当前位置: 仪器信息网 > 行业主题 > >

电极接勒计

仪器信息网电极接勒计专题为您提供2024年最新电极接勒计价格报价、厂家品牌的相关信息, 包括电极接勒计参数、型号等,不管是国产,还是进口品牌的电极接勒计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电极接勒计相关的耗材配件、试剂标物,还有电极接勒计相关的最新资讯、资料,以及电极接勒计相关的解决方案。

电极接勒计相关的资讯

  • 厦门隆力德经销Broadley James电极传感器已多年
    2014年6月26-28日,在上海举行的2014世界生化、分析仪器与实验室装备中国展上,厦门隆力德环境技术开发有限公司总经理刘俊平携助理王青,与美国Broadley James公司的副总裁Robert,国际市场销售Jessica会面。 Broadley James是国际知名的电极生产商,与我司已有十多年的合作历史,主营产品为各类水体监测用电极,在业界有极高的口碑。
  • 溶解氧测定仪电极清洗校准、再生、维护和保养
    1) 1~2周应清洗一次溶解氧测定仪电极,如果膜片上有污染物,会引起测量误差。清洗时应小心,注意不要损坏膜片。将溶解氧测定仪电极放入清水中涮洗,如污物不能洗去,用软布或棉布小心擦洗。   2) 2~3 月应重新校验一次零点和量程。   3) 溶解氧测定仪电极的再生大约1年左右进行一次。当测量范围调整不过来,就需要对溶解氧电极再生。电极再生包括更换内部电解液、更换膜片、清洗银电极。如果观察银电极有氧化现象,可细砂纸抛光。   4) 在使用中如发现溶解氧电极泄露,就必须更换电解液。   溶解氧测定仪校准标定方法:一般可采用标准液标定或现场取样标定。  1) 标准溶液标定法:标准溶液标定一般采用两点标定,即零点标定和量程标定。零点标定溶液可采用2%的Na2SO3溶液。量程标定溶液可根据仪表测量量程选择4M的KCl溶液(2mg/L);50%的甲醇溶液(21.9mg/L)。   2) 现场取样标定法(Winkler法):在实际使用中,多采用Winkler方法对溶解氧分析仪(溶解氧仪)进行现场标定。使用该方法时存在两种情况:取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数仍为M1,这时只须调整仪表读数等于A即可;取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数改变为M2,这时就不能将调整仪表读数等于A,而应将仪表读数调整为1MA×M2。  3)溶解氧电极再生:溶解氧电极信号阻抗较高(约20MΩ),溶解氧电极与转换器之间距离z大为50m;溶解氧电极不用时也应处于工作状态,可接在溶解氧转换器上。久置或重新再生(更换电解液或膜)的电极,在使用前应置于无氧环境极化1~2h;由于温度变化对电极膜的扩散和氧溶解度有较大影响,标定时需较长时间(约10min),以使温补电阻达到平衡;氧分压与该地区的海拔高度有关,仪表在使用前必须根据当地大气压进行补偿;测量溶液的含盐量高时,仪表标定时应使用含盐量相当的溶液 对于流通式测量方式,要求流过电极的最小流速为0.3m/s。
  • 干法电极车间除湿机,干法电极车间湿度控制设备
    干法电极车间除湿机,干法电极车间湿度控制设备【新闻导读】对于任何一家工厂或企业来说,一个优质的生产环境可以优化加工工艺,对其生产与品质都起到了至关重要的作用。尤其是在锂电池干法电极车间,不管是机器设备的运行还是产品质量都跟环境的灰尘含量、温度、湿度息息相关。以湿度为例,一般来说,锂电池干法电极车间对空气湿度的要求是在40%RH以下,超过这个范围,那么空气湿度就超标了   锂电材料与空气的反应会在原材料保存、电极制备、极片存储等整个过程进行,因此,对于锂电材料,从原材料到整个电池生产过程都需要严格的环境控制,特别是水分控制。如果水分与材料已经发生了反应,通过常规的干燥过程根本无法再次去除水分的影响,电极浆料的制备、极片制造等环节都需要在干燥环境内进行,一般地,锂电正极电池的生产过程都需要露点-30℃环境。  如果锂电正极材料颗粒表面吸收空气中的水分,反应产生了LiOH,这就会对极片制造工艺过程产生严重的影响。在锂电正极浆料制备过程中,PVDF溶解于NMP中,材料表面的碱性基团会攻击相邻的C-F、C-H键,PVDF很容易发生双分子消去反应,会在分子链上形成一部分的碳碳双键。  锂电材料吸收水分反应产物Li2CO3在充电状态的高电位下容易分解产生CO2气体,造成电池鼓包漏液问题。当材料吸收的水分足够多时,产生的气体多,电池内部的压力就会变大,从而引起电池受力变形,出现电池鼓涨,漏液等危险。  因此,对于锂电正极材料,在原材料保存和电池制备过程中,环境湿度都需要严格控制,才能生产高性能的锂离子电池。为此,这就需要通过专业的湿度控制设备--正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机来对其生产、储存等环境的湿度进行科学合理的控制环境。  正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机是严格采用专业的技术和精湛的工艺制造出高效、节能、环保的除湿机产品,具有智能湿度恒定控制系统,用户可根据生产的需要,自动控制除湿机的工作及停机,通过自动控制实现高效的除湿效果,降低整机运行成本。欢迎您查询干法电极车间除湿机,干法电极车间湿度控制设备的详细信息!  正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机技术参数与选型参考:  产品型号-------除湿量----适用面积-----功率-------电源----循环风量  正岛ZD-228LB--28(L/D)---30-80(㎡)----420(W)---220V/50Hz--190m3/h  正岛ZD-558LB--58(L/D)---50-100(㎡)---670(W)---220V/50Hz--850m3/h  正岛ZD-880LB--80(L/D)---100-160(㎡)--710(W)---220V/50Hz--980m3/h  【除湿机租赁业务要求】提供灵活的租赁方案,满足客户短期和长期的租赁要求。  【除湿机租赁收费标准】具体可根据租用机型、租用数量以及租用天数等来定价。  正岛ZD-890C---90(L/D)---90-150(㎡)---1700(W)--220V/50Hz--1125m3/h  正岛ZD-8138C--138(L/D)--150-250(㎡)--2000(W)--220V/50Hz--1725m3/h  正岛ZD-8168C--168(L/D)--180-280(㎡)--2800(W)--380V/50Hz--2100m3/h  正岛ZD-8240C--240(L/D)--280-380(㎡)--4900(W)--380V/50Hz--3000m3/h  正岛ZD-8360C--360(L/D)--380-580(㎡)--7000(W)--380V/50Hz--4500m3/h  正岛ZD-8480C--480(L/D)--500-880(㎡)--9900(W)--380V/50Hz--6000m3/h  ◎选型注意事项--除湿机的除湿量和型号的选择,主要根据使用环境空间的体积、新风量的大小、空间环境所需的湿度要求等具体数值来科学计算。另外需要注意的是环境的相对湿度与环境的温度有关,温度越高,湿度蒸发越快,反之效果越差,因此在配置除湿机时,需要在专业人员的指导下进行选型,这样才能选到最为适合你的除湿机!  核心提示:在锂电池的生产加工过程中,采用干法电极工艺提高电极的压实密度,提高极片厚度扩大活性材料可用空间,由于大幅减少了杂质的导入,使得电化学副反应降低,以此也可以提高电化学体系电压,相比湿法电极工艺能量密度大幅提升,成本也大幅下降,可靠性也大幅提升,再加上先天的优势,可谓意在深远!  而锂电正极面对很多问题,其中原材料的保存、电池生产环境要求高是巨大的挑战。本文简单总结下环境因素,特别是湿度对锂电正极材料特性的影响 不过,现在只要在其各个生产车间内配置相应的正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机,就可以对环境空气湿度进行科学合理的控制,从而满足其生产工艺的湿度控制要求!以上关于干法电极车间除湿机,干法电极车间湿度控制设备的全部内容是正 岛 电 器提供的,仅供大家参考!
  • 梅特勒托利多(常州)测量技术有限公司新工厂奠基仪式
    2015年9月18日是梅特勒托利多(常州)测量技术有限公司的一个非常重要的日子,在这个重要的日子里,在位于常州的新工厂地块(玉龙路东侧、正强路北侧),隆重举行新工厂奠基仪式。常州市委副书记戴源、常州市政府副市长方国强等常州市政府和新北区领导及MT工业衡器全球顾问乌斯(代表集团公司总裁出席)、MT中国区PO总裁罗群及员工代表和建设单位代表出席了此次奠基仪式。梅特勒托利多(常州)测量技术有限公司是瑞士梅特勒托利多集团公司于2005年投资常州的一家外资独资企业,通过10年的努力与拼博,又投资购买135亩土地建设新工厂,扩展产能,随着新工厂的建设,将会有越来越多的产品产自于中国常州工厂。梅特勒托利多集团公司是一家在纽约上市的国际跨国公司,在全球拥有100家以上的分支机构。在中国常州、上海、成都已经投资成立了六家制造公司,并取得了很大的成功。随着梅特勒托利多常州新工厂的建设,将会有更多更好的产品在中国研发、制造,走向全国乃至全世界。
  • 如何修复便携式ph计电极的精度?
