当前位置: 仪器信息网 > 行业主题 > >

电极发射仪

仪器信息网电极发射仪专题为您提供2024年最新电极发射仪价格报价、厂家品牌的相关信息, 包括电极发射仪参数、型号等,不管是国产,还是进口品牌的电极发射仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电极发射仪相关的耗材配件、试剂标物,还有电极发射仪相关的最新资讯、资料,以及电极发射仪相关的解决方案。

电极发射仪相关的资讯

  • 新型金属玻璃场发射电极问世 可用于电镜等多种仪器
    据美国物理学家组织网近日报道,澳大利亚科学家在最新一期的《物理评论快报》杂志上报告称,他们研制出一种属性与玻璃类似的新型金属化合物,并用其替代塑料与碳纳米管结合制成新的场发射电极。该场发射电极能制造出稳定的电子束,有望用在消费电子和电子显微镜等领域。   以前,科学家们主要通过将碳纳米管和其他纳米材料内嵌于塑料中来制造场发射电极。这些场发射电极尽管种类繁多且容易制造,拥有很大应用潜力,但其瑕疵也很多,比如,塑料的导电能力太弱 塑料的热稳定性很低,无法对抗长时间操作产生的大量热量。   现在,澳大利亚莫纳什大学的科研团队和澳大利亚联邦科学与工业研究组织下属的过程科学和工程研究院的科学家携手,研发出了一种新的应用潜力很大且容易制造的材料——非晶块金属玻璃(ABM),并用其代替塑料制造出场发射电极。当这些非晶块金属玻璃合金冷却时会形成非晶材料,让它们的一举一动更像玻璃。   这种非晶块金属玻璃合金由镁、铜和稀土族元素钆制造而成,拥有很多塑料特有的特性 可顺应很多形状、大批量地制造并能作为碳纳米管的有效基体。除了具有优良的导电性之外,这种金属玻璃也拥有非常稳定的热性,这意味着,即使经受高温,它也能保持其形状和耐用性。科学家们表示,以上诸多优势和其卓越的电子发射属性,使得这种非晶块金属玻璃成为制造电子发射设备的最好材料之一。   尽管以前也有科学家研制出了其他由大块金属玻璃和碳纳米管组成的复合材料,但这是这样的系统首次用于制造场发射电极这样的功能性设备。科学家们表示,这项技术可被用于制造电子显微镜、微波和X射线生成设备以及现代显示设备等。
  • 聚光科技E5000电弧直读发射光谱仪顺利通过辐射测试认证
    电磁辐射是指在电磁振荡过程中,电磁波向四周传播传递能量的现象。长期的电磁辐射会对人体的心血管系统、视觉系统、神经系统和生殖系统造成极大的危害,是心血管病、癌突变,不孕不育、白内障的主要诱因。电弧发射光谱仪的原理是通过高频引燃,产生大功率电弧火焰,实现样品的蒸发和激发,进行各元素的测定。因此,长期使用电弧发射光谱仪器的工作人员深受电磁辐射的危害,做好电弧发射光谱仪的电磁辐射屏蔽防护十分必要,更是仪器生产厂商对客户责任感的体现。  聚光科技(杭州)股份有限公司生产的E5000全谱直读电弧发射光谱仪是国内首台非金属粉末元素分析的台式全谱直读发射光谱仪,其将电弧激发光源与Paschen-Runge型全谱CCD 光谱仪相结合,通过激光定位与程控电极,自动调整电极位置,实现激发间距的精确控制,利用高阵列CCD 数采获得了激发样品的全谱信息,通过实时扣除背景与干扰校正,直接获得分析结果。与传统摄谱仪相比,仪器操作简单,自动化程度高,谱线信息丰富,测定结果快速准确。  E5000采用新一代数字电弧光源,替代了传统的电弧源,电极在矩室内全自动对准激发,无需人工直接观察调节间距,有效防护人眼,屏蔽了大量电磁辐射;此外,数字电源体积更小,可直接置于仪器内部,无需加长激发线连接外置的交流电源,有效降低大电流传导过程中产生的辐射。  辐射测试结果显示,正常工作时,若电弧光源无防护措施,电磁辐射显著高于国家标准限定的40dBN;如果有效屏蔽掉电源的电磁辐射,使用长的激发线激发时,高频300MHz以上的电磁辐射稍有降低,但300MHz以下的电磁辐射仍然较大。而经过完全防护的E5000仪器在正常工作时电磁辐射显著降低,完全符合国标中关于仪器设备的电磁辐射限定要求,具体结果如下图。E5000全谱直读电弧发射光谱仪电磁辐射测试结果  国家电子计算机外部设备质量监督检验中心是经国家主管部门审查认可的,具有第三方公正地位的国家级质量检验机构。经国家电子计算机外部设备质量监督检验中心的辐射骚扰场强试验(30MHz~1GHz)测试认证,聚光科技(杭州)股份有限公司研发生产的E5000电弧直读发射光谱仪符合国标GB 9254-2008《信息技术设备的无线电骚扰限值和测量方法》的B级标准要求。E5000全谱直读电弧发射光谱仪辐射骚扰场强试验检验报告
  • MH-5000 便携式等离子体发射光谱仪
    佰汇兴业(北京)科技有限公司最新代理日本MICRO EMISSION MH-5000等离子体发射光谱仪,该仪器为一款利用液态电极等离子体来分析痕量金属的发射光谱仪,它通过向溶液施加电压以使其加热并蒸发,液体电极产生等离子体,溶液中的溶质被送入等离子体中产生发射光谱。它可以应用到冶金制造、工业废物处理和环境监测等领域中。 特点: 手持掌上型尺寸的实现(小型,便携式手持) 操作简单,初学者也可快速入门 电池驱动,可使用于现场测定 同时测定多种元素 检测极限0.1ppm~100ppm 工程管理、土壤测定、水质测定、食品测定
  • 北京瑞利原子荧光、专用发射光谱仪新产品通过鉴定
    仪器信息网讯 2012年8月31日,受北京市经济和信息委员会委托,由北京市技术创新服务中心组织的北京瑞利分析仪器有限公司AF-2200原子荧光光谱仪、AES-7000系列专用发射光谱仪新产品鉴定会在北京瑞利分析仪器有限公司举行。 鉴定会现场   邓勃教授担任此次鉴定委员会主任,参加鉴定的委员有清华大学辛仁轩教授、中国首钢集团郑国经研究员、中国地质科学院力学研究所计子华研究员、有色金属研究总院钱伯仁教授、北京矿冶研究总院符斌研究员、北京矿冶研究总院冯先进研究员。北京市技术创新服务中心技术创新部王安居部长主持鉴定会,北京市经济和信息委员会科技标准处张刚处长出席本次鉴定会。 北京市技术创新服务中心技术创新部王安居部长主持鉴定会   北京瑞利分析仪器有限公司孙兰海总经理向与会专家介绍了北京瑞利分析仪器有限公司企业概况。在致辞中,孙兰海总经理首先对与会专家的莅临表示感谢,而后对北京瑞利分析仪器有限公司进行了介绍,“北京瑞利分析仪器有限公司主要产品是光谱仪器,包括原子吸收光谱仪、原子荧光光谱仪、发射光谱仪、红外分光光度计、紫外分光光度计和样品前处理设备,产品型号数量已达38种,如果今天能够顺利验收,将达到40种。” 北京瑞利分析仪器有限公司 孙兰海总经理   张刚处长在鉴定会上传达了北京市经济和信息委员会科技标准处对本次鉴定会的意见和建议,张刚处长表示,“第一,希望鉴定委员会各位专家能够对此次鉴定的AF-2200原子荧光光谱仪和AES-7000系列专用发射光谱仪新产品能够提供客观、科学、公正的鉴定意见 第二,希望与会专家能够借此机会就企业发展战略、技术发展等方面给企业提供建议 第三,通过鉴定的产品,希望企业能够尽快完成相关的后续产品上市手续,包括与税务部门的沟通等 第四,通过鉴定的产品,希望企业能够申请北京市级或者国家级相关仪器研发奖项,以争取支持仪器研发的资金,为今后更好的开展仪器研发项目做好基础工作。” 北京市经济和信息委员会科技标准处 张刚处长   一、新一代高精度顺序注射原子荧光光谱仪AF-2200通过鉴定   北京瑞利分析仪器有限公司研发部梁敬副部长宣读了AF-2200原子荧光光谱仪的技术报告和工作总结报告。冯先进研究员宣读了AF-2200原子荧光光谱仪现场测试报告。北京瑞利分析仪器有限公司研发部梁敬副部长 北京矿冶研究总院冯先进研究员   梁敬副部长在报告中指出,AF-2200原子荧光光谱仪采用了最先进的顺序注射进样技术,可实现高精度微量进样 注射泵阀体由传统的三阀双泵二维流路改为三维空间流路,即高度集成化的双泵双阀顺序注射流路系统,阀芯采用陶瓷和PEEK复合材料,具备优异的抗化学腐蚀性能,阀切换寿命不小于1000万次 注射器的柱塞选择UHMWPE,端帽采用PEEK材料,高鹏玻璃作为针筒,具有优异的耐腐蚀性能和长的使用寿命,存样环也在业内首次采用了热固化成型工艺技术,能够获得极小的扩散系数,该项技术获得了实用新型专利一项 AF-2200原子荧光光谱仪通过特殊的增敏试剂,将传统原子荧光的测量范围在As、Sb、Bi、Se、Te、Pb、Sn、Hg、Cd、Ge、Zn十一种元素基础上增加了Au、Ag、Cu、Co、Ni五种元素,测量范围达到16种元素。AF-2200原子荧光光谱仪已经申报的自主知识产权专利有5项。应用范围方面,AF-2200原子荧光光谱仪主要应用于食品安全、环境检测、地质普查、农业环境、临床医学、科研等领域的重金属总量分析。 AF-2200原子荧光光谱仪   鉴定会委员详细审议了北京瑞利工作人员的工作总结报告、技术总结报告、财务报告、产品检测报告、产品技术标准说明、查新报告、用户使用报告、标准化审查报告、资料审查报告、现场测试报告 经过质询和现场考察仪器新品,最终形成如下鉴定意见:   AF-2200原子荧光光谱仪   1、该产品的鉴定文件齐全,符合鉴定要求。   2、该产品创新性采用了高度集成的高精度双泵双阀顺序注射进样系统,具有智能化漏液监测、高精度数字化气路系统压力监测和原子化室避光监测功能,形成了全新的蒸汽发生原子荧光仪器。   3、开发了一种全新分析方法的专用增敏剂,可测定元素扩大到16个(Cu、Ag、Au、Co、Ni等元素)之多。采用了压力平衡式四通混合模块,极大地稳定了流体的传输,保证了信号峰形的平滑度和重现度。首创了高韧性进样针,解决了石英采样针易碎和挂液的问题。   4、开发了自动进样器配合使用的全自动液体工作站软件,实现样品及标准溶液的自动稀释、自动定容等繁琐的溶液处理操作。   5、该产品结构简单可靠,具有广阔的市场前景。   6、该产品的技术文件资料齐全,符合国家规范,可以指导生产。   鉴定委员会一致认为:北京瑞利分析仪器有限公司研制开发的“AF-2200原子荧光光谱仪”技术达到国际先进水平,同意通过新产品鉴定。 AF-2200原子荧光光谱仪产品考察 AF-2200原子荧光光谱仪生产车间   二、AES-7000系列专用发射光谱仪通过鉴定   北京瑞利分析仪器有限公司研发部王彦东副部长宣读了工作总结报告和技术总结报告。计子华研究员宣读了AES-7000系列专用发射光谱仪现场测试报告。AES-7000系列包含AES-7100/ AES-7200两款产品,专用于高纯金属和地质样品的测定。 北京瑞利分析仪器有限公司研发部王彦东副部长 中国地质科学院力学研究所计子华研究员   据王彦东副部长在报告中介绍,AES-7100/ AES-7200直/交流电弧专用发射光谱仪在国内首次将交流或直流电弧激发光源与凹面光栅分光系统及光电倍增管接收系统相结合,构成全新的组合模式,具有全新的光路、结构及外形 AES-7100/ AES-7200两种专用仪器分别做了方法开发:AES-7100直流电弧专用发射光谱仪针对高纯金属氧化钼和氧化钨中的18-19中杂质元素开发了专用的分析方法,确定了氧化钼和氧化钨光谱缓冲剂配比,而AES-7200交流电弧专用发射光谱仪针对地球化学样品中Ag、Sn、B三种比较难测定的元素开发了专门的测定方法,并可测定Mo、Pb、Au、Ni、Co等十几种元素 相对于一米光栅光谱仪采用的传统的相板记录方式,AES-7000系列专用发射光谱仪以光电直读代之,改变了我国30多年来电弧激发光谱分析现状,使电弧激发这项“古典”而又“经典”的分析技术焕发了青春。