS™ ) 提供 0.5 至 20 微米粒径范围粒子的高分辨率、实时空气动力学检测。这些独特的粒径分析仪还检测 0.37 至 20 微米粒径范围粒子的光散射强度。APS 粒径谱仪通过向同一粒子提供成对数据向有兴趣研究气溶胶组成的人士开辟了令人振奋的新途径。TSI 3330型光学颗粒物粒径谱仪简单轻便,能够对颗粒物浓度和粒径谱分布进行快速和准确的测量。基于TSI公司40年气溶胶仪器设计的经验,本款产品使用120度光散射角收集散射光强度和精密的电子处理系统,从而得到高质量和高精度的数据。同时,TSI工厂严格的标定标准也确保仪器的精确性。该产品是广大环境研究机构和环境监测部门进行颗粒物监测分析和源解析的最佳仪器。关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 文末有彩蛋 | 单颗粒ICP-MS应用:纳米颗粒的溶解动力学
    20世纪90年代以来,人们对纳米材料正面效应的研究取得了丰硕成果,并形成了大量的实用产品,比如衣物中加入Ag纳米颗粒,可以抑菌;防晒产品中加入TiO2纳米颗粒,可以屏蔽紫外线。这些产品对我们提供便利的同时,也对环境造成了潜在的危害。2004年7月29日美国的《科学此刻》及2004年8月4日《自然》分别介绍了该研究小组的报告,对纳米污染发出预警。报告指出,“游离的纳米颗粒和纳米管可能会穿透细胞,产生毒性”;对于环境来说,“纳米科技可能是柄双刃剑”。通过获得纳米颗粒的环境行为和颗粒大小、溶解率、颗粒团聚以及与样品基体的相互作用的准确数据,可以帮助了解和评价这些新材料可能对环境健康造成危险的情况。常规ICP-MS只能将样品消解后,测试溶解态的离子浓度信息,并不能直接测定这些纳米颗粒的粒径、粒径分布和团聚等更具体的数据。单颗粒ICP-MS技术通过超快速的数据读取时间,可分析每个纳米颗粒产生的电子云,检测ppb级(μg/L)浓度纳米颗粒。本报告研究了银纳米颗粒在不同水体中的溶解动力学。样品银纳米颗粒:直径100纳米,购自NanoXact,NanoComposix,USA。采用聚乙烯吡咯烷酮(PVP)材料封装。水样:离子水(DI,18.3 M-欧姆.厘米),自来水(科罗拉多学院矿业校园,高尔顿.科罗拉多)和自然水(采集点距离河流岸边1米,采集后直接通过0.45微米的滤膜过滤)。样品处理ENP悬浮液通过用水稀释浓度20毫克/升的储备溶液制成,最终浓度50纳克/升。为了匹配观察到的峰强度SP-ICP-MS,采用2%HNO3(光谱级)溶解银标准(高纯度标准 QC-7-M),用于校准和稀释,最终浓度范围为0.1-1微克/升。实验结果首先分析了溶解在去离子水中的银纳米颗粒的单颗粒ICP-MS数据。初始浓度为50ng/L。绿色柱状图表示刚加入纳米颗粒时的测试结果,脉冲信号强度主要分布在400~700范围内,另有少部分在50左右及以下。红色柱状图表示24小时候纳米颗粒的测试结果,脉冲信号主要集中在100~300范围内,50以下还有较强的信号。脉冲信号强度正比于颗粒的粒径,24小时后脉冲强度下降,说明了银纳米颗粒的粒径减小,溶解的银离子信号在脉冲50以下。Syngistix软件可自动将脉冲强度换算成颗粒直径,上图显示了不同水样中,银纳米颗粒随着时间变化的粒径变化。在含氯离子自来水体系下溶解速度比其他两种溶剂都要快,这是由于氯可以作为氧化剂加快粒子溶解在这个系统。而自然水系里粒子的变化很小,这可能由于自然系统固有的复杂性,需要更多研究找到导致粒子稳定性的因素。上图总结了在去离子水,自来水和自然水中,银纳米颗粒的粒径变化趋势。利用瞬时质量的平均粒径,可以计算出粒子的溶解损失。模型化计算粒子的几何表面积(假设球形质量的粒子), 损失质量/表面积(摩尔/ cm2)和时间可以计算得到溶解速率常数。在24小时内,遵循一阶动力学规律。总结溶解电势不同可能是区分粒子溶解过程和离子溶解过程的一个关键因素。这项研究在表明通过SP-ICP-MS定量计算Ag粒子的溶解率是可行的。使用SP-ICP-MS技术,通过原始粒子直径来计算溶解率比通过溶液中Ag离子增加来计算其溶解率更加直接。想要了解更多详情,请扫描二维码下载完整的应用报告。想了解更多关于单细胞单颗粒ICP-MS 应用么?珀金埃尔默将于2020年6月9日 14:00举办“单细胞ICP-MS网络研讨会”, 为您提供一个突破时间地域限制的学习交流的平台。本次研讨会邀请到中国科学院高能物理研究所副研究员王萌博士, PerkinElmer无机产品技术经理,高级工程师高光晔做精彩分享。识别下方二维码或点击阅读原文即可预约直播席位。
  • TSI公司参加“中国颗粒学会第九届学术年会暨海峡两岸颗粒技术研讨会”
    美国TSI公司于2016年8月12-14日,参加了在四川省成都市举办的“中国颗粒学会第九届学术年会暨海峡两岸颗粒技术研讨会”。本届会议由中国颗粒学会主办、中国颗粒学会超颗粒专委会协办,500多位来自海峡两岸从事颗粒技术研究的专家学者、工程技术人员、企业界代表等齐聚一堂,畅谈国内外颗粒学研究与技术的最新进展,探讨颗粒行业产、学、研、销等领域如何更好对接。美国TSI公司于会上针对“1nm大气颗粒物的测量“做了主题报告”并展示了以下多种气溶胶检测技术和设备。TSI最新推出的SMPS™ 扫描电迁移粒径谱仪,被广泛用于测量1微米以下的气溶胶粒径分布的测量标准。选配3777型纳米增强仪以及3086型DMA差分电迁移分析仪(1nm-DMA)组件后,SMPS粒径谱仪能够测量纳米的粒径范围扩展至1nm。3321 空气动力学粒径谱仪(APS™ ) 提供 0.5 至 20 微米粒径范围粒子的高分辨率、实时空气动力学检测。这些独特的粒径分析仪还检测 0.37 至 20 微米粒径范围粒子的光散射强度。APS 粒径谱仪通过向同一粒子提供成对数据向有兴趣研究气溶胶组成的人士开辟了令人振奋的新途径。TSI 3330型光学颗粒物粒径谱仪简单轻便,能够对颗粒物浓度和粒径谱分布进行快速和准确的测量。基于TSI公司40年气溶胶仪器设计的经验,本款产品使用120度光散射角收集散射光强度和精密的电子处理系统,从而得到高质量和高精度的数据。同时,TSI工厂严格的标定标准也确保仪器的精确性。该产品是广大环境研究机构和环境监测部门进行颗粒物监测分析和源解析的最佳仪器。关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 《单颗粒电感耦合等离子质谱法检测纳米颗粒》国家标准解读
    单颗粒电感耦合等离子质谱法(spICP-MS)是一种在非常低的浓度中检测单个纳米颗粒的方法。与传统表征金属纳米颗粒技术相比,使用单台ICP-MS,不需联用设备就可以同时完成纳米颗粒的成分、浓度、粒径、粒度分布和颗粒团聚的检测,这是透射电子显微镜(TEM)、动态光散射(DLS)等纳米粒径表征技术无法完成的,并且此方法可将样品中溶解的纳米颗粒离子与固体纳米颗粒区分开来。近期,国家纳米科学中心牵头制定了国内首项单颗粒电感耦合等离子体质谱法(spICP-MS)国家标准《GB/T 42732-2023 纳米技术 水相中无机纳米颗粒的尺寸分布和浓度测量 单颗粒电感耦合等离子体质谱法》。本文特邀国家纳米科学中心葛广路研究员、郭玉婷高级工程师对该标准进行解读。一、背景 目前,基于纳米技术或含有工程纳米颗粒的产品已广泛使用,并开始影响有关的行业和市场。因此,消费者可能直接或间接地接触到(除天然纳米颗粒外的)工程纳米颗粒。在食品、消费品、毒理学和暴露研究中,工程纳米颗粒的检测成为纳米颗粒应用潜在效益和潜在风险评估的必要部分,迫切需要建立产品、试验样品和环境等复杂基质中痕量纳米颗粒检测方法标准。二、标准概述本标准包括范围、规范性引用文件、术语和定义、缩略语、适用性、步骤、结果、测试报告8章内容和1个资料性附录。本标准描述了使用电感耦合等离子体质谱法(ICP-MS)在时间分辨模式下测定单个纳米颗粒的质量和悬浮液中离子浓度,检测水相悬浮液中纳米颗粒,并表征颗粒数量与质量浓度、颗粒尺寸及数均尺寸分布的方法。三、适用性本方法仅限用于纯纳米颗粒的水相悬浮液、材料或消费品的水相提取液、食品或组织样品的水相消解液、水相毒理学样品或环境水样品。非水相样品处理见标准参考文献。水相环境样品经过过滤和稀释,食品和毒理学样品经过化学或酶消解和稀释。将水相悬浮液中的颗粒数量或质量浓度与原始样品中的浓度联系起来需样品相关提取、效率和基质效应等信息,并由用户进行额外验证。四、主要技术内容本文选取原理、重要参数传输效率和响应值及线性的确定、结果计算方面部分重点内容进行讲解,详细内容及仪器设置、试样制备等相关内容与注意的事项参见标准原文。1 原理单颗粒电感耦合等离子体质谱(spICP-MS)是一种能够在非常低的浓度下检测单个纳米颗粒的方法,此方法适用于水相悬浮液中无机纳米颗粒的尺寸及数均尺寸分布、颗粒数量浓度与质量浓度,悬浮液中离子浓度的测定。将常规的ICP-MS系统设置为以高时间分辨率模式采集数据。水相样品连续进入ICP-MS中,雾化后,一部分纳米颗粒进入等离子体并被原子化和电离。每个原子化的颗粒相对应的离子团为一个信号脉冲。使用合适的驻留时间和适当稀释的纳米颗粒悬浮液,质谱仪可实现单个纳米颗粒检测,称为“单颗粒”ICP-MS。对纳米颗粒悬浮液进行稀释,以避免违反“单颗粒规则”(即在一个驻留时间内有一个以上的颗粒到达检测器)。由于离子团中的离子密度很高,其产生的脉冲信号远高于背景(或基线)信号。脉冲强度、脉冲面积与纳米颗粒中被测元素的质量,也即纳米颗粒直径的立方成正比(假定纳米颗粒的几何形状是球形)。单位时间检测到的脉冲数与待测水相悬浮液中纳米颗粒的数量成正比。2 确定传输效率引入的样品只有一部分到达等离子体,结果的计算需要知道传输效率。使用已知的纳米颗粒标准样品测定传输效率。如果没有可用的纳米颗粒标准样品,可以使用任何其他良好表征过的纳米颗粒悬浮液,重新计算稀释倍数和浓度。纳米颗粒尺寸已知,颗粒浓度未知时,结合分析一系列与纳米颗粒相同元素的离子标准溶液,确定传输效率。3 确定响应值及线性随着纳米颗粒的直径增大,信号响应值将按三次方增加,所以需要对纳米颗粒每种组成每种尺寸范围的响应进行验证。校准最好使用纳米颗粒标准样品,无法获得这样的标准样品时,在相同的样品分析条件下,使用被测元素的离子标准溶液进行此步骤中的校准。分析离子溶液的标准工作液,用线性回归法确定校准曲线的相关系数,校准函数的斜率,即为ICP-MS响应值。4 结果计算4.1 检出限的计算由空白对照样品中的颗粒数量确定颗粒数量浓度检出限,结合平均颗粒质量,计算质量浓度检出限。由刚好能从背景中区分出来的脉冲信号强度决定颗粒尺寸检出限。4.2 颗粒浓度和尺寸、离子浓度的计算由时间扫描中检测到的脉冲数、传输效率、样品流速计算水相样品中的颗粒数量浓度;样品中颗粒信号强度、离子标准溶液的ICP- MS响应值、传输效率、驻留时间、样品流速、纳米颗粒材料的摩尔质量和被测物的摩尔质量计算单个颗粒的质量,假设颗粒为球形,计算得到颗粒的直径。由离子产生的连续基线信号估算样品中的离子浓度。通常,可以用商用软件或将测试数据导入定制的电子表格程序进行处理,以计算纳米颗粒的数量、质量浓度、尺寸(等效球直径)和相应数均尺寸分布,并同时确定样品中存在的离子质量浓度。本标准的资料性附录A给出了定制的电子表格程序处理数据的示例。五、结语本标准等同采用ISO/TS19590:2017 Nanotechnologies—Size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometry,于2023年8月6日发布,将于2024年3月1日实施,是国内首项使用单颗粒电感耦合等离子体质谱方法表征纳米颗粒的国家标准,支撑spICP-MS作为一种普适性方法的推广与应用。本标准由国家纳米科学中心、珀金埃尔默企业管理(上海)有限公司、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、清华大学、中国计量科学研究院、杭州谱育科技发展有限公司,安捷伦科技(中国)有限公司制定。在起草阶段,标准起草工作组选用金纳米颗粒,在国家纳米科学中心、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、安捷伦科技(中国)有限公司、杭州谱育科技发展有限公司,利用不同仪器进行了测试,使用仪器所带软件对颗粒尺寸和颗粒数量浓度进行了处理计算。在征求意见阶段,向四川大学、中国地质大学、武汉大学、清华大学深圳国际研究生院、东北大学、华东师范大学、中山大学、厦门大学、中国科学院过程工程研究所、中国科学院南京土壤研究所、中国科学院生态环境研究中心、上海市食品药品检验研究院、生态环境部南京环境科学研究所、中国科学院高能物理研究所、山东英盛生物技术有限公司等高校、科研院所和企业发送了标准征求意见材料,征求意见专家多为分析化学、纳米科学等领域专家,给本标准提出了具有代表性的意见,在此感谢他们对本项标准制定工作的支持。本文作者: 葛广路 研究员;郭玉婷 高级工程师 国家纳米科学中心 中国科学院纳米标准与检测重点实验室 Email:gegl@nanoctr.cn guoyt@nanoctr.cn
  • 纳米流式颗粒成像分析仪在脂质体中的应用优势
    纳米流式颗粒成像分析仪是一种先进的单颗粒、多参数、高通量的纳米颗粒定量表征技术。这种分析仪特别适用于脂质体的研究,脂质体是由磷脂双层组成的封闭囊泡,被广泛应用于药物递送、基因治疗、生物成像等领域。下面我们将探讨纳米流式颗粒成像分析仪在脂质体研究中的应用优势。  1. 高分辨率的成像  纳米流式颗粒成像分析仪能够提供单个脂质体的高分辨率图像,这对于研究脂质体的形态、大小、分布等特征至关重要。通过获取清晰的图像,研究人员可以获得关于脂质体结构的直观信息,进而优化脂质体制备条件,提高其在药物递送中的效率。  2. 高通量分析  相比于传统的脂质体分析方法,如电子显微镜或激光动态光散射法,纳米流式颗粒成像分析仪能够以更快的速度处理大量样品,实现高通量分析。这对于筛选最优的脂质体配方或评估不同制备条件下的脂质体性能非常有用。  3. 多参数定量分析  纳米流式颗粒成像分析仪能够同时检测多个参数,如颗粒大小、荧光强度、表面标记等,这对于评估脂质体的功能性非常重要。例如,通过标记特定的表面蛋白或抗体,可以研究脂质体的靶向能力 通过检测荧光信号,可以评估脂质体的载药效率。  4. 实时监测  这种分析仪能够实时监测脂质体在不同条件下的变化情况,比如在不同温度或pH值下脂质体的稳定性,这对于理解脂质体的行为及其在体内环境中的适应性至关重要。  5. 操作简便  与复杂的电子显微镜相比,纳米流式颗粒成像分析仪的操作更为简便,不需要特殊的训练即可进行操作。这使得更多的实验室能够利用这项技术进行脂质体的研究。  6. 应用范围广泛  纳米流式颗粒成像分析仪不仅适用于脂质体的研究,还可以应用于病毒颗粒、外泌体等多种纳米级颗粒的分析。这为跨学科的研究提供了强大的工具。  纳米流式颗粒成像分析仪因其独特的高分辨率成像、高通量分析、多参数定量分析能力以及简便的操作方式,在脂质体研究领域展现出了显著的优势。这些优势有助于推动脂质体技术的发展,使其在药物递送、生物成像等方面发挥更大的作用。随着技术的不断进步,我们可以期待这种分析仪在未来脂质体研究中发挥更重要的作用。
  • 海水中的纳米颗粒
    纳米科技在为现代生活提供各种高性能产品的同时,也对环境造成了严重的负担。之前的文章中,我们一起学习了饮用水、湖泊水、废水等水体中的纳米颗粒的单颗粒ICP-MS的测定过程,了解到纳米颗粒的无处不在。那么“大海啊,全是水”的海水中,是不是也一定存在着纳米颗粒呢但是,海水和其他水体不一样,含有更多的“盐分”,也就是基体不同。通常,在ICP-MS 分析中,分析之前需要稀释具有较高基体的样品,以免对仪器产生影响。然而,纳米颗粒在环境样品中的溶解和聚合取决于基体,且样品基体组成和浓度(例如溶解有机质(DOM)和离子强度)对其具有极大影响。因此在处理纳米颗粒时,稀释可能触发转化,这意味着获得的结果可能无法准确反映样品中纳米颗粒的初始状态。为降低环境样品或其他高溶解固体含量样品在分析前稀释的必要性,PerkenElmer提供了适用于NexION系列ICP-MS(5000/2000/1000/350/300)的全基体进样系统(AMS)。这套系统包含一个耐高盐雾化器和一个带有氩气稀释气接口的雾室。稀释气的流速由独立的氩气通道控制,气流方向与雾化气流向垂直,以获得最佳的混合效果。可获得高达200倍的稀释比,避免了离线手工稀释的繁琐操作和随之而来的污染和误差。对于不需稀释的样品,只需将稀释气关掉,无需取下稀释气管路。借助AMS系统,对无需稀释的样品和需要稀释200倍以内的样品分别进行分析之间,无需对仪器再次进行参数优化。本文中,我们将探索模拟海水样品中金纳米颗粒的分析,并利用AMS 功能避免人为稀释,并讨论仪器配置条件对单颗粒ICP-MS进行精确和准确颗粒分析的影响。样品在超高纯(UHP)水中以1,2 和3 ppb 浓度制备离子金(Au+)标准品,并且在超高纯水中按60000 颗/mL制备60 nm 的金纳米颗粒标准品(NIST 8013)。使用标准参考物质(CASS-6,加拿大国家研究委员会)制备海水样品,并掺入60000 颗/mL的60 nm NIST 金纳米颗粒。在分析之前不进行进一步的样品稀释。实验所有分析均在NexION 2000 ICP-MS 上进行,并使用表1 中所示的进样附件和参数。全基体进样系统(AMS)的气流量设定为0.4 L/ 分钟,即10 倍稀释,可在未经任何人为稀释的情况下分析未稀释的海水,从而简化样品制备,并确保样品基体中纳米颗粒的完整性。实验结果如下图所示,在几种不同的AMS 气流量下精确确定NIST 60 nm 金颗粒的粒径,证明如果使用相应的离子校准,AMS 不会影响粒径测量的准确度。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响将金纳米颗粒分别添加到海水和去离子水样品中并进行测量。下图显示了添加到海水和去离子水中的60 nm纳米颗粒的粒径分布,两者基本没有差异。结果表明,适当的仪器参数设置和AMS降低了基体效应,从而能够在复杂的环境基体(如海水)中进行准确精准的纳米颗粒测量,而无需与离子校准标液进行基体匹配。这种能力简化了流程,增加了可用性,最重要的是,由于消除了液体稀释的需要,可在分析样品中获得纳米颗粒的准确结果。未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布结论使用配备了全基体进样系统(AMS)的PerkinElmer的NexION 2000 ICP-MS,可以无需考虑用水稀释导致的纳米颗粒状态的转化对于测量结果的影响,精确测量海水(典型的复杂基体)中纳米颗粒粒径大小和浓度,无需手工稀释样品。想要了解更多详情请扫描二维码《使用全基体进样系统和单颗粒ICP-MS快速测定海水中纳米颗粒》