    便携式ph计电极按照精度可以分为:0.001级、0.01级、0.002级、0.1级、0.2级,一般情况下,数字越小,精度也就越高了;PH电极按照读数可分为数显PH仪和指针式PH仪,一般情况下数显PH仪应用的比较广泛,而且读数也是比较方便的,指针PH仪应用比较少,主要在滴定试验中用的较多,主要是因为它能显示数据的连续变化。  PH电极出现测量误差较大时应知道有些因素已经开始影响到PH电极了。PH仪PH复合电极“损坏”,其现象是敏感梯度降低、响应慢、读数重复性差,可能由以下三种因素引起,一般客户可以采用适当的方法予以修复,一起了解下:  1.电极球泡和液接界受污染  可以用细的毛刷、棉花球或牙签等,仔细去除污物。有些塑壳pH电极头部的保护罩可以旋下,清洗就更方便了,如污染严重,可按前面的方法使用清洁剂清洗。  2.外参比溶液受污染  对于可充式PH电极,可以配制新的KCl溶液,再加进去,注意首次、第二次加进去时要再倒出来,以便将电极内腔洗净。  3.玻璃敏感膜老化  将PH电极球泡用0.lmol/L稀盐酸浸泡24小时。用纯水洗净,再用电极浸泡溶液浸泡24小时。如果钝化比较严重,也可将电极下端浸泡在4%HF溶液中3-5秒钟(溶液配制:4mlHF用纯水稀释至100m1),用纯水洗净,然后在电极浸泡溶液中浸泡24小时,使其恢复性能。
  • Nature Communications新出:双极电极引领钠离子电池设计新方向
    p strong 仪器信息网讯 /strong   可充电电池广泛应用于移动设备和大规模能源储存。然而,可充电电池的大规模应用不仅消耗了大量的不可再生资源,而且产生了大量的电池废弃物,对环境和生态造成了极大地威胁。通过回收和再利用废旧电池,不仅可以减少对电池关键材料资源的需求,也能减轻对环境和生态的不利影响。广东工业大学林展课题组在Nature Communications上发表了 “Sustainability-inspired cell design for a fully recyclable sodium ion battery”的最新研究成果,提出在钠离子电池中引入双极电极设计的思路,实现了电极材料高效回收利用。结果表明,以铝箔作为共享集流体,Na3V2(PO4)3作正极的钠离子电池中,Na3V2(PO4)3回收率接近100%,元素铝回收率接近99.1%,固相材料回收率达98.0%。该研究指明了下一代钠离子电池技术新的研究方向。 /p p   钠离子电池是锂离子电池的理想替代品,然而其大规模应用势必产生资源和环境问题。可回收电池设计是实现电池可持续发展的有效途径。一个典型的电池结构主要由配件、电解液、隔膜、正极材料、负极材料和集流体六部分组成,其中配件、电解液和隔膜的回收相对容易,而成本较高的正、负极电极单元回收较困难。双极电极设计,以铝作为共享集流体,可以实现电极材料的高效回收,而铝和钠不发生合金化反应是该设计的基础。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/ddd60013-36bf-469c-b152-2faa01648fe3.jpg" title=" 双极电极.png" alt=" 双极电极.png" width=" 600" height=" 292" border=" 0" vspace=" 0" style=" width: 600px height: 292px " /    /p p style=" text-align: center " 传统单极电极(左)和新型双极电极(右) /p p   金属钠和水可以生成氢氧化钠,氢氧化钠和铝可以生成偏铝酸钠;向偏铝酸钠中加入盐酸,可以生成氢氧化铝和氯化钠。以上简单的化学反应,组成了实现电池材料的循环利用的基本思路。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/f873bce9-d9a6-4f3c-aadc-236648f9a03c.jpg" title=" 41467_2019_9933_Fig3_HTML.png" alt=" 41467_2019_9933_Fig3_HTML.png" width=" 300" height=" 300" border=" 0" vspace=" 0" style=" width: 300px height: 300px " / /p p style=" text-align: center " 循环利用示意图 /p p   研究表明,循环再生的Na3V2(PO4)3@C(NVP@C)正极材料,通过XRD衍射比对、充放电测试和循环伏安测试,证实了其仍具有与之前相近的电化学性能,说明了该思路的可行性。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/5a7101cb-45da-489f-b3fe-aa2e184db295.jpg" title=" 41467_2019_9933_Fig4_HTML.png" alt=" 41467_2019_9933_Fig4_HTML.png" width=" 600" height=" 157" border=" 0" vspace=" 0" style=" width: 600px height: 157px " / /p p style=" text-align: center "   XRD衍射比对、充放电测试和循环伏安测试 /p p   更多信息建议到Nature Communications官网浏览,地址: /p p   https://www.nature.com/articles/s41467-019-09933-0 /p p br/ /p
  • 南航姬科举课题组:兼具排汗透气与黏附的仿生健康监测电极
    生物电信号是人体最基本的生理信号之一,通过对生物电信号的监测可以对多种生理疾病进行诊断和预防。随着微电子科技的不断发展,越来越多的医疗科技选择使用电极贴片与诊断设备集成,以实现实时监测人体健康状况的医疗保健系统。监测系统对于突发性强、致命性高的心脑血管疾病有着显著的预防作用。生物电监测电极作为系统硬件的重要组成单元,直接与人体接触采集生物电信号,是生物电传感系统的基础部件。常见的是银-氯化银(Ag/AgCl)凝胶电极,但由于凝胶或粘合剂会对皮肤产生刺激,很难用来长期监测生物电信号。为了实现长效与皮肤接触监测的功能,生物相容性良好的干电极技术近年来得到了一定的发展。然而,由于皮肤的弹性、粗糙质地,附加汗水,油脂、皮屑和毛发等表面特性,干电极技术在皮肤附着力、接触阻抗、透气性等创新优化方面仍面临较大挑战。图1典型具有足端附着能力的生物结构与功能实现策略由于自然环境下目标附着表面的复杂多样性,依靠单一的黏附机制往往不足以提供生物体稳定的附着和快速的运动的能力。几乎所有具有全空间运动能力的生物,均拥有两种及以上的界面附着策略,且生物体型越大,越需要多种附着方式协同作用来提升界面附着力以平衡自重。生物高鲁棒性的附着调控特性依赖于生物脚爪精细的跨尺度附着结构,以及附着结构所呈现的机制之间的协同作用。 图2兼具排汗透气与皮肤黏附的仿生电极设计本研究介绍了一种兼具排汗透气性和多机制附着性能的健康监测电极贴片。贴片的排汗透气功能采用锥形通孔与蜂窝状微沟槽集成设计来实现,锥形通孔产生的拉普拉斯液相压差和微沟槽的毛细力协同实现了汗液的自驱导流作用;Ag/Ni微针阵列和PDMS-t粘附材料的多机制附着一定程度上保障了电极贴片与皮肤接触的力学稳定性,其中,Ag/Ni微针阵列通过高度控制,形成与皮肤角质层的接触,在保障安全性的前提下,实现了生物电信号采集通道的可靠性。 图3 仿生监测电极排汗透气通道结构形貌及其单向自驱导效果图 图4 仿生电极贴片切向摩擦力和法向黏附力量化测试实验 图5 仿生电极贴片心电监测性能及其与皮肤接触的生物相容性评价仿生电极的皮肤界面阻抗测试显示,在100Hz以下,仿生电极的接触阻抗低于标准Ag/AgCl凝胶电极,在监测志愿者的EMG和ECG生物电信号应用中,仿生电极展示出了较好的静态和动态采集性能。这主要归因于微针阵列与皮肤高阻抗角质层形成机械锁合,与通孔阵列柔性聚合物黏附接触协同作用,增强了仿生电极与皮肤表面的附着力,减少了运动伪影。同时,仿生电极设计中汗液的自驱导流结构保障了皮肤排汗透气的需求,具有良好的皮肤接触生物相容性,为实现长效的健康监测提供了新思路和新途径。本研究工作是建立在前期微针摩擦与树蛙湿黏附协同的仿生电极(Advanced materials interfaces, 2022, 2200532,封底论文)研究基础之上,着重探究了仿生电极自主排汗透气方面功能实现方法。相关研究成果以题为“Biomimetic Patch with Wicking-Breathable and Multi-mechanism Adhesion for Bioelectrical Signal Monitoring”发表于期刊《ACS Applied Materials & Interfaces》。论文第一作者为南京航空航天大学机电学院硕士研究生张迁,论文通讯作者为姬科举副研究员,南京航空航天大学为第一完成单位。本研究工作得到了国家自然科学基金、南京市医学科技发展基金、江苏省仿生功能材料重点实验室基金等项目的资助。论文链接: https://doi.org/10.1021/acsami.2c13984来源:高分子科技官网:https://www.bmftec.cn/links/10
  • 促销!赛默飞世尔3-Star RDO 荧光法溶解氧测量仪(3m 线缆电极套装)
    Orion Star RDO系列溶氧仪采用最新的非覆膜RDO荧光法测量技术,每年更换一次电极帽即可,使用简单,不受样品颜色和浊度的影响,特别适合废水、曝气池、进水等样品的测量。 功能特点 · 可同时测量溶解氧和温度 · 可储存1000 组数据,带时间和日期标记 · 无需更换溶氧膜,只需每年更换一次电极帽即可 · 四种校正方式:被空气饱和的水、被水饱和的空气、手动(Winkler)校正和零点校正 · 内置气压计进行自动补偿,也可选择手动输入 · RS232 接口方便进行数据传输和软件升级 · 背光显示屏可同时显示多个测量参数 · IP67 防水等级 · 4 节标准AA 电池可提供超过1000 小时的操作时间 技术参数 DO 浓度测量范围 分辨率 精度 % 饱和度测量范围 分辨率 精度 大气压修正 校正类型 电极类型 0.00 - 20.0 mg/L 0.01,0.1 mg/L ± 0.1 mg/L(0 - 8 mg/L); ± 0.2 mg/L(8 - 20 mg/L) 0.0 - 200% 0.1,1% ± 2% 450到850 mmHg(自动或手动) 被水饱和的空气;被空气饱和的水;手动(Winkler)和零点校正 RDO荧光法电极 温度 (RDO 电极) 测量范围 分辨率 精度 0 - 50℃ 0.1℃ ± 0.3℃ 订货信息 订货号 标准配置 1213301 3-Star 便携式 RDO 测量仪,3m电缆 RDO电极,不锈钢 RDO 电极沉降套,电极帽, 校正套,电池和操作手册 为感谢广大客户长期以来对赛默飞世尔科技水质分析仪器的支持,我们于3月特别推出OrionOrion3-Star RDO 荧光法溶解氧测量仪(3m线缆电极套装),欢迎垂询。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额接近 110 亿美元,拥有员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的各种挑战,无论是复杂的研究项目还是常规检测或工业现场应用。 欲了解更多信息,请浏览公司网站:www.thermofisher.com(英文),或中文网站:www.thermo.com.cn;www.fishersci.com.cn。
  • 如何做好DO电极的维护与保养?