据介绍,自主知识产权方面,AES-7000系列专用发射光谱仪已申请八项专利技术。 AES-7000系列专用发射光谱仪   北京瑞利分析仪器有限公司相关工作人员汇报了AES-7000系列专用发射光谱仪相关技术总结报告、工作总结报告、财务报告、产品检测报告、产品技术标准说明、查新报告、用户使用报告、标准化审查报告、资料审查报告、现场测试报告,经过鉴定会委员的详细审议、质询和现场考察,最终形成如下鉴定意见:   (1)产品(技术)名称: AES-7100型高纯金属专用发射光谱仪   1、该产品的鉴定文件齐全,符合鉴定要求。   2、该产品首次采用了直流电弧激发光源与凹面光栅分光系统和光电倍增管检测系统的全新组合,可直接对粉末状样品进行灵敏、快速的测定,属国内首创。   3、该产品采用了自动控温水冷式电极夹,增强了产品的稳定性 采用汞灯描迹装置,能够方便的进行谱线定位 设有电极成像显示屏,可直接观察到电极成像投影,便于操作。   4、该产品针对相关领域的要求设计了专用应用软件,可根据蒸发曲线分别为每条谱线设定曝光时间参数、强弱线可同步衔接测量,具有内标、背景及分析数据校正处理等功能,提高了直流电弧光量计分析信背比。   5、该产品能对有色、冶金领域高纯金属及氧化物样品中的多种微量元素进行同时测定,市场前景广阔,具有良好的社会效益及经济效益。   6、该产品的技术文件资料齐全,符合国家规范,可以指导生产。   鉴定委员会一致认为:北京瑞利分析仪器有限公司研制开发的“AES-7100型高纯金属专用发射光谱仪”技术达到国内领先水平,同意通过新产品鉴定。   (2)产品(技术)名称: AES-7200型地质样品专用发射光谱仪   1、该产品首次采用了交流电弧激发光源与凹面光栅分光系统和光电倍增管检测系统的全新组合,研制成功的交流电弧直读光谱仪在国内尚属首创。该产品可直接对粉末状样品进行灵敏、快速的测定。   2、该产品整机设计合理、结构新颖,具有使用寿命较长的“自动控温水冷式电极夹” 在外光路全封闭防护装置上,可直接观察到电极成像投影,便于操作 采用汞灯描迹装置,能快速进行谱线定位。   3、该产品针对相关领域的要求设计了专门应用软件,具有以下特殊功能:可根据蒸发曲线分别为每条谱线设定曝光时间参数、强弱线可同步衔接测量、有出色的内标、背景及分析数据校正处理等功能、强大的数据库供历史数据处理查询。   4、该产品是—种性价比较高的电弧直读光谱仪,填补了我国在该类仪器的空白,能对地质领域样品中的多种微量元素进行同时测定。市场前景广阔,具有良好的社会效益及经济效益。   5、该产品的技术资料齐全完整,符合国家规范,具备批量生产条件。   鉴定委员会一致认为:北京瑞利分析仪器有限公司研制开发的“AES-7200型地质样品专用发射光谱仪”,其仪器性能及技术指标已达到国内领先水平,同意通过新产品鉴定。 AES-7000系列专用发射光谱仪产品考察 AES-7000系列专用发射光谱仪生产车间   出席本次新产品鉴定会的人员还有:北京北分瑞利分析仪器(集团)公司李源总经理、武慧忠总工程师、北京瑞利分析仪器有限公司曾伟总工程师、原总工/技术顾问章诒学研究员、副总工程师王百华女士、技术顾问:原地质科学院物化探研究所的张文华和张锦茂高级工程师、项目主管吴冬梅高级工程师。
  • 场发射电子源肖特基发射源和冷场发射源
    电子显微镜通过发射电子与样品相互作用成像,用来“照射”样品的可靠电子源是电镜最重要的部分之一。电子显微镜对电子束的要求非常高。目前只有两种电子源满足要求:热电子发射源和场发射电子源。目前商用的,热电子发射源用的是钨灯丝(较少见)或六硼化镧( )晶体(较常见);场发射电子源用的是很细的针状钨丝(具体分为肖特基发射源和冷场发射源)。场发射电子源场发射电子源通常叫做 FEG,其工作原理和热电子源有着本质区别。基本原理是:电场强度 E 在尖端急剧增加,这是因为如果把电压 V 加到半径为 r 的(球形)尖端,则在场发射中我们称细针为“针尖”,钨丝是最容易加工成细针尖的材料之一,可以加工出半径小于 0.1μm 的针尖,场发射与钨针尖的晶体取向相关,310是最好的取向。场发射枪(FEG)相对简单,通过拔出电压将电子从针尖中拉出来,然后通过加速电压对电子加速。第一次启动时要缓慢增加拔出电压,使热机械振动不至于损坏针尖。这就是使用 FEG 要执行的唯一实际操作,并总是由计算机实际控制。热电子发射源我们称热发射钨电子源为“灯丝”,因为钨可以被拉成细丝,类似白炽灯中用的灯丝。六硼化镧通常沿110取向生长来增强发射能力。事实上,把任何一种材料加热到足够高的温度,电子都会获得足够的能量以克服阻止它们离开的表面势垒(称为功函数 Φ)。大小约为几个电子伏。热电子发射机制可以用 Richardson 定律表示:其中,J 为发射源电流密度,T 为工作温度(K),k 是玻尔兹曼常量 ,A 是 Richardson 常数,A ,具体数值取决于电子源的材料。把电子源加热到温度 T,使电子获得大于 Φ 的能量并从此那个电子源中逃逸出来,从而形成电子电子束。然而大多数材料注入几 eV 的热能时就会熔化或蒸发。唯一可能的热电子源材料要么是高熔点(钨熔点 3660K),要么 Φ 异常小( 功函数 2.4)。晶体是现代 TEM 中所用的唯一热电子源,通常被绑在金属(例如铼)丝上通过电阻加热形成热发射。 晶体对热冲击很敏感,所以加热、冷却电子源时要小心。当必须手动开关电子源时,要缓慢增加/减小热电流,在每个设定值后停顿 10~20s。随着科学技术发展,目前部分操作已可以通过计算机控制,但是对于大多数 TEM 仍广泛使用的热电子枪,仍需要操作者进行部分手动控制。大束科技(北京)有限责任公司自主研发了电镜零部件,尤其是消耗型的部件都做到了国产化,例如液态镓离子源、电子枪和离子枪配件、光阑、电镜上使用的各种电源等,可以完全替代进口产品。大束科技(北京)有限责任公司的可以量产的生产制造场地即将装修完毕投入使用,实现量产以后,在最极端的情况下,如果在国内已经安装的进口电镜原厂家不再提供配件,大束科技(北京)有限责任公司的产品可以保障国内这些进口电镜正常运行。
  • 电弧发射光谱: 成熟技术带来新的应用价值
    2015年1月6日,2014年北京光谱年会在北理工国际交流大厦顺利闭幕,大会吸引约200人来自科研机构、质检机构、知名企业等专家和代表们参加,聚光科技作为国内领航的分析仪器厂商应邀参加。 北京光谱年会历年是学术交流的圣地,本次年会更是汇聚了各行专家。在光谱年会开始,北京光谱学会理事长郑国经首先介绍了光谱学会2014年所做工作,并指出,“当前光谱分析及其仪器技术可以说非常成熟,对于元素测定,原子光谱仍是强项 对于分子及化合物的测定,分子光谱依然是定性定量的有效手段。”随后,清华大学孙素琴、王哲、陈建波北京理工大学袁洪福老师和中国检验检疫科学院的齐小花老师分别在荧光、分子光谱和拉曼光谱技术领域做了精彩报告。 北京光谱学会理事长 郑国经教授 聚光科技实验室业务部总监寿淼钧先生在本次光谱年会上向与会专家和代表们介绍最新上市的E5000电弧直读发射光谱仪。从E5000产品的研发故事,到产品在各个行业的应用,都做了详细的介绍和汇报,并向与会的专家和代表们发出合作的邀请,希望能共同致力于国产仪器的发展事业。 聚光科技(杭州)股份有限公司 实验室研发总监 寿淼钧先生 E5000电弧直读发射光谱仪技术创新点:数字电弧技术与发射光谱技术结合,革命性的固体粉末元素分析技术;紧凑的小型台式设计,确保仪器分析精确,稳定可靠高功率数字可编程光源,电流、电压、频率可控,可自由探索更优的分析方法自动电极对准,一键激发,分析结果立等可取多重连锁和监控,确保操作安全可靠绿色固体进样分析,完美解决地矿领域Ag/B/Se分析难题,全谱技术更可实现分析元素的自由扩展简洁易用的操作软件,内置工作曲线,最方便、最有效地响应客户日常分析需求改变地矿领域分析传统,让分析高效、生活轻松、工作变得有品位广泛适用于化探、地质、矿冶、有色、土壤、水泥、固废等领域的元素分析需求 E5000电弧直读发射光谱仪 聚光科技展区现场聚光科技实验室业务发展事业部简介: 聚光科技(杭州)股份有限公司在实验室仪器市场经过多年战略布局,目前已成功推出便携式GC-MS、气质联用仪、气相色谱仪、电感耦合等离子体发射光谱仪、近红外光谱仪等在内的分析仪器;通过并购北京吉天仪器有限公司,扩充了无机分析仪器组合以及前处理仪器;通过与LUMEX的合作,补充了原子吸收,测汞仪和荧光测油仪等产品,成为了包括色谱、质谱、光谱、应急检测以及前处理设备等在内的全方位解决方案供应商;实验室仪器市场,成为聚光科技未来十年的主战场之一。聚光科技在不断努力,立志成为国内最好、国际主流的实验室仪器供应商之一。
  • 岛津应用:LED灯的发射光谱测定
    荧光灯和LED灯等发射可见光的光源具有特有的发射光谱。因为光波长和光量决定光的色调,所以在灯的开发过程中,测定其发射光谱对评价光源的性质非常重要。 通常使用紫外可见分光光度计(UV)或荧光光谱仪(RF)测定发射光谱。使用UV 得到的光谱为包含仪器特性(仪器函数)的发射光谱,该光谱的色调与视觉感知的色调不同。如果使用岛津公司生产的具有自动仪器校正功能的荧光光谱RF-6000,则不受仪器函数的影响,可以得到精确的发射光谱。综上所述,RF-6000配置大型样品室,可以直接放置较大光源的样品。另外,还可以通过仪器的自动光谱校正功能获得仪器校正后的光谱。使用RF-6000,可以得到准确的LED灯发射光谱。 本文向您介绍使用RF-6000 测定LED 灯发射光谱的示例。 将LED灯放置到样品室内 了解详情,敬请点击《LED灯的发射光谱测定》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 低能强流发射度仪的研制
    成果名称 低能强流发射度仪的研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 束流发射度是反映束流品质的重要物理参数,是加速器和束流输运线设计的重要参数,也是研究束流匹配传输和束流传输效率的基础。近年来,强流加速器已成为国际上加速器技术发展的最为重要的方向之一。强流加速器的关键问题之一是尽量减小束流损失。为此,对强流离子束或电子束进行准确的发射度测量是十分重要的。国内外多个实验室均在进行强流束发射度仪的研制。其中,北京大学重离子物理研究所正在开展强流离子、电子加速技术及应用研究,为获得高品质的束流并实现对束流的有效调控,需要能够测量强流发射度、使用方便且精度较高的束流发射度仪。而现有发射度仪不能很好满足测量强流束发射度的需要,因此需要研制强流束发射度仪。 2009年,北京大学物理学院陆元荣教授申请的&ldquo 低能强流发射度仪研制&rdquo 项目获得了第一期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。该项目研制的低能强流发射度仪用于测量强流RFQ加速器中强流离子束(脉冲束或直流束)的发射度和发射相图,能够全面反映离子束从离子源引出到低能束流输运段、RFQ加速器入口处等各阶段的发射相图的变化,对北大强流RFQ加速器技术的发展和建立基于RFQ加速器的中子照相研究平台具有重要意义。在基金的资助下,课题组完成的工作包括:(1)根据测量要求进行仪器的物理设计;(2)研发测量同一束流截面、两个相互垂直方向的发射度机械装置;(3)开发与系统功能相适应的自动控制电路;(4)研究数据采集过程中的噪声抑制电路和信号处理的算法;(5)编制用于控制、数据采集、结果显示的可视化图形软件。 应用前景: 目前该项目已经顺利结题,其研制的包含全套软、硬件装置的强流束流发射度仪正在强流离子束应用领域(如强流离子注入、散裂中子源、同步辐射光源等)进行推广,将为该领域其它单位的科研工作提供有力的帮助。