  • 岛津纳米颗粒测定仪器IG-1000喜获Pictton 2009大奖
    作为粒度仪的专业生产厂商,岛津公司新推出了划时代的纳米颗粒测定仪器IG-1000,并在美国伊利诺斯州芝加哥市的迈考密展览中心召开的Pictton 2009(3月8日至3月13日)展会众多产品中脱颖而出,获得&ldquo 撰稿人奖&rdquo 铜奖。   与以往粒度测定仪器原理不同,IG方法(Induced Grating method)是岛津公司开发的独一无二的纳米粒径测定技术。IG-1000采用介电电泳原理,由介电电泳力使粒子构成衍射光栅,扩散后的浓度降低导致衍射光强度降低,从衍射光强度的时间变化可以得到粒子的扩散系数,进而得到粒子的粒径。   与目前采用散射光的动态光散射仪器(DLS)方法相比较, 优势明显。测定范围最低到0.5nm,在单一纳米颗粒领域可以获得十分良好的信噪比(S/N),灵敏度也非常高。即便样品中含有少量的粗大粒子时对测定也没有影响,分布广的样品可以得到正确的结果,克服了以往DLS产品耐污染性差的缺点。IG-1000不使用散射光,因此不受物理参数的限制,不要求输入折射率因子(refractive index)作为测量条件。原始数据(衍射光强度对时间的变化)可以用来进行测定结果的可靠性验证。   与岛津多种型号的激光粒度仪联合使用,实现了从纳米到微米范围的可靠测定。 (C60(OH)n的测定结果 大阪大学小久保先生提供)
  • 【AAV热点应用】Zetasizer精准表征rAAV颗粒粒径及衣壳滴度
    rAAV腺相关病毒载体表征腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一。其直径约为20-26nm,含有4.7kb左右的线状单链DNA。重组腺相关病毒载体(recombination AAV, rAAV)则是在非致病的野生型AAV基础上改造而成的,因其具有:安全性高、免疫原性低;宿主细胞范围广(对分裂细胞和非分裂细胞均具有感染能力);体内表达时间长;血清型众多,且具有组织特异性等特点被广泛用于基因治疗、疫苗等研究、应用领域[1]。在rAAV的生产工艺中,有无团聚体(aggregate),以及衣壳滴度(titer)的高低是重点考察的关键质量属性(CQAs)[2],Zetasizer纳米粒度仪通过对rAAV颗粒的粒径及衣壳滴度的表征,快速实现该CQAs的鉴定。纳米粒度电位仪马尔文帕纳科 Zetasizer Ultra01材料和方法将两种不同生产批次的rAAV分别用缓冲液稀释至合适的浓度,利用Zetasizer Ultra-Red (Malvern Panalytical Ltd.)以及小体积石英比色皿(ZEN2112)进行相应的粒径和滴度测定[3]。样品测试体积为20 µL,rAAV折射率、吸收率分别设置为1.45和0.001,缓冲液的散射光强度测定为80 kcps。02结果通过多角度动态光散射(multi-angle DLS, MADLS)技术,我们分别对两种批次的rAAV粒度大小及分布进行表征(图1、3)。可以看到,批次1的rAAV只有一个粒径分布峰,其值大小为28.2 nm,说明体系中没有团聚体产生,而批次2的rAAV则呈现出3个粒径分布峰,分别位于28.2、150.9以及430.6 nm,这说明体系中除了rAAV单体,还有团聚体产生。此外,基于MADLS技术得到的颗粒的准确粒径分布图,我们还能得到对应尺寸的衣壳滴度(图2、4)。图1,批次1 rAA的光强粒径分布图图2,批次1的衣壳滴度图3,批次2 rAA的光强粒径分布图图4,批次2的衣壳滴度参考文献1. Mendell J R, Al-Zaidy S A, Rodino-Klapac L R, et al. Current Clinical Applications of in vivo Gene Therapy with AAVs. Molecular Therapy, 2021, 29 (2), 464-488.2. Gimpel A L, Katsikis G, Sha S, et al. Analytical Methods for Process and Product Characterization of Recombinant Adeno-Associated Virus-based Gene Therapies. Molecular Therapy — Methods & Clinical Development, 2021, 20, 740-754.3. Cole L, Fernandes D, Hussain M T, et al. Characterization of Recombinant Adeno-Associated Viruses (rAAVs) for Gene Therapy Using Orthogonal Techniques. Pharmaceutics, 2021, 13, 586.
  • 国内外知名厂商亮相西安颗粒学术盛会
    仪器信息网讯 2010年8月16日,“中国颗粒学会第七届(2010年)学术年会暨海峡两岸颗粒技术研讨会”在西安市陕西宾馆隆重开幕。其中,“颗粒测试与应用”分场的相关厂商报告简介如下:美国贝克曼库尔特颗粒部全球技术总监许人良博士报告题目:亚微米与纳米颗粒表征技术最新进展  许人良博士主要介绍了动态光散射技术、亚微米纳米颗粒追踪技术、库尔特(电阻法)计数器、Zeta电位测量技术等方面的新进展。许人良博士表示:“随着科学技术的发展,表征10μm以上的颗粒技术更新换代趋近完成,目前的技术进展主要集中在10μm以下的颗粒表征领域。这些新技术所表征的材料浓度很高,测量下限延伸到纳米以下,与纳米技术发展紧密相关。”珠海欧美克科技有限公司董事长张福根博士报告题目:静态光散射粒度测量的理论下限及实现极限测量的技术方案  经过实验研究,张福根博士得出结论:“(1)0.02μm作为测量下限是比较合理的 (2)垂直偏振光比水平偏振光的灵敏度更高 (3)小颗粒的散射光能分布的特异性体现在大角散射区。”同时,针对于极限测量的主要障碍——全反射,除了现行的多光束(多波长)及异型窗口解决方案外,张福根博士提出了“测量窗口斜置、大角探测排布器由里到外间隔逐渐加大、高功率的线偏振激光”等不同解决方案。德国Retsch(莱驰)公司中国区经理董亮先生报告题目:动态数字成像技术在现代粒度及粒形分析中的应用  董亮先生表示:“传统粒径分析技术分析样品量少,信息量也少,重现性不佳,尤其是对于不规则样品。作为一家专业生产实验室固体样品前处理的全球知名厂家,德国RETSCH推出了全球第一台采用动态数字成像技术的粒度分析仪,采用专利双镜头设计,可精确到每一个颗粒的形态分析和信息采集,重现性好,提供数据信息量大。”微纳颗粒技术有限公司董事长兼首席专家任中京先生报告题目:动态光散射原理纳米激光粒度仪的研究进展  任中京先生首先介绍了动态光散射的原理、运算规律以及测试流程。任中京先生谈到:“纳米粒度仪的关键技术是动态光散射信号采集、数字相关器以及相关信号的解读。目前动态光散射技术已趋成熟,国内相关器技术也已达到国际先进水平,济南微纳已率先在国内推出了Winner801光相关纳米粒度仪,可以满足纳米颗粒测试需要,打破了国外仪器垄断我国纳米测试领域的历史。”岛津国际贸易(上海)有限公司冯旭先生报告题目:激光粒度在陶瓷卫生洁具行业的应用  冯旭先生通过举例向大家说明了激光粒度在陶瓷卫生洁具中的广泛应用。冯旭先生说到:“陶瓷卫生洁具是由坯体和釉面两种材料在高温中烧制而成,其质量由这两种原材料的粒度分布决定。激光粒度测试的散射光强度分布决定了颗粒粒度的分布,目前,在陶瓷卫生洁具方面主要存在取样不均匀、分散效果不好、折射率选择等问题。”丹东百特仪器有限公司总经理董青云先生报告题目:激光粒度仪扩大量程和提高性能的途径与实践  董青云先生谈到:“扩大量程的途径主在光路系统、镜头以及探测器等方面。光路系统同时接收前向和后向散射光信号 镜头是一个透镜组,消场曲、消色差,接收不同角度的散射信号 探测器阵列为高性能的前向和后向。基于以上三面的实践,丹东百特推出的Bettersize2000通过理论模拟与反演结果的对比,在准确性、分辨率、重复性、适用性多方面的表现均十分突出。”马尔文仪器有限公司宁辉先生报告题目:纳米粒度表征的技术指标及其验证  宁辉先生首先向大家介绍了动态光散射技术的布朗运动原理、相关运算规律以及多指数分析模型,同时,宁辉先生还介绍到:“动态光散射的仪器性能涉及仪器硬件设计和使用、软件的计算方法。其指标主要包括粒径检测范围、浓度检测范围、灵敏度以及分辨率。其中,通过与分离技术相结合,可以提高动态光散射技术的分辨率。”成都精新粉体测试设备有限公司总经理周定益先生报告题目:光子相关光谱法纳米激光粒度仪简介  周定益先生表示:“光子相关光谱法是测试纳米最有效的方法。其实现的基础之一就是硬件相关器,通常制造商利用其来实现纳米测量。目前,成都精新已率先提出智能自相关器,代替了传统的硬件相关器,并于2007年成功研制出使用智能自相关器的纳米激光粒度仪JL-1198型和JL-1197型两款纳米激光粒度仪。其中,JL-1197型粒度仪同时具有光子相关光谱法、激光散射两种原理测试功能。”堀场贸易(上海)有限公司梁世健先生报告题目:HORIBA激光粒度测量技术的新进展  梁世健先生说到:“日本堀场以其高精尖的产品成功地将市场拓展到了全球各个国家和地区,其产品已被广泛地应用到汽车、半导体、新材料、能源、冶金、食品加工以及科学研究等领域的产品研发和质量控制中。其中,HORIBA激光粒度仪采用最为精确的光散射理论—Mie理论,测量范围为0.3nm-8μm,准确度高,重现性好。”岛津国际贸易(上海)有限公司安国玉先生报告题目:岛津纳米粒径测定装置IG-1000在纳米材料行业中的应用  安国玉先生表示:“纳米粒子材料技术研发和应用中的关键环节就是需要进行纳米粒径的测定。诱导光栅法是由介电电泳力使粒子构成衍射光栅,从光栅的扩散速度求得纳米粒子大小。日本岛津公司采用该技术推出了新型纳米粒径测定装置IG-1000。与传统的散射光的方法相比,在单一纳米颗粒领域可以获得良好的S/N比。”北京金埃谱科技有限公司总经理夏攀先生报告题目:比表面积及孔径测试技术及其在分体行业中的应用  夏攀先生首先介绍了比表面积定义、孔容积定义以及比表面积及孔径测试技术的相关标准方法。另外,夏攀先生还说到:“比表面积的测试方法可分别按照理论计算方法和吸附量测定方法的不同来分类,不同分类方法之间相互关联,同属于国际和国内标准的规定方法,其中,国内目前常采用的是‘直接对比法’。”科艺仪器有限公司汪洁女士报告题目:革新技术和——可视化纳米颗粒分析仪  汪洁女士说到:“NanoSight的关键技术为一个专用的光学器件和特殊配置的激光束。通过视频对布朗运动的分析测量颗粒大小,同时,也可通过视频观测到很多单独的纳米粒子。通过观测分析,可以得到高分辨率的粒径分布、颗粒浓度以及包含具有诸如相对光散射强度或荧光等特性的纳米颗粒。”
  • 粒度的作用,海岸鸿蒙颗粒标准物质可以助力哪些领域
    在现代工业和科学研究中,颗粒的粒度是影响材料性能的关键因素之一。颗粒标准物质作为确保粒度测量准确性的关键工具,在多个行业中发挥着至关重要的作用。一、制药行业:粒度决定药效在制药行业中,颗粒的粒度对药物的溶解速率、释放特性和生物利用度起着决定性作用。例如,海岸鸿蒙提供的粒度标准物质可以帮助制药企业校准粒度分析仪器,确保药物颗粒大小的一致性,从而提高药物的疗效和安全性。此外,粒度的精确控制还有助于减少副作用,提高药物的稳定性和保质期。二、化工行业:粒度优化性能化工产品的性能很大程度上取决于其颗粒的粒度。例如,催化剂的粒度会影响化学反应的速率和选择性;涂料和塑料的粒度则影响其流动性、干燥时间和最终产品的机械性能。海岸鸿蒙的粒度标准物质用于校准粒度分析仪器,帮助科学家和工程师优化化学反应条件,提高产品性能和生产效率。三、材料科学:粒度塑造特性在材料科学领域,颗粒的粒度决定了材料的机械强度、热导率、电导率等关键性质。海岸鸿蒙的粒度标准物质使研究人员能够精确测量和控制颗粒大小,从而设计和开发具有特定性能的新材料。例如,在金属加工中,通过控制粉末的粒度,可以制造出具有优异机械性能的金属零件。四、环境科学:粒度影响空气质量环境科学中,大气颗粒物的粒度分布对空气质量和人类健康有着重要影响。细颗粒物(PM2.5)等微小颗粒可以深入肺部,对健康造成严重影响。海岸鸿蒙的粒度标准物质用于校准大气颗粒物监测设备,确保空气质量数据的准确性,为制定环境保护政策提供科学依据。五、食品工业:粒度提升食品品质在食品工业,颗粒的粒度影响食品的口感、颜色、保质期和营养成分的释放。例如,面粉的粒度影响面包的质地和口感;巧克力的粒度则关系到口感的细腻程度。海岸鸿蒙的粒度标准物质确保食品加工过程中粒度的一致性,提升食品的品质和消费者的食用体验。六、电子行业:粒度保障显示质量在电子行业,颗粒标准物质用于制造液晶显示器(LCD)的衬垫和光电子器件。精确控制微球的粒度对于保证显示图像的均匀性和精确性至关重要。此外,电子封装材料的粒度也会影响电子器件的散热性能和可靠性。七、纳米技术:粒度激发创新潜力纳米材料的粒度对其光学、磁学和催化性能有着决定性的影响。海岸鸿蒙的粒度标准物质在纳米材料的合成、表征和应用开发中发挥着关键作用。例如,在催化剂设计中,通过精确控制催化剂颗粒的粒度,可以提高其催化活性和选择性。在光学材料中,通过控制颗粒的粒度,可以制造出具有特定光学性质的材料,如光学涂层和光子晶体。海岸鸿蒙颗粒标准物质的研发已经达到国内领先、国际前沿水平,目前共有200余种颗粒标准物质,其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。其颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、二氧化硅、金属、胶体金和多元琼脂糖、等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。
  • 便携式油液颗粒计数器新品上市
    油品使用后不可避免地会受到不同程度的污染。检测油污的方法有定性、半定量、定时等多种,应根据具体情况进行选择。对污染重、颜色深的油品,可采用抽检法,也可采用按一定规则规划的专用网格滤纸半定量法,并可采用部分油品快速分析仪。这些方法的特点是简单、快速,与其他检测项目匹配性好,具有实用价值。颗粒计数器可用于油污染的定量分析。得利特A1035油液颗粒计数器能准确测量单位体积油中微粒的准确值,适用于对清洁度要求高的油品(如液压油)的检测。下面跟随小编来详细了解一下这款仪器吧!A1035便携式颗粒计数器,采用国际液压标准的光阻(遮光)法计数原理,专门用于现场油液污染度等级快速检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。内置微水传感器和温度传感器,在进行污染度检测的同时,可对水含量和油液温度一并检测。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。便携式颗粒计数器功能特点:1、采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定2、适用于实验室或现场检测,也可选配减压装置用于在线高压测量,实时监测用油系统中的颗粒污染度3、可外接压力舱形成正/负压,实现高粘度样品的检测和样品脱气4、内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级5、管路采用316L及PTFE材料,满足各类有机溶剂及油品的检测6、具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护7、内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准8、内置校准功能,可按GB/T21540、ISO4402、GB/T18854等标准进行校准9、内置数据分析系统,可根据标准自动判定样品等级,具有数据自动处理、打印功能10、可设定任意报警级别,实现污染度或洁净度检测11、内置微水传感器和温度传感器12、中英文输入,一键切换,具有预设、输入、修改、存储功能,操作方便快捷13、超大存储,可选择存储在仪器内部或外部存储设备中14、嵌入式设计,高强度外壳,便于携带,适合各类工程机械
  • 国瑞力恒发布大气/颗粒物综合采样器新品