    发酵液中的溶氧浓度(Dissolved Oxygen,简称DO)是需氧微生物发酵、细胞培养过程中一个至关重要的参数,DO值的改变对菌体生长、目标物的性质和产量都会产生不同一定的影响,通过观察发酵液中溶氧量的变化,可以了解到微生物生长代谢是否正常、工艺控制是否合理、设备供氧能力是否完善等。因此,对这个参数进行实时的精确测量是实现溶氧自动控制的基本前提,目前行业内多是通过插入式DO电极进行罐内监测。一、DO电极的基本种类发酵行业中常用的是两种溶氧电极——极谱式溶氧电极和光学溶氧电极。极谱式溶氧电极是由铂(或者金环)作阴极,由银-氯化银(或者汞-氯化亚汞)作阳极。电解液为KCl溶液。阴极外表面覆盖一层透氧薄膜,薄膜可采用聚四氟乙烯、聚氯乙烯、聚乙烯、硅橡胶等透气材料。阴阳两电极之间需要外加0.5~1.5V的极化电压。使用过程中,溶解氧透过薄膜到达阴极表面时会被电离,在此过程中释放出的电子,会在电解液中形成电流,由于透过薄膜的溶解氧含量与水中的溶解氧含量成正比,所以在不同的溶解氧含量下,电解液中形成的电流强度也不相同,而电流的强度的大小可由电极监测到。电极监测到的电流强度可以根据法拉第定律换算为具体的氧浓度,得到数值再经过温度、气压补偿输出最终值。由于整个过程中电解质参与了反应,因此需要定期更换电解液。(溶氧电极结构图)光学溶氧电极采用的是基于物理学中特定物质对活性荧光的猝熄原理。传感器的设计是通过一个发光二极管(LED)发出的蓝光照射在荧光帽内表面的荧光物质上,特定的发光体被蓝光激发后会发生冷光现象(红光),通过检测红光与蓝光之间的相位差,并与内部标定值比对,便可计算出氧浓度,再经过温度和气压自动补偿输出最终值。注意:HOLVES生物反应器标配METTLERTOLEDO InPro6800系列极谱式DO电极,以下内容也只针对此款电极。二、DO电极使用前的准备1、电极液:首次使用或者长期未使用的DO电极,建议在使用前更换电解液。一般建议客户每三个月更换一次电解液,可根据具体情况自行决定。如果电极信号不正常(如出现响应时间长、无氧介质中电流增大等情况)或电极出现“机械损坏时”,就需要更换膜或者退回原厂检修。2、更换电解液的操作步骤:① 将膜内的残余电解液倒掉,用去离子水冲洗溶氧膜内部,冲洗完成后再用吸水纸吸水迹;② 将膜倾斜,电解液瓶的管口垂直向下;③ 轻轻挤压电解液瓶,使电解液缓慢的流入膜内;④ 电解液加入量为二分一左右;⑤ 确认膜内部没有气泡,如有气泡可轻弹膜体,排除气泡;⑥ 将膜缓慢的旋转套入内电极上,再小心的旋紧不锈钢套管。3、DO电极的极化:溶氧电极在使用前须通电极化6小时以上。通过电缆线将电极和变送器连接起来,变送器通电后电极即开始极化。下列情况中的电极需要进行极化:① 电极第一次使用,极化6小时以上;② 更换膜或电解液,极化6小时以上;③ 变送器断电或电极与电缆线断开,最小极化时间见下表。(DO电极极化时间表)三、DO电极的校准DO电极校准前必须充分极化。DO电极使用的两点校准需要结合具体情况进行操作,连接温度电极,同时设定标准大气压为1013mbar。若有相关条件,请按如下操作进行校准:将电极接通电源后,先放入无氧环境中,待读数稳定后点击“零点确认”,再将电极放入纯氧环境中,待读数稳定后点击“满度确认”,弹出窗口“DO电极OK”即表示校准完成。若无相关条件,请按如下操作进行校准:不接电极,点击“零点确认”,满度校准方法由校准介质而定:① 如果以空气为校准介质,将电极放在空气中,并擦干膜上的水迹。待读数稳定后,点击“满度确认”即可;② 生化发酵过程中,一般以饱和介质为校准介质。在实消后以及接种前,于适宜温度下将搅拌开至最大,同时通入最大通气量的饱和空气一定时间,待读数稳定后点击“满度确认”即可。建议在统一的通气时间后进行校准,以统一不同罐批和不同发酵罐的饱和状态。四、DO电极的性能测试每支电极都有自己的零点和斜率,而随着使用时间的延长,电解液逐渐消耗,电极的斜率和零点也会随之发生变化。而通过斜率和零点的变化,我们可以推断出电极的性能情况。斜率判断法:以空气为校准介质进行校准后,参考极谱式溶氧电极电流信号表中空气电流的标准,判断DO电极的斜率是否正常。若处于警告或警报范围,更换电极的电解液或膜后再重新校准,校准后若仍处于警告或警报范围,则需要将电极返厂维修。零点判断法:以纯度99.995%的氮气为校准介质进行校准后,参考极谱式溶氧电极电流信号表中零点电流的标准,判断DO电极的零点是否正常。若处于警告或报警范围,更换电极的电解液或膜后再重新校准,校准后若仍处于警告或警报范围,则需要将电极返厂维修。(极谱式溶氧电极电流信号表)五、电极在空气中的电流值异常电极在空气中的电流值指把电暴露在空气中的电流值,一般用绝对值表示,不同类型的DO电极在空气中的电流值范围不同。详见电极使用说明书。空气中的电流值偏低,可能的原因及解决方法:① 铂阴极表面有氧化物质覆盖这种情况下,将内电极的头部对着光源观察阴极,可以看到阴极表面显露出黑色。可使用标号1000目以上的砂纸在铂丝头部轻轻打磨数次,至铂丝表面发亮即可。切不可过度打磨,否则会使内电极头部受损。② 铂阴极未能接触到溶氧膜检查溶氧膜是否旋紧到位,若未旋紧,则必须将膜旋紧到位,并旋紧膜保护套直至黑色密封圈看不到为止。检查溶氧膜膜片,如果有过度的突起,如下图示,使阴极不能接触到膜片,则必须更换溶氧膜。空气中的电流值偏高,可能的原因及解决方法原因:处理方法:电极极化不充分确认极化时间是否符合电极受到污损清洗电极,应采用去离子水,不能采用含乙醇的清洗液。电解液老化更换电解液膜老化或损坏更换膜电缆损坏更换电缆,不接电极时变送器应显示很低且稳定的电流值。变送器损坏更换变送器六、DO电极的保养使用过程中最容易发生因为膜的堵塞而导致测量不准或不稳的现象,这往往是微小离子在膜表面的附着造成的,这类堵塞一般仅凭肉眼是不易发现的。对这类污染,可将电极取下,用3%~5%的稀盐酸浸泡几个小时后再使用。电极较长时间不用时应将保护帽套好,放置在保护盒内保存。 希望以上的内容能对您的发酵提供一点帮助,如有问题可与我们联系,HOLVES将竭诚为您服务!注:本篇文章内容为霍尔斯HOLVES版权所有,未经授权禁止转载及使用。
  • Orion推出新品--全新系列绿色pH电极
    Orion推出全新电极&mdash &mdash 完全符合RoHS指令的全新系列pH电极。并采用了更环保的包装材料,堪称是真正的&ldquo 绿色电极&rdquo 。 含四个型号:GS9106BNWP塑料壳体,单液接,复合pH电极; GD9106BNWP塑料壳体,双液接,复合pH电极; GS9056BNWP塑料壳体,单液接,复合pH电极; GD9056BNWP塑料壳体,双液接,复合pH电极。 上海纳锘仪器有限公司 地址:上海市莲花南路1388弄8号楼碧恒广场1503室[201108] 电话:021-60900829,60900830,61131031,61131051 传真:021-61131052 E-Mail:info@nano-instru.com -------------------------------------------------------------------------------- 浙江办事处 地址:浙江杭州莫干山路425号瑞祺大厦814室[204888] 电话:0571-81954578 传真:0571-81954579 E-Mail:sales@nano-instru.com 纳锘仪器--提供给您纳米级的专业细致服务!