  • 超前剧透|蔡司新一代场发射扫描电镜线上发布会报名开启
    自1993年,蔡司将第一台商用FESEM——DSM-982推向市场以来,Gemini电子光学系统就成为了高分辨力与宽样品适用性的代名词。在这28年中,无论是之前的Supra、Ultra、Merlin,还是后来的Sigma和Gemini,无数用户都对蔡司电镜应对棘手样品的能力赞誉有加。今天,扫描电镜已经成为材料科学、微电子、冶金、地质等学科必不可少的表征手段。从金属到聚合物,从结构件到纳米颗粒,从微电子器件到矿石,从永磁材料到软磁材料… … 各大高校、科研院所的电镜实验室每天都会面对各类样品,而对于表征结果的要求也越来越高。这就要求扫描电镜不仅要有高标称分辨率,还要在面对不导电、不耐辐照、不平整、带磁性等等的疑难样品时,依旧能够获取高质量成像结果。经典传承,历久弥新。2021年,蔡司Gemini场发射扫描电镜再一次进化升级,而Gemini电子光学系统也针对不同的应用场景衍生出了更多型号。基于此,蔡司携手仪器信息网,将于2021年3月24日举行线上新品发布会——蔡司新一代场发射扫描电镜新品发布会 ,共同为大家解密新一代Gemini系列场发射扫描电镜的“高分辨 不挑样”。主办单位:蔡司显微镜协办单位:仪器信息网会议形式:线上网络会议,免费报名参加会议时间:2021年3月24日 下午14:30点击报名:https://www.instrument.com.cn/webinar/meetings/ZEISS-new/或扫码报名蔡司Gemini电镜有哪些独一无二的特点?新一代Gemini电镜有哪些更新?会为您的工作带来怎样的助益?届时新品发布会上,蔡司将为您一一解答。为方便大家预先了解更多新品及会议信息,以下仪器信息网从为大家带来一手超前剧透:剧透一:会议议程03月24日 蔡司新一代场发射扫描电镜新品发布会时间议程报告人14:30--14:35发布会开场主持人14:35--15:10主题报告:高分辨,不挑样——蔡司新一代Gemini场发射扫描电镜蔡琳玲蔡司显微镜 高级应用专家15:10--15:15第一轮幸运抽奖15:15--16:00特邀报告:蔡司电镜在微纳科技中的应用陈宜方复旦大学信息科学与工程学院 教授 博士生导师16:00--16:30拓展报告:从成像到分析 – 蔡司关联显微分析解决方案李洪蔡司显微镜 高级应用专家16:30--16:45答疑时间16:45--17:00第二轮幸运抽奖剧透二:新品应用案例赏析三枚硬币可以在同一个视野下观察。成像条件:5 kV,腔室内二次电子探测器。磁性FeMn纳米颗粒。成像条件:1 kV,镜筒内二次电子探测器成像。图中立方体的边长约25 nm。干法锂电池隔离膜(Celgard-2400),成像条件:20 V,未使用样品台偏压,镜筒内二次电子探测器。图片由蔡司中国高级应用专家于洋拍摄。介孔氧化硅分子筛,对电子束敏感。1 kV,镜筒内二次电子探测器,20万倍成像。图片由蔡司中国高级应用工程师蔡琳玲拍摄。更多精彩内容,欢迎免费报名参会:https://www.instrument.com.cn/webinar/meetings/ZEISS-new/
  • 中国计量学院预算600万元采购场发射透射电镜
    2015年3月31日,中国政府采购网发布招标公告显示:中国计量学院将采购一台进口场发射透射电子显微镜,预算金额为600.010442万元。   中国计量学院已拥有日本HITACHI公司的SU8010 FE-SEM冷场发射扫描电子显微镜(分辨率:1.0 nm(15 kV)、1.3 nm(1 kV),配置了美国EDAX公司的TEAM Apollo XL EDS(电制冷能谱分辨率:129 ev 窗口面积:30)。   目前,SU8010 FE-SEM主要用于材料的显微结构分析和材料元素的定性和半定量分析,材料范围包括:(1)生物:种子、花粉、细菌等 (2)医学:血球、病毒等 (3)动物:大肠、绒毛、细胞、纤维等 (4)材料:陶瓷、高分子、粉末、环氧树脂等 (5)化学、物理、地质、冶金、矿物、污泥(杆菌)、机械、电机及导电性样品,如半导体(IC、线宽量测、断面、结构观察&hellip &hellip )电子材料等。
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • 神州八号飞船成功发射 进入预定轨道
    中广网北京11月1日消息 神舟八号飞船于北京时间11月1日5时58分发射升空,并顺利进入预定轨道。飞船将在两天内与天宫一号进行首次空间交会对接。目前天宫一号运行稳定,满足交会对接任务要求。   神舟八号起飞瞬间 中广网记者路林强摄   中国载人航天工程新闻发言人武平表示,与以往飞船发射不同,这次交会对接任务要求飞船“零窗口”发射。为确保将飞船发射到与目标飞行器共面的轨道,神舟八号必须在天宫一号轨道面经过发射点后的一定时间内准时点火起飞,否则就需要消耗很多的推进剂来修正两者之间的轨道面偏差。   点火瞬间:轰鸣声震动大地 橘红色火焰照亮夜空   记者:让我们直接进入最激动人心的点火时刻,现场点火时间是5点58分07秒,这与此前预设的火箭发射零窗口时间分秒不差。我的位置是距离发射塔架15 公里的指控大厅里,当零号指挥员发出最后的点火口令时,我看到火箭底部两边喷出火焰。几秒钟之后火箭升空,橘红色的火焰把黑色的黎明照亮,天空好像变成一幅桔红色的泼墨画,我甚至能看清云彩的轮廓。   还有一个有意思的现象是,火箭升空的开始,我听不到任何的声音,过了一段时间以后指控大厅才传来轰隆隆的轰鸣声,玻璃也开始明显的颤抖。神舟八号打入云层之后就消失在了我的视线里,但是巨大的轰鸣声和玻璃的颤抖仍然持续了数十秒,这种感觉非常奇妙。[详细]   3日凌晨与天宫首次交会对接   据北京飞控中心副总工程师周建亮介绍,神八这次任务的重点是完成交会对接。也就是为接下来的飞船能够载人上天而进行模拟飞行,所以在神八的前端加装了交会对接装置,同时神八入轨轨道也与前几次有很大的不同。   周建亮:神舟七号飞船入轨的轨道高度是近地点高度200公里,远地点高度350公里,现在神舟八号入轨远地点高度是330公里,之所以采取这样一个轨道的方案,主要是出于交会对接的需要。   周建亮:后面有两次交会对接工作,第一次是在3号凌晨,另一次是在14号。也正是因此,神八升空之后的控制动作将非常的密集,在今天中午12点左右,神八运动到第五圈届时将进行第一次轨道控制,抬升它的近地点高度。此后在明天当它运行到第13圈、16圈、19圈、24圈时,还将进行4次轨道控制。这样经过5次远距离的导引控制,在3号凌晨时就可以进行第一次交会对接。然后进行锁紧,也就是我们之前所说的让天宫和神八的接吻能够更加紧密更加严丝合缝。   此后在天宫一号与神舟八号组合飞行12天之后,也就是在本月14号时,神八将撤离天宫一号,然后再进行对接,他们共同飞行2天之后,16号神八将第二次撤离天宫一号,17号返回地面,这样天宫其神八交会对接工作就算圆满完成。   “成都造”仪器将控制神八飞船安全返回   备受关注的神舟八号飞船于今日5时58分发射。“神八”飞天,而“成都造”的“静压高度控制器”,则控制着其安全着陆。记者10月31日获悉,由中航工业成都凯天电子股份有限公司研制生产的静压高度控制器,从“神一”一直应用到“神八”!   据专家介绍,静压高度控制器是飞船回收系统的核心部件之一,被定为飞船的A级产品,是飞船回收舱打开降落伞系统的关键控制单元。飞船返回舱进入大气层,到达距地面11公里高度时,安装在返回舱内壁的静压高度控制器发出开伞指令,飞船的控制操作系统收到信号后,拉出引导伞、降落伞、减速伞和主伞。飞船下降到6公里和5公里高度时,静压高度控制器再次发出信号,监测主伞是否工作正常,如果主伞出现意外,静压高度控制器将再次发出指令,启动备份伞,确保飞船回收舱百分之百安全降落。   除此之外,该公司还为“神八”提供了两种型号的压力信号器,主要使用于飞船对接压控装置和目标飞行器供氧组件。作为对接压控装置的功能部件,这两种信号器安装于运输飞船轨道舱内 作为供氧组的功能部件,安装在目标飞行器实验舱内。其主要功能是感受并指示组件的压力变化,为飞船的控制系统提供有力的压力数据保证。(成都日报)   神八天宫交会对接系统上海研制   与以往神舟系列飞船单独飞行不同,神八肩负着“交会对接”新任务,因此在它的轨道舱和天宫的实验舱前面,都各有一个对接机构,分别称为主动对接机构和被动对接机构。主、被动两套对接机构上,总共有13个电机、243个齿轮、680个轴承、5个电磁拖动机构、5个电子单机和2套结构本体,各自承担着他们的重要角色。   十多分钟的空间对接,却让上海航天人忙了12年。从1999 年开始,对接机构就进行了方案论证,以及大量研制、试验工作,神八和天宫两套对接机构在上海航天人“老中青”三代的目睹下成长起来。樊萍回忆道,“从方案论证到正样产品出厂,对接机构的结构外形没有变动过,但是里面部件几乎全部被改进了。”   记者获悉,上海航天技术研究院作为承担我国载人航天工程任务的主要单位之一,承担了神舟八号对接机构分系统、电源分系统、推进舱结构与总装、测控通信子系统以及总体电路分系统相关设备的研制工作。   据悉,天宫与神八此次要完成两个重要任务,一是完成交会对接 二是完成组合体运行,收集遥测数据、大气环境以及温度控制。试验结束后,神八返回舱将返回地面,天宫继续在太空服役,等待神九和神十飞船前来对接。只有三次都对接成功,中国的载人航天工程第二步战略目标才全部达到。   1992年,中国就正式确立了载人航天工程分三步走。第一步,发射两艘无人飞船和一艘载人飞船,开展空间应用实验。第二步,在第一艘载人飞船发射成功后,突破载人飞船和空间飞行器的交会对接技术,并利用载人飞船技术改装、发射一个8吨级的空间实验室,解决有一定规模的、短期有人照料的空间应用问题。第三步,建造载人空间站,解决有较大规模的、长期有人照料的空间应用问题。   据外媒报道,有美国学者认为,天宫一号相当于美国1973 年发射、1979年坠落的首个空间站天空实验室。这个载人空间站上拥有“阿波罗”望远镜和其他仪器,主要观测太阳和地球,还从事人类在失重状态下生理和心理反应等各种科学研究工作。对此,《国际太空》杂志副主编庞之浩却打趣道,与国外20吨级以上的同类试验性航天器相比,天宫一号在功能和用途方面有相似之处,但质量较小,只有8吨,因此称为“迷你空间实验室”更妥当。   下一步,中国还将建造较大规模的空间站。有消息称,中国空间站预计在2020年左右建成。(东方网)
  • 声发射技术未来可期,第十七届全国声发射学术研讨会圆满落幕!