    GR-1350型大气/颗粒物综合采样器 产品简介本仪器应用溶液吸收法采集环境大气、室内空气中的各种有害气体,应用滤膜称重法捕集环境大气中的总悬浮微粒(如TSP、PM10、PM2.5等),广泛应用于环保、职业卫生、厂矿企业、大专院校、科研等机构。采用标准HJ/T 374-2007 《总悬浮颗粒物采样器技术要求及检测方法》JJG 956-2013 《大气采样器》JJG 943-1998 《总悬浮颗粒物采样器》HJ/T 375-2007 《环境空气采样器技术要求及检测方法》HJ 618-2011 《环境空气PM10和PM2.5的测定 重量法》HJ/T 93-2013 《环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法》 主要特点n 电子流量计,恒流采样,两路大气、一路颗粒物,任意一路可以单独控制,单独启停;n 高速处理器自动计算控制采样流量,自动补偿因电压波动和阻力变化引起的流量变化;n 大气采样气路配备防倒吸干燥瓶,防止吸收液倒吸;n 管路堵塞保护功能:采样过程中管路堵塞或负载过大,系统会自动停泵,保护仪器不会因长时间过载而损坏;n 大气采样具有恒温自动加热功能;n 大气采样采用高性能超低音无刷隔膜泵,使用寿命长;n 大气采样采用红蓝双颜色气路连接管,轻松准确连接气路;n 自动测量环境大气压与温度,显示实时采样流量,累计采样体积,标况体积;n 内置式实时时钟,可以预先设置采样启动时间;n 可设置定时采样,等间隔多次采样,采样次数可在1~99次任意设定;n 颗粒物采样采用无刷电机,克服阻力强,可连续长时间工作;n TSP/PM10/PM2.5采样头采用铝合金材质,抗静电吸附;n 掉电保护功能,来电自动采样;n 自动调节对比度的中文液晶显示屏,可在零下30度正常工作;n 具备RS232数字通信接口,可外接打印机,方便数据输出。n 配备高度可调节的三角支架; 技术指标主要参数参数范围分辨率准确度大气采样流量(0.1~1.0)L/min0.01L/min优于±2.5%TSP采样流量(60~130)L/min0.1L/min优于±2.5%流量重复性优于±2.0%流量稳定性优于±2.0%计前压力(-30~0)kPa0.01kPa优于±2.5%大气压(70~110)kPa0.01kPa优于±500Pa采样时间1min~99h59min1min优于±0.2%仪器噪声<59dB(A)整机尺寸(W×D×H)mm210×320×270整机重量约7kg工作电源AC220V±10% 50HZ整机功耗<150W采样头指标PM2.5切割特性Da50 = (2.5±0.2)μm 〥g = (1.2±0.1) μmPM10切割特性Da50 = (10±0.5)μm 〥g = (1.5±0.1) μm入口速度0.3m/s创新点:GR1350大气/颗粒物综合采样器大气部分均为双路电子流量计,样品温控类型有加热型和恒温型可供选择,颗粒物采样有常规负压型(-9kPa)和高负压型(-20kPa)可供选择,并可选配内置高能锂离子电池,电池工作时间大于10小时。小型便携、质量可靠、性能稳定、使用寿命长 流量稳定性等方面有较大的改进,大大减少了劳动强度。大气/颗粒物综合采样器
  • ICPMS-2030:单纳米颗粒分析一探究竟!
    纳米材料,这一看似离我们很遥远的微小粒子,其实已经出现在我们生活中的方方面面。例如具有广泛杀菌功效的纳米银在医疗卫生、医疗器械、纺织、涂料、日用品等方面有着广泛应用。在给我们生活带来便利的同时,纳米科技可能也是一柄双刃剑,对人类健康和环境存在危害的可能。 目前应用较为广泛的纳米材料多为金属、金属氧化物、以及纳米碳材料。大量的使用必将引起环境中的排放量日益增长,可能会对生态和环境造成破坏。 岛津ICPMS-2030能够对样品中的纳米粒子的成分、粒径大小及颗粒浓度进行分析,助您一探究竟! 仪器配置岛津电感耦合等离子体质谱仪ICPMS-2030系列 单纳米颗粒分析原理样品中的悬浮颗粒在进入ICP离子源时是不连续的,中间会有短暂的间隔,因此每个颗粒产生的离子云也是不连续的。当检测器高速采集数据时颗粒则会产生一个个不连续的脉冲信号。颗粒数量越多,则信号数量越多;颗粒越大,对应的信号强度则越高。对所测得的颗粒信号进行计算和统计,既能得到样品中颗粒的粒径信息。图1. 单纳米颗粒分析流程 样品前处理所有的纳米颗粒标品及试样通过超纯水进行稀释,稀释定容后超声分散20 min后马上进ICP-MS于时间分辨模式下采集信号。 样品分析 使用已知浓度的40 nmAuNPs(金纳米粒子)样品引入到ICPMS-2030中测试单颗粒信号。统计单位时间内测得的信号个数,并计算引入到仪器中的粒子总数。建立颗粒数量浓度同信号个数线性关系能够实现对未知样品中颗粒数量的测定。 表1纳米粒子信号-浓度计统计结果对地表水样品进行加标测试,向地表水中加入20 nm,40 nm,80 nm AuNPs分散液以及40、80 nm AuNPs分散液混合后进行ICPMS-2030测试,绘制样品粒径分布图。 图2.地表水样中不同粒径金纳米粒子(AuNPs)ICPMS粒径测试分布 结 论 使用岛津ICPMS-2030分析测定了地表水中金纳米粒子(AuNPs),具有灵敏度高,前处理简便等特点,能够快速得到样品中纳米材料元素构成,颗粒大小以及颗粒浓度等信息,为纳米材料的分析提供了一个新的思路。 撰稿人:刘子辉
  • 得利特便携式颗粒计数器成功上新
    近年来油品问题一直层出不穷,随之而来的是大气污染问题。为此,我国石油企业加强环境污染的预防和控制,提高环境管理水平。目前,相当多的国内石油企业已通过环境管理体系认证,为中国石油企业走向国际市场奠定了基础。为了满足国家污染物排放标准的要求,一些石油努力进行技术改造,加大污染物治理力度,挖掘综合利用潜力,使污染物排放达标率显著上升。为了检测石油污染度情况,北京得利特公司研发了一款便携式颗粒计数器,可以随带随测,方便了客户使用.新款仪器介绍:A1035便携式颗粒计数器,内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准.采用国际液压标准的光阻(遮光)法计数原理,专门用于现场油液污染度等级快速检测装置。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。技术参数光 源:半导体激光器流速范围:20-60mL/min离线检测样品粘度:≤100cSt,粘度高时可选配压力舱在线检测压力:0.1-0.6Mpa(选配减压装置zui高压力可达40Mpa)粒径范围:1-500μm(选用不同型号传感器)接口:USB接口、电源接口数据存储:提供1000组数据存储空间,并支持优盘存储灵 敏 度:1μm或4μm(c)极限重合误差:10000粒/ml计数体积:1-999ml计数准确性:±0.5个污染度等级防护等级:IP67测试时间间隔:1秒-24小时检测样品温度:0-80℃水活性:0-1aw(±0.05aw)水含量:0-120ppm(±10%)工作温度:-20-60℃供 电: AC 220V±10%、50/60Hz或DC12-40V重 量:2.5kg体 积:275×220×107mm仪器特点1、采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定2、适用于实验室或现场检测,也可选配减压装置用于在线高压测量,实时监测用油系统中的颗粒污染度3、可外接压力舱形成正/负压,实现高粘度样品的检测和样品脱气4、内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级5、管路采用316L及PTFE材料,满足各类有机溶剂及油品的检测6、具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护7、内置校准功能,可按GB/T21540、ISO4402、GB/T18854等标准进行校准8、可在高温高压等及其恶劣的条件下工作。9、内置数据分析系统,可根据标准自动判定样品等级,具有数据自动处理、打印功能10、可设定任意报警级别,实现污染度或洁净度检测11、内置微水传感器和温度传感器12、中英文输入,一键切换,具有预设、输入、修改、存储功能,操作方便快捷13、超大存储,可选择存储在仪器内部或外部存储设备中14、嵌入式设计,高强度外壳,便于携带,适合各类工程机械15.具有体积小、质量轻、检测速度快、精度高、重复性好
  • mRNA疫苗递送载体分析技术进展与应用-脂质纳米颗粒
    脂质纳米颗粒(Lipid nanoparticles, LNPs)是一种具有均匀脂质核心的脂质囊泡,因其高包封率和高转染效率等特点,广泛用于核酸等药物的递送,目前 Moderna、CureVac和BioNTech等mRNA 疫苗企业研发的预防新型冠状病毒肺炎(COVID-19)mRNA 疫苗均采用了LNPs递送技术。LNPs 是一种多组分脂质递送系统,通常包括阳离子/可电离脂质、中性磷脂(辅助性脂质)、胆固醇以及聚乙二醇化脂质(PEG-脂质),如图1所示。阳离子/可电离脂质是LNPs系统实现递送功能的关键,由于LNPs带正电,能够吸引带负电的mRNA,并结合在LNPs内部,可以避免被溶酶体降解,提高mRNA在体内的稳定性。LNPs的各种组分的准确含量和配比是脂质纳米颗粒的形成和稳定的重要影响因素,如磷脂和胆固醇能够稳定LNPs结构,聚乙二醇化脂质能够延长LNPs在生物体内的循环半衰期。因此,分析和监测LNPs制备过程的脂质载体是控制LNPs质量的关键,能够保证脂质纳米颗粒的形成并提高其稳定性。由于LNPs的主要四种组成组分的结构中不含明显的紫外吸收基团,在传统的紫外检测器上没有或具有较低的响应信号,因此高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)和拉曼光谱技术(Raman spectra)是LNPs研发和生产中常用的分析技术,本文对这两种常用的脂质纳米颗粒分析技术进行简要介绍。图1. mRNA脂质纳米颗粒示意图1. 高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)1.1 技术原理:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)将高效液相色谱与蒸发光散射通用检测器联用,其中蒸发光散射检测器(evaporative light scattering detector,ELSD)是20世纪90年代出现的通用型检测器。其工作原理如图2所示,被分析对象经过色谱分离后,随流动相从色谱柱流出,流出液引入雾化器与通入的气体(常为高纯氮,也可是空气)混合后喷雾形成均匀的微小雾滴,经过加热的漂移管,蒸发除去流动相,被分析组分形成气溶胶,然后进入检测室,用强光或激光照射气溶胶,产生光散射,最后使用光电二极管检测散射光。图2. 蒸发散射检测器(ELSD)的部件及原理[3]1.2 技术特点:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD),采用的蒸发光散射检测器能够检测不含发色团的化合物,非常适合紫外检测响应信号不佳的半挥发性及非挥发性化合物的分析,它对各种物质有几乎相同的响应,但其灵敏度通常较低,尤其对于有紫外吸收的组分其灵敏度较紫外检测器约低一个数量级,高效液相色谱-蒸发光散射联用技术较适用于氨基酸、脂肪酸、聚合物、脂质、生物载体以及无紫外吸收的辅料的分析。1.3 分析仪器:第一台ELSD是由澳大利亚的Union Carbide研究实验室的科学家开发,距今已经数十年。目前ELSD通常与液相色谱配套使用,主流液相色谱品牌均可配备。该类设备国内外均有生产,如国内的上海通微ELSD-UM5800Plus蒸发光散射检测器、美国安捷伦1260 II 蒸发光检测器、岛津ELSD-LT III 蒸发光检测器、沃特世2424 蒸发光检测器、美国奥泰(Alltech)蒸发光散射检测器ELSD 6100等。2. 拉曼光谱技术(Raman spectra)2.1 技术原理:拉曼光谱法研究化合物分子受光照射后所产生的非弹性散射-散射光与入射光能级差及化合物振动频率、转动频率间关系。拉曼光谱采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。这种“非弹性散射”光被称之为拉曼散射,频率之差即为拉曼位移(以 cm-1 单位),实际上等于激发光的波数减去散射辐射的波数,与基态和终态的振动能级差相当。频率不变的散射称为弹性散射,即瑞利散射:如果产生的拉曼散射频率低于入射频率,则称之为斯托克斯散射;反之,则称之为反斯托克斯散射。实际应用中几乎所有的拉曼分析均为测量斯托克斯散射。2.2 技术特点:拉曼光谱技术具有快速、准确、不破坏样品的特点,样品制备简单甚至不需样品制备。谱带信号通常处在可见或近红外光范围,这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃、石英或塑料)中或将样品溶于水中获得。拉曼光谱能够单机、联机、现场或在线用于过程分析,可适用于远距离检测。现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便,适合对药用辅料,以及脂质纳米颗粒的形态和组成成分的分析[4]。2.3 分析仪器:拉曼光谱仪器在实验室台式/在线和现场便携/手持仪器两个方向上呈现了多元化的发展。实验室仪器追求更高性能,目前常用的实验室拉曼光谱仪主要包括国内卓立汉光Finder微区激光拉曼光谱仪、港东科技LRS-4S显微拉曼光谱仪、奥谱天成 ATR8300自对焦显微拉曼成像光谱仪、日本HORIBA LabRAM HR Evolution高分辨拉曼光谱仪 、LabRAM Soleil 高分辨超灵敏智能拉曼成像仪、英国雷尼绍(Renishaw)inVia Oontor显微拉曼光谱仪、赛默飞DXR 3xi 显微拉曼成像光谱仪等。便携式与手持式小型拉曼光谱仪致力于现场检测,在快速检测方面得到应用,如国内南京简智的SSR-5000便携式拉曼光谱仪、奥谱天成ATR6600手持式拉曼光谱仪、鉴知技术(同方威视) RT6000S手持拉曼光谱仪、美国必达泰克i-Raman Prime高通量便携拉曼光谱仪、美国海洋光学ACCUMAN (SR-510 Pro)便携拉曼光谱仪、美国赛默飞First Defender RM手持拉曼等。3 应用实例分享3.1 采用HPLC-ELSD技术定量7种脂质有研究人员基于HPLC-ELSD技术建立同时定量7种脂质类成分的分析方法[5],包括阳离子脂质CSL3和DODMA、胆固醇Chol、磷脂DSPC和DOPE、亲水性聚合物脂类PolyEtox和DSPE-PEG2000,这7种脂质在高效液相色谱的C18 色谱柱上能够实现良好分离,见图3。通过分析4种不同脂质成分(CSL3/Chol/DSPE-PEG2000/DSPC、CSL3/Chol/PolyEtOx/DSPC和CSL3/Chol/DSPE-PEG2000/DOPE)以及不同脂质比的LNPs配方,评估了HPLC- ELSD方法在脂质定量中的适用性,同时发现LNPs中各类脂质在透析纯化后等比例损失了约40 %,这提示纯化步骤后脂质定量的重要性,该方法可以用于优化LNPs的配方和最终质量控制。图3. HPLC-ELSD方法检测到的7种脂类混合标准溶液的色谱图[5]3.2 采用拉曼光谱技术研究脂质纳米颗粒骨架和空间排列脂质纳米颗粒(LNPs)表面电荷的极性和密度能够影响静脉内给药的免疫清除和细胞摄取,从而决定其递送到靶标的效率,有研究人员采用不同配比的带负电荷脂质的抗坏血酸棕榈酸酯(AsP)和磷脂酰胆碱(HSPC)制备了AsP-PC-LNPs。采用DXR拉曼显微镜在50-3500 cm的位移范围内测定AsP/HSPC不同配比(4%,8%和20% w/w)的拉曼光谱。其中在位移1101cm-1和1063 cm-1处峰的强度比(I1101/I1063)和 1101cm-1和1030 cm-1处峰的强度比(I1101/I1030)均表示脂肪链C-C骨架的紊乱程度。由图4和图5可知,当AsP/HSPC比值分别为4%和8%(w/w)时,与仅含HSPC组无显著差异,而当AsP/HSPC比值增加到20%(w/w)时,两组峰强度均比下降,即过量的AsP增强了AsP-PC水合物中的脂肪链排序。在拉曼位移717cm−1处是C-N 的伸缩振动,随着AsP/HSPC比值逐渐增加,超过8%(w/w)时717cm−1处拉曼位移略有红移。当AsP/HSPC比值继续增加到20%(w/w)时,717cm−1处拉曼位移略微蓝移,结果表明低比例的AsP(≤8%,w/w)使极性的HSPC排列略无序和松散,而过量的AsP使极性的HSPC排列有序,进一步验证了拉曼光谱是研究脂质纳米颗粒骨架和空间排列的有力手段。图4 具有不同AsP比例的AsP-PC-LNPs的拉曼光谱图5 不同AsP比例的AsP-PC-LNPs拉曼光谱I1101/I1063和I1101/I1030的强度比4.小结与展望LNPs在疫苗、核酸等基因治疗等生物技术药物研发方面发挥着重要作用,LNPs中各类脂质配方的组成和配比,影响着疫苗等生物技术药物的稳定性、有效性、安全性。因此选择合适的分析技术,建立可行的分析方法,确保疫苗等生物技术药物中LNPs载体质量与稳定性,具有重要意义。参考文献:[1] Verbeke R, Lentacker I, De Smedt S C, et al. Three decades of messenger RNA vaccine development[J]. Nano Today, 2019, 28: 100766.[2] Karam M, Daoud G. mRNA vaccines: Past, present, future[J]. Asian Journal of Pharmaceutical Sciences, 2022, 17(4): 32.[3] Magnusson L E, Risley D S, Koropchak J A. Aerosol-based detectors for liquid chromatography[J]. Journal of Chromatography A, 2015, 1421: 68-81.[4] Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry[J]. Analytica chimica acta, 2020, 1097: 1-29.[5] Mousli Y, Brachet M, Chain J L, et al. A rapid and quantitative reversed-phase HPLC-DAD/ELSD method for lipids involved in nanoparticle formulations[J]. Journal of pharmaceutical and biomedical analysis, 2022, 220: 115011.[6] Li L, Wang H, Ye J, Chen Y, et al. Mechanism Study on Nanoparticle Negative Surface Charge Modification by Ascorbyl Palmitate and Its Improvement of Tumor Targeting Ability[J]. Molecules. 2022 27(14):4408.