  • 覆膜电极溶解氧测定仪检定规程实施
    近日,国家质检总局2008年第143号文件,批准JJG291-2008《覆膜电极溶解氧测定仪检定规程》等8个国家计量技术法规发布实施。它们是: 编号   名称   批准日期   实施日期   备注   JJG291-2008   覆膜电极溶解氧测定仪检定规程    2008年12月23日     2009年06月23日    代替JJG291-1999   JJG440-2008   工频单相相位表检定规程    2008年12月22日     2009年06月22日    代替JJG440-1986   JJG589-2008   医用电子加速器辐射源检定规程    2008年12月22日     2009年06月22日    代替JJG589-2001   JJG701-2008   熔点测定仪检定规程    2008年12月22日     2009年06月22日    代替JJG701-1990 JJG463-1996   JJG915-2008   一氧化碳检测报警器检定规程    2008年12月22日     2009年06月22日    代替JJG915-1996   JJG1045-2008   泥浆密度计检定规程    2008年12月22日     2009年03月22日        JJG1046-2008   方形角尺检定规程    2008年12月23日     2009年03月22日        JJF1214-2008   长度基线场校准规范    2008年12月23日     2009年03月23日
  • 研究称石墨烯电极有助修复截肢、瘫痪患者的感知功能
    p   英国剑桥大学29日发布的一项研究成果显示,研究人员成功将石墨烯电极植入小鼠脑部,并直接与神经元连接,这项技术未来可用于修复截肢、瘫痪甚至帕金森氏症患者的感知功能,协助他们更好地康复。石墨烯是从石墨材料中剥离出来、由碳原子组成的二维晶体,厚度与一层原子差不多。这种材料无论是弹性、强韧度以及 拉伸性能方面都远远优于钢材等材料,被誉为“新材料之王”。 /p p   剑桥大学研究人员与意大利和西班牙的同行利用小鼠脑部细胞培养物进行相关实验后发现,利用石墨烯材料制造的电极能安全地与脑部神经元连接,且连接后这些神经元可正常传递电波信号,不会产生不良反应。 /p p   这些与神经元直接连接的电极能把脑电波信号传递给外界,让外界更清晰地了解脑部活动并修复感知功能。例如,机械臂如果能接收脑电波信号,就会按照截肢患者的想法去抓取物体 通过对这些脑电波信号的干预也会有助于帕金森氏症患者更好控制病情。但此前使用其他材料制作的电极效果并不理想,信号传递很不稳定。 /p p   据介绍,石墨烯的导电性能非常优异,测试中这一材料制作的电极实现了稳定的脑电波信号传递,神经元的一些特性也没有因为与电极连接发生改变。 /p p   研究人员说,接下来他们会探讨利用从多层到单层的不同形态石墨烯材料来制作电极,并观察它们与神经元连接的效果,最终希望能开发出具备高灵敏度以及低副作用的可植入脑部电极。 /p
  • 新型柔性电极“看”大脑更清晰
    近日,《科学》期刊发表了一项有关新型柔性电极应用于神经外科领域的研究进展。该研究团队创新采用分子设计新策略,研制出一种由仅有2微米大小的电极点组成的新型柔性电极,在手术中放到大脑上,可以帮助医生精确地“看”到大脑的神经核团、功能区,可以最大限度保护患者的大脑功能、减少致残致死情况。业内专家表示,这是目前世界上精度最高的柔性可拉伸微阵列电极。未来,该技术可以作为脑机接口中的核心技术,帮助瘫痪患者康复,并有望在未来的脑科学研究与临床转化中发挥重要作用。中国科学院外籍院士、美国斯坦福大学工程学院化工系主任鲍哲南,天津大学副教授王以轩为论文共同通讯作者,美国斯坦福大学博士后蒋圆闻、张智涛,王以轩和北京天坛医院神经外科副教授李德岭作为论文共同第一作者。其中,北京天坛医院副院长贾旺团队在提出生物医学问题、开展动物实验、调试电极参数、分析数据和撰写论文等步骤发挥重要作用。更清楚地看清大脑大脑是中枢神经系统的最高司令部,也是自然界最复杂的事物。“人的大脑中存在皮层功能区、神经核团等,是发放神经信号以控制人体各种行为的‘中枢司令部’,大脑中的多种神经传导束作为连接不同结构的‘桥梁’,传递各种信息。”北京天坛医院副院长贾旺对《中国科学报》说。贾旺介绍研究成果。(北京天坛医院供图)现代神经外科对于“精准”的要求极高,医生在手术中需要更及时、更精准地“看到”这些结构,以最大限度地保护患者的脑功能,减少致残甚至致死的几率。但在临床实践中,目前的技术体系无法完全满足需求,疾病累计功能密集区域的患者,在开颅手术后致残甚至致死的几率仍比较高。针对临床需求,研究团队提出 “可以紧密贴合在大脑不规则区域的柔性微阵列电极”的解决方案,并用分子设计新策略,研发出能在拉伸数倍情况下仍能保持导电性能的新型导电高分子材料。科研人员在展示柔性电极。(北京天坛医院供图)“这种电极在加工到2微米尺度下仍能保持可拉伸性和高导电性的特征,实现了可拉伸有机电子器件领域的重大突破。”蒋圆闻告诉《中国科学报》。同时,这种电极极为柔软而且可拉伸,可以放在脑干或神经外科术腔等多种不规则且容易损伤的场景,手术器械牵拉扭转等操作都不会损伤;基于高导电性和高密度的特征,应用该电极能精准定位到单个细胞的精度,以“热图”的形式直接“看到”大脑的神经核团,得以保护这些重要的大脑结构。从章鱼获得灵感“这是我很喜欢的一项研究,因为它很好地诠释了化学之美,并且展示了通过材料创新,我们可以开辟新的应用场景,尤其是在神经工程等新兴领域上。”鲍哲南对《中国科学报》表示。在早期的研究工作中,为了突破现有导电材料无法综合兼顾力学和电学性能的瓶颈,研究团队经历了一次次失败后,最终设计出更为合理有效的结构——在导电高分子材料中引入了拓扑交联网络,并实现了创纪录的高拉伸性、高导电性和高分辨光图案化的性能优势。“在寻找生物应用过程中,我们早期比较专注于在人体皮肤测试表面肌电。虽然结果还不错,但并不能完全突出我们器件的全部优势。”蒋圆闻说。“从人体到软体,可以考虑在其他更需要柔性设备的方向上进行尝试。”这是鲍哲南给蒋圆闻的建议。连接在章鱼臂上的可伸缩电极阵列(蒋圆闻供图)随后,蒋圆闻在软体动物上进行了测试,并发现不仅可以直接突出柔性可拉伸器件的优势,整个应用还更具有说服力。在实验中,蒋圆闻选择了具有代表性的软体动物——章鱼,并首次记录了章鱼触腕运动过程中的精细肌肉信号。利用获得的高质量电生理信号,研究人员可以对软体动物独特的分布式智能系统进行更深一步的解码研究,有望研制出更加智能的人造软体机器人。期望最终惠及患者这条章鱼给蒋圆闻带来了全新的思路和实验结果,就像蒋圆闻所说:“最终的结果都是一开始无法预测的。”在随后的实验中,研究团队实现了一系列过去难以实现的生物医疗应用,特别是针对柔软且精细的组织,包括以高分辨率稳定记录软体动物的肌肉信号,以及通过脑干实现单核团级别精准神经调控。研究团队选用大鼠来模拟脑外科手术,首次将该材料制备的神经电极运用在脑干等不规则并且高度易损伤的区域,并通过电极阵列精准定位到单个神经元的精度,以热图的形式快速且准确地勾勒脑干神经核团。“我们团队花了很长时间才开发出这种材料,该材料让未来的可拉伸电子产品的出现成为可能,其中透明的可拉伸导体是关键部件。”鲍哲南表示,“为了改进这种材料,我们还有很多工作要做。”谈到如何应用这种新技术,贾旺表示,北京天坛医院神经外科将依托国家神经疾病医学中心、国家神经系统疾病临床医学研究中心等平台,继续深入开展颅底手术中容易损伤重要神经的功能监测新技术和肢体瘫痪病人智能修复新策略等研究,从神经外科的角度助力脑科学发展,最终惠及患者。
  • 【技术知识】在线溶解氧分析仪的注意事项及电极维护方法
    在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。使用注意事项1、继电器与标准伏设备连接时需使用交流接触器。2、首次使用或更换电极时需要对仪器进行校正,且以后每规定时间进行一次校正(根据使用环境而定)。3、仪表与电极安装地点应尽量避开变频器、标准伏电机等干扰源,若有干扰应做好屏蔽工作。4、仪表与电极之间必须使用屏蔽线且不能剪断,信号线长度不能超过标准限定长度,若要延长或剪断信号线必需安装前置信号放大器。电极维护方法1如发现整个测量系统响应时间长、膜破裂、无氧介质中电流增大等等,就需要进行更换膜头、添加电解液的维护工作。2仪器测量值的正确与否,与测量电极有关系,因此,在整个测量系统中,溶解氧电极的维护是个重点。3更换膜、添加电解液的维护工作每六个月左右一次,每次换膜或添加电解液后,电极需重新极化和校准。4电极膜表面清洗:可用纱布沾少量稀洗涤剂轻轻檫洗,或安装喷水流清洗装置,自动定时对溶解氧测量电极膜表面进行清洗。5金阴极的处理:氧电极使用一段时间后,金阴极表面如出现少量褐色,须取下膜架,蒸馏水清洗擦干后用标准号以上金相砂纸轻轻磨擦黄金表面,进行抛光处理。6抛光后,用蒸馏水冲洗干净安装膜架(没有蒸馏水可以用纯净水替代)。相关仪器B2100在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。
  • 日本团队研发新型石墨烯电极——能在酸性条件下产生氢气
    p style=" text-indent: 2em " 日本筑波大学的研究人员研制出一种石墨烯电极,能在酸性条件下产生氢气。在绿色经济中,电解水产生氢气对于储能至关重要。然而,主要的障碍之一是贵金属电极的成本太高。廉价的金属电极在驱动析氢反应(HER)中起着很好的作用,但主要是在碱性条件下,反应是弱电性的。更有效的酸相反应需要贵金属例如铂。但问题是,酸性电解液具有腐蚀性,会侵蚀核心金属。 /p p style=" text-indent: 2em " 研究人员发现多孔石墨烯可以解决这个问题。他们使用氮掺杂石墨烯片来封装镍-钼(NiMo)电极合金,石墨烯含有大量纳米级的孔。研究人员表明,在酸性条件下的HER中多孔石墨烯明显优于无孔石墨烯。石墨烯在HER电极中的使用并不新鲜,这种柔性导电碳片是包裹核心金属的理想材料,不过石墨烯虽然能保护金属免受腐蚀,同时也抑制了它的化学活性。在筑波大学的研究中石墨烯的孔以两种方式促进反应,与此同时完整的石墨烯可以保护金属。 /p p style=" text-indent: 2em " “我们通过用纳米二氧化硅修饰NiMo表面的方法创造了孔,”研究者之一的筑波大学胡凯龙博士解释说。“当我们沉积石墨烯层时,在纳米颗粒的位置留下了空白,就像浮雕艺术品。事实上,这些孔不仅仅是缝隙,而是“条纹”(fringes)。从技术上讲,这些条纹是结构缺陷,但它们可以促进电极的化学反应。 /p p style=" text-indent: 2em " 研究小组解释说,与普通的石墨烯相比,条纹更亲水。可以吸引在酸溶液中的水合氢(H3O+),H3O+在两种HER机制之一中起着至关重要的作用。这些条纹在吸附单个氢原子方面也很好,也为其他重要的HER过程提供了表面积。结果表明与这种电极与常规电极产生H2的效果一样。同时石墨烯的非多孔部分延缓了金属催化剂在酸中的溶解。“这是氢析出电极的一个多用途的新概念,”筑波大学的副教授Yoshikazu Ito说,他是这项研究的主要作者。“我们的目标是最小化反应所需的过电位,因此不限于一种特定的催化剂。我们通过优化孔的大小和数量来调整我们的多孔石墨烯层,特别是对NiMo。令人惊讶的是,尽管有很多孔,催化剂在酸性条件下仍然能保持稳定。在未来,很多金属都可以定制多孔石墨烯,推动氢生产的全面应用。 /p
  • 复盘 l pH电极的选择与应用
    电化学(electrochemistry)作为化学的分支之一,是研究两类导体形成的接界面上所发生的带电及电子转移变化的科学。近年来,电化学相关的新技术、新仪器、新应用层出不穷,特别在能源、材料、环境保护、生命科学等多个领域发挥着越来越重要的作用。电化学测量方法在一般科学、研究、食品和饮料生产、化学、制药和生物技术等行业变得越来越重要。近期,在电化学分析主题网络研讨会上,赛莱默应用专家纪宗媛女士为大家带来线上课程《pH电极的选择与应用》,分享了pH应用背景及测试方法、pH玻璃电极原理和电极选择、pH玻璃膜材质及形状等干货内容,并详细讲解了pH玻璃电极、电解液、电极隔膜等详细知识,现在就让我们一起来复盘吧!讲座视频 精彩的课程听不够Xylem Analytics SI在玻璃技术和分析设备开发方面拥有超过75年的经验,阐述不同电极结构、电解液成分、玻璃材质等对pH测试的影响,帮助进行各种应用条件下pH 电极的选择,并提供高效应用的方法及注意事项。想要获得更多电化学测量应用课程,敬请关注赛莱默分析仪器官方微信平台!