    2021年6月4-5日,由中国机械工程学会无损检测分会主办,河北大学承办的第十七届全国声发射学术研讨会在河北大学成功召开。大会作为声发射技术研究与推广应用的交流平台,吸引来自全国声发射领域专家、学者与学生近300人出席,其中参会代表150余人,涉及各地高校、研究院所、检测机构、企业等57个单位。本次大会共收到论文摘要59篇,进行大会报告9个,主题报告46个,并首次开辟了研究生交流专场。6月4日上午,大会进行开幕式。开幕式由大会秘书长、河北大学质量技术监督学院副院长周伟教授主持,河北大学党委副书记杨立海教授、中国机械工程学会无损检测分会主任委员/中国特种设备检测研究院副院长沈功田研究员、中国机械工程学会无损检测分会声发射检测技术大会主席/东北石油大学李伟教授分别致辞。大会开幕式大会现场大会报告环节,沈功田研究员、河北工业大学副校长胡宁教授、中国机械工程学会无损检测分会副主任/东北石油大学戴光教授、河北大学质量技术监督学院院长方立德教授、东北石油大学蒋鹏副教授、中南大学董陇军教授、周伟教授、中国工程物理研究院化工材料研究所梁晓辉、中国特种设备检测研究院危化品装备部技术与装备应用研究室主任闫河高级工程师依次带来了精彩的报告。大会报告掠影中国特种设备检测研究院沈永娜、张君娇,中国工程物理研究院化工材料研究所付涛,东北石油大学刘颖红林,北京理工大学刘书尧,南华大学唐文福,西南林业大学王明华,北京强度环境研究所刘武刚等分别作主题报告。主题报告掠影此外,本次大会也得到了多家声发射厂商的大力支持,美国物理声学公司(PAC)北京代表处许凤旌、清诚声发射研究(广州)有限公司刘时风、北京科海恒生科技有限公司陈谋财、山东双测安全信息技术产业研究院有限公司魏鹏、德国QASS公司驻中国代表处王海娴等在大会期间作了报告分享。赞助商报告掠影6月5日下午,大会进行闭幕式,李伟教授、戴光教授、方立德教授、霍臻研究员分别出席。大会闭幕式戴光教授致辞戴光教授首先代表中国机械工程学会无损检测分会为会议的成功举办向大会承办单位河北大学以及大会委员会表示衷心的感谢,同时也向所有的与会嘉宾表示衷心的感谢。并讲到,本次研讨会是声发射行业的一次盛会,不仅有各位专家在报告中带来的最新研究成果和发展方向,更有很多年轻学者的参与,为声发射技术的研究和发展注入了新鲜血液,希望各位代表以本次会议为契机,共同努力,为声发射技术发展作出更大的贡献。方立德教授致辞方立德教授讲到,非常感谢大会主办方给到河北大学承办这次会议的机会,能邀请到全国各地这么多的专家学者以及厂商代表过来交流,也非常荣幸,在河北大学100周年、质量技术监督学院37周年之际来举办本次会议。他表示,欢迎领域内专家及企业代表多来河北大学,期待大家一起来把学校的人才培养好,学生在毕业之后能受到行业的欢迎。至此,第十七届全国声发射学术研讨会顺利闭幕。经声发射检测专业会员会讨论决定,第十八届全国声发射学术研讨会将于2022年12月在海南省海口市召开。经过两天广泛的学术交流,各参会人员对声发射技术的研究进展和发展方向都有了更加深入的了解,会议是短暂的,影响却是深远的,相信声发射技术会迎来更加美好的明天,也期待与大家来年海口再聚!参会代表合影留念
  • 承鸿鹄之志,造大国电镜!首台国产商业场发射透射电子显微镜发布
    1月20日,广州慧炬科技有限公司成功举办“承鸿鹄之志,造大国电镜”新品发布会,正式发布首台国产商业场发射透射电子显微镜“太行”TH-F120。标志着我国已掌握透射电镜整机研制能力以及电子枪、高压电源、电子探测相机等核心技术。该产品将打破国内透射电镜100%依赖进口的局面,为我国在材料科学、生命科学、化学、物理等前沿科学以及半导体工业、锂电新能源材料等先进制造业领域的高质量发展提供有力支撑。中国科学院院士饶子和、中国科学院院士隋森芳、中国科学院院士徐涛,以及来自全国学界、业界相关领域的60余位专家出席本次发布会。点击观看发布会精彩回顾院士大咖云集!共见首台国产商业场发射透射电子显微镜发布会议伊始,广州慧炬科技总经理曹峰向各位嘉宾的到来表示热烈欢迎,并感谢各位专家对国产透射电子显微镜的支持。广州开发区管委会二级巡视员、生物岛实验室主任助理杨寿桃致辞。国仪量子技术(合肥)股份有限公司董事长贺羽致辞。中国科学院隋森芳院士致辞。中国科学院物理研究所研究员、松山湖材料实验室研究员、中国电子显微学会副理事长、粤港澳大湾区电镜联盟理事长马秀良致辞。中国科学院生物物理研究所、生物岛实验室研究员、广州慧炬科技首席科学家孙飞分享了《生物医学电镜自主研制之路》报告。发布会上,饶子和院士与隋森芳院士共同为太行TH-F120揭幕。饶子和院士(左二)与隋森芳院士(左一)为太行TH-F120揭幕,徐涛院士(左三)等专家见证揭幕仪式合影破局之作!场发射透射电子显微镜“太行”TH-F120广州慧炬科技总经理曹峰向与会嘉宾详细介绍了太行TH-F120的产品特点与优势。TH-F120是慧炬120kV成像平台的首款产品,它的诞生意味着国产商业透射电镜向前迈进了一大步。其中文名称“太行”源自中华名山太行山,寓意TH-F120将如太行山一样,挺起中国透射电镜产业的脊梁。TH-F120自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化了电子光学设计,可为用户带来更佳的图像衬度和分辨率;自主研制的高稳定性的低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;整机以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;同时,TH-F120预设了充足的拓展接口和整机升级空间,满足用户迭代需求,有效延长整机使用年限。太行TH-F120产品参数太行TH-F120应用案例承鸿鹄之志,造大国电镜透射电镜具有极高的技术门槛,国外品牌已形成了垄断局面。此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。2022年,生物岛实验室与国内领先的科学仪器公司国仪量子技术(合肥)股份有限公司联合成立广州慧炬科技有限公司,依托生物岛实验室徐涛院士、孙飞研究员团队在国产透射电镜领域的研发成果,与国仪量子成熟的产品工程化与市场开拓经验,进一步推动透射电镜的普及和应用。此前,国仪量子自主研制的场发射/钨灯丝扫描电镜、超高分辨场发射扫描电镜、镓离子束双束电镜、量子传感设备、电子顺磁共振波谱仪、气体吸附分析仪等产品获得了良好的市场反响,形成了国产高端科学仪器的示范应用。双方的合作,将充分整合人才与技术优势,加速推进透射电镜技术转化为商业化产品并进行批量生产。广州慧炬科技首台国产商业场发射透射电子显微镜正式发布,填补了国内该领域的空白,实现了从“买”到“造”的重大突破。未来,广州慧炬科技将持续加强在透射电镜领域的自主创新能力,研发更高端的电镜产品,服务中国科研人,为实现科技自立自强贡献力量。与会嘉宾合影
  • 中国首个目标飞行器“天宫一号”发射升空
    9月29日,随着天宫一号于29日21时16分发射升空,中国向空间站时代迈出了坚实的一步。   这是长征系列运载火箭的第147次飞行,也是中国载人航天工程实施以来的第8次发射。   秋夜的酒泉卫星发射场上星光闪耀,全新改进的长征二号FT1火箭点火升空,明亮的尾焰映红了大漠长空。   中国载人航天工程总指挥常万全宣布发射成功。 天宫一号发射瞬间   从1999年第一艘飞船飞上太空到这次天宫一号发射,12年间,中国的载人航天工程以坚实的步伐迈向建造空间站这一19年前启动载人航天工程时便确定的目标。   距发射架1.5公里的厂房里,神舟八号与长征二号F火箭已在测试。11月初,神舟八号将在同一发射架上升空,在太空中与天宫一号交会对接——这将使中国成为世界上第三个掌握空间交会对接技术的国家。   28日下午举行的新闻发布会上,中国载人航天工程新闻发言人武平说,2012年底前,中国还将陆续发射神舟九号、十号飞船与天宫一号交会对接。   全长10.4米的天宫一号由实验舱和资源舱构成,舱体最大直径3.35米,比神舟飞船大了不少。   “如果说飞船是‘蜗居’,天宫一号则达到了‘小康’水平。”空间实验室系统副总设计师白明生说,实验舱有效活动空间约15立方米,可满足2至3名航天员在舱内工作和生活需要。   “天宫一号是按载人状态升空的。”白明生说,“神八不上人,但最晚到神舟十号,将试验有人的交会对接。”   与美、俄最初采用两艘飞船开展交会对接试验不同,中国全新研制了天宫一号作为交会对接的目标飞行器。“它的在轨寿命为两年,期间可以与飞船多次交会对接。”中国载人航天工程总设计师周建平说,“这可以减少发射次数,更经济。”   周建平说,天宫一号按中国后续的空间实验室要求设计,因此,它还肩负着验证空间站部分关键技术的使命。   “航天员已在为登天宫做准备。”航天员系统副总设计师王宪民说,再生式环境控制和生命保障技术等空间站关键技术也将在天宫一号上试验验证。   中国将在2016年前研制并发射空间实验室。2020年前后建造空间站。   空间应用系统副总设计师张善从说,天宫一号上安排有实验项目。后续的神舟八号上,中德将首次联合开展空间生命科学实验。   “我们要建一个开放的国家级空间实验平台。”周建平说,过去,中国曾为世界贡献四大发明。未来,在开发太空造福人类方面,我们期望能做出更多的贡献。
  • 小菲课堂|“吃透”发射率,热像仪测温才最准确
    上周我们分享了电影的精彩片段因为熟知物体发射率的差异强森透过热像仪鉴定出“假金蛋”想要回顾的小伙伴戳这里:可乐浇毁“金蛋”,强森的自信源于这里......那么到底什么是发射率?它和热像仪是如何相辅相成的?,时长01:13身边物体的发射率发射率其实是一种比率发射率是指物体表面辐射出的能量与相同温度的黑体辐射能量的比率。(黑体是一种理想化的辐射体,可辐射出所有的能量,其表面的发射率为 1.00)各种物质的发射率是由物体的本身材质、表面粗糙程度、表面几何形状、拍摄角度、观测波长以及被摄物体本身的温度所决定(其中物体本身材质是对物体发射率影响的一个因素),所以在相同的温度下,物质不同,向外辐射的能量也会不同。相同温度下,因发射率不同,而显示的表象温度有差异例如,高度抛光的金属表面,如铜或铝,其发射率通常低于0.10。粗糙或氧化的金属表面有更高的发射率(0.6或更大,取决于表面条件和氧化量)。大多数平面漆的发射率约为0.90,而人类皮肤和水约为0.98。影响发射率的因素:反射温度金属的发射率随表面温度的大幅上升而增大,而非金属的发射率一般是随表面温度的变动却几乎没有变化,金属的发射率比非金属的小得多。如果你看到的是一个高抛光金属物体,具有低发射率,该表面将像一面镜子。而你的热像仪不会测量物体本身的温度,而是检测被测物体表面的出射辐射(物体的表象温度),出射辐射包括物体自身的红外辐射+环境在物体表面的,经过相同的反射角进入热像仪镜头的反射辐射。环境反射表面温度(也称为背景温度或T-反射)是指来自被测物体周围环境中其他物体的任何热辐射,这些物体从你测量的目标反射进入热像仪镜头。反射温度会影响热像仪测量的表象温度反射温度会影响热像仪测量的表象温度(除发射率是影响测温结果的重要补偿参数,环境反射表象温度对测温结果影响也是至关重要的!),如果附近的热源(如变压器,电动机或者反射阳光中的红外波段能量)从物体表面反射进入热像仪镜头,而被测物体本身温度可能很低,但根据热像仪显示的温度却可能高得多。金属灯的开关是比墙的其他部分更热,还是反射了一个温暖的热源?或者一个物体可能和一个相邻物体的温度相同,但看起来要冷得多。戒指的温度可能和人的皮肤一样,但看起来要冷得多对于发射率较高的物体,反射温度的影响较小。但对于低发射率的物体来说,反射温度是关键因素。随着发射率的降低,你所测量的热量更多的是来自周围物体的表面,而不是你正在检查的目标。如何测量物体的真实温度?如果要测量的对象具有高发射率,则可以在热像仪设置中调整发射率和反射温度。例如,如果你想测量一个人的体温,你可以将发射率设置为0.98(赶快联系我们报名来年你就是专业红外热像师or热像分析师啦~
  • 我国首台国产场发射透射电镜发布