  • Day2之颗粒测试技术多领域应用探讨——第十一届全国颗粒测试学术会议
    p  strong仪器信息网讯/strong 2017年11月16日,为期两天的a href="http://www.instrument.com.cn/news/20171117/233615.shtml" target="_self" title="" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "strong“第十一届全国颗粒测试学术会议暨2017全国粉体测试技术应用研讨会”/strong/span/a在广州如期召开。大会由中国颗粒学会颗粒测试专业委员会主办,华南师范大学物理与电信工程学院、珠海真理光学仪器有限公司承办,会议吸引来自全国各地高校院所、检测机构、仪器设备厂商等颗粒测试‘圈’内120余名专家学者参会。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/6820d2cb-3b42-4aaf-807d-a28bbce0c8a4.jpg" title="01.jpg"//ppbr//pp style="text-align: center "strong会议现场/strong/pp  会议第二天(17日),精彩报告继续上演,共13个学术报告依次进行,依次就颗粒测试技术多领域应用进行探讨,以下为摘录部分精彩内容:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/b9bb6030-76dd-4bc4-a0df-cf0a94fe31b7.jpg" title="IMG_9497.jpg"//pp style="text-align: center "strong报告人:张红霞(天津大学)/strong/pp style="text-align: center "strong  报告题目: 基于干涉成像技术的透明椭球粒子测量/strong/pp  干涉粒子成像(IPI)技术被广泛应用于粒子测量领域,来自于透明球形粒子反射和折射的散射光,在聚焦像面上产生两点像,在离焦像面上产生干涉条纹图,通过测量两点像距离或者干涉条纹频率可以获得粒子的尺寸信息,但对透明椭球形粒子的测量还有待深入研究。张红霞等采用热拉伸法,以标准球形粒子为原料制作椭球粒子,搭建IPI实验系统,采用双CCD同时获取粒子在相互垂直的两种偏振态下的干涉图像,实现球形粒子与椭球形粒子的形态判别及转向判别。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/847db6ee-f89e-4b75-9d6a-70e62b46d9be.jpg" title="IMG_9506.jpg"//pp style="text-align: center "  strong报告人:刘忍肖(国家纳米科学中心)/strong/pp style="text-align: center "strong  报告题目:XRF检测石墨烯粉体材料中的主要杂质元素/strong/pp  石墨烯粉体是我国已具备规模化生产能力的主要石墨烯材料类型,建立准确可靠的物理结构和化学成分分析方法对实现其在多个工业领域的应用至关重要。刘忍肖等发展了一种可对石墨烯粉体材料中所含杂质元素进行快速、无损分析的检测方法。技术内容是基于X射线荧光光谱(XRF)技术对未处理或压片成型的石墨烯材料进行无损、快速检测,信誉ICP-OES、ICP-MS、SEM/EDS等通用测试方法的测试结果进行比对验证,有望成为对石墨烯粉体杂质元素快速、简单、经济、无损、通用的定性半定量分析测试方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/59a3cd28-4401-40c5-a79e-74ebbc99c5f3.jpg" title="IMG_9508.jpg"//pp style="text-align: center "  strong报告人:邱健(华南师范大大学)/strong/pp style="text-align: center "strong  报告题目:关于动态光散射技术三个问题的研究/strong/pp  为提高颗粒测量性能及拓展应用领域,邱健就三个方面的技术问题与大家展开探讨:即探测区杂散光对相干因子的影响、表面效应对颗粒布朗运动的影响、颗粒的定向运动方向对测量的影响等。经过实验得出系列结论:相干因子随着相干或者非相干杂散光的比例增大而减小;相干因子要高,就一定要控制杂散光;在一维宽度受限区域内,颗粒粒径的测量值大于实际值;扩散系数变化与受限宽度有近似线性关系等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/2776d10d-de3e-42c3-a5bc-b672c730193e.jpg" title="IMG_9525.jpg"//pp style="text-align: center "  strong报告人:朱晓阳(国家纳米科学中心)/strong/pp style="text-align: center "strong  报告题目:原子力显微镜在纳米材料高度测量中的应用/strong/pp  纳米尺度检测与表征是纳米科技得以发展的必要条件,AFM作为表面分析设备,因其在高度测量中的准确性和高分辨率被广泛应用在纳米材料的研究中。朱晓阳在报告中详细介绍了用AFM测量纳米片层结构和纳米颗粒高度时的测量过程、数据分析及处理过程和高度测量值的不确定度评定办法。该方法可用于以石墨烯为代表的二维纳米片层材料厚度及层数的测量,及纳米颗粒粒径分析。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/edd56e09-949e-4d72-8baf-ba78a6b085b4.jpg" title="IMG_9545.jpg"//pp style="text-align: center " strong报告人:申晋(山东理工大学)/strong/pp style="text-align: center "strong  报告题目:多角度动态光散射测量的粒度分布加权反演/strong/pp  申晋首先介绍了动态光散射与多角度测量的定义,接着通过自相关函数的加权反演、模拟及实测研究,得出以下结论:DLS测量受噪声和ACF数据的低信息量制约,优化DLS测量系统可降低噪声,MDLS可增加测量数据中的粒度信息;从含噪数据中有效提取粒度信息对MDLS PSD的准确测量具有重要作用;采用基于信息特征加权昂发进行MDLS数据反演能有效提高信息利用,降低噪声影响。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/7192a00a-2d45-4c34-ba8f-706df26ddccf.jpg" title="IMG_9574.jpg"//pp style="text-align: center "  strong报告人:黄晓群(厦门理工学院)/strong/pp style="text-align: center "strong  报告题目:基于散射光偏振分析的流动中球形粒子粒径与速度的同步测量/strong/pp  根据米氏散射理论,单一球形粒子散射光偏振度取决于入射光波长,观测角,粒子直径以及相对折射率。当其他条件确定时,可建立起粒子直径和散射光偏振度的关系,从而通过反演计算得到粒径。黄晓群等采用此散射光偏振分析法对自由扩散于空气中的DEHS粒子进行粒径测量。同时,将实验光路与PIV相结合,基于粒子图像对散射光两线性偏振分量比例进行分析计算,达到同步测量颗粒粒度和速度的目的。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/6ca6e9d1-4416-4dfc-9564-5cc682c7631c.jpg" title="IMG_9604.jpg"//pp style="text-align: center "  strong报告人:王瑞敏(国家纳米科学中心)/strong/pp style="text-align: center "strong  报告题目:多尺寸金纳米颗粒混合体系中蛋白质竞争吸附的同时监测/strong/pp  报告中,王瑞敏介绍到,深入理解纳米颗粒与蛋白质的相互作用是研究纳米材料在生物医药领域应用及其生物安全性的重要基础。纳米颗粒的表面化学、粒径及形状等因素都会影响其与蛋白质的相互作用。发展可以同时分析多尺寸纳米颗粒对蛋白竞争吸附的方法非常重要。其课题组基于DCS技术,对此进行了研究,利用DCS颗粒分析的高分辨率,实现了溶液中六种粒径的金纳米颗粒与牛血清蛋白之间的竞争吸附行为的同时监测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/dc721eb1-7a5d-4cd6-b51d-ed2ea706a438.jpg" title="IMG_9624.jpg"//pp style="text-align: center "  strong报告人:徐捷(天津大学)/strong/pp style="text-align: center "strong  报告题目:颗粒光散射中偏振的研究及应用综述/strong/pp  偏振是光波一个固有参量,在小颗粒光散射中有着重要应用。报告中,徐捷简介了偏振的定义及描述方法后,对各个领域的偏振散射的研究和应用进行综述。发现偏振多用于纳米级小颗粒粒径的测量,散射光的偏振与颗粒形状、均匀性、朝向和各向异性等具有很大关系。基于光散射的颗粒测量中,虽然各种方法有所侧重,但一般都是综合利用散射光的偏振、强度、相位等参量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/911374f0-51bc-484a-913c-5dcc4f80b315.jpg" title="IMG_9632.jpg"//pp style="text-align: center "  strong报告人:孙辉(上海理工大学)/strong/pp style="text-align: center "strong  报告题目:基于一阶彩虹区域高斯光散射的液滴测量研究/strong/pp  雾化广泛应用于燃烧、医药、农业、消防、日常生活等领域,实现雾化过程液滴粒度大小及分布、速度、温度、蒸发速率等参数的测量,对雾化过程中气液流动、传热机理的研究极为重要。据孙辉介绍,光学测量法具有无需取样、非接触、快速等优点,而其中的彩虹技术既可以实现液滴颗粒的测量,也可以测量液滴的折射率和温度。采用高斯光束作为光源,既可以较好的定义测量区的大小,又可以得到较高的光能聚集区,因此可以有效避免多个液滴同时出现在测量区的情况、减小颗粒之间复散射的影响,又可以提高信号强度。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/222c7877-4557-482f-b897-1803b9995c46.jpg" title="IMG_9637.jpg"//pp style="text-align: center "  strong报告人:潘林超(天津大学)/strong/pp style="text-align: center "strong  报告题目:基于环形样品池的激光粒度测量方法/strong/pp  潘林超等为了扩展散射角的接受范围,提高激光粒度仪对亚微米颗粒的测量精度和分辨率,提出了一种结构简单的环形样品池方法。该方法理论上可以连续无缝地接收0-180度散射光,且具有测量下限低的优势。同时,基于环形样品池测量方法,搭建了新型激光粒度仪测量装置,并对50/100/200/400nm的标准粒子样品及有它们组合而成的混合样品进行了测量,并与传统样品池的测量结果进行了比对。结果表明,对于亚微米颗粒,环形样品池方法具有测量下限低、测量精度高、分辨率高和可靠性高的特点。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/802155a1-0ed6-4107-b884-fa48270c9372.jpg" title="IMG_9676.jpg"//pp style="text-align: center "  strong报告人:李庆浩(东南大学)/strong/pp style="text-align: center "strong  报告题目:基于光场成像的气液两相流中气泡三维测量方法/strong/pp  李庆浩在报告中提出一种基于光场成像的气液两相流中气泡三维测量方法,解决了传统成像仅能进行二位测量的问题。利用Paytrix光场相机记录气液两相流场的光场信息,结合光场计算成像技术获取两相流场内气泡的全聚焦图像和重聚焦图像序列。对全聚焦图像和重聚焦图像进行处理,可以获得气泡的三维空间分布、尺寸分布及体积含气率等信息。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/9fdac427-ffa1-493d-9621-7ec7159521ce.jpg" title="IMG_9683.jpg"//pp style="text-align: center "  strong报告人:胡华(天津大学,真理光学)/strong/pp style="text-align: center "strong  报告题目:激光粒度仪测量上限研究/strong/pp  基于米氏散射原理的激光粒度仪是颗粒测量领域应用最广泛的仪器,测量上限是仪器的重要指标之一。报告中,胡华等将奇异值分解方法引入到激光粒度仪光能系数矩阵的特性分析中,定义可以反映粒度变化相对相对的光能分布变化的灵敏度参数,给出了一组特定参数下的测量上限,进而推广得到仪器测量上限与仪器物理参数之间的解析表达式,实验结果证明了该表达式的正确性。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/7515e57e-ebf1-4571-b8b4-3fbda8867c81.jpg" title="IMG_9688.jpg"//pp style="text-align: center "  strong报告人:潘志成(东南大学)/strong/pp style="text-align: center "strong  报告题目:气液两相流中气泡尺寸分布数字图像测量方法研究/strong/pp  鼓泡塔是一种常见的气液反应器,鼓泡塔中气泡的大小和浓度对于研究鼓泡塔中传质过程有着重要意义。潘志成等利用高速摄像法和数字图像处理技术实现鼓泡塔中气泡尺寸分布的测量,分析了气泡尺寸分布规律。实验与分析结果表明,该方法能有效获取水中气泡的尺寸分布情况,并且能够分离粘连气泡,在气液两相流中气泡参数在线测量方面具有较好的应用前景。/pp style="text-align: center "------------------------------------------------/pp strong附/strong:/ppspan style="color: rgb(0, 176, 240) text-decoration: none "strong /strong/spanspan style="text-decoration: underline color: rgb(0, 176, 240) "stronga href="http://www.instrument.com.cn/news/20171117/233615.shtml" target="_self" title="" style="text-decoration: underline color: rgb(0, 176, 240) "Day1之颗粒‘圈’群贤毕至,第十一届全国颗粒测试学术会议广州召开/a/strong/span/ppspan style="color: rgb(0, 176, 240) text-decoration: none " /spanspan style="color: rgb(0, 176, 240) text-decoration: none " /spanspan style="text-decoration: underline "strongspan style="text-decoration: underline color: rgb(0, 176, 240) "a href="http://www.instrument.com.cn/news/20171118/233737.shtml" target="_self" title="" style="color: rgb(0, 176, 240) "图说,颗粒会精彩8环节速览——第十一届全国颗粒测试学术会议回看/a/span/strong/span/p
  • 高能扫描颗粒物激光雷达告诉你:你离污染有多远?