  • 奥利龙推出完全符合RoHS指令的全新系列pH电极
    绿色电极 完全符合RoHS 指令*的全新系列pH 电极 *RoHS 是《电气、电子设备中限制使用某些有害物质指令》(the Restriction of the use of certain hazardous substances in electrical and electronic equipment)的英文缩写。RoHS 一共列出六种有害物质,包括:铅Pb,镉Cd,汞Hg,六价铬Cr +,多溴二苯醚PBDE,多 溴联苯PBB。 全新系列的绿色电极能完全满足RoHS 指令的要求,并采用了更环保的包装材料,堪称是真 正&ldquo 绿色&rdquo 的环保电极。 GS9106BNWP GD9106BNWP GS9056BNWP GD9056BNWP 塑料壳体 塑料壳体 塑料壳体 塑料壳体 单液接 双液接 单液接 双液接 复合pH 电极 复合pH 电极 复合pH 电极 复合pH 电极
  • 日立应用|固态电池电极的原位观察
    液态锂电池是目前新能源领域最主要的能源解决方案,但是不论是磷酸铁锂还是三元材料都很难突破350Wh/kg的能量密度,在提高能量密度的同时还伴随着很多安全隐患。而固态电池与传统锂电池最大的区别在于电解质,它使用固体电解质代替了电解液和隔膜。 传统锂电池(左)和固态电池(右)结构固态电池的优点1、固态电解质大大降低热失控风险;2、固态电池电化学窗口更高,可以匹配高能的电极,大幅提高理论能量密度;3、固态电池可以简化封装,缩减电池重量,提高体积能量密度。固态电池现阶段的发展障碍1、大部分固态电解质电导率较低,快充性能不佳;2、循环过程中物理接触变差,影响使用寿命;3、制备工艺复杂。而固态电池电极之间、电极与电解质之间的形貌和结构对于电池整体的性能和安全性有重要的影响,也是研究固态电池性能的关键。目前,日本在固态电池领域的研究相对领先,其中以氧化物、硫化物路线为主。本文中我们利用日立扫描电镜、离子研磨仪、真空转移系统和原位样品台等设备,对固态电池在充放电过程中电极之间的形貌和结构变化进行了观察。固态电池正极中含有金属锂,在空气状态下容易发生反应,因此我们需要对整个制样和观察过程隔绝空气。日立独特的真空转移系统可以将样品在手套箱、电子显微镜、离子研磨仪以及原子力显微镜之间隔绝空气转移,从而避免了样品在转移过程中的氧化。 日立真空转移系统由于固态电池的电极界面需要通过切割才可以观察到,本文采用日立的离子研磨仪(IM4000Plus)对整个电池进行无损切割,从而获得电池电极的界面。离子研磨仪采用Ar离子加工,可以大大减少加工损伤,同时加工过程是在真空下完成的,配合真空转移系统可以将样品转移到扫描电镜中观察。离子研磨截面加工过程和日立离子研磨仪IM4000Plus为了实现通电状态下的原位观察,我们采用了可以原位通电的样品台,且此样品台可以配合真空转移系统工作,可以保证样品从离子研磨仪切割完后隔绝空气转移到原位样品台上,再通过扫描电镜的交换仓转移至样品仓观察。 原位真空样品台本次观察的固态电池由NCA(Ni-Co-Al)正极、硫化物固态电解质和铟对极组成,分别对电极施加不同的电压和时间,观察电极界面的变化。从下图(a)可见,在施加3.1V电压时,固态电极和铟对极之间有一层In-Li合金层;从(b)图可见在施加3.5V电压60min后合金层向In层扩散(箭头所示);从(c)图可见在施加3.7V电压110min后,Li的扩散更加明显。由此可见,在高电压或者长时间通电下In-Li合金层会逐渐变宽,Li向In层逐渐扩散。整个过程都是通过日立高端冷场电镜Regulus8230在低电压下观察实现的。Regulus8230可以在低电压下获得背散射电子图像,看到In-Li合金层与电极之间的成分衬度,从而判断Li是否扩散。 固态电池截面原位观察(a)电压3.1V(b)电压3.5V,60min(c)电压3.7V,110minSEM型号:Regulus8230,加速电压:1.5kV,放大倍率:1,000x,信号:HABSE日立为固态电池的原位观察提供了离子研磨仪、真空转移系统、原位样品台和扫描电镜一整套方案,可以满足新能源客户对锂电池形貌和结构的研究。参考文献:Long, Lizhen. et al. Polymer Electrolytes for Lithium Polymer Batteries. Journal of Materials Chemistry A. 26 (2016): 138-169.Zhu, Gaolong, et al. Fast Charging Lithium Batteries: Recent Progress and Future Prospects. Small 2019, 1805389-1805402.公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 梅特勒托利多参加第十九届多国仪器仪表学术会议暨展览会-Miconex 2008
    由中国仪器仪表学会主办的&ldquo 第十九届多国仪器仪表展览会(MICONEX 2008)&rdquo 于2008年11月18-21日在北京中国国际展览中心举办。此次展览会以&ldquo 质量与安全&rdquo 为主题,特设科学仪器馆,同期还举办了多个学术交流活动。 在此次展会上,梅特勒托利多过程检测部不仅带来了iSense 智能电极管理软件、InPro3253i智能电极、M420多参数智能防爆变送器等新产品,并且安装在模拟工业现场展示架上的M400多参数变送器、pH电极、电导电极、溶解氧传感器和InTrac777M 伸缩式护套等产品受到了很多专业参观者的关注。我们的工作人员耐心地向参观者做演示和解说,他们对梅特勒托利多的先进技术、设备性能以及完善的售后服务都表现出了极大的热情。 在梅特勒托利多展台,客户纷纷驻足参观,兴趣浓厚 在模拟工业现场展示架前,客户与梅特勒托利多产品专家深入交流
  • 想提高电催化研究效率?多电极控温流动看过来!
