电离子体仪

仪器信息网电离子体仪专题为您提供2024年最新电离子体仪价格报价、厂家品牌的相关信息, 包括电离子体仪参数、型号等,不管是国产,还是进口品牌的电离子体仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电离子体仪相关的耗材配件、试剂标物,还有电离子体仪相关的最新资讯、资料,以及电离子体仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

电离子体仪相关的厂商

  • OPS Plasma专注于等离子表面处理,集设备开发与设备制造、工艺开发与方案解决为一体,为各行业提供高效、节能、环保的等离子表面处理方案,包括等离子清洗、等离子活化、等离子改性、等离子接枝与聚合、等离子刻蚀、等离子沉积等。 OPS Plasma的创始人在德Fraunhofer Institute期间积累了丰富的设计开发经验,研发团队拥有10年以上的等离子系统设计经验、5年以上的等离子设备制造经验,是国内最大的等离子应用技术方案解决专家,不仅能为客户提供优质的等离子处理设备,还能为客户提供整套的解决方案和工艺指导。 OPS Plasma的制造团队多年从事等离子设备制造,成功开发出多款设备。设备采用具有独立知识产权的电极系统和进气系统,保证电场和气场的均匀分布,并完美地解决了真空动密封、真空冷却等一系列问题。 OPS Plasma的等离子设备广泛地应用在光学电子、太阳能、半导体、生物医疗、纳米材料、及通用工业领域,销往各大知名院校、科研机构和企业。在全国范围内超过100台实验设备和工业设备的良好运行,充分证明了OPS Plasma等离子系统的优越品质。 OPS Plasma致力于用国际的品质、国内的价格和优质的服务为全球各行业客户提供等离子处理设备和解决方案,成为全球行业领先的等离子应用技术方案解决专家。
    留言咨询
  • 郑州明举科技有限公司成立于2000年,是一家致力于高科技医疗仪器及医药保健产品的研发生产销售的公司,拥有雄厚的科研技术开发实力和生产能力。在同行中取得较好的成绩,建立了良好的社会形象和固定的客户群。以生产厂家的实力,最低价格,最优品质竭诚为您服务。糖尿病治疗仪厂家招商郑州明举科技有限公司具备优质完善的经营网络,专业特色的服务内涵,本着“信誉立业,质量第一,顾客至上,精诚务实”的原则赢得了广大销费者的认可。   明举科技经过多年的努力,产品已在全国30多个地区逐步建立了省市地区的分销、直销网络和服务站点,可迅速高效地向用户提供一流水准的产品和一流的技术服务。 郑州明举科技有限公司生产经营的产品有:中药离子导入治疗仪 糖尿病治疗仪 ,多功能电离子微波手术治疗机,血栓检测仪,全息生物电检测仪,微量元素检测仪,全息生物电检测系统,亚健康检测仪,亚健康检测专家,中医经络检测仪,经络理疗仪,电离子治疗仪,微波治疗仪,美容仪,多普勒,B超,血糖仪,电子血压计,电子止鼾器等。  今天,公司以全新的服务理念、科技化的管理和销售手段再次重拳出击,并受到了明举科技新老用户和代理商的大力支持。   明举科技自主研发的产品品牌现有十几种,我们热诚欢迎空白地区的新老朋友加盟!  本公司同时对国外提供加盟业务,欢迎咨询!
    留言咨询
  • 肇庆市宇邦水处理设备有限公司是一家集水处理设备研制、生产、销售和服务为一体的高新技术企业。公司一直致力于中国水处理事业的发展,把中华民族水处理事业发展为已任,同时与国内外知名企业(如美国陶氏公司等)建立长期友好的合作关系。以先进的技术、专业的施工队伍、丰富的施工经验、规范的管理体系、优良的服务立足于行业之中。在追求高品质的同时,把好质量关、保证用户利益,提供经济、安全和专业的解决方案。 公司致力于将先进、实用、经济、环保的水处理技术和服务来帮助每一个客户。公司主要产品包括纯水设备、超纯水设备、反渗透设备、EDI电离子交换器、软化水设备、超滤设备、中水回用设备、矿泉水设备、直饮水设备及各种耗材配件。
    留言咨询