    1月20日,由生物岛实验室领衔研制,拥有自主知识产权的首台国产场发射透射电子显微镜在广州发布。这标志着我国已掌握透射电镜用的场发射电子枪等核心技术,并具备量产透射电镜整机产品的能力,将为我国在材料科学、生命科学、半导体工业等前沿科学及工业领域的高质量发展提供有力支撑。中国科学院院士、生物岛实验室主任徐涛联合中国科学院生物物理研究所研究员孙飞在2016年启动透射电镜有关研究,并于2020年在生物岛实验室组建起一支体系完整的透射电镜研制工程技术团队。团队成立三年多以来,相关研发工作接连取得重大突破。研发团队介绍,此次推出的首款场发射透射电镜新品TH-F120,取名源自中华名山“太行”,寓意它将如太行山一样成为中国透射电镜产业的脊梁。该场发射透射电镜利用被加速到120千电子伏特的高能电子与被观测样品中的原子发生相互作用,检测透射电子携带的样品信号转化为显微放大的图像,可以用来观察材料样品中的原子排列结构、细胞组织样品的精细超微结构、病毒和生物大分子复合体的精细结构,是科学家研究微观世界的重要仪器。研发团队表示,该电镜拥有自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化电子光学设计,可带来更佳的图像衬度和分辨率。生物岛实验室是广东省首批省实验室之一。自成立至今,生物岛实验室优化整合力量,加快成果转化、产业孵化和创新体系建设,不断培养高价值专利,与本地头部企业共建联合实验室、技术产业转化中心,累计孵化企业12家。发布会现场详细信息,请关注仪器信息网后续报道。
  • 场发射扫描电镜SEM5000在锂电隔膜检测中的应用
    锂离子电池”锂离子电池是一种二次电池,主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,锂离子穿过隔膜在两个电极之间往返嵌入和脱嵌,锂离子能量的存储和释放通过电极材料的氧化还原反应实现。锂离子电池主要由正极材料、隔膜、负极材料、电解液和其他材料组成。其中,隔膜在锂离子电池中起到阻止正负极直接接触的作用,并允许电解液中的锂离子自由通过,提供锂离子传输的微孔通道。锂离子电池隔膜的孔径尺寸、多孔程度、分布均一性、厚度直接影响电解液的扩散速率和安全性,对电池的性能有很大影响。如果隔膜的孔径太小,锂离子的透过性受限,影响电池中锂离子的传输性能,使得电池内阻增大;如果孔径太大,锂枝晶的生长可能会刺穿隔膜,造成短路或爆炸等事故[1]。场发射扫描电镜在锂电隔膜检测中的应用”使用扫描电镜可以观察隔膜的孔径尺寸和分布均匀性,还可以对多层和有涂覆隔膜的截面进行观察,测量隔膜厚度。传统的商业化隔膜材料多为聚烯烃材料所制备的微孔膜,包括聚乙烯(PE)、聚丙烯(PP)单层膜及PP/PE/PP三层复合膜。聚烯烃类的高分子材料绝缘不导电,并且对电子束非常敏感,高压下观察会导致荷电效应,高分子隔膜的精细结构也会被电子束损伤。国仪量子自主研发的SEM5000型场发射扫描电镜,具备低压高分辨的能力,可以在低压下直接观察隔膜表面的精细结构,并且不会对隔膜产生损伤。隔膜的制备工艺主要分为干法和湿法两类[2]。干法即熔融拉伸法,包括单向拉伸工艺和双向拉伸工艺,工艺过程简单,制造成本低,是锂离子电池隔膜生产的常用方法。干法制备的隔膜具有扁长状微孔(图1),但制备的隔膜较厚,且微孔均匀性差、孔径和孔隙率较难控制,组装后的电池能量密度低,主要应用于中低端锂离子电池。场发射扫描电镜在锂电隔膜检测中的应用”图1 干法拉伸隔膜/0.5KV/Inlens湿法即热致相分离法,将聚合物与高沸点溶剂等混合熔融,经过降温相分离、拉伸、萃取干燥、热处理定型等工艺制得微孔膜。与干法工艺相比较,湿法工艺稳定可控,制得的隔膜厚度薄、力学强度高、孔径分布均匀且相互贯穿(图2)。使用湿法工艺制得的隔膜虽然成本高于干法工艺,但组装后的电池能量密度高、充放电性能好,多应用于中高端的锂离子电池。结合国仪量子自主研发的孔径分析系统,可以对隔膜的孔径、孔隙率等特征进行快速自动化的分析(图3)。图2 湿法拉伸隔膜/1KV/Inlens图3 隔膜孔径分析/1KV/Inlens虽然聚烯烃类的隔膜广泛应用于锂离子电池中,但受材料本身力学性能、耐热性及表面惰性的限制,单纯的聚烯烃隔膜无法满足锂离子电池高安全性和高性能的要求。为此,需要对聚烯烃隔膜进行表面改性,以提高其力学性能、耐热性及与电解质的亲和力。其中,目前最常使用的方法就是对隔膜进行表面物理涂覆[3]。无机陶瓷材料(图4)具有耐热性好、化学稳定性高的特点,并且表面的极性官能团有利于改善聚烯烃隔膜对电解液的浸润性,故其常作为涂覆颗粒以增强隔膜的耐热性和电化学性能。图5为经无机陶瓷颗粒涂覆后隔膜的陶瓷面的表面形貌。图4 氧化铝陶瓷粉末/5KV/BSED图5 陶瓷涂覆隔膜/1KV/Inlens
  • 日立场发射扫描电镜摄影大赛初选作品公示
    自从9月末发布“日立场发射扫描电镜图片大赛”通知以来,来自各高校、院所使用日立电镜的老师踊跃参与,积极投稿。挑战电镜拍摄极限的样品,发挥电镜优势的样品,金属氧化物,无机非金属,高分子,生物材料等等形貌各异的样品令我们目不暇接。天美公司电镜应用专家及日立电镜部门历经长时间的层层挑选,激烈讨论,艰难取舍,最终选择20余幅优秀图片作为入围作品,现在此进行公示,以期与广大电镜使用爱好者共同交流、共同学习。并将在11月22日举办的“日立场发射扫描电镜最新技术研讨会”上由与会嘉宾全体投票,决选最终大奖。样品1名称:镍铁氧体简要说明:该样品为未磁化的磁性样品,八面体结晶形态。颗粒较小因此倍率做到80万。采用较大的工作距离以避免磁性材料被物镜漏磁磁化 。推荐理由: 磁性样品,难以拍摄,大工作距离高倍率很难得。 样品2名称:ZnO推荐理由:栉比如林。 样品3名称:硫化铋 推荐理由:图片景深好,形如花。 样品4名称:细胞组织附着在钛片纳米管上。推荐理由:体现了细胞组织在氧化钛纳米管上的附着形态。 样品5名称:生物胶束推荐理由:制样困难,拍摄倍率高。 样品6名称:分子筛推荐理由:减速模式下的高分辨。 样品7名称:集成电路静电击穿点,硅片上的氧化硅推荐理由:使用高加速电压穿过表面不导电钝化层,图片无荷电,且信噪比好,S-4300拍摄。 样品8名称:TiO2表面 推荐理由:初学SEM者拍摄,水平提高迅速。 样品9名称:ZnO 推荐理由:艺术感强,图片漂亮。 样品10名称:石墨稀推荐理由:难拍样品,大工作距离下的高分辨。 样品11名称:硫化钼推荐理由:景深好,视角选择恰当,体现球中球的结构。 样品12名称:聚苯乙烯球推荐理由:极易受电子束损伤的样品,利用极低加速电压拍摄。 样品13名称:多孔二氧化硅推荐理由:介孔材料表面细节清晰,减速模式下的高分辨。 样品14名称:分子筛/静电纺丝 推荐理由:较难做的样品,减速模式下的高分辨。 样品15名称:自组装的纳米金八面体推荐理由:图片细节清楚,艺术感强。 样品16名称:氧化钛多孔膜表面 推荐理由:不导电样品,未喷涂,高倍率。 样品17名称: SnO2 /ZnO推荐理由:构思巧妙,艺术性强。 样品18名称:分子筛/内核为Fe3O4的SiO2纳米球负载了Ce2O3纳米颗粒样品说明:内核为Fe3O4的SiO2纳米球(直径100nm左右)负载了Ce2O3纳米颗粒。 SiO2与Ce2O3导电性差,尽量分散粉体减少团聚、使用4号光镧减少入射电流,同时LA5混合少量BSE信号等方法,可有效减少荷电现象推荐理由:体现减速模式下高分辨优势;样品表面细节清楚,掺入BSE, 突显成分差异。 样品19名称:花粉推荐理由:大工作距离下的大景深,上下探头混合立体效果好。 样品20名称:金属删刻蚀推荐理由:低加速电压高角度BSE,体现微细结构的成分衬度。 再次感谢各位老师的支持与参与,感谢各位老师分享他们的做样技巧及拍摄成果! 声明:1、所有以上所有图片未经天美(中国)科学仪器有限公司批准不得转载。2、本活动的最终解释权归天美(中国)科学仪器有限公司所有。
  • 新型光谱发生器:可发射近红外波段任何期望波长的光
    光谱发生器L12194-00-70130可发射近红外波段的光,而且使用者可根据用途自行选择波长,其调节的最小单位间隔可为1nm。该产品内置高稳定性的光源和特有的光学系统,实现了小型化(144x236.5x513.5mm)、高稳定性、高输出功率和高效率。滨松新型光谱发生器L12194-00-70130L12194-00-70130作为一个新产品,与以往同为近红外波段的光谱发生器的产品相比,照射波长可以根据实际应用,拥有390~700nm,430 nm ~790nm,700nm~1300nm三种照射波段的选择。滨松将提供产品的样本软件,直接在PC上就可实现波长的控制。产品连接示例该产品可以广泛应用于生物发光刺激、光谱设备性能以及材料光学性能的研究和评估,另外,亦可作为显微镜和内窥镜的光源使用。产品应用点击按钮,查看详细产品信息:欢迎关注滨松中国官方微信号
  • 国产电镜新势力!屹东光学首款场发射扫描电镜线上发布会直播预告
    10月25日,仪器信息网将携手屹东光学技术(苏州)有限公司共同举办“屹光新启 显耀未来”主题研讨会暨屹东光学产品发布会。此次会议将聚焦于扫描电镜在生物和新能源领域的应用,届时屹东光学将推出全新的场发射扫描电镜产品。敬请期待!大会介绍扫描电子显微镜是材料分析和研究的重要工具,其利用聚焦到纳米尺度的电子束在样品表面扫描,通过收集电子束和样品发生相互作用后产生的信号来成像,可揭示样品的微观形貌和成分信息,是现代科研开发、生产制造过程中不可或缺的重要仪器装备,广泛应用于半导体、生物制药、能源地矿、化工材料、生物医学、微电子等各个领域。屹东光学技术(苏州)有限公司团队成员深耕带电粒子光学领域多年,设计开发了多款高性能的电子显微镜产品。本次发布会屹东光学将推出全新的场发射扫描电镜产品,其优异的电子光学系统,不仅为用户提供了高分辨的成像能力,模块化设计使得电镜本身具有良好的扩展性;从“用户角度出发设计的用户界面”把“用户友好型操作”落到了实处,流畅的软件界面极大地提升了电镜操作效率。本次发布会上,我们也将推出射频等离子清洗设备、连续型表面亲水化处理系统等几款电镜相关的制样设备,助力客户获得更好的电镜使用体验。本次发布会也邀请了生物和新能源研究领域的知名专家,介绍其运用扫描电镜在相关领域做出的杰出研究成果。主办单位屹东光学技术(苏州)有限公司仪器信息网活动时间10月25日 10:00-12:00活动报名点击会议官网报名,或扫码以下二维码报名https://www.instrument.com.cn/webinar/meetings/yidon231025/会议日程10月25日 屹光新启 显耀未来——屹东产品线上发布会10:0010:05发布会开场主持人10:0510:15屹东光学介绍尉东光屹东光学技术(苏州)有限公司 总经理/研究员10:1510:50屹东光学扫描电镜和附件折别介绍刘宁屹东光学技术(苏州)有限公司 产品市场部总监10:5011:20通向小鼠全脑的全细胞连接图谱张若冰中国科学院苏州生物医学工程技术研究所 研究员11:2011:50SEM平台多技术联用探索介尺度电池科学问题李林森上海交通大学 电化学工程与技术研究所/长聘教轨副教授11:5011:55抽奖主持人11:5512:00发布会结束主持人演讲嘉宾尉东光 总经理/研究员屹东光学技术(苏州)有限公司【嘉宾简介】尉东光博士长期从事带电粒子(电子/离子)光学技术与电子显微学的教学、研究与技术开发工作,曾长期任职于美国新泽西理工学院、哈佛大学等知名电镜中心;2020年回国工作之前,一直在世界知名电镜企业,德国卡尔蔡司(美国)公司任职,历任透射电镜产品经理、北美应用技术部主任和离子显微技术创新中心高级研究员等职。2020年加入中国科学院苏州医工所开展电子显微镜技术的研发工作,任研究员。2022年创立屹东光学技术(苏州)有限公司,任董事长/总经理。发表学术论文40余篇,其中包括CELL、NATURE Nanotechnology、NATURE Materials等高影响因子期刊10余篇。【报告】屹东光学介绍【摘要】带电粒子光学技术(通称电镜技术)支撑着一大批现代科研开发、生产制造过程中不可或缺的大型科学仪器装备,如电子显微镜、离子显微镜、能谱仪、质谱仪、电子束曝光机、工业测量、半导体检测与刻蚀加工设备等,是一类共性关键技术。 我国在这一领域与世界先进水平还有较大的差距,制约了我国自主科研开发创新与支撑企业产业升级的能力。对从事这一领域的工程技术人员来说,这既是一种压力,也是一个难得的机会。基于此,一群志同道合的工程师和技术专家创立了屹东光学,希望通过我们共同的努力,为我国带电粒子光学技术及装备领域添砖加瓦,在探索中国科研仪器制造的成功之路上贡献一份力量。刘宁 产品市场部总监屹东光学技术(苏州)有限公司【嘉宾简介】刘宁,屹东光学技术(苏州)有限公司产品市场部总监。长期从事带电粒子显微镜的应用开发和拓展工作,熟知各类扫描电子显微镜,聚焦镓离子束显微镜和扫描电镜双束系统,氦氖镓多束离子显微镜的原理和应用。加入屹东光学之前在国际知名电镜企业工作多年,先后担任应用工程师,应用专家和应用主管的职务,积累了丰富的电镜行业相关经验。【报告】屹东光学扫描电镜和附件设备介绍【摘要】屹东光学技术(苏州)有限公司场发射扫描电镜产品“YF-1801”的详细介绍,包括技术特点,应用方向,软件模块,拓展能力,使用便利性等。同时还将介绍在线等离子清洗机,亲水化仪,多功能电镜样品清洗机,微气体注入系统等几款附件设备。张若冰 研究员中国科学院苏州生物医学工程技术研究所【嘉宾简介】张若冰博士,中国科学院苏州生物医学工程技术研究所研究员,博士生导师。入选中科院“百人计划”、院基础原创类特聘研究岗位、院稳定支持基础研究领域青年团队,和江苏省双创领军团队。致力于神经连接组学(Connectomics)方向,发展并应用电子与光学高通量连续断层显微成像、大规模图像自动化分割与标注、神经连接图谱和神经环路分析与建模等方法,重建并解析动物三维脑图谱,研究脑神经网络的底层连接模式和规律,以揭示自然智能的结构基础与工作方式,并探索神经系统疾病超微病理、脑肿瘤微结构与微环境等。发表SCI、EI论文多篇,包括ACS Photonics、ACS Nano、Nano Letters、Optics Express、Angewandte Chemie、 Frontiers in Neuroinformatics 等领域一流期刊,申请发明专利4项,授权2项。【报告】通向小鼠全脑的全细胞连接图谱【摘要】 连续断层扫描电子显微成像 (serial sectioning SEM) 是最近十年发展起来的纳米级分辨率三维成像技术。辅以深度学习大规模图像分割,它能够重建大体积脑神经组织的微观突触连接图谱。多电子束扫描电镜的出现更大大提高了连续电镜的成像速度,使更大体积脑组织的成像重建成为可能。然而,从时间、成本和数据量而言,电镜成像重建与哺乳动物全脑图谱之间仍存在难以逾越的鸿沟。我们提出一种能与电镜兼容的光学方法,光学多层干涉断层成像 (OMLIT)技术。其衔接连续扫描电镜成像,可以用于获取包含所有神经元的介观-微观融合脑图谱。同时致力于发展和应用等离子减薄技术与连续电镜成像的结合,开发新的大体积电镜三维脑成像路线。在这里,我们将介绍上述几种技术,并结合讨论一些相关方法,展示它们如何用于重建庞大复杂的脑神经网络,提出迈向重建小鼠全脑全细胞完整结构连接图谱的可行路线图。李林森 电化学工程与技术研究所/长聘教轨副教授上海交通大学【嘉宾简介】李林森,上海交通大学化学化工学院特别研究员,博士生导师。入选国家海外高层次人才计划(2017年),上海市青年科技启明星(2020年)。2010年获复旦大学理学学士学位,2015年获美国威斯康辛大学麦迪逊分校化学博士学位,2015年2017年在美国麻省理工学院材料科学与工程系从事博士后研究,2017年9月加入上海交通大学。长期从事先进电池材料与表征技术研究,在电池正极材料的设计制备和结构调控、电子显微与谱学联用技术、钠离子电池等研究方面取得了多项创新成果,已在Nature Commun.,Chem, J. Am. Chem. Soc, PNAS,National Science Review等期刊发表论文70余篇。申请美国专利3项(授权2项),中国专利13项(授权5项)。已承担和参与了多项国家、省部级、及企业合作项目。【报告】SEM平台多技术联用探索介尺度电池科学问题【摘要】锂离子电池已经在消费电子、电动汽车、电化学储能等领域大规模应用并且不断地在开拓新的应用场景。这些应用场景对电池的性能、安全性、成本等关键指标不断提出新的需求。电池技术的进一步发展需要学术界和工业界的密切合作。当前与电池相关的科学研究很多是集中在单个电池颗粒、晶体结构、或者关健界面(例如电极材料-电解液界面,SEI)及其演变机制,涉及的空间尺度在亚微米到皮米范围;另一方面,工业界的研究以应用为导向,在器件的层次(厘米到米)的层次关注性能、稳定性、与安全性。衔接两类研究的关键是在二者之间的“介尺度”,即电极层次(数十微米级别)理解多颗粒的反应和失效均匀性问题。例如,当电池的容量衰减到初始容量的80%的时候,活性材料颗粒的结构或者界面破坏是否均匀?如果不均匀,那些被破坏的更多的颗粒在电极中什么位置?为什么?回答这些问题的第一步是寻找或建立合适的表征分析技术和实验方法。在本报告中,我们将介绍在扫描电子显微镜平台中,联合使用SEM、Raman、TOF-SIMS等技术,同时获得Ah级别电池的电极中颗粒的形貌(裂纹)、结构、和Li浓度等关键信息,并对电池材料失效的空间不均匀性及其原因进行讨论。
  • 我国声发射检测技术获得国际肯定
    记者日前从中国特检院获悉,该院副院长沈功田研究员在日前闭幕的2013年世界声发射会议(简称WCAE-2013)上,成功当选国际声发射学会(简称ISAE)理事长。ISAE的永久秘书处也设立在中国特检院,由中国机械工程学会无损检测分会管理。   本次会议由国际声发射学会主办,中国机械工程学会无损检测分会和中国特检院承办。来自美国、日本、澳大利亚、中国等13个国家的97名代表出席会议。会议收录论文86篇,其中口头报告41篇。会议期间,国际声发射学会召开了委员大会,选举产生了由来自9个国家的13人组成的第一届理事会和执行委员会,我国的沈功田研究员任理事长、李邦宪研究员任秘书长。   ISAE由中国和美国联合发起成立。这是在声发射领域,乃至无损检测领域首次由我国组织并发起的国际组织,彰显了我国声发射研究的水平和在国际上的影响力。ISAE理事会的成立,建立了中国声发射科技工作者与国际声发射领域专家深入交流的平台,促进了我国声发射检测技术的发展与推广应用,让世界见证了中国声发射技术的新发展,提高了我国声发射检测技术乃至无损检测技术的国际地位和国际影响力。   材料中局域源快速释放能量产生瞬态弹性波的现象称为声发射,大多数材料变形和断裂时都有声发射发生。用仪器探测、记录、分析声发射信号,并利用声发射信号对声发射源的状态作出正确判断的技术称为声发射检测技术。声发射技术适用于大型结构件的快速动态监测、检测和结构完整性评价,在石油化工、电力、冶金、材料试验、民用工程、航天和航空、金属加工、交通运输等领域开展了广泛的应用,且正在向生物等其他领域扩展。   我国的声发射检测应用面最广的是压力容器安全性检测和评价方面。现在有超过100家检测机构从事压力容器声发射检测。自1984年,中国特检院一直致力于特种设备的声发射检测技术的研究和应用,是国内声发射技术的领导者,在全国范围内建立了产、学、研、政四位一体的60多人的研发团队,承担国家科技攻关、科技支撑和社会公益科研项目近20项,制定国家或行业声发射检测技术标准10多项,开发声发射和管道泄漏检测仪器4种,培养声发射高级检测人员23名,中级近700名。其取得的科研成果获得国家科技进步二等奖2项,省部级科技奖励1等奖3项、二等奖6项。这项技术为企业解决了特种设备在线检测与安全评价的技术难题,既可及时发现和排除安全隐患,为生产安全提供技术保障,也可延长设备的运行周期,为企业带来可观的经济效益和社会效益。仅对大庆炼油厂、燕山石化、镇海炼化、华北制药、江西铜业等18家企业开展的3000多台次压力容器和大型常压储罐声发射检测应用进行统计,就为他们减少了12亿元的停产损失。《中国质量报》
  • 高能同步辐射光源储存环主体设备安装闭环,预计2024年发射第一束光
    HEPS最后一台二极磁铁就位。中国科学院高能物理研究所供图中国科学报讯(记者倪思洁)12月11日,国家重大科技基础设施项目高能同步辐射光源(HEPS)加速器储存环最后一台磁铁就位,标志着HEPS储存环主体设备安装闭环。HEPS储存环为超低发射度电子环形加速器,束流轨道周长约1360.4米,是世界上第三大光源加速器、国内第一大加速器,环内面积约合20余个足球场大小,用于储存高能高品质电子束,同时产生同步辐射光。今年2月初,储存环启动隧道设备安装,安装团队历经10个月完成全环288个预准直单元、240台弯转二极磁铁、288个基座等主体设备安装,实现主体设备安装闭环。HEPS工程总指挥潘卫民指出,作为我国首台第四代同步辐射装置的核心组成部分,储存环是HEPS规模最大、研制精度最高、难度成分最多的部分,由48个改进型混合7弯铁消色散(7BA)磁聚焦结构周期组成,每个周期长度约28米,包含37台磁铁和支架等主体硬件设备,其中,超高梯度四极磁铁、电源数字控制器和高精度电流传感器、高稳定性磁铁支撑等设备均达到国际先进水平。HEPS总工艺师林国平说,为了保证精度和效率,各系统设备完成加工测试后,在实验室完成预准直单元组装,实现预准直单元支架上磁铁的就位精度优于30微米后,方可运往储存环隧道进行安装。根据单元磁铁数不同,各预准直单元重约1.7吨至8.5吨,面对设备重、隧道设备密集、不能影响预准直精度等难点,安装团队提前设计定制专用吊臂车和工装,组织工艺安装实验,优化运输方案,检查设备接口、安装与操作空间,最终确认批量安装方案,为高效推进储存环隧道安装奠定基础。HEPS是国家发展改革委批复立项、由中国科学院高能物理研究所承担建设的国家重大科技基础设施,是北京怀柔科学城的核心装置。HEPS建成后,将成为我国首台高能量同步辐射光源,也是世界上亮度最高的第四代同步辐射光源之一,可以发射比太阳亮1万亿倍的光,有助于更深层次地解析物质微观结构和演化机制,为提升我国国家发展战略与前沿基础科学技术领域的原始创新能力提供高科技研究平台。HEPS自2019年6月启动建设以来,已完成直线加速器、增强器出束,储存环磁铁、机械、电源、预准直系统率先完成全部研制任务,真空、束控、注入引出、高频、低温等设备和光束线站批量加工测试工作正在紧张推进中,预计将于2024年发射第一束光。原标题:高能同步辐射光源储存环主体设备安装闭环
  • 1148万!杭州师范大学超高分辨率场发射扫描电子显微镜等一批设备采购项目