    电化学----“古老又年轻”电催化作为纳米材料和能源化学领域的研究热点,是未来新能源存储与转化技术的关键所在,如以电解水制氢和燃料电池为核心的氢能产业。除了可以通过小分子的活化转化将可再生能源存储为化学能,电催化更有魅力的地方在于温和、可控、绿色的化学品合成。其实,电化学的发展史是非常有渊源的。早在1893年Thompson发现电子以前,电化学的基本原理和规律就已从实验中得出。 图1:1780年Galvani发现“生物电”现象电化学的起源可以追湖到1780年Galvani从生命体系中发现的“生物电”现象,它揭示了生物学和电化学之间的深奥联系。 图2:1800年Volta发明利用电化学原理连续供电的伏打电堆1800年Volta发明了人类*个电池,它是利用电化学原理制成的*个具有实用价值的连续供电装置。(图1-2)早期,科学家主要是依赖对电流、电位、电容和电量等电化学参数的测量和分析研究,获得的宏观数据限制了对电极界面结构和反应历程的实质性认识。电化学*的进步发生在20世纪的后30年间,把光谱技术同电化学方法结合在同一电解池中工作,从而实现在分子水平上认识电化学现象和规律。随着光谱、波谱技术从60年代,特别是80年代以来的迅速发展,原位光、波谱电化学方法,以及理论计算方法在电化学过程动力学的研究方面日益受到重视并得到了广泛应用。经过近100年的发展,电催化从最初作为电化学科学的一个分支,目前已经成为一门交叉性极强的学科,科学家也在不断挖掘新的合成路径来提高电催化性能。催化剂“动起来”更有效率近期,美国化学学会Chemrxiv预印本期刊发表的一篇文章中使用Vapourtec离子电化学反应器开发了一种用于生成六元二锂盐的多相连续流,该例建立了一种生成六元二芳基碘酸盐的多步连续流动方法。这是对现有批处理方法在可伸缩性和原子经济方面的一个显著改进。该方法Friedel-Crafts类烷基化中使用容易获得的乙酸苄基酯,而随后的阳极氧化环化直接生成相应的环状碘鎓盐。* Friedel-Crafts 反应(傅-克反应)指芳香化合物在酸(Lewis酸或质子酸)催化下与卤代烃和酰卤等亲电试剂作用,在芳环上导入烷基或酰基的反应,分为Friedel-Crafts烷基化反应和Friedel-Crafts酰基化反应。* 高价碘化合物(HVI)是合成化学家公认的试剂。它们被描述为其他危险过渡金属的替代品。这是由于它们在亲电基团转移、光催化或有机催化中的巨大反应性,以及它们作为天然产物合成的构建块的实用性。在这篇研究文章中,科学家通过Brø nsted酸介导的Friedel-Crafts反应,然后进行氧化环化,以形成所需的CDIS 1,改进了碘油烯的形成。这种合成方法是以邻碘苄基醇为起始原料。它允许在短的反应时间内完成各种繁琐的合成CDIS方法。流动化学可显著提高电催化剂的抗疲劳性和稳定性,甚至可以让很不稳定的催化剂达到持久稳定的催化效果。合成挑战一个显著的缺点是使用化学计量量的化学氧化剂,这降低原子经济性并需要额外的处理程序。解决方案碘烯的阳极氧化。电化学是一种非常经济的工具,可以避免使用化学氧化剂合成高价碘试剂。碘芳烃在电池内或电池外电化学过程中都是合适且成熟的介质。HVI、DIS和CDIS通过阳极氧化产生。电化学工艺的明显优势,因为不需要进一步稀释或添加,所以其在流动中的实验操作简单直接。因此,将已经建立的针对CDIS 1的传统合成法转化为多步电化学流程,从而提高反应时间、原子经济性和可扩展性。实验过程1、建立分批优化的反应条件 在分批条件下电化学氧化和环化中间体碘油烯,通过初步观察,确定三氟甲磺酸适合环化并作为抗衡离子。2、引入流动化学在仅两当量的TfOH以74%的产率形成产物1a。但是研究人员发现由于需要额外的苯,这些反应条件不能转移到多步骤反应中,会形成堵塞流动反应器的黑色沉淀物。 3、两步流程优化 反应在Vapourtec离子电化学流动反应器中进行,分别采用玻璃碳 (GC) 阳极和铂阴极。收率是基于在各自条件下通过两个反应器体积后的20 min (0.200 mmol) 收集。4、研究不同对位取代芳烃 在Vapourtec离子电化学流动反应器中研究了不同的对位取代芳烃。通过使用仲苄基醇来衍生苄基位置,在0°C下,3g转化的Friedel-Crafts步骤缩短了约10倍。实验总结1、开发了*个多步连续流动程序,用于生成环状六元二芳基碘鎓盐;2、从容易获得的乙酸苄基酯开始,将Friedel-Crafts烷基化与随后的阳极氧化环化相结合。由于这些反应的条件相当苛刻,该方法目前受到使用的窄原料的限制;3、未来可以通过解决窄原料的限制问题,实现其他基质和更高的产量;4、缩短反应时间,提高原子经济性和可扩展性。Vapourtec电化学反应器连续电化学反应电化学反应器一旦与Vapourtec流动化学系统集成,离子电化学反应器的温度可以控制在-10º C和100º C之间,这为探索开辟了广阔的化学反应空间。历史上,绝大多数电化学反应都是在室温下进行的,很少有冷却电化学反应的例子。辉瑞公司和日本庆应义塾大学最近发表的一些重要文献也表明,加热电化学反应时,反应结果会有很好的改善。 ● 集成或独立操作选项,易于组装/拆卸,无泄漏操作 ● 与E系列和R系列系统兼容 ● -10°C~+100°C ● 在高达5bar的压力下操作 ● 20种电极材料可用,使用5 cm x 5 cm扁平电极 ● 电极间距、电极面积和反应器体积的灵活性。*封面图来源于Pexels,其他图片来源于网络,旨在分享,如有侵权请联系删除参考文献:[1] One-Pot Synthesis and Conformational Analysis of Six-Membered Cyclic Iodonium Salts Lucien D. Caspers, Julian Spils, Mattis Damrath, Enno Lork, and Boris J. NachtsheimThe Journal of Organic Chemistry 2020 85 (14), 9161-9178 DOI: 10.1021/acs.joc.0c01125[2] https://chemrxiv.org/engage/chemrxiv/article-details/634bfda24a18762789e5c3b1
  • 科学岛团队在水系锌离子电池电极材料研究方面取得进展
    近期,中科院合肥物质院固体所赵邦传研究员团队在高性能水系锌离子电池电极材料研究方面取得系列进展,通过磁场 -电化学缺陷工程协同作用获得了一种超长寿命的 VS2基水系锌离子电池,并探索了 VS2在柔性自愈合锌离子电池中的应用。相关结果发表在 Materials Horizons 和 Small上。   水系电池因其低成本和高安全性在大规模储能领域具有广阔的应用前景,是锂离子电池的有力补充。其中,水系锌离子电池因锌金属高的理论比容量 (820 mAh g-1)和低的氧化还原电位 (-0.76 V vs. SHE)而备受关注。然而,通常锌离子电池正极材料的电化学性能有限,负极锌枝晶生长现象严重,使得锌离子电池的能量密度偏低,循环寿命偏差。因此,设计制备高能量密度正极材料和抑制锌枝晶的生长是开发高性能锌离子电池的两个关键因素。在此基础上,进一步制备柔性电池可有效拓宽储能器件的应用领域和范围。   鉴于此,研究人员采用一步水热结合高充电截止电压下原位电化学缺陷工程制备了一种具有手风琴状的VS2材料。该VS2材料晶格发生了有益的畸变,具有丰富的空位。材料独特的结构解锁了Zn2+沿c轴方向的传输,实现Zn2+沿ab面和c轴方向的3D传输,并可有效减小锌离子与VS2之间的静电相互作用,材料的比容量和倍率性能较为优异。同时,研究人员通过引入磁场的方法调节了电池中锌离子的运动方式,抑制了锌枝晶的生长,实现7400圈的超长循环寿命。   此外,团队通过简单的水热方法在柔性碳泡沫(CF)基底上生长了VS2纳米片阵列,制备了柔性VS2电极材料(VS2@CF),探索了VS2在柔性锌离子电池方面的应用。得益于CF的高导电性和3D多孔骨架结构,VS2@CF表现出优异的倍率性能(5 A g-1时172.8 mAh g-1)和循环稳定性(1 A g-1下1000次循环后130.2 mAh g-1)。更重要的是,由VS2@CF正极、CF支撑的Zn负极和凝胶电解质组装的准固态电池VS2@CF//Zn@CF同样表现出优异的倍率性能( 0.2 A g-1时261.5 mAh g-1,5 A g-1时149.8 mAh g-1)和循环稳定性(1 A g-1下100次循环后126.6 mAh g-1)。VS2@CF//Zn@CF全电池还表现出良好的柔韧性和自愈性能,在不同弯曲角度下都具有较高的比容量,被剪开能迅速自愈合,并且愈合后能正常充放电。   合肥物质院固体所博士研究生毛云杰为论文第一作者,高能物理研究所散裂中子源科学中心司建国博士后对论文的部分结果进行了理论解释。该研究工作得到国家重点研发计划、安徽省重点研发计划、合肥大科学中心高端用户和合肥物质院院长基金等项目的支持。图 1. Zn-VS2 AZIB的结构示意图及电化学性能: (a) 结构示意图; (b) 循环性能; (c) 富含空位 VS2与其它类似结构正极材料的 Ragone图; (d)由 Zn-VS2电池供电的 LED灯光学照片。图 2. ( a)不同弯曲角度下的 VS2@CF//Zn@CF光学照片。 VS2@CF//Zn@CF电池的( b)循环性能和( c)倍率性能;( d)不同弯曲角度下的 GCD曲线;( e)由 VS2@CF//Zn@CF准固态电池点亮的商用 LED灯条。
  • 得利特技术组浅析:判断工业PH计电极的好坏及寿命长短
    一般ph计的检测电极,主要以电极的斜率来判断电极的好坏,同时也可辅以电极的零电位mV值判断。对于工业场合电极,出厂标准为斜率95%~105%。零电位:±15mV,零电位是一个范围,在此范围内均是很好的电极,而不是有的仪表厂家给的8.2mV,限制电极零电位在8.2mV附近。使用一段时间以后,零电位会发生变化,±60mV以内均是允许的。但斜率应不低于70%,若要求一些,则不应低于80%。 pH测量采用的是电位分析法,所谓电位分析法,即是用零电流法对电化学电池的电极电位进行测量。而pH电极的主要特点又是高内阻,一般为几十兆欧至几百兆欧。因此它要求pH计具有很高的输入阻抗。一般pH计的输入阻抗应至少是电极内阻的1000倍以上。因此,pH计输入阻抗应5×1011Ω至1×1012Ω,但由于玻璃的内阻不是一个常数,而是温度的指数函数。如一支电极在28℃时内阻为100兆欧,而在7℃时,内阻就是800兆欧了,到0℃时就是1600兆欧了。 因此pH计输入阻抗如果不是足够高,显示值就会漂移、不稳定。同时,会在测量回路中产生电流,从而使电极极化,破坏参比电极,因此,pH计设计时,输入阻抗必须达到1012Ω以上,但这还不够,在实际应用中,有些仪表的输入阻抗部位密封性不好,或置于易变潮的位置,这样经过一段时间后,则输入阻抗根本达不到1012Ω以上的要求,而这一问题又是隐性的,往往显示值不准确时,首先就怀疑到是电极的问题,这实在是对电极的冤枉! 关于ph计电极的寿命,国家标准是“电极的保证期,从电极上所标注的制造日期起,在一年有效期内拆箱使用时,制造厂应负责修理或退换。"因此电极的质量保证期限以没有经过使用为前提,期限一年。笼统的讲电极的寿命是一年,是不正确的。电极的使用寿命跟使用介质有很大关系,不同介质使用寿命完全不一样。在很多恶劣的场合,可能仅使用2个月。而有些较好的介质,则使用达一年左右甚至更长。因此,我们建议用户尽量购买厂家zui近时间生产电极,存放时间越短,则使用效果越好!