    近年来灰霾现象频发,颗粒物区域污染现象受到社会及政府部门的高度重视。针对区域性大气污染问题,作为一种成熟的主动遥感手段,颗粒物激光雷达为掌握区域大气污染分布和输送规律,解析颗粒物污染特征、污染来源、污染变化趋势,提供了有力支撑。颗粒物激光雷达按工作方式可分为:垂直探测激光雷达和扫描探测激光雷达。其中扫描探测激光雷达是对固定站点监测空白区域、天气突发区域监测的有力补充,对重点污染区域中污染物进行3D扫描和移动观测,可获取区域污染物的空间立体分布、变化规律和排放特征,摸清局地污染物对污染形成的贡献,为环境规划与管理、环境监督与执法及政府宏观决策提供科学依据;并可对污染气团进行走航追踪观测,为短时间空气质量预测提供了及时、有效、准确的数据支撑。 大气颗粒物监测激光雷达大气环境监测激光雷达检测车  中科光电大气颗粒物监测激光雷达(高能扫描系列),采用波长532 nm线偏振激光对大气颗粒物进行遥感探测。雷达通过对532 nm垂直和水平偏振信号的探测,解析大气消光系数、退偏振比廓线、边界层高度、光学厚度等参数,进而可获取大气颗粒物时空分布特征、污染层时空变化、颗粒物输送和沉降等信息。产品特点  采用振镜扫描,避免雷达主体光机及探测器电子学系统振动;  扫描振镜具备自动除尘、除湿、除雪功能,可适用于各种天气状况;  采用单脉冲能量毫焦级固体激光器,重度污染条件下,具有较好的探测能力;  系统拥有GIS地理信息系统,可图形化显示扫描区域颗粒物分布情况,排查污染排放源;  系统具有停电自动关机,来电自动开机功能;  激光器使用寿命长,可达16000小时。产品软件  中科光电扫描激光雷达数据采集分析软件具有固定垂直探测、固定斜程探测、车载垂直探测、车载斜程探测、垂直扫描探测、水平扫描探测六种工作模式。软件通过对激光雷达原始数据进行深数据处理,可得到包括消光系数、退偏振比、光学厚度、能见度、边界层、污染物判别、PM10质量浓度时空分布等基本环境监测数据。 流程图采控软件分析软件产品应用  垂直扫描监测  激光雷达发射脉冲处于天顶方向,望远镜垂直接收来自天顶方向的后向散射信号。能够反演距地面10km以内气溶胶颗粒物的空间分布信息以及时空演变特征。可应用于雾霾判识、污染过程捕获分析、高空大气光化学过程探测、大气边界层结构特征分析、沙尘暴预警、局地污染预警等环境监测。 垂直扫描监测  区域点源排放监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达对烟囱、锅炉、化工厂、电厂、水泥厂等重要的点源实现定点定位扫描,监测污染源烟羽排放的轮廓及强度分布,实时把握污染超标动态,结合当地实际情况建立报警体系,有效实现污染源排查、偷排漏排违法取证工作。 区域点源排放监测  区域线源扫描监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达进行定点定位扫描,结合GIS地理信息,图形化展示交通主干道上空颗粒物的空间分布特征,有效监测区域内若干条交道主干道的排放强度。区域无组织排放扫描监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达对建筑工地、餐饮服务区、汽车修理厂、畜禽养殖场等区域,进行实时在线扫描监测,描绘污染物的水平分布规律,确定污染物的空间分布规律。 区域无组织排放扫描监测  区域污染物分布扫描监测  区域污染物分布扫描监测可手动设置水平扫描(针对区域内)、垂直断面扫描(针对区域边界)等不同扫描方式,实现对工业园区、居民生活区、厂区等敏感地带进行定量评估。结合GIS地理信息,图形化显示区域内污染物时空分布及演变特征。 区域污染物分布扫描监测  走航扫描监测  走航扫描监测,是通过在移动平台上搭载激光雷达系统,采用“驻车扫描”或“边走边测”的工作方式,对区域上空污染团的输入、过境、沉降过程进行实时、在线、连续扫描监测,分析污染物的类型、强度以及演变过程。走航扫描监测结合GIS地理信息,可绘制污染团的运动轨迹,追踪污染团动向,结合大气混合层及气象条件,提供典型污染过程的预警建议。走航扫描监测走航扫描监测  高能扫描颗粒物监测激光雷达系统轻便、易于移动,可实现多种扫描方式,方位角与仰角的扫描角度和探测时间都可自行设置,可实现大范围不同方位的连续自动观测,能够探测到同一仰角不同方位角处及同一方位角不同仰角处的颗粒物的变化,对实时环境监测具有较好的帮助。
  • 重庆大学预算783万元采购纳米颗粒跟踪分析仪等仪器设备
    项目编号:CQU-SS-HW-2023-003   项目名称:重庆大学医学公共实验中心实验设备(Ⅱ)采购   预算金额:783.0000000 万元(人民币)   最高限价(如有):729.0000000 万元(人民币)   采购需求:序号产品名称(设备名称)※数量单位备注1细胞能量代谢分析仪1套(核心产品)该设备经批准可以采购进口产品2纳米颗粒跟踪分析仪1套(核心产品)该设备经批准可以采购进口产品3活细胞工作站1套该设备经批准可以采购进口产品4大容量落地式离心机1套该设备经批准可以采购进口产品5大型灭菌器1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。6组合式全温振荡培养箱1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。   技术需求:序号设备名称技术需求1细胞能量代谢分析仪▲1.1平行检测样品量:一次可满足≥20个样品的平行检测;1.2数据采集:可在同一孔同时检测线粒体功能与无氧代谢,即时反应样本生理状态变化;1.3采用超敏感的惰性光学微传感器和非接触式设计,真正实现检测样本零损伤,在最接近样本的真实状态下,测量出反映样本能量代谢情况的动态数据;1.4实时多因子参数检测:同时分析02/H+,得到实时OCR/ECAR值,侦测有氧与无氧代谢途径;1.5可检测项目:基础代谢率、极限呼吸率、呼吸储备能力、质子漏水平、产氧自由基等有害物的情况等参数;1.6探针类型:检测探针为固态荧光探针,两种独立反应底物;※1.7检测器:配有≥20个独立的光电二极管检测器;1.8传感器:传感器为独立于每个孔的固态光纤传感器;※1.9自动加药槽:每个样品孔配有≥3通道自动加药槽,可按需设定加药程序;※1.10可在实验进程中加药,可调的混合系统,气体驱动的药物传递,自动混匀。整合了自动化药物注入系统,实验进程中可定时定量加入≥3种不同药物。2纳米颗粒跟踪分析仪2.1设备需要满足功能要求:2.1.1在主机内集成了高灵敏度传感器,温控单元以及不同波长的激光选择。便于移动、清洁,适合高通量检测;2.1.2采用整体设计,具有荧光增强检测能力。可以对于悬浮体系中的纳米颗粒进行粒径、散射光强、计数、zeta电位和荧光检测。检测能力使其在蛋白质团聚,外泌体、微泡、药物传递等领域具有广泛的应用。还可以利用荧光标定特定颗粒,单独对这些颗粒检测,而不受到复杂环境的影响;※2.1.3必须具备zeta电位测试功能。2.2技术指标:2.2.1粒径检测范围:0.01-2微米;※2.2.2浓度检测范围:106-109粒子/mL;2.2.3具有单个颗粒跟踪功能的激光散射视频技术,自动准直和自动聚焦;※2.2.4激光光源:双激光一体化配置,软件控制激光选择,无需拆卸;※2.2.5激光光源和相机同步移动,可自动测量样品至少10个测量位置达到有效统计点;2.2.6在1分钟内至少可测量样品1000个以上的颗粒,保证样品数据采集的有效性;※2.2.7仪器具备荧光测量功能,不同位置点的测量必须具有快速测试模式,在荧光淬灭前测量到样品10个不同位置的荧光数据;2.2.8光学系统:高灵敏度的CMOS相机,相机速度25fps;※2.2.9测量池必须是石英玻璃测量池,插入式设计,无需拆卸即可自动冲洗;2.2.10激光光源和检测器的位置必须全自动调节,无需人工操作;※2.2.11 Zeta电位测量范围:-400mV—400mV;2.2.12自动提示样品浓度与相机设定的匹配程度;※2.2.13可自动判断数据可靠性,并给出离散原因;2.2.14软件功能:提供布朗运动可视视频,提供平均粒径和分布宽度参数,提供颗粒浓度信息,提供粒径-数量分布和体积分布曲线,提供 Zeta 电位分布,可以在不同粒径范围进行分段计算,提供颗粒分布累积曲线,数据管理:可视频、文本、PDF、单一或叠加输出。3活细胞工作站※3.1系统包括高分辨荧光显微镜成像模块和活细胞培养模块,可通过电脑调用预设实验程序自动进行成像实验。3.2全电动荧光高分辨成像系统:3.2.1研究级全自动倒置荧光显微镜,可具备明场、荧光、相差、彩色明场成像功能;▲3.2.2相差具有立体浮雕效果,兼容塑料底耗材;3.2.3电动载物台,XY行程≥114mm×73mm;▲3.2.4物镜:至少四个,其中高倍物镜为水镜,NA≥1.2,可以自动添加水;3.2.5配有防震台;▲3.2.6配备硬件自适应焦面控制系统,兼容明场和荧光,可实现自动样品寻找和焦面寻找,并且可以在活细胞实验中维持焦平面的稳定;3.2.7机身预留灌流接口,可外置灌流系统;3.2.8配有用于76×26mm玻片、多孔板、35mm培养皿、腔室载玻片的适配器;※3.2.9拥有至少4色激发光,能同时激发DAPI,GFP,RFP,CY5等染料;※3.2.10至少配置4个高灵敏度荧光检测器,并可以4个通道同时成像;※3.2.11配备实时高分辨成像技术,最佳光学分辨率XY≤140nm;※3.2.12分辨率不低于400万像素条件下,同时4色成像速度≥20fps;▲3.2.13 4个荧光检测器QE量子效率:≥45%。※3.3环境控制模块:通过成像软件进行环境控制,温度、CO2控制及湿度控制均可由系统软件实现。3.4电脑工作站与软件系统:▲3.4.1电脑主机一台:处理器:不低于Intel Xeon Gold 5222;内存≥128GB,硬盘≥10TB;独立显卡≥8GB;显示器:≥32寸高对比度广视角液晶显示器,Win10专业版操作系统;含DVD刻录光驱;3.4.2配置UPS不间断电源一台;▲3.4.3软件功能:灵活的实验设计功能,可以针对实验需求灵活设置实验参数和自动化实验流程;多维图像成像功能,控制显微镜进行Time-lapse拍摄、多点拍摄、细胞跟踪、Z轴整合、自动对焦、样品的三维重建;图像处理和分析工具:包括可进行蛋白表达的定量分析、共定位分析、细胞内目标观测物的定量测定、动态示踪、量化参数列表和运动趋势/模式作图和视频制作等;3.4.4仪器可为后续信息化和智能化管理预留接口。4大容量落地式离心机※4.1最高转速不低于:29,000rpm,最大离心力不低于:100,605×g,最大容量≥4,000mL;▲4.2转速控制精度不高于:±50rpm;4.3具备密码保护功能;▲4.4程序保存不低于:99个;▲4.5加速至少可设定档位:9档,减速至少可设定档位:10档;4.6热输出<2.0kw,噪音<62dB;※4.7控制系统:微电脑控制,可简单快捷设定运行条件和运行参数,触摸屏液晶显示界面;4.8驱动系统:能有效降低升降速时间;▲4.9运行监测:实时显示运行曲线图,动态惯量检测功能,提高运行中的安全性;4.10转头识别与锁定:自动识别,自动锁定,具备转头管理功能,提高操作安全性;4.11温度设定范围:-20至+40℃,温度步升±1℃,温度精准度±2℃,最高转速下可保持4℃;※4.12安全系统:门互锁,对位不平衡检测(容忍度5%),超速和超温保护。5大型灭菌器▲5.1执行标准:中国标准GB8599;※5.2基本需求:采用脉动真空灭菌技术,300L≤容积≤400L,提供压力容器质量证明书、竣工图证明;▲5.3设计压力至少:0.25Mpa(-0.1),设计温度至少:139℃;▲5.4设计年限至少:8年(16000次灭菌循环);▲5.5运行时间:85min;※5.6程序最少包含:121℃塑料物品灭菌、134℃金属物品灭菌、134℃织物灭菌、121℃开口容器液体灭菌、121℃固体废弃物灭菌、121℃快速液体程序、BD测试、真空测试、自定义程序;5.7外形尺寸:尺寸1:1215×1880×1190mm;5.8夹套、门板、门档材质:304不锈钢或同类型档次材质;5.9管路:304不锈钢或同类型档次材质卫生级管路,卡箍连接;▲5.10工艺:至少满足手工焊接、无下沉工艺水平;5.11安装方式:地上安装;5.12主体结构:环形加强筋结构,内腔强度和稳定性更高;▲5.13生产厂家至少为:专业灭菌设备生产厂家,国家认定的企业技术中心,通过ISO9001、ISO13485、环境管理体系、职业健康安全管理体系认证,并提供相应证明;※5.14安全性能:压力容器安全联锁装置、超压自动泄放功能、夹套、内室各1个安全阀、漏电过载保护、经过电磁兼容检测。6组合式全温振荡培养箱6.1外形尺寸:一层、二层或三层叠加组合,以最小的占地面积为用户提供最大的使用空间;6.2三维一体的偏三轮驱动,运转平滑、稳定、耐久、可靠;▲6.3具有超温报警功能及异常情况自动断电功能;▲6.4具有断电恢复功能,避免因停电、死机而造成的数据丢失问题;6.5流线型外观,美观大方;内衬采用圆弧角镜面不锈钢设计,便于清洁,不容易滋生细菌、防腐蚀;外壳采用静电喷塑;▲6.6中空钢化玻璃门,方便随时在不开门情况下在各个角度观察箱体内部情况;6.7人性化设计,下两层为下翻式开门,第三层为上翻式开门,摇板可自由抽出,方便装卸摇瓶,每层可独立控制,各层可在不同温度转速下同时运转或根据需要运行一层、两层或三层;▲6.8精选优质进口压缩机、无氟环保制冷剂,噪音低、制冷效果好,确保设备在低温状态下长时间稳定运行;6.9配备滤波器磁环,减少外界和自身对机器稳定性的干扰;6.10人性化设计的开门即停功能,使用更加安全快捷;※6.11具有紫外线灭菌功能;▲6.12产品升级方案:可选配光照系统,光照强度可高达16000LX,高效节能,光效率高,1%—100%步进1%可调(1%、2%、3%—100%)使用寿命超长(可升级多种光源);6.13拥有数据记录功能,每分钟记录一次数据,可记录近三个月的数据,并且可显示温度、速度曲线,方便数据的分析;▲6.14配备高质伺服电机,控制速度精确、高速性能好、稳定性强;6.15特殊的制冷工艺,制冷量可调节,温度控制更加精准;▲6.16独特定时除霜功能,1—89分钟可自由设定,除霜间隔30—600分钟可调,能确保长时间在低温状态下运行时蒸发器不结冰;※6.17 LCD触摸屏,设定温度、转速、时间和实测温度、转速、剩余时间在同一界面显示,不用相互切换界面,观察更直观;6.18操作界面加密锁定功能,杜绝重复操作和人为误操作;可自由设定摇板正转或反转;强制对流的风扇常开或自动;※6.19振荡频率:可到达300rpm;※6.20温控范围:5~60℃;※6.21恒温精度:±0.5℃;※6.22温度均匀度:±0.8℃。   