    一、项目基本情况 1.项目编号:HZNU-2023312 项目名称:杭州师范大学2023年超高分辨率场发射扫描电子显微镜等一批设备 预算金额(元):6480000 最高限价(元):5000000,1000000,480000 采购需求: 标项一 标项名称: 超高分辨率场发射扫描电子显微镜 数量: 1 预算金额(元): 5000000 简要规格描述或项目基本概况介绍、用途:用于各种生物样品及材料样品的微观形貌进行观察、分析和记录,能观察各种固态样品表面形貌的二次电子像、背反射电子像等,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 标项二 标项名称: 便携式光合荧光测量系统 数量: 1 预算金额(元): 1000000 简要规格描述或项目基本概况介绍、用途:用于实时测量植物光合速率、呼吸速率、蒸腾速率、最大羧化速率、表观量子效率等植物光合固碳指标,兼具光合气体交换、脉冲调制式叶绿素荧光、快速叶绿素荧光诱导动力学曲线多种功能,系统可实现对多个环境变量如光照、温度、饱和水汽压差、二氧化碳浓度的准确控制,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求 备注:允许进口 标项三 标项名称: 荧光定量PCR 数量: 1 预算金额(元): 480000 简要规格描述或项目基本概况介绍、用途:用于核酸定量、基因表达水平分析、基因突变检测、GMO检测及产物特异性分析等多种研究领域,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求 备注:允许进口 合同履约期限:标项 1,自合同签订之日起,365个日历日内供货到位。 标项 2、3,自合同签订之日起,90个日历日内供货到位 本项目(是)接受联合体投标。 2.项目编号:HZNU-2023310 项目名称:杭州师范大学2023年质谱流式细胞仪 预算金额(元):5000000 最高限价(元):5000000 采购需求: 标项名称: 杭州师范大学2023年质谱流式细胞仪 数量: 1 预算金额(元): 5000000 简要规格描述或项目基本概况介绍、用途:质谱流式细胞仪,应用于细胞生物学、分子生物学、免疫学、血液学、药物研发、临床诊断等方面的研究,可以对单个细胞同时进行50个参数分析,实现对骨髓、外周血等复杂细胞群体的免疫表型、信号通路、细胞功能等方面进行全面、精细、深入的研究分析,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 合同履约期限:标项 1,自合同签订之日起,180日历天内供货到位。 本项目(是)接受联合体投标。二、获取招标文件 时间:/至2023年07月13日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):政采云平台(https://www.zcygov.cn/) 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 三、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:杭州师范大学 地 址:余杭区仓前街道余杭塘路2318号 传 真: 项目联系人(询问):田老师 项目联系方式(询问):0571-28867509 质疑联系人:周老师 质疑联系方式:18857298499 2.采购代理机构信息 名 称:浙江省国际技术设备招标有限公司 地 址:杭州市凤起路334号同方财富大厦14层 传 真:0571-85860230 项目联系人(询问):杨建 杨晴 项目联系方式(询问):0571-85860251、0571-85860257 质疑联系人:孙荣 质疑联系方式:0571-85860270        3.同级政府采购监督管理部门 名 称:杭州市财政局政府采购监管处 /浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室 传 真: 联 系 人:朱女士/王女士 监督投诉电话:0571-85252453
  • 中国将在2016年前发射空间实验室
    目前技术方案已完善,研制正顺利进行 目的是为最终建成空间站提供技术支持。   我国将在2016年前研制并发射空间实验室,突破和掌握航天员中期驻留等空间站关键技术,并开展一定规模的空间应用。神舟飞船原总设计师戚发轫3日接受记者采访时表示,2011年下半年计划发射的我国首个目标飞行器“天宫一号”,将于2012年完成交会对接试验的重要使命。   戚发轫说,目前,空间实验室的技术方案已经完善,研制工作正在顺利进行,将解决一定规模、短期有人照料的空间应用问题。将来随着空间实验室体积的增大、可靠性的提高,将逐步发展成为空间站的核心舱或者实验舱,增加太空实验的项目和种类,为建成空间站奠定基础。   空间实验室是我国载人航天工程的第二步,将在2016年前完成,为最终建成空间站提供技术支持。而第一步即载人飞船阶段,已由神五、神六飞船实现。   与宇航强国竞争,我国正在研制论证   130吨重型运载火箭   运载能力是现役运载火箭的6倍 满足载人登月、深空探测等发射   中国航天科技集团公司中国运载火箭技术研究院党委书记梁小虹3日接受记者专访时透露,我国目前运载能力最大的运载火箭正在进行研制论证工作,运载能力将达130吨,是现役运载火箭的6倍。该火箭可满足载人登月、深空探测等发射任务的需求,中国运载火箭技术研究院将承担研制任务。   目的:保持空间优势核心能力   据介绍,研制重型火箭是我国实施太空发展战略的重要举措,也是我国实施大规模深空探测任务的基础,将大大提高我国运载火箭的运载能力、自主进入空间能力,是保持空间优势核心能力的关键支柱。该项目在极大带动航天技术水平跃升的同时,还辐射带动国家基础工业、科学技术和民用产业的技术进步、能力升级。   意义:带动科学技术的研究进步   梁小虹告诉记者,与其他长征系列火箭“追赶”世界同类型先进型号不同,在重型运载火箭领域,美国、俄罗斯已经或正在开展研制具有代表性的重型运载火箭,我国目前进行重型运载火箭的研制论证意味着与宇航强国同时起步,开展竞争。   他说,重型运载火箭研制需要攻克大量先进技术,例如大推力发动机技术、大直径箭体设计与制造技术、高精度制导、低温推进剂在轨管理等技术,将带动有关科学技术的研究进步,例如制导理论、燃烧理论、新型材料和计算机等的发展。   天宫一号和神八发射   长征二号F火箭承担   它为载人航天第二阶段任务做好准备   梁小虹3日透露,长征二号F火箭将承担天宫一号和神舟八号发射任务。   梁小虹告诉记者,与前三次载人航天飞行相比,长征二号F技术状态变化较大,进行了近170项技术状态更改,其中38项为重大更改。长征二号F已为载人航天第二阶段任务的顺利实施做好充分准备。   在今年下半年发射天宫一号和神舟八号后,我国还将在未来两年内发射神舟九号、十号飞船,分别与天宫一号完成空间交会对接。   梁小虹说,今后我国还将致力于逐步形成系列化、通用化、组合化程度更高、能力覆盖更完整的新一代运载火箭大、中、小型谱系列,进一步满足深空探测、载人登月等规模更大的航天重大工程的任务要求。   今年完成9次发射任务   金牌火箭长三甲飞天忙   其高可靠性达到世界先进水平   3日,梁小虹告诉记者,被誉为“金牌火箭”的长征三号甲系列火箭将在2011年完成9次发射任务。   梁小虹介绍说,主力火箭长征三号甲系列火箭包括长征三号甲、长征三号乙、长征三号丙三个型号。 其中,长征三号甲是享誉全球的金牌火箭,长征三号乙是国内高轨道运载能力最大的火箭,长征三号丙执行世人瞩目的探月工程。   长征三号甲系列低成本、强适应性和高可靠性均达到世界先进水平。长征三号甲系列运载火箭国际商业发射服务价格是国外同类火箭的60%,目前可靠性验证指标已达到0.937,并通过上面级的研制大幅提升了任务适应性。截至目前共完成发射32次,成功30次,发射成功率达到93.75%。   新一代长征火箭   型谱正逐步形成   满足未来30年至50年航天器发射需求   我国新一代运载火箭系列型谱正在逐步形成,将满足未来30年至50年航天器发射需求,我国航天运输能力也将达到国际先进水平。   梁小虹3日接受记者专访时透露了这一信息。   梁小虹告诉记者,新一代运载火箭型谱家族形成的总体运载能力覆盖范围全面。新一代大型、中型和小型运载火箭家族是满足基本应用需求的主力军,该型谱全面覆盖大型、中型、小型运载能力,实现太阳同步轨道500公斤,地球近地轨道25吨,地球同步转移轨道1.5吨到14吨的新目标。   梁小虹向记者透露,“新一代运载火箭型谱家族的应运而生预示着中国运载能力将达到世界先进水平。”   2011年我国运载火箭   发射次数将达20余次   长征三号甲系列火箭将担纲大任   梁小虹3日还透露,2011年全球预计将进行70余次轨道发射,我国运载火箭发射次数也将达到20余次,中国运载火箭技术研究院将承担其中17次发射任务,创该院运载火箭发射次数历史之最。   中国运载火箭技术研究院现役火箭将在2011年一一登上发射塔架。其中,长征三号甲系列火箭将担纲大任,在今年完成9次发射任务。长征二号F火箭将承担世人瞩目的天宫一号和神舟八号的发射任务。长征二号丙运载火箭预计也将进行多次发射任务。   梁小虹称,这意味着平均不到一个月就要完成一次发射,相比于以往近两个月一次,“如此快节奏历史罕见”。   戚发轫   中国工程院院士、国际宇航科学院院士,曾担任中国载人航天工程载人飞船系统总设计师。   本组稿件综合新华社
  • 场发射电子显微镜的电子源研制
    成果名称 场发射电子显微镜的电子源研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 &radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产 成果简介: 该项目拟搭建一套ZrO/W Schottky场发射电子源基本研制平台,主要开展以下两个方面的研究内容:1)通过增加电子束磁偏转控制、可编程皮安电流表和法拉第杯等部件,搭建一套电子束性能评测系统,用于电子束的角电流密度、亮度、稳定度、束流密度分布等重要电子光学参数的测评。完善场发射电子源研制平台,优化研制工艺,获得可用于实际测试的ZrO/W Schottky场发射电子源。2)将自主研制的场发射电子源安装到商用Amray1910场发射扫描电镜上,和FEI公司提供的ZrO/W Schottky电子源进行实际成像比较,为实用定型提供依据。 该项目完成了电子束磁偏转系统的搭建;在高真空下,完成了法拉第杯和高精度皮安电流表电子束束流检测系统;用EYG单晶荧光屏替换普通荧光粉屏解决高真空放气问题等;完成超高真空发射体炼面和电子束斑成像系统中发射体性能评测系统的研制;利用评测系统进行电子束的角电流密度、亮度、稳定度及发射体功函数等重要电子光学参数测试,进而优化场发射电子源研制工艺。由于本项目完善了&ldquo 发射体性能评测系统&rdquo ,申请人利用该评测系统对自己研制的场发射电子源和FEI公司的商用电子源进行了对照测试,测试结果证明:自己研制的场发射电子源在亮度上达到了FEI公司的商用电子源的水平。后续准备加工FEI公司的场发射环扫(ESEM)的场发射源组件,待ESEM更换电子源时,直接更换进行实际使用测试。
  • 日本将发射能精确测量深空X射线的太空天文台
    X射线成像和光谱任务(XRISM)将于8月28日在日本种子岛航天中心由H-IIA火箭发射升空。该任务旨在观察来自深空的X射线,并以前所未有的精度识别它们的波长。这将使研究人员更深入地了解从星系团如何形成到黑洞如何产生高能粒子喷流的天体物理现象。  XRISM是日本宇宙航空研究开发机构(JAXA)和美国国家航空航天局(NASA)的一项联合任务,欧洲空间局(ESA)也将有进一步的贡献,预计将运行3年左右。  据悉,该火箭还将发射智能探月着陆器SLIM,其目的是展示在月球表面精确选择着陆点的能力。如果成功,这将是JAXA首次登陆月球。  XRISM的独特之处在于它的X射线量热计,这是NASA在20世纪80年代开发的一项技术,可以通过百万分之一度的温度变化探测电磁辐射。单个X射线光子的能量与其波长有关,了解这一点将使天文学家能够区分化学元素的特征,帮助天体物理学家重建宇宙的历史。  XRISM的量热计还能够获取天体的光谱,包括星系间气体和黑洞吸积盘。而现有的X射线天文台只能采集点状光源的光谱,比如单个恒星。对于运动中的X射线源,光谱会因多普勒效应而发生偏移,例如,这可以揭示一个星系团是否由两个较小的星系团合并而成。星系间的物质也经常被位于星系中心的超大质量黑洞产生的物质喷流搅动。绘制这些漩涡的地图可以帮助天体物理学家了解喷流的神秘起源,以及它们是如何影响星系演化的。  XRISM将是日本第四次尝试在太空中部署X射线量热计。  2016年2月,JAXA发射了ASTRO-H卫星,后来更名为“瞳”。仅仅5周后,当仪器仍在进行校准和测试时,一个软件错误导致航天器失去控制并解体。  XRISM科学团队成员、美国芝加哥大学天体物理学家Irina Zhuravleva参与了“瞳”的研究。她说,2016年发表的研究结果“非常非常惊人”,而真实数据要比理论预测更详细。  “我们的模型缺少一些线条,观测结果表明我们对简单原子跃迁的理解是多么地不完整。这也激发了我们在实验室环境中研究等离子体的新兴趣。”Zhuravleva说,“我们终于有望开启X射线天文学的一个全新时代。”
  • 帕克太阳探测器发射升空 开启历时7年的逐日之旅