电离子体仪相关的仪器

  • MALDImini-1是一款设计十分紧凑的MALDI离子阱质谱仪,相比其他同类设备,尺寸更加小巧。利用岛津独有的“数字离子阱”(DIT)技术(一种新型的光学系统)可有效缩减质谱仪尺寸,从而确保仅占用客户工作台上很小的空间。数字离子阱(DIT)技术在有效缩减仪器尺寸的同时,还可运用其MS多级分析功能,作为鉴定未知化合物结构的实用工具。一款能够做MALDI-MSn且体积mini的设备。特点一:占用空间小体积小巧、易于安装。A3纸大小,节省空间和占地面积,重量25kg内置真空泵,可通过电源安装在任何地方特点二:快速分析样品制备后可立即开始测量,轻松进行MS分析,插入样品板后仅需5分钟即可抽真空,开始分析。特点三:微量上样量对体积单位低于ul的样品,依然可实施复杂结构分析。特点四:宽范围质量范围和多级MS使用MALDI+DIT在宽质量范围内进行高灵敏度MS 和 MSn 测量。宽范围的质量范围,上限可达70000m/z,可与TOFMS媲美。MS多级,可以做多级结构分析。特点五:岛津独有数字离子阱(DIT)技术数字离子阱(DIT)技术,使用矩形波RF捕获离子,因此可实现体积小巧。特点六:独特的离子光学系统和布局激光光学系统、样品台和真空排气系统均已经过优化,进一步减小设备的尺寸。离子和激光光学器件引导激光束垂直于孔板轰击样品,实现高离子透射率的同时让布局更为紧凑。电离后,离子束偏转90°,确保离子更有效地转移到离子阱。
    留言咨询
  • 产品介绍: DBDI-100是一款无需样品前处理、可在大气压敞开环境下使极性、弱极性及非极性分子离子化的质谱离子源。产品可以与各大主流质谱厂家的液质质谱仪联用,实现气体、液体和固体等样品直接进样分析,适用于食品安全、药物分析、环境监测、临床诊断、公共安全和化学研究等领域的原位、实时、快速检测。介质阻挡放电离子源技术原理: 采用介质阻挡放电离子化技术,通过交流高压激发绝缘介质管内的氦气等惰性气体,形成稳定喷射的等离子体束,再利用潘宁电离等机理实现样品离子化。技术参数:1)载气:氦气,4.7级以上(99.997%);氩气,4.8级以上(99.998%);氮气,4.8级以上(99.998%);2)载气速度:0.2-5.0L/min,待机状态不耗载气;3)离子化区域温度:25-250℃;4)质量范围:通常为15-3000amu;5)检测下限:与LTQ质谱联用,固态样品通常为0.5-50pg,液态样品通常为0.1-10ppb;
    留言咨询
  • PDD检测器是脉冲放电离子化检测器所有工作模式检测器的统称。按照其工作模式,包括有无放射性的电子捕获检测器和氦离子化检测器等多种产品系列。该产品曾获得美国创新100奖R&D100的殊荣。 脉冲放电检测器特点:无放射性,多种工作模式电子捕获 /氦离子化检测器VICI PDDs (脉冲放电检测器)采用稳定的,低功率的脉冲直流放电氦做为离子源。柱子中洗脱剂的流向同放电区氦气的流向是相反的。偏移电极把生成的电子束射向捕获电极,捕获电极的电流的改变,即检测器的输出结果。 效果比常规的放射源检测器相当或者更好。 电子捕获模式下, PDD 是一个选择性检测器,用以检测复电子亲和化合物,如氟里昂,含氯农药,和其它卤素化合物。此类化合物的最低检测浓度都在飞克级(10-15) 或皮克级(10-12)。 由于不使用放射性物质,深受用户欢迎。 在氦离子化的工作模式下,PDD是一个通用的, 无破坏性的, 高灵敏度检测器。检测器对无机和有机化合物检测浓度范围较宽,且线性范围也很宽。对各种气体响应值为正(在固定电流下增加),最小检测浓度值为ppb级。 在石油化工和炼厂的应用场合,如果氢火焰检测器无法检测,这时PDD脉冲氦离子化测器是FID检测器的理想