设备配置清单:序号设备及配件名称数量单位1细胞能量代谢分析仪1套1.1细胞能量代谢分析仪主机1台1.2数据处理和控制工作站(内置操作及分析软件一套)1套1.3微孔板套装(每套含6个探针板,10个细胞培养微孔板)2套1.4实时ATP速率测定试剂盒(6包/套)1套1.5细胞线粒体压力测试试剂盒(6包/套)1套2纳米颗粒跟踪分析仪1套2.1纳米颗粒跟踪分析仪主机(包含双激光模块,zeta电位模块和CMOS相机)1台2.2石英测量池1个2.3长通荧光滤光片1套2.4测量分析软件1套2.5标准样品1个2.6控制及数据采集系统1套3活细胞工作站1套3.1全自动活细胞显微成像系统主机,含全套适配器1台3.2采集与分析软件1套3.3计算机工作站1套3.4防震台1个3.5电脑桌2个3.6UPS不间断电源保护1个3.7除湿器2台3.8数据分析用电脑(含免费版软件、刻录光盘)1台3.9共聚焦皿1箱4大容量落地式离心机1套4.1离心机主机1台4.28×50mL定角转头,最高转速≥25,000rpm,最大相对离心力≥75,000×g1个4.34×1000mL定角转头,最高转速≥9,000rpm,最大离心力≥16,000×g1个4.450mL聚丙烯(PP)离心瓶≥50个4.510mL离心瓶≥50个4.61000mL聚碳酸酯(PC)离心瓶≥12个4.7250/500mL聚碳酸酯(PC)离心瓶≥12个4.810mL适配器8个4.9250/500mL适配器4个5大型灭菌器1套5.1大型灭菌器(设备包含压缩气、软化水等配套设备)1套6组合式全温振荡培养箱1套6.1三层组合式全温振荡培养箱1套   合同履行期限:中标人应在采购合同签订后90日内交货,交货后30日完成安装调试。   本项目( 不接受 )联合体投标。   获取招标文件   时间:2023年01月30日 至 2023年02月06日,每天上午9:00至12:00,下午12:00至18:00。(北京时间,法定节假日除外)   地点:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   方式:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   售价:¥0.0 元,本公告包含的招标文件售价总和   提交投标文件截止时间、开标时间和地点   提交投标文件截止时间:2023年02月20日 09点30分(北京时间)   开标时间:2023年02月20日 09点30分(北京时间)   地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)
  • 麦奇克Sync:添加剂颗粒的粒径和粒形分析在质量控制和研究领域中的应用
    p style="text-indent: 2em text-align: justify "span style="text-indent: 2em font-size: 16px "硅灰石是一种具有许多特殊性质的矿物质,使其可以用于其他产品的添加剂/填料以增强其特性。比如它可以增加塑料,油漆,陶瓷,建筑产品和冶金过程的性能。硅灰石的针状形貌,白度和助熔性能对陶瓷制造是非常重要的。 在陶瓷制造业中,随着烧制后亮度的增加和绿色/烧制强度的增加,收缩率将下降。对于油漆而言,在提高耐用性的同时促进了其平坦性及悬浮性。在各种塑料应用中,不仅改善了拉伸强度,而且降低了树脂含量及提高了热稳定性和粒径的稳定性。在许多应用中,其针状特性使其能够与许多其他物质(如玻璃和纤维)以及非纤维材料(如高岭土,云母,重晶石和石膏)竞争。作为填充材料,增强的强度随着尺寸的减小和宽长比的减小而增加。 化学硅灰石是由方解石和二氧化硅反应形成硅酸钙和二氧化碳而形成的。/spanbr//pp style="text-indent: 2em text-align: justify "硅灰石的白色针状晶体结构具有与大多数颗粒体系不同的宽长比。这使得它很容易通过在动态图像分析中表征的样品混合物中的形态来识别和量化。作为各种颗粒体系增强剂的添加剂/填料材料必须是以特定比例添加以获得最佳增强效果。/pp style="text-indent: 2em text-align: justify "20世纪70年代中期 美国麦奇克Microtrac引入激光衍射技术,激光衍射技术现已经成为工业粒度分析的主导技术。它的测量速度,耐用性和易用性使其成为可靠的输出和输入质量控制的标准应用方法。激光衍射技术是以等效球体直径的体积百分比来提供完整的粒径分布数据。/pp style="text-indent: 2em text-align: justify "动态图像分析技术在20世纪80年代就被引入到粒子表征领域。其核心技术(计算机速度和内存,数码相机分辨率和速度,光学镜头以及快速明亮的频闪照明)的飞跃发展促进了动态图像分析技术的迅速发展。这些硬件优势与高级的后期测量软件的增强功能相匹配,使图像分析成为当今粒子表征市场最强大的工具之一。它提供多达30种不同的粒度和形状分布。 随着科技的发展这两种技术(激光衍射技术和动态图像分析技术)现在已经整合到一个一台仪器中,能够同时测量流经同一样品池的同一样品。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/19900d83-eb79-46bf-8f53-1610fc54d5d8.jpg" title="3.png"//pp style="text-indent: 2em text-align: justify "在很多研究领域和工业材料加工质量控制过程中,硅灰石作为添加剂,很多用户只关注到用激光衍射技术测量硅灰石粒径的大小,但我们知道粒径测试归于识别和量化不同形状的颗粒效果不是很好,因为形状差别很大的颗粒可能具有相同的粒径,所以我们需要在激光衍射技术的基础上进一步研究硅灰石的形态参数。我们知道硅灰石需要以特定比例添加到各种颗粒体系以获得最佳增强效果。 硅灰石的针状形状使其区别于添加的正常微粒体系。 颗粒宽度除以颗粒长度得到的纵横比(W / L纵横比)是由动态图像分析技术测量和报告的形状参数之一。 这个参数可以非常方便的识别和量化颗粒混合物中硅灰石的量,由于Microtrac的Sync集激光衍射技术和动态图像分析技术于一台仪器的测量技术,能够提供每个单独颗粒的多于30种的大小和形态参数,从而为以数量和体积分布的结果提供较多的数据源,鉴于硅灰石的针状形状,宽长比是一个很好的参数来用于鉴定,分离和量化不合格批次中混合物中的添加比例。如果加入硅灰石的量较多会增加成本且会抑制流动,加入硅灰石的量较少不能达到需要的强度性能。所以需要一个合适的比例。通过动态图像分析技术设定W/L的某个阀值,在随机的可视化软件中经过搜索低于这个阀值的所有硅灰石的颗粒,就可以自动计算出加入的硅灰石占总量的比例。/pp style="text-indent: 2em text-align: justify "粒度在添加剂生产过程中是一个非常重要的参数,最近几年越来越来的用户不止是关注原料的粒度更关注颗粒的粒形分析,通过对这些颗粒的粒度粒形分析,可以提高产品的性能。Microtrac的Sync激光粒度粒形分析仪在同一样品上同时测量颗粒形状和粒度分布的自动化仪器,为颗粒系统混合物的工业的质量控制和各种研究领域提供了非常快速的分析,以确保任何混合物具有最佳比例的添加剂以获得理想的性能。在同一样品上同时测量颗粒形状和粒度分布的自动化仪器为颗粒系统混合物的QC要求提供了非常快速的分析。/pp style="text-indent: 2em text-align: justify "美国麦奇克Microtrac有限公司是世界上著名的激光应用技术研究和制造厂商。2018年3月发布了世界首款同步激光粒度粒形分析仪Sync,充分实现了激光粒度干湿两用,粒度、粒形同步测量!大昌华嘉DKSH是具有200年历史的瑞士国际贸易公司,作为美国麦奇克Microtrac在国内的总代理,负责其所有产品、技术的推广销售和服务。在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,在全国拥有14家办事处、5处维修点,3家应用实验室具有良好的市场声誉。2017年大昌华嘉销售麦奇克粒度仪近200台,在粒度仪方面,大昌华嘉在北上广的应用实验室皆配有应用工程师,提供多样化样品测试解决方案,为客户提供1年的免费质保,同时能为客户也提供预防性维护服务,客户可以选择延保,或者定期上门维护的服务。公司有十多位服务工程师分布在全国各维修网点,能对用户需求进行24小时快速响应。专业的SMT服务管理系统,要求工程师到客户处服务完成后需要客户在TAB上签字确认,后勤在办公室就可以实时收到服务是否完成以及客户的满意度。另外,大昌华嘉每年就粒度仪举办相关的市场活动近30场,并提供regular的用户培训会,用户可在网站和微信公众号随时报名参加。/pp style="text-indent: 2em text-align: justify "百舸争流,迎风直上!大昌华嘉和麦奇克粒度仪会继续保持在传统领域(化工,材料等)的优势,并加强在新的领域的开拓。随着国内用户对粒度分析的技术要求越来越专业,麦奇克也会根据客户不断提出的新要求来研发和推出新品,Sync就是最好的证明。/pp style="text-indent: 0em text-align: right "(作者:严秀英、姜丹)/p
  • 综述:细胞外泌体颗粒表征测量技术新进展
    外泌体最早发现于体外培养的绵羊红细胞上清液中,是细胞主动分泌的大小较为均一,直径为40~100纳米,密度1.10~1.18 g/ml的囊泡样小体。  细胞外泌体携带多种蛋白质、mRNA、miRNA,参与细胞通讯、细胞迁移、血管新生和肿瘤细胞生长等过程并且有可能成为药物的天然载体,应用于临床治疗。然而,测量技术手段的局限限制了外泌体在这些领域的研究进展。所以,在这篇文章中,总结了外泌体的纯化方法,比较了现存各种外泌体测量技术,重点介绍了一种新的测量技术,纳米微粒追踪分析术,在外泌体尺寸和表征研究中的应用。  1. 外泌体提取及方法学评价  到目前为止,仍没有一种方法能同时保证外泌体的含量、纯度、生物活性。  1.1 离心法  这是目前外泌体提取最常用的方法。简单来说,收集细胞培养液以后依次在300 g、2 000 g、10 000 g离心去除细胞碎片和大分子蛋白质,最后100 000 g离心得到外泌体。此种方法得到的外泌体量多,但是纯度不足,电镜鉴定时发现外泌体聚集成块,由于微泡和外泌体没有非常统一的鉴定标准,也有一些研究认为此种方法得到的是微泡不是外泌体。  1.2 过滤离心  过滤离心是利用不同截留相对分子质量(MWCO)的超滤膜离心分离外泌体。截留相对分子质量是指能自由通过某种有孔材料的分子中最大分子的相对分子质量。外泌体是一个囊状小体,相对分子质量大于一般蛋白质,因此选择不同大小的MWCO膜可使外泌体与其他大分子物质分离。这种操作简单、省时,不影响外泌体的生物活性,但同样存在纯度不足的问题。  1.3 密度梯度离心法  密度梯度离心是将样本和梯度材料一起超速离心,样品中的不同组分沉降到各自的等密度区,分为连续和不连续梯度离心法。用于密度梯度离心法的介质要求对细胞无毒,在高浓度时粘度不高且易将pH调至中性。实验中常用蔗糖密度梯度离心法,在离心法的基础上,预先将两种浓度蔗糖溶液(如2.5 M 和0.25 M)配成连续梯度体系置于超速离心管中,样本铺在蔗糖溶液上,100 000 g离心16 h,外泌体会沉降到等密度区(1.10~1.18 g/ml)。用此种方法分离到的外泌体纯度高,但是前期准备工作繁杂,耗时,量少。  1.4 免疫磁珠法  免疫磁珠是包被有单克隆抗体的球型磁性微粒,可特异性地与靶物质结合。同样,在离心法的基础上,预先使磁珠包被针对外泌体相关抗原的抗体(如CD9、CD63、Alix)与外泌体共同孵育,蒸馏水冲洗后,重悬于PBS缓冲液中。这种方法可以保证外泌体形态的完整,特异性高、操作简单、不需要昂贵的仪器设备, 但是非中性pH和非生理性盐浓度会影响外泌体生物活性,不便进行下一步的实验。  1.5 色谱法  色谱法是利用根据凝胶孔隙的孔径大小与样品分子尺寸的相对关系而对溶质进行分离的分析方法。样品中大分子不能进入凝胶孔,只能沿多孔凝胶粒子之间的空隙通过色谱柱,首先被流动相洗脱出来 小分子可进入凝胶中绝大部分孔洞,在柱中受到更强地滞留,更慢地被洗脱出。分离到的外泌体在电镜下大小均一,但是需要特殊的设备,应用不广泛。  2. 外泌体测量各种方法的比较  2.1 电子显微镜  扫描电子显微镜(SEM)的工作原理是以能量为1-30KV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成象,获得试样表面微观组织结构和形貌信息。高的分辨率。由于超高真空技术的发展,场发射电子枪的应用得到普及,现代先进的扫描电镜的分辨率已经达到1纳米左右,足够用来进行外泌体尺寸的测量。鉴于SEM的工作特点,在外泌体研究中,能够直接观察到样品中外泌体的形态。并且SEM具有很高的分辨率,能够鉴别不同大小不一的外泌体。但SEM对样品的预处理和制备上面要求较高,样品的准备阶段比较复杂,不适合对外泌体进行大量快速的测量。而且由于外泌体经过了预处理和制备过程,无法准确的进行外泌体浓度的测量。  2.2 动态光散射技术  动态光散射是收集溶液中做布朗运动的颗粒散射光强度起伏的变化,通过相关器将光强的波动转化为相关曲线,从而得到光强波动的速度,计算出粒子的扩散速度信息和粒子的粒径。小颗粒样品的布朗运动速度快,光强波动较快,相关曲线衰减较快,大颗粒反之(图1)。  图1 大颗粒和小颗粒光强波动及相关曲线  在外泌体研究中,动态光散射测量敏感度较高,测量下限为10纳米。相对于SEM技术来说,样品制备简单,只需要简单的过滤,测量速度较快。但是动态光散射技术由于是测量光强的波动数据,所以大颗粒的光强波动信号会掩盖较小颗粒的光强波动信号,所以动态光散射不适合大小不一的复杂外泌体样本的测量,只适合通过色谱法制备的大小均一的外泌体的尺寸测量,并且无法测量样品中外泌体的浓度。  2.3 纳米微粒追踪分析术  纳米微粒追踪分析术(以下简称NTA)是一种比较新颖的研究纳米颗粒的方法,它可以直接和实时的观测纳米颗粒。NTA通过光学显微镜收集纳米颗粒的散射光信号,拍摄一段纳米颗粒在溶液中做布朗运动的影像,对每个颗粒的布朗运动进行追踪和分析,从而计算出纳米颗粒的流体力学半径和浓度。  NTA系统的工作原理是将一束能量集中的激光穿过玻璃棱镜对样品(悬浮颗粒的溶液)进行照射(光路图见图2)。图2 NTA激光光路图    激光光束从较小角度入射进入样品溶液,照亮溶液中的颗粒。配备相机的光学显微镜,被放置在特定的位置上,收集视野中被照亮的纳米颗粒发射出的光散射信号。 样品池有大约500微米的深度,采样点激光照亮宽度为20微米,这个数值和光学显微镜的聚焦的视野深度相匹配。相机会进行60秒的影像拍摄,每秒30个采样画面。颗粒的运动过程被NTA软件进行分析。