  • 产品简介| Knick 数字pH/ORP复合电极
    产品概述 化学和制药食品工业在生产和废水处理方面都要求其工艺的最高质量和安全性。通过使用适当的过程传感器,确保实时顺利的生产过程。凭借二合一复合传感器,Knick为苛刻应用中的pH和ORP组合测量提供了解决方案。将pH值和ORP测量一起放在单个传感器中,为用户提供了更大的灵活性。同时,该传感器几乎不需要维护,也适用于恶劣环境下的在线测量。Combined Measurement of pH and ORP with just one Sensor01:SE555X/*-AMSN SE555X/*-AMSN传感器将Knick的SE555 pH和SE565 ORP传感器集成在一个测量序列中。这种组合节省了生产环境中的空间,因为只需要一个安装位置。该传感器还减少了所需的额外设备的数量,如电缆、配件或变送器。 复合pH/ORP传感器是基于SE555 pH传感器,其中一个额外的铂片嵌入在玻璃轴的侧面可以测量ORP。ORP传感器用于检测氧化还原活性反应物的存在。铂被推荐作为电极材料,因为贵金属本身不会干扰氧化还原过程。铂还具有很强的抗腐蚀性介质能力,因此该传感器也可用于氯碱电解或化学废水等具有挑战性的工艺中。应用领域发酵工艺、食品饮料、腐蚀性介质、极端 pH 值、废水02:SE554X/*-AMSN SE554X/*-AMSN传感器将Knick的SE554 pH和SE564 ORP传感器集成在一个测量序列中。电极采用特殊设计,实现了高精确度和高稳定性,快速且使用寿命长。参考系统通过2个开放式连接与测量介质直接接触。最大程度降低了污染和膜片堵塞的风险。聚合物中含有大量氯化钾且分布特殊,从而降低了膜片的扩散电位引起的测量干扰。应用领域在具有极端离子强度的介质、盐水、强氧化性介质以及酸性和碱性介质中的测量 性能特点Flexible and space-saving Sensor– 可同时测量 pH 值和氧化还原值– 通过 Memosens 技术实现完美电气隔离– 不会受到连接器内的潮湿影响– 可在实验室预先校准– 数字式数据传输– 集成传感器诊断– 低维护,无需补充电解液– 内置温度探头– 国际国内防爆认证 科伲可(上海)电子测量仪器贸易有限公司上海市黄浦区打浦路15号中港汇大厦3105室
  • 中科院大连化物所柔性电极研究取得新进展
    p   近日,中国科学院大连化学物理研究所储能技术研究部研究员张华民、李先锋,副研究员张洪章团队在高负载量柔性自支撑电极研究方面取得新进展,相关工作发表在《纳米能源》(Nano energy, 2017, 39, 418-428)上。 /p p   纳米级活性物质颗粒因其比表面高、离子/电子传输路径短,在电化学储能领域受到了广泛的关注。但随着电极负载量的增加,纳米颗粒易从电极中脱落,限制了其在柔性储能器件中的应用。该团队于2016年首次报道了“相转化”的方法制备具有优异粘结强度和电子/离子传质能力的“三连续”柔性电极 (Adv. Funct. Mater., 2016, 26, 8427-8434),很好地解决了上述问题,并成功应用于柔性锂硫电池和锂离子电池,为基于纳米颗粒的高负载量电极的制备提供了新思路。 /p p   该团队在上述研究成果基础上,进一步发展了柔性自支撑电极规模化制备技术。该技术克服了抽滤法和模板法等传统方法只能采用一维和二维活性物质制备电极的缺陷,首次将零维纳米颗粒应用于柔性电极的制备,并制备出高负载量、外形可控、适合规模化生产的高性能自支撑柔性电极。所制备的柔性锂硫电池正极的活性物质担量达到24mg/cm sup 2 /sup ,电极首圈循环面容量达到27.1mAh/cm sup 2 /sup ,100圈循环的容量保持率为64.1%。所制备的柔性磷酸钒锂电池正极活性物质担量达到17mg/cm sup 2 /sup ,在1C的倍率下稳定循环100圈,放电比容量稳定在120mAh/g,在5C倍率下,容量依然可以维持在94mAh/g。 /p p   该项研究拓宽了高负载量柔性电极材料的选择范围,为高性能柔性电化学储能器件的后续发展创造了条件。 /p p   上述研究工作得到国家自然科学基金委、教育部能源材料化学协同创新中心(iChEM)、中科院青年创新促进会的资助。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/4dd1ed0f-5a2e-48d9-af7a-b48db633d608.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 柔性电极研究取得新进展 /strong /p
  • 热电公司Orion电极走向火星
    期号:3-92506 亲爱的热电: 欢迎来到Sensible Advantage的第3期–本次新闻的闪光点来自热电Orion产品的关键特色。 这周的热门话题是: Orion电极走出世界! 热电公司与美国航空和宇宙航行局共同设计的电极将用来分析火星的表面。烧杯和传感器的合并是运用热电Orion电极的核心技术来设计的,并且将围绕火星的表面旅行3亿英里。传感器的模块合并了25种传感器,都是使用Orion的溶液特别制成的烧杯。加上,土壤样品将使用独特的样品搅拌器来制备,OrionStar™ 系列的仪表也起到了重要作用。 为美国航空和宇宙航行局专有制备的,这些专业的传感器运用了热电核心技术,这些技术在Orion的电极里都可以找到,通常用来测量例如:钙、钾、硝酸根、铵、二氧化碳、氧和电导。这次旅程将在2007年8月开始,于2008年5月到达火星。Orion的电极和特殊制备的溶液将真实地把我们带到世界以外的地方。
  • 【赛纳斯】对氨基苯甲酸在纳米结构金电极表面的等离激元光电化学偶联反应研究
    我司亲密的合作伙伴厦大田中群院士团队吴德印教授、周剑章副教授在等离激元介导光电化学反应的研究中取得重要进展,相关结果“Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes”发表于《美国化学会志》 (J. Am. Chem. Soc. 2022, 144, 3821-3832. DOI: 10.1021/jacs.1c10447)。纳米金电极的表面等离激元,通过将入射光汇聚至纳米尺度、激发高能载流子的方式,增强拉曼散射效应并催化化学反应。针对“等离激元介导光电化学反应的机理和选择性”这一关键科学问题,该工作以对氨基苯甲酸(PABA)为研究对象,通过电化学原位表面增强拉曼光谱(EC-SERS)等方法,结合多尺度理论化学模型,阐明了PABA在纳米结构金电极表面的等离激元光电化学氧化偶联反应过程。在光照激发和氧化电位下,PABA首先与光生热空穴作用生成阳离子自由基,后续反应则与溶剂和pH等因素有关。在水电解质溶液中,氧化偶联产物为头-头偶联产物,p, p’-偶氮二苯甲酸盐(ADBA),和头-尾偶联产物,4-[(4-亚胺-2,5-环己二烯-2-亚基)氨基]苯甲酸(ICBA)。在pH值低的酸性条件下,反应主要产物为ADBA,而在pH值高的碱性条件下,反应主要产物为ICBA。在非水有机溶剂中,观测到PABA发生脱羧偶联反应,生成氧化态联苯胺(BZOX)。为深入阐释反应机理,研究组结合密度泛函理论(DFT)计算和循环伏安法、质谱、EC-SERS、电化学原位紫外-可见光谱等多种实验方法,确定了金纳米结构电极表面反应产物及其相关中间体,并结合电极过程反应动力学模型,数值拟合循环伏安图,确定重要动力学参数;对等离激元催化条件下的偶氮键、碳氮键及碳碳键等化学键的形成过程,给出了更清晰的认识,为调控等离激元光电催化反应的选择性提供了新的思路。该研究在田中群教授、吴德印教授和周剑章副教授指导下完成,主要的实验和理论工作由厦大化工学院博士后Rajkumar Devasenathipathy、2018级博士生王家正和2021级博士生肖远辉同学完成,Karuppasamy Kohila Rani、林建德、张益妙、战超等参与了论文的研究工作。该研究工作得到国家自然科学基金的资助。赛纳斯SHINS推出的全新科研型电化学拉曼系统“EC Raman光谱仪系统”。由恒电位仪、便携式拉曼光谱仪、显微成像系统组成。它具备超高的谱图分辨率,与大型台式拉曼系统相当。并且它的尺寸更小,方便携带。可在任何地方提供科研级的性能。强大的功能和独特的设计,为你的研究提供更多的可能性。智能的自研软件助您轻松应对各种测试,是您实验数据的强有力保障。全新EC-RAMAN电化学拉曼系统EC-RAMAN 产品优势:◆ 785nm制冷型拉曼光谱,可拥有更加优异的信噪比◆ 配合独创壳层隔绝表面增强技术,信号放大至百万倍级别◆ 外观简单,轻松便携:适应于实验室,现场等多种场合◆ 宽光谱范围:光谱范围最高可覆盖至3350cmˉ◆ 光纤耦合,采样更方便◆ 建模简单:只需按照软件的提示逐步操作即可使用我司电化学拉曼光谱系统取得代表性科研成果:●Nature,2021,600,81●Nature Energy,2019,4,60●Nature Mater. 2019,18,697●Angew. Chem. Int. Ed,2021,60,9●J. Am. Chem. Soc. 2019,141,12192●Angew. Chem. Int. Ed. 2021,60,5708●Angew. Chem. Int. Ed. 2022,61, e202112749EC-RAMAN 技术参数:
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, µEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使µEDS备受学术界的关注。微小化的工作电极是µEDS的核心部件,其性能决定了整个µEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了µEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。µEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为µEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140官网:https://www.bmftec.cn/links/10