    p style=" text-align: justify " & nbsp & nbsp 美东时间8月12日凌晨3时31分,帕克太阳探测器由美国联合发射联盟的Delta-4重型火箭于佛罗里达州卡纳维拉尔角空军基地成功发射升空,开启历时7年的逐日之旅。这将是人造航天器首次抵达恒星大气层。 /p p /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/95d0d2d7-10a6-4050-935a-4843bcc1cd83.jpg" title=" 7Jaj-hhqtawx6152749.jpg" / /p p style=" text-align: justify " 帕克太阳探测器将是人类首次抵达恒星大气层,也是目前人类唯一可以接近的恒星。 /p p style=" text-align: justify " & nbsp & nbsp 美国宇航局消息,Delta-4重型火箭载着帕克太阳探测器于当日成功发射升空。美国宇航局的这颗耗资15亿美元的航天器将成为有史以来距离太阳最近、速度最快的太空探测器。美国宇航局科学任务理事会副主任托马斯· 佐伯琴(Thomas Zurbuchen)表示,这一任务标志着人类首次探访太阳系中的大明星。 /p p style=" text-align: justify " & nbsp & nbsp 帕克太阳探测器预计于2018年11月1日第一次抵达近日点,执行首个探日任务。届时它将飞抵距太阳光球层1500万英里处。科学家最快于12月可收到第一批“太阳信息”。探测器的最后一次探日任务预计于2025年6月执行。这是探测器第24次飞抵近日点,也是该任务最接近太阳的一刻,届时与太阳光球层的距离约600万千米。 /p p style=" text-align: justify " & nbsp & nbsp 帕克太阳探测器任务旨在追踪能量和热量如何通过日冕,探索加速太阳风和太阳能粒子的作用。它携带了四组仪器,可测量电场、磁场,探测太阳风的成分,并拍摄日冕图景。 /p p style=" text-align: justify " & nbsp & nbsp 据《纽约时报》报道,帕克太阳探测器将打破人类有史以来飞行速度最快、最耐高温的人造航天器的纪录。 /p p style=" text-align: justify " & nbsp & nbsp 一方面为接近太阳,科学家将航天器的速度提升至最高速度达每小时50万英里,相当于只需不到一分钟的时间可从芝加哥到北京。另一方面,科学家设计出抵挡高温的隔热罩。它是一块直径2.3米,厚度为11.43厘米的碳-碳复合材料隔热罩,表面附有陶瓷涂层,内部充满碳结构,能将大部分太阳光反射回去。它像一块盾牌,保护着背面的探测器免受太阳高温的辐照加热,并将其温度控制在85华氏度。 /p p style=" text-align: justify " & nbsp & nbsp 在太阳日冕层内,温度最高达到2500华氏度。这是钢的熔化温度。60多年来,科学家一直在寻找如何让航天器不受太阳炙烤的答案。今天,随着热工程技术进步,才有可能实现这趟旅程。目前,距离太阳最近的探测器纪录由20世纪70年代发射的德国太阳神2号探测器保持,距太阳约2700英里。 /p p style=" text-align: justify " & nbsp & nbsp 值得一提的是,这是首个以健在的人物命名的太空任务。现代太阳风和磁重联理论的奠基人、美国科学院院士尤金· 帕克(Eugene Parker)于1958年首次预测太阳风的存在。此次任务将证实帕克的预言。当日,91岁的帕克在空军基地现场观看了发射全程。火箭升空后,他在美国宇航局广播中说:“(这趟旅途)终于开始了!” /p p style=" text-align: justify " & nbsp & nbsp 此外,帕克太阳探测器贴上了一块铭牌和一枚芯片。铭牌上写着:献给专注于研究太阳和太阳风的尤金· 帕克博士,他的贡献彻底改变了我们对太阳和太阳风的认识。芯片上存储了超过110万公众的名字,将与探测器一起开启逐日之旅。 /p p br/ /p
  • FLIR T540——助力验证火箭发射的完整性
    我们都知道,火箭在发射之前要经过多次反复的试验,今天小菲就给大家说下南加州大学火箭推进实验室的Neil Tewksbury及其团队想把一枚火箭发射到太空所,通过使用FLIR T540对火箭部件反复试验过程进行记录,最终得到良好效果的案例!作为一场非官方国际大学太空竞赛的一部分,Tewksbury和他的团队不仅想成为一个成功发射火箭的团队,还想用完全由自己制造的部件组成的火箭达到海拔100公里(33万英尺)的高度。他们每年只能制造一到两枚火箭,所以在地面上测试组件对制造可行的火箭至关重要。火箭发动机测试面临的挑战作为申请从联邦航空局(FAA)获得发射窗口的一部分,Tewksbury需要验证他的太空发射火箭能否安全完成这次旅行,验证过程的一部分是在莫哈韦沙漠试验场进行的。Tewksbury需要测试火箭发动机外壳热保护系统的完整性以及碳酚醛喷嘴的设计。“我们必须保护这个箱子,因为它是碳纤维,所以实际上它不能在高温下存活”,Tewksbury解释说。“这种静态火的新增加是喷嘴,我们用新材料、新工艺完全重新设计了喷嘴,”Tewksbury补充道。“我们想看看它的表现如何,因此在喷嘴上使用了一种特殊的烧蚀技术,希望能尽可能多地散发热量,以保护我们的热敏外壳”。被称为“地面”和“旅行者”的Graveller II,是对地面火箭发动机的一次静态测试。在过去的静态试验中,Tewksbury依靠热电偶收集热管理数据。虽然热电偶可以提供特定的现场数据,但他需要一个解决方案,以便收集更全面的数据进行此测试。“我们真的想看看箱子上和喷嘴上是否有热点,但目前只能使用有限数量的热电偶,”Tewksbury说。火箭试验数据详细记录2018年2月17日,南加州大学火箭推进实验室成功测试了Graveler II,这是迄今为止成功发射的复合外壳业余火箭发动机。直径8英寸(约20.3厘米),长80.5英寸(约2米)的R级固体火箭发动机的总脉冲推力为42,000磅/秒(约19吨/秒)。Graveler II在带有碳酚醛喷嘴的碳环氧机壳中发射,所有这些都是由南加州大学的学生设计和制造的。 在测试之前,Tewksbury联系了一位到访教室讨论红外技术的FLIR代表,问他是否可以借一台红外热像仪。最终,FLIR为测试提供一台T540专业手持式热像仪,Tewkesbury发现它非常直观且易于使用。他只需要在FLIR-ResearchIR软件上观看一段简短的教程视频,就可以开始测试了。Tewksbury想要使用热像仪的主要原因是,如果设计失败,则要进行故障调查,FLIR T540可以很好将试验过程的数据详细记录。但试验完全成功,因此无需进行失败调查。“火箭运转得很好,我还获得了一些有关热防护系统如何管理热量的有意义的数据。” 火箭发射后,Tewksbury继续收集冷却火箭上的热数据。“燃烧几分钟后,您就能看到颗粒之间的界限。我们的发动机实际上是五到六块推进剂相互叠放在一起,称为BATES颗粒,您实际上可以将颗粒之间的缝隙视为热点。因此可以知道,我们可以量化热量的传递方式。”FLIR T540助力团队获得发射窗口有了这些成果,Tewksbury和他的团队即将从FAA获得发射窗口,并有望到达内华达州黑石市上方的Karman线(海拔100公里)发射。他们将与南加州大学的航空电子团队合作,该团队负责飞行软件,传感器和降落伞的部署。“当然,我们将降落在Karman防线的后面,然后在降落伞下向后退。”FLIR T540专业红外热像仪FLIR T540采用人体工学设计,分辨率高,能快速排查热点、找出隐藏的故障并确认维修结果。这款161,472(464×348)像素的红外热像仪配备明亮的4英寸液晶显示屏和可180°旋转的镜头平台,因此您甚至能在难以触及的区域轻松舒适地诊断电气或机械问题。这款热像仪内置先进的测量工具(如单触式电平/跨度),采用激光辅助自动对焦技术,使您每次都能记录精确的温度测量值。
  • “神十四”成功发射背后的关键技术
    6月5日上午,搭载神舟十四号载人飞船的长征二号F遥十四运载火箭,在酒泉卫星发射中心点火升空,成功将航天员陈冬、刘洋、蔡旭哲顺利送入太空,中国空间站建造阶段首次载人飞行任务发射告捷。神舟十四号载人飞船入轨后,采取径向自主快速交会对接方式同空间站组合体对接。3位航天员将进入空间站天和核心舱,正式开启6个月的太空之旅。“神十四”成功发射背后的关键技术有哪些?下面由小编汇总。点火发射的“火工品”此次神舟十四号发射任务中,四川航天川南火工技术有限公司承担了长征二号F遥十四运载火箭和神舟十四号载人飞船上点火器、起爆器、爆炸螺栓、火药装药、点火药盒、固体小火箭和非电传爆类产品等30余种共计500余发火工品的研制生产工作,为此次任务提供了充分的动力保证。保驾护航的“护甲”与“隔热衣”此次神舟十四号发射任务中,上海硅酸盐研究所研制的长寿命低比值无机热控涂层、耐高温隔热材料与组件、返回舱舷窗防烧蚀污染涂层、姿控发动机热防护材料、舱内通道照明和仪器仪表等多种载荷表面高辐射热控涂层、舷窗玻璃及光学涂层、消杂散光涂层、不锈钢灰色化学转换热控涂层、返回舱防热天线窗等十余种涂层与部件得到应用。上海有机化学研究所研制的有机温控涂层、导航用陀螺油助力神舟十四成功发射,实现了我国在液浮导航系统关键原材料的全方位自主可控。此外飞船、火箭上60%以上关键铝合金材料是“西南铝造”,还有“河南造”特种阀门配套系统、“苏州造”配套电路等许多关键技术也为神舟十四号的成功发射提供了不可或缺的助力。近在咫尺的“实时画面”此次神舟十四号发射过程中,火箭飞行中喷射的尾焰、在火箭高速运行过程中三位航天员的状态以及解体过程等高清画面离不开北京理工大学研发的高效视频编码技术。自2005年首次应用于长征火箭以来,该项技术不断进行技术创新和产品升级迭代,持续为“神舟”系列飞船的发射提供技术支持和服务,将火箭飞行动态的珍贵图像实时传回地面。交会对接的“精准测量员”神舟十四号载人飞船采用自主快速交会对接模式,与中国空间站成功“牵手”。中国航天科工二院25所研制的微波雷达与安装在空间站核心舱上的微波应答机配合工作,为空间交会对接任务保驾护航。同样在交会对接任务中屡立新功的还有中国航天科工三院33所研制的高精度加速度计组合及多只加速度计。它们出色完成了微重力环境下加速度的测量任务,帮助飞船精准把握速度和位置,让交会对接又稳又准。太空生活的“贴心服务员”中国航天科工航天三江红峰公司自主设计生产的“太空厨房”“太空医院”和“太空空调”系列产品,它们为航天员舒适的太空生活提供保障。此次随神舟十四号出征的食品加热装置、气体流量调节阀、液路截止阀、生理信号测试盒、心电记录装置等5种产品,主要用于神舟飞船环控生保分系统和医监医保设备分系统,它们是“太空厨房”“太空医院”“太空空调”的一部分,为航天员营造了舒适的太空之家。技术精湛的“护航员”由中国航天科工二院706所研制的搜救信息系统,是技术精湛的“全程护航员”,它承担神舟十四号载人飞船的待发段、上升段、运行段、返回段应急搜救指挥保障任务。系统具备搜救力量管理、搜救任务筹划、搜救预案仿真推演、任务执行跟踪与态势展示等功能,为航天员搜救任务事前运筹规划、事中指挥调度与事后复盘分析提供服务,是空间站任务实现航天员救援保障的关键系统,为载人航天工程建设发挥重要作用。另外一个“护航员”是护航飞行通信,保证全程清晰的声表滤波器。据介绍,航天器发射在太空中一旦有信号干扰,地面接收到的内容就像接听串了线的电话,难以分辨准确信息。为保障飞行全程通信清晰,由中国航天科工二院23所自主研制的声表滤波器,能有效滤除不同飞行阶段和太空中宇宙杂波的各种干扰信号,确保通信清晰准确传回地面。夜空中的最亮“船”在本次神舟十四号载人飞船任务中,上海技术物理研究所承担研制2台交会对接灯、轨道舱照明灯和返回舱照明灯等4台光电产品。交会对接灯配置在载人运输飞船舱外,在交会对接过程中为“太空拍摄”提供照明服务;轨道舱照明灯和返回舱照明灯为宇航员在舱内工作生活提供照明。由于篇幅限制,除了上述列举的技术外,还有诸多重要技术尚未提及。神舟十四号成功发射离不开我国科技的进步,离不开各界人士的支持,在此,小编预祝神舟十四任务圆满成功。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制