NTA软件在每幅被记录的画面中鉴别和追踪做布朗运动的纳米颗粒。  根据颗粒的运动速度,通过二维 Stokes-Einstein方程计算颗粒流体力学半径  在方程中2是均方位移,KB是Boltzmann常数 T是溶液的温度,单位是Kelvin;ts是采样时间,例如,1/30 fpsec = 33 msec;&eta 是溶液粘度;dh是流体力学直径。 NTA检测颗粒大小的范围和颗粒本身的折光指数相关。测量的下限取决于被研究颗粒和背景之间信噪比,也就是颗粒的散射光强度和背景的光强差距。颗粒的散射光强度根据Rayleigh散射方程,受到以下因素的影响   其中,d是颗粒的直径,&lambda 是入射光的波长,n是颗粒和溶液的折光系数比。通常来说,生物样品,如外泌体等,折光系数较低,所以测量下限为30-40纳米。  由于NTA技术是直接追踪样品中每一个纳米颗粒,决定了NTA对复杂的样品具有极高的分辨率,为了证明NTA对于复杂样品的分辨能力,我们将100纳米和300纳米两种不同大小的聚苯乙烯颗粒按照5:1的数量混合,使用NTA进行测量(图3A)。尽管其分布图形有一定的重叠,但两种不同大小的纳米颗粒的峰清楚的区分开来。这种对复杂样品的分辨能力对于外泌体这样的研究对象来说是非常重要的。  NTA也能对样品浓度进行直接测量。对一系列浓度为1× 108-8× 108的100纳米单分散样品进行测量,可以看到NTA测量浓度结果和实际浓度存在着很好的线性相关(图3B)。对于多分散体系,测量结果的准确取决于仪器参数的设定(照相机快门速度和光圈),恰当的参数设定可以保证不同大小颗粒都被NTA软件追踪和计算。图3 A. 100纳米和300纳米混合样品NTA测量 B. NTA测量浓度和样品实际浓度线性相关  NTA还具有分析荧光样品的能力,NTA有四种不同波长405纳米, 488纳米, 532纳米和635纳米的激光器可以选择,在搭配相应的滤光片,从而实现对荧光样品的测量。将100纳米的荧光标记的颗粒和200纳米的非荧光颗粒用同一溶剂做成混合样品,使用NTA进行测量(图4),图4中,蓝色的线显示为NTA的光散射模式,可以看到尽管100纳米和200nm纳米颗粒的分布图有重叠,但还是清楚的区分了100纳米和200纳米的峰值。然后使用荧光滤光片进行分析,只观测到100纳米的荧光标记的纳米颗粒(红线) 图4 NTA荧光样品测量  由于外泌体表面有标志物CD9,CD63等跨膜分子的存在,在复杂的背景环境下(如血清中),可以用荧光抗体标记外泌体,在用NTA的荧光测量功能实现在复杂背景下对外泌体的测量。NTA相比较于流式细胞仪的荧光功能,分辨率较高,测量荧光颗粒的下限可以达到30-40纳米,而流式细胞仪的测量下限为400纳米,即使对于最新一代的数码流式细胞仪,其测量下限已经达到100纳米,但由于它仍然建立在监测光信号的基础上,所以测量和准确性和分辨率仍然不可靠。所以在外泌体荧光功能测量上,NTA具有独特的优势。  3. 总结  外泌体作为生物标志物的研究目前处于起步阶段,但临床应用已显示出良好的前景。 在临床诊断中,简单快速的在复杂的生物背景下(如血浆,尿液)测量外泌体浓度,大小和表征数据是必备的要求。目前存在的方法都无法完美的解决这一问题。NTA作为一个相对新的测量技术,具有实时观测,较高的分辨率,准确的浓度测量和荧光测量功能,提供了对外泌体大小和浓度研究的新的思路。  (作者:张帅,英国马尔文仪器公司生物科学专家,负责生命科学相关产品的推广与技术支持。)  注:文中观点不代表本网立场,仅供读者参考。
  • 老中青专家学者齐聚西安颗粒学术盛会
    仪器信息网讯 2010年8月16日,“中国颗粒学会第七届(2010年)学术年会暨海峡两岸颗粒技术研讨会”在西安市陕西宾馆隆重开幕。 其中,“颗粒测试与应用”分会场的专家学者报告简介如下:法国鲁昂大学任宽芳博士报告题目:小粒子光散射理论和测量技术的新发展  任宽芳博士主要介绍了三种光学测量技术的新发展:“相多普勒仪、新的彩虹测量术和数字全息。相多普勒仪是流体测量中不可或缺的测量技术;新的彩虹测量术可通过测量散射场的角分布快速准确地测量粒子的尺寸及其分布,且不需严格角度定标;新发展的数字全息和相多普勒仪利用特殊的椭圆形高斯波,可以同时测量粒子的尺寸分布及三维速度场。”上海理工大学苏明旭副研究员报告题目:颗粒超声层析成像的散射特征分析  苏明旭副研究员通过边界元方法计算了单个球形颗粒的散射特征,对比分析了用于颗粒超声层析成像的颗粒散射场特性。对于管内放置有单个和三个球形颗粒的声场进行的数值模拟,并由二值逻辑反投影图像重建算法对其进行了空间分布的重建,分析了重建图像的误差。结果验证了基于边界元方法的数值模拟和重建过程是有效的。西安电子科技大学李祥震博士报告题目:高斯波束入射梯度折射率微珠的散射强度分析  李祥震博士表示:“近年来,随着工程应用的需要,玻璃微珠研究和制备得到了较快的发展。其中,梯度折射率玻璃微珠的研究开始兴起。利用几何光学近似方法,计算出在轴高斯波束入射情况下梯度折射率微珠的散射强度分布,再通过与广义洛伦兹-米理论计算结果的对比,就可以分析不同散射角度上表面波等因素的影响。”南京理工大学陈守文副研究员报告题目:纳米TiO2生产及应用现场浓度检测方法的研究——二安替吡啉甲烷分光光度法  陈守文副研究员在现有相关标准的基础上,提出了纳米TiO2生产及应用现场空气中纳米粉尘采集与分析一体完成的方法。通过对二安替吡啉甲烷分光光度法对纳米 TiO2 测定可行性的研究,详细分析了该方法的性能,包括测量范围、检测限、精密度、准确度和稳定度的分析,结果表明,该方法能较好的满足纳米TiO2 的分析需要。华南师范大学韩鹏副教授报告题目:一种新的用于光子相关光谱法的反演算法——累计加权函数法  韩鹏副教授介绍说:“基于抑制噪声,增加信号差别的思路,研究开发了一种有利于光子相关光谱反演运算的累计加权函数法。目前,新研制出的光子相关器仅有名片大小,物理通道有245个,并内置了光子技术器,每秒的最大光子数为3M。而其后续的研究包括严格的数学证明、合适后续算法的选择、累计函数的改进等方面。”上海理工大学沈嘉琪博士报告题目:电流模式动态光散射纳米颗粒测量技术研究进展  沈嘉琪博士说到:“动态光散射技术常用于胶体稳定性的表征和某些过程的连续监测,但粒径测量分辨率较低。传统的基于90°散射角光子计数的动态光散射技术的高浓度效应大多表现为多次光散射。实践证明,通过减小散射区域可以有效抑制多次光散射,从而提高动态光散射技术的浓度上限。”清华大学于溯源教授报告题目:不均匀荷电对细颗粒相互作用的影响  于溯源教授介绍到:“通过对颗粒荷电机制的分析,认为颗粒所带的外来电荷应视为一种不均匀分布电荷。同时,给出颗粒荷电不均匀程度的定量表示和比较方法,计算其产生的电势。应用偶极子近似方法计算两个球形不均匀荷电颗粒的相互作用能,并通过不均匀模型和点电荷模型的相互作用能之比讨论两个颗粒的相互作用。”上海石油化工研究院祁晓岚高工报告题目:复合孔道分子筛的孔结构表征  祁晓岚高工谈到:“基于Canny算子原理的基础上,详细讨论了NMS图像灰度统计值的特点和影响因素,发现通过找到直方图上双峰间的‘谷’,将两端的灰度值作为Canny算子的双阙值,这在处理颗粒图像方面是最行之有效的方法。经实验证明,该方法比已有的自适应算法更加准确,它能够最大程度地去除噪声,保留有效边界。”中国石油大学陈胜利教授报告题目:单分散聚苯乙烯微球和SiO2微球粒度标准物质的研制  陈胜利教授首先介绍了国内外研制粒度标准物质的现状,并通过研究,建立了溯源NIM和NISI的微球粒径定值方法-紧密排列-光学显微镜和紧密排列-扫描电镜两种绝对定值法,研制了11种国家一级粒度标准物质和11种国家二级粒度标准物质,单分散微球合成水平与粒度标准物质的定值水平与NISI相当。哈尔滨工业大学甘阳教授报告题目:Surface Chemistry of Aluminum (Hydro-)oxide Particles by Site-Specific AFM Colloidal Probe Technique  甘阳教授利用技术使一个SiO2(已知半径及表面能)的小球粘附在氢氧化铝001晶体面上,通过原子力显微镜(AFM)定位在此区域测量两者之间的粘附力。研究结果与传统观点相悖,测得该区域的表面活性为5.9,表明氢氧化铝颗粒化学表面有活性,也同时证实了国外Bickmore团队对表面官能团的研究结果,云林科技大学陈文章教授报告题目:Au/Polypyrrole 奈米混材于葡萄糖生物感测器之应用  陈文章教授指出:“利用同步辐射X-光可单步骤合成分散均匀的Au-PPy奈米混材,并可有效地控制颗粒粒径,同时,Au-PPy奈米混材能有效提升电极电活性面积约达16倍。另外,Au-PPy奈米混材修饰性葡萄糖感测器的线性范围广(为0~600mg/dl),且感测器灵敏度可达0.511μA/mM,比未修饰前提升了约65%。”全国颗粒学标准化技术委员会李兆军秘书长报告题目:颗粒标准化发展情况  李兆军秘书长首先介绍了国外标准制定组织以及当前有关于颗粒的标准情况。李兆军秘书长表示:“ 2007年我国批准筹建颗粒学标委会,目前已列入国家标准化体系工程工业二组体系表,目标是赶上国际标准的步伐,转化国际标准,发展成为我国自己的颗粒标准化体系,同时还要尽可能将我国自主知识产权转化为标准(国家/国际标准)。”  另外,本次会议还设置了“优秀研究生论文奖”,因此“颗粒测试与应用”分会场邀请了一部分研究生做报告。部分学生报告简介如下:  南京理工大学峁平  报告题目:纳米粉尘湿法采集与检测技术研究  上海理工大学呼剑  报告题目:超声衰减谱法表征纳米颗粒的粒度分布  上海理工大学秦授轩  报告题目:粉体颗粒粒度分布在线测量方法技术研究  上海理工大学王华睿  报告题目:布朗运动和定向流动下激光自混频的研究  上海理工大学于彬  报告题目:关于逆向傅立叶变换颗粒测量技术的讨论  上海理工大学薛明华  报告题目:基于超声法的颗粒两相介质多参数测量  相关链接:中国颗粒学会第五届理事会成立
  • 大气颗粒物激光雷达成为雾霾和沙尘天气监测多面手
    针对各地环境空气质量评估考核过程中均未将沙尘天气过程期间数据剔除,环境保护部于2017年1月4日印发《受沙尘天气过程影响城市空气质量评价补充规定》(以下简称《规定》)。依据《规定》,全国地级及以上城市环境空气质量评估、考核和排名过程中剔除沙尘天气过程的影响。规定中提出“各地环保部门如遇沙尘天气过程,当天将沙尘天气过程影响时段、影响范围和其他佐证材料报送中国环境监测总站。这些数据也将作为评价、考核和排名的重要依据。”《规定》中的佐证材料包括卫星环境应用中心遥感监测结果、全国沙尘暴监测网监测数据以及气象部门发布的沙尘信息等。在沙尘天气的扣除条件和筛选方法上,中国环境监测总站工程师王帅说:“当沙尘天气过程中沙尘源区城市PM10小时浓度持续两个小时超600μg/m3,或持续1个小时超过1000μg/m3,可以剔除沙尘天气过程影响区域范围内源区城市及下游城市颗粒物监测数据。”近年来,地基遥感的主动探测手段,如激光雷达不仅能够有效判识雾霾的空间分布,对沙尘天气发生的过程、时间、沙团输入的高度、强度等特征,都可以进行有效监测。1、什么是大气颗粒物激光雷达呢?大气颗粒物激光雷达像“探针”一样,通过不断地向大气中发射激光束,扫描大气中的信息,通过与颗粒物和气态分子相互作用后产生散射光来获取不同高度处污染物的浓度分布信息,类似医学上的“CT”技术,不同的是,激光雷达获取的是污染物的空间垂直分布。 2、激光雷达提供什么数据呢?① 消光系数:反映污染程度,消光系数值越高,代表球形粒子污染程度越严重。② 退偏振度:反映沙尘的不规则程度,沙尘的退偏振度约0.2-0.4。③ 颗粒物质量浓度空间分布:给出不同高度处PM10和PM2.5质量浓度。④ 能见度:给出垂直、水平能见度视程。⑤ 外源性污染物强度:外源传输的输送通量和局地污染的占比。3、如何从激光雷达结果上读取沙尘信息呢?我们来分析三个案例。案例分析一:L地经历的一次严重的沙尘过程(数据来源:L地站点)① 沙尘爆发前:雷达图像监测显示,9日白天污染程度较轻,近地面有一定的尘漂浮。② 沙尘爆发期:夜间22时,近地面的退偏振度突然增大,消光系数也有伴随增大的现象,L地区的粗颗粒程度明显增加,近地面的PM10由250μg/m3升至1500μg/m3,沙尘天气加剧。③ 沙尘消散:沙尘天气持续至10日夜间22时,沙团中的粗颗粒明显沉降,退偏振度和消光系数明显减弱,污染物浓度下降,特别是PM10浓度,回落到750μg/m3,经历11日的持续沉降和过境,沙尘天气的影响基本消除,PM10浓度回落到250μg/m3。 案例分析二:过境沙团和沉降沙团的过程监控(数据来源:W地站点)颗粒物激光雷达在判识外源性沙尘的另一个重要依据,是其出现的高度与近地面的污染物分布无明显的重合。下图是激光雷达捕获到的一次多层沙团过境和与地面复合的结果。近地面的结果发现,PM浓度高值与沙团2沉降融合有密切关系。沙尘输入过程的激光雷达监测结果(W地)① 沙团1: 出现在6日16时,高度4.2km处,沉降过程中沙团的下沿距地面约2.1km,尚未进入大气边界层内,属于过境沙团,对近地面的影响较小。② 沙团2:出现在7日20时前后,高度5km处,沙团强度大,沉降速率大,沙团在8日7时沉降至大气边界层内,与近地面污染物复合,属于沉降沙团。③ 沙团3:在沙团2未沉降结束时,高空3km处发生第3次的污染团的输送。此沙团向地面迁移过程中,在1.2km处与地面污染物有明显分界,未发生融合,属过境沙团。④ 沙团4:出现在8日20时高空3.6~4.5km范围内出现第4次的沙团输入。此沙团下沿最低高度至3km,既未与第3次的沙团混合,也没有能进入边界层内与近地面的污染物混合,推测第3次和第4次输送的污染团与第1次的污染团类似,属于过境沙团,对近地面的影响较小。详细可参阅【伍德侠, 宫正宇, 潘本锋,等. 颗粒物激光雷达在大气复合污染立体监测中的应用[J]. 中国环境监测, 2015(5).】案例分析三:沙尘传输的激光雷达组网观测基于单站点的雷达可以实现对沙团的时间、高度和强度特征进行分析,基于多台雷达组成的雷达网络,可以对沙团的传输路径、时间相位以及沉降的特征进行监控,并及时预警。2016年3~5日中央气象台的沙尘落区预报如下图所示。为有效捕获此次沙尘污染传输,我司利用激光雷达组网平台,对布设在北京、无锡、上海、福州、武汉和郑州等地的大气颗粒物监测激光雷达数据进行快速解析,实时结果如下图所示,沙尘到达北京、郑州和武汉等地的时间、高度、强度和沙尘团轮廓的演化有很大的不同和较强的关联性。 中央气象台的沙尘落区预报激光雷达组网点位布设沙尘传输的激光雷达组网观测结果致谢:衷心感谢中国环境监测总站、河南省环境监测中心、上海市环境监测中心、福建省环境监测中心站、兰州市环境监测站、武汉市环境监测中心、福州市环境监测中心站、无锡新吴区环境监测站的大力支持。
  • 中药配方颗粒方法开发没思路?3大妙招来助你!