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, μEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置论文信息:DOI: 10.1039/d0ra07694e.研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使μEDS备受学术界的关注。微小化的工作电极是μEDS的核心部件,其性能决定了整个μEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了μEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。μEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为μEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数论文信息:DOI:10.3390/mi11090858.上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140
  • 3D打印电极为锂电池增添全新元素
    p   据外媒报道,锂电池圈的研究重点集中在电极上。作为导电介质中输入或导出电流的组件,科学家们不断调整其组成及其产生的化学反应,以追求更好的电池性能。这其中包括卡内基梅隆大学的研究人员,他们提出了一种3D打印格栅电极的新方法,他们认为这种方式带来了“前所未有的改进”。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/1a786cff-e56e-4905-9d3c-8f405d3a6fcd.jpg" title=" 1.jpg" / /p p   寻找新的和改进的锂电池电极已经出现了许多有希望的可能性。这些涉及将硅置于石墨烯“牢笼”内,开发微小的纳米线,并开发出SiliconX等新材料。3D打印也已成为可能的一种途径,因为它可用于生产具有多孔结构的电极,为电解质渗透提供额外的通道,从而产生更好的电池容量。目前,最佳结构被称为叉指几何,但正如卡内基梅隆大学机械工程副教授Rahul Panat所说的那样,它有一个上限。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/1a9fb86f-3409-4f0a-8b5e-f4c5c955fe2b.jpg" title=" 2.jpg" / /p p   “叉指几何形状确实是多孔的,确实允许电解质通过通道,”Panat告诉New Atlas。“然而,它是一种2D结构,只能通过挤压打印扩展到3D,并且它的制造方式有限。”Panat和一组机械工程师开发了一种新的3D打印方法,克服了这一限制,并允许任何尺寸的微晶格架构。它涉及使用正确的表面和惯性力将精确尺寸的微量液滴喷出,使液滴能够以允许形成复杂3D结构的方式粘附。 /p p img src=" http://img1.17img.cn/17img/images/201808/insimg/2a5804ac-d495-4cde-8fd5-0121eb9769e7.jpg" title=" 3.jpg" / /p p   “由于这种方式,印刷的液滴粘附在支柱上而不是从支柱上脱落,”Panat表示。“然后压板加热去除溶剂,使得柱子准备好接收下一个含有银纳米粒子的液滴。这是一个非常快速的过程,一直持续到形成完整的晶格。人们此前没有使用这种机制来制造电池。我们开发了这种机制,并且正在申请专利。“ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d8adafaa-9284-4c0f-bd4b-d555d5038e28.jpg" title=" 4.jpg" / /p p   当用作锂离子电池中的电极时,所得的微晶格结构表现良好。该团队在实验室进行了一系列测试,发现与标准电池电极相比,格子电极的比容量增加了四倍(单位质量的mAh容量),面积容量增加了两倍。它们在40个电化学循环后保留其复杂的晶格结构。 /p p   “我们将寻求尝试不同的电极材料,并探索通过多喷嘴系统扩大生产规模,”Panat解释道。“此外,可以增加加热速率,以缩短微滴的蒸发时间,从而加快工艺流程。我们希望与行业合作伙伴和投资者合作,为未来的商业化提供资金。” /p p   该研究发表在《Additive Manufacturing》杂志上。 /p p br/ /p
  • 应用指南丨pH电极的日常维护与保养
    发酵培养基的pH值,对微生物生长具有非常明显的影响,也是影响发酵过程中各种酶活的重要因素。因此,pH的监测与调节,于发酵过程而言十分重要。 发酵过程中通常是采用复合pH电极直接插入罐内发酵液的方式对pH进行实时监测。而高压高温的灭菌操作和发酵液的理化性质会对pH电极测量造成影响,所以正确的使用方法和日常的维护保养尤其关键。 1. 安装使用前的准备① 打开包装时,要仔细检查电极的pH敏感膜玻璃、隔膜(素烧陶瓷芯)和玻璃体是否存在机械损伤。② 取下盛液套并用纯水清洗电极顶部,然后用湿纸巾或者吸水纸轻轻擦干。注意不要摩擦pH敏感膜,以防增加响应时间。③ 将pH电极平缓移至垂直位置以防pH敏感膜玻璃球泡内存有气泡。如没有充满液体或存有气泡,应轻轻甩动电极使球泡内充满液体,直至没有气泡。④ 电极使用前可先在酸性缓冲液(pH4.01)中浸泡数分钟,用纯水冲洗玻璃球泡部分,再用吸水纸轻轻将玻璃球泡部分的水吸干,再在中性缓冲液(pH6.86或7.00等)中浸泡数分钟以活化电极,然后再开始校准。 2. pH电极两点校准操作将pH电极在标准缓冲液中浸泡10min,待测定数值稳定1min左右后,再依次进行pH电极的第1点标定和第二点标定。以HOLVES发酵罐为例:① 进行校准前,根据缓冲液类型进行参数选择:[GB]指使用的是符合GB/T27501-2011标准的缓冲液,一般使用的几种缓冲液pH值为4.00、6.86和9.18,其相对应的“稳定度”即“缓冲液的不确定度”通常选择±0.02pH。霍尔斯通常使用的是METTLER TOLEDO InPro3030系列pH电极,参数[MT_9]即对应其品牌的缓冲液,一般使用的缓冲液pH值为4.01、7.00和9.21,其“稳定度”需根据所使用的缓冲液型号进行选择。 ② 连接电极,并用纯水冲洗电极,冲洗后再用吸水纸轻轻吸干探头上的水。③ 将玻璃球泡部分浸没在第1种缓冲液(例pH=4.01)内(隔膜应完全浸没在缓冲液中),待标准值稳定后(30秒至60秒)点击第1点确认,第1点标定结束。 ④ 将电极从第1种缓冲液中取出,并用纯水冲洗电极,冲洗后再用吸水纸轻轻吸干探头上的水。⑤ 将玻璃球泡部分浸没在第二种缓冲液(例pH=9.18)内(隔膜应完全浸没在缓冲液中),待标准值稳定后(30秒至60秒)点击第二点确认,第二点标定结束,等待使用(建议时间不要太长)。 3. 电极校准时的注意事项① 校准时请注意采用新鲜的缓冲液;② 电极在缓冲液中放置1min后再进行后续操作;③ 冲洗电极后只能用柔软的吸水纸吸干水分,切勿摩擦pH敏感膜;④ 电极的校准周期根据不同的使用环境和精度要求而定,请在保证精度的前提下确定适当的校准周期;⑤ 由于pH电极探头及其易碎,所以在使用过程中切勿磕碰。 4. pH电极性能测试pH电极测定酸碱度法是依据能斯特(Nernst)方程原理来进行的,电极的电动势与pH值呈线性关系,一般用两种不同pH值的缓冲液进行标定,用来确定曲线的斜率。而通常所说的pH电极响应斜率,是指pH电极用来把电极的毫伏(mV)信号转换为pH值,它是通过不同缓冲液测得的电压差值,除以缓冲液差值得到的。这个斜率是判定电极寿命是否耗尽的一个重要指标。 (Nernst能斯特方程) 需要注意的是,由于斜率与温度呈正比关系,当溶液温度发生变化,根据能斯特方程,溶液的ΔE将随温度T呈线性变化,而电极是根据检测到的溶液电动势能换算成pH值的,所以必须进行温度补偿以抵消温度对测量结果的影响。 (斜率与温度呈正比关系)所谓温度补偿,是将电极在标定温度下(一般为25℃)得到的斜率按能斯特公式换算到当前温度下的斜率,从而得到当前温度下正确的pH值。主要用来修正由于标准缓冲液等标样在标定时的温度与实际样品溶液温度不同引起的偏差。HOLVES系列产品可以通过设备的温度电极测量到当前液体温度,然后通过自身软件计算后,显示经温度补偿后的pH值。所以,无论是校准还是性能测试,都需要确保设备的温度电极是工作状态。 斜率测试具体操作方法:① 把进行两点校准后的电极用纯水清洗,并用柔软的吸水纸吸干水分。② 按照上文校准时使用的方法调整参数与稳定度,下文以MT标准为例。③ 首先使用pH=7.00的缓冲液测定零点,并在显示屏上读出mV值。HOLVES标配的pH电极零点在6.5~7.5范围内,表示电极正常。④ 将电极清洗后,再插入pH=4.01(记作pH1)的标准缓冲溶液中,在显示屏上读出mV值(记作mV1)⑤ 将电极清洗后,再插入pH=9.21(记作pH2)的标准缓冲溶液中,在显示屏上读出mV值(记作mV2)⑥ 计算电极的斜率,即(mV1-mV2)/(pH1-pH2)⑦ 根据能斯特方程理想状态下(25℃)时,理想斜率为59mV/pH,即溶液每变化一个pH值,电极就产生59mv的电位变化。那么理想校正下,斜率应在59mV/pH左右。当斜率的值小于53mV/pH或者大于63mV/pH时,需要更换新的pH电极,所以当校正斜率在53~63mV/pH范围时,结果是可信的。 HOLVES系列发酵罐可直接读出电极所测液体的电压信号,并且如果电极出现问题或者安装、使用错误,pH校准界面下方会弹出电极不可用红色提示字样,方便客户了解电极的使用状态。 5. 电极的清洗① 一般性污染用水、0.1mol/L NaOH或0.1mol/L HCl清洗电极数分钟。② 油脂或有机物污染用丙酮或乙醇清洗电极数秒钟。③ 硫化物污染(隔膜发黑)用硫脲/HCl处理,将玻璃球泡部分浸泡在溶液中(隔膜应没入溶液中),直到隔膜无色(至少1小时),然后浸泡在3mol/L的KCl中至少12小时,完全冲洗并重新校准后可使用。④ 蛋白质污染(隔膜发黄)用胃液素/HCl处理,将玻璃球泡部分放入溶液中,确保隔膜浸没在溶液中(至少1小时),然后用蒸馏水冲洗、重新校准。 6. 电极的保存① 每个生产周期结束后,使用去离子水认真冲洗电极头与隔膜,绝不可使这些零件上的测量溶液变干。② 电极不可放在蒸馏水中保存,较长时间不用时,应当将其连同电极头与隔膜充分浸泡在3mol/L的KCI或9816/ViscolytTM电解液内。③ 电极不能长期干放,不能在表面附有干燥介质时贮存电极。如果因错误导致电极被干燥存放数日,应在使用之前将其浸泡在正常存储电解液内若干小时。④ 应时常检查连接器是否出现受潮迹象。如有必要,用去离子水或酒精彻底清洗,然后小心擦干。希望以上的内容能对您的发酵提供一点帮助,如有问题可与我们联系,HOLVES将竭诚为您服务!注:本篇文章内容及图片均为霍尔斯HOLVES版权所有,未经授权禁止转载及使用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制