    中药配方颗粒立项研发至今,已经过二十多年的发展,经过国家长期政策的引导与扶持,中国中药配方颗粒行业逐渐走向规范化,相关产业链布局日趋完善。按照国家药监局的统一部署要求和国家药品标准工作程序,国家药典委组织相关企业开展中药配方颗粒品种试点统一标准的研究,并会同专家开展标准审评工作。2021年2月,国家药品监督管理局等四部门联合发布《关于结束中药配方颗粒试点工作的公告》,自2021年11月1日起施行,标志着中药配方颗粒试点时代的正式结束。截止到 2022年4月18 日,国家药典委和地方药监部门共颁布了 5047 个中药配方颗粒质量标准。其中,国家药典委共发布 2 批 196 个中药配方颗粒国家药品标准,28 个省市区发布了 4851 个中药配方颗粒地方标准。2022年5月27日,药典委发布了2022年第一期共计50个中药配方颗粒国家药品标准公示稿。图 1 中药配方颗粒国家标准与地方标准发布数量汇总(点击查看大图)赛默飞多系列色谱柱搭配赛默飞液相色谱平台,灵活的仪器配置、智能合规的控制软件,一直助力中药行业客户高效完成中药配方颗粒质量标准的研发、质控等相关工作。赛默飞应用中心积极响应客户需求,就中药配方颗粒相关品种统一标准开展实验工作,实验对象基本涵盖了大多数代表性中药配方颗粒品种,所涉品种多达90种,从HPLC方法到UHPLC方法,从特征图谱到含量测定,从标准复现到标准研发,提出了一系列完整液相色谱解决方法,积累了丰富的方法开发经验。图 2 赛默飞实验室已完成中药配方颗粒品种汇总(点击查看大图)中药配方颗粒成分复杂,为标准复现工作或新品种的方法建立带来了挑战。为达到标准或方法要求,需要对色谱柱种类、流动相、梯度、柱温等多种参数进行筛选优化。如何快速完成标准复现工作,建立合适的分析方法,赛默飞应用实验室在此与大家分享3个应用案例,以期更好地帮助各实验室解决实验中遇到的各种难题。01标准复现——桑椹配方颗粒特征图谱(UHPLC)本试验选用合适的UHPLC色谱柱Hypersil GOLD VANQUISH aQ, 1.9 µm, 100 ×2.1 mm(PN: 25302-102130-V),完全参照第二批国家标准桑椹配方颗粒进行试验,无需调整色谱参数,所得结果即可满足标准要求。图 3 桑椹配方颗粒色谱图(点击查看大图)表 1 桑葚配方颗粒系统适用性结果02方法优化——杜仲配方颗粒特征图谱(UHPLC)本试验参照第一批国家标准杜仲配方颗粒进行,色谱柱选择Hypersil GOLD aQ,为了满足标准相对保留时间和相对峰面积的要求,进行了柱温和流动相梯度优化,柱温从标准的40℃调整到35℃,对流动相比例以及梯度时间做了调整,最终洗脱强度增大,同时增加了初始梯度平衡时间,色谱参数调整符合中国药典0512通则,最终结果满足标准要求。图4 杜仲配方颗粒色谱图(点击查看大图)表 2 杜仲配方颗粒系统适用性结果(点击查看大图)03方法开发——炒僵蚕配方颗粒特征图谱(HPLC)炒僵蚕配方颗粒中的特征峰尿苷、腺苷、鸟苷等为核苷类强极性组分,选用亲水型C18色谱柱会存在峰形拖尾、基质干扰等问题。图5 炒僵蚕对照品、对照药材、供试品叠加谱图(亲水型 C18 柱)(点击查看大图)Acclaim C30 旨在提供高选择性以分离结构相近的异构体,并提供与其他反相色谱柱(如 C18)互补的选择性,同时兼容纯水流动相,能完mei应用于高水相条件下核苷和核苷酸类化合物的测定。图 6 对照药材僵蚕颗粒与炒僵蚕配方颗粒镜像叠加谱图(点击查看大图)如下展示了客户反馈复现困难的部分品种,采用赛默飞液相色谱柱可满足要求。(点击查看大图)免费试用,先到先得!传承经典,创新不止,50支赛默飞王pai配方颗粒色谱柱开启免费试用,先到先得!如需合作转载本文,请文末留言。
  • 马尔文成功在京举办颗粒表征技术及应用研讨会
    仪器信息网讯 为深入研究探索颗粒表征方法,2014年5月26日,马尔文仪器成功在京举办了&ldquo 颗粒表征技术及应用研讨会&rdquo ,近200位颗粒测试领域的专家及用户出席了会议,仪器信息网作为特邀媒体参会。会议现场  马尔文仪器的大客户经理Stephen Ward-Smith博士、激光衍射产品专家李雪冰博士、生物科学专家张帅博士等人在会上详细介绍了NanoSight NS300纳米颗粒跟踪分析仪、Mastersizer3000激光粒度仪、Zetasizer Nano系列纳米粒度仪、Spraytec高速喷雾粒度仪、Morphologi G3-ID颗粒形状及颗粒化学组分分析仪等产品的技术原理与实际应用。马尔文仪器大客户经理Stephen Ward-Smith博士  激光衍射技术本身简单易懂,但如何能够利用这个技术得到稳定可靠的结果却并非易事。不同的样品特性可能会采取不同的分散测试方法,而不同的分散方法可能面临不同的影响因素,在这些众多的影响因素里,我们该如何选择、判定直至最后找到合适的参数?对此,Stephen博士以湿法分散与干法分散两种常见的分散方式为例,比较了两者之间的优势,并对不同进样方式的方法开发及常见问题等进行了介绍。  湿法分散影响因素较多,在这些影响因素中,溶剂的选择、搅拌速度、超声强度及时间、表面活性剂的使用等是比较关键的影响因素,用户可以通过实验对这些关键影响因素一一考量,确定适合的参数并进行风险评估,直至确定最终的测试方法并进行验证。  同时湿法分散过程中常常会发生溶解、聚集等问题,这些问题如何来判定?有何现象?怎么来解决?对此,Stephen博士做了比较详细的介绍。比如微溶现象最显著的表现就是遮光度下降的同时D10反而逐渐变大,这种反常可能就是颗粒发生了微溶从而导致小颗粒&ldquo 消失&rdquo ,如果发生了这种现象,Stephen博士给出了几种补救方案,比如更换溶剂、使用饱和溶液或者快速测量等方案。当然如果样品出现聚集问题,用户可以通过调整分散泵速以及加入表面活性剂/添加剂来解决,但一定要注意控制气泡的产生。  而干法分散往往是颗粒分散和颗粒破碎之间的一种较量,因此对于分散压力的选择至关重要。Stephen博士表示,干法分散拥有快速、可以测量相当大的样品量的优点。相比湿法分散,干法分散不容易控制,用户可以通过调节分散压力,从而使聚集物分散却不使原始颗粒破碎;过快的进料速率将降低分散系统的效率,用户可以通过优化进料速率,使样品流速保持一致。  Stephen博士建议,干法分散可以通过压力滴定实验来确定实际的分散压力,压力由高到底,通过观察颗粒粒径随压力的变化来判定颗粒的状态,是分散还是破碎,从而找到颗粒分散的最佳压力平台。  会议现场,马尔文仪器特别展示了其NanoSight NS300纳米颗粒跟踪分析仪和Mastersizer 3000激光粒度仪。NanoSight NS300纳米颗粒跟踪分析仪  马尔文NanoSight NS300基于一种独特的纳米颗粒跟踪分析技术(以下简称:NTA),对大小在10&ndash 2000nm范围内的纳米颗粒进行快速可视的动态检测,其测量的参数包括颗粒粒径、浓度和颗粒的聚集。该仪器可以跟踪每一个纳米颗粒的运动轨迹,以此得到整个样品体系的粒径分布信息,同时,实时监测样品的运动、聚集过程。其典型应用表现在蛋白质聚集、药物传输、纳米颗粒毒理、病毒和疫苗等研究领域,因此该仪器是马尔文仪器公司力推的一款颗粒测试表征产品。Mastersizer 3000 超高速智能粒度分析仪  Mastersizer 3000是马尔文仪器公司于2011年隆重推出的一款全新的粒度分析仪,采用全新的折叠式光路设计,量程宽达10nm-3.5mm,准确度和仪器间的重现性均优于1%,配有先进的Aero干法分散附件系列与快速高效的Hydro湿法分散附件系列。现场答疑解惑用户参观仪器(编辑:刘玉兰)
  • 大气颗粒物激光雷达成为雾霾和沙尘天气监测多面手
    针对各地环境空气质量评估考核过程中均未将沙尘天气过程期间数据剔除,环境保护部于2017年1月4日印发《受沙尘天气过程影响城市空气质量评价补充规定》(以下简称《规定》)。依据《规定》,全国地级及以上城市环境空气质量评估、考核和排名过程中剔除沙尘天气过程的影响。规定中提出“各地环保部门如遇沙尘天气过程,当天将沙尘天气过程影响时段、影响范围和其他佐证材料报送中国环境监测总站。这些数据也将作为评价、考核和排名的重要依据。”《规定》中的佐证材料包括卫星环境应用中心遥感监测结果、全国沙尘暴监测网监测数据以及气象部门发布的沙尘信息等。在沙尘天气的扣除条件和筛选方法上,中国环境监测总站工程师王帅说:  “当沙尘天气过程中沙尘源区城市PM10小时浓度持续两个小时超过600μg/m3,或持续1个小时超过1000μg/m3,可以剔除沙尘天气过程影响区域范围内源区城市及下游城市颗粒物监测数据。近年来,地基遥感的主动探测手段,如激光雷达不仅能够有效判识雾霾的空间分布,对沙尘天气发生的过程、时间、沙团输入的高度、强度等特征,都可以进行有效监测。  1、什么是大气颗粒物激光雷达呢?  大气颗粒物激光雷达像“探针”一样,通过不断地向大气中发射激光束,扫描大气中的信息,通过与颗粒物和气态分子相互作用后产生散射光来获取不同高度处污染物的浓度分布信息,类似医学上的“CT”技术,不同的是,激光雷达获取的是污染物的空间垂直分布。 双波长三通道雷达 扫描雷达  2、激光雷达提供什么数据呢?  消光系数:反映污染程度,消光系数值越高,代表球形粒子污染程度越严重。  退偏振度:反映沙尘的不规则程度,沙尘的退偏振度约0.2-0.4。  颗粒物质量浓度空间分布:给出不同高度处PM10和PM2.5质量浓度。  能见度:给出垂直、水平能见度视程。  外源性污染物强度:外源传输的输送通量和局地污染的占比。  3、如何从激光雷达结果上读取沙尘信息呢?我们来分析两个案例。  案例分析一:过境沙团和沉降沙团的过程监控(数据来源:中科光电无锡站点)  颗粒物激光雷达在判识外源性沙尘的另一个重要依据,是其出现的高度与近地面的污染物分布无明显的重合。下图是激光雷达捕获到的一次多层沙团过境和与地面复合的结果。近地面的结果发现,PM浓度高值与沙团2沉降融合有密切关系。 图 沙尘输入过程的激光雷达监测结果(无锡)  沙团1: 出现在6日16时,高度4.2km处,沉降过程中沙团的下沿距地面约2.1km,尚未进入大气边界层内,属于过境沙团,对近地面的影响较小。  沙团2:出现在7日20时前后,高度5km处,沙团强度大,沉降速率大,沙团在8日7时沉降至大气边界层内,与近地面污染物复合,属于沉降沙团。  沙团3:在沙团2未沉降结束时,高空3km处发生第3次的污染团的输送。此沙团向地面迁移过程中,在1.2km处与地面污染物有明显分界,未发生融合,属过境沙团。  沙团4:出现在8日20时高空3.6~4.5km范围内出现第4次的沙团输入。此沙团下沿最低高度至3km,既未与第3次的沙团混合,也没有能进入边界层内与近地面的污染物混合,推测第3次和第4次输送的污染团与第1次的污染团类似,属于过境沙团,对近地面的影响较小。  详细可参阅【伍德侠, 宫正宇, 潘本锋,等. 颗粒物激光雷达在大气复合污染立体监测中的应用[J]. 中国环境监测, 2015(5).】  案例分析二:沙尘传输的激光雷达组网观测  基于单站点的雷达可以实现对沙团的时间、高度和强度特征进行分析,基于多台雷达组成的雷达网络,可以对沙团的传输路径、时间相位以及沉降的特征进行监控,并及时预警。为有效捕获此次沙尘污染传输,中科光电利用激光雷达组网平台,对布设在北京、无锡、上海、福州、武汉和郑州等地的大气颗粒物监测激光雷达数据进行快速解析。 激光雷达组网点位布设 沙尘传输的激光雷达组网观测结果  致谢:衷心感谢中国环境监测总站、河南省环境监测中心、上海市环境监测中心、福建省环境监测中心站、兰州市环境监测站、武汉市环境监测中心、福州市环境监测中心站、无锡新吴区环境监测站的大力支持。
  • 珀金埃尔默发布LPC 500 液体颗粒计数器新品
    简介LPC 500™ 液体颗粒计数器是一个单颗粒光学粒度分析(SPOS)系统,旨在以高分辨率对单个颗粒进行计数和粒度分析。SPOS 技术被设计用于检测通过一个非常薄的“光学传感区”的单个颗粒。用在油样检测时,无论是高粘度还是低粘度样品,通常都只需要消耗3 到4 mL10 倍稀释后的样品,即可得到可重复的结果,同时降低清洗溶剂消耗、减少溶剂浪费。LPC 500 硬件LPC 500 系统由三部分组成:光学传感器、多通道脉冲分析仪(MPA)和软件控制器。在分析过程中,液体通过光学传感器进行检测,产生脉冲电压,并由MPA 转化为粒度分布(PSD)。在LPC 500 软件中实时显示高分辨率的PSD:每个通道(8 到512)的绝对计数与直径,在光学传感器覆盖的总尺寸范围内(0.5 到400 微米)以对数间隔排列。其他衍生分布(微分和累积分布)?基于数量、面积和体积加权?根据测量的颗粒数分布计算。LPC 500 光学传感器LPC 500 光学传感器使用单颗粒光学粒度分析(SPOS)技术。这项技术被用于在单个颗粒通过一个非常薄的“光学传感区”时检测特定尺寸范围内的单个颗粒。传统上使用两种物理方法来实施SPOS 技术?消光和光散射:• 消光(LE)法:这种方法测量携带悬浮在流体中的颗粒的流体通道传输的光强度的降低,这是由单个颗粒在光束中瞬间通过引起的。• 光散射(LS)法:这种方法是对LE 法的补充。这种方法测量由穿过光学传感区的颗粒散射引起的光强度的增加。组合法?消光+ 光散射:这是一个新开发的混合设计(美国专利US5835211A),将LE 法的优势(粒径范围大,对颗粒组成相对不敏感)与LS 法的优势(高敏感度?更低直径下限)结合在一起。这是通过结合LE 和LS 电子信号响应实现的,从而在一个颗粒通过传感器的光学传感区时产生一个单一的“求和”信号脉冲。LPC 500 多通道脉冲分析仪MPA 用来检测光学传感器产生的每个脉冲,测量它的高度(不论是在消光模式下还是在求和模式下),通过传感器校准曲线确定与该值相关的颗粒直径。然后将一个额外的“计数”添加到包含这个特定颗粒尺寸的直径“通道”中。处理电子设备以高速率执行此任务,允许颗粒计数/ 粒度分析速率超过10,000 个/ 秒。可用配置LPC 500 提供了两种配置:将LPC 500 与Avio 500 电感耦合等离子体发射光谱仪油品系统相结合,用于组合磨损金属和颗粒计数的联用配置以及仅用于颗粒计数的LPC 500 独立配置。联用配置LPC 500 液体颗粒计数器与Avio 500 电感耦合等离子体发射光谱仪油品系统相结合能够对同一次进样的稀释后样品进行磨损金属分析以及颗粒计数和粒度分析。对于无需颗粒计数的金属分析,这项技术提供平均45 秒的样品分析时间,使用OilPrep™ 油稀释装置制备样品只需稀释少于1 毫升的样品。LCP 500 系统的所有特点和数据输出都集成到了Syngistix™ ICP 软件中。方法中可以启用或禁用颗粒计数,可以选择各种报告格式和颗粒计数尺寸,增加了测试的灵活性。LPC 500 计数器独立配置LPC 500 也可以作为一个独立的颗粒计数器,它的样品需求量更少、样品制备更简单,单个样品分析时长仅95 秒。与联用配置不同的是,独立LPC 500 由一个单独的软件包控制,允许对颗粒计数参数进行更多的自定义。最后,独立LPC500 计数器的占地面积是用于在用油品分析的所有自动独立颗粒计数器中最小的。总结LPC 500 液体颗粒计数器单个样品的分析时长仅约45 秒,稀释样品制备使用的样品少于1 毫升。此外,凭借紧凑型设计,它还能与Avio 500 电感耦合等离子体发射光谱仪油品系统轻松结合,节约优化宝贵的实验室空间。创新点:LPC 500™ 与ICP-OES联用将突破性的提供一次运行中同时完成计数和元素分析的解决方案,将原本两次检测才能完成的工作一次性完成,颗粒物计数与元素分析均在ICP软件控制下自动完成,整个过程仅需45秒。每次分析使用少于1 毫升的润滑油样品。同时也是行业中最小的自动粒子计数器。这套LPC 500™ 与ICP-OES联用方案已在申请专利,是珀金埃尔默研发的独家润滑油行业解决方案,有效提升工作效率,节省运营成本。LPC 500 液体颗粒计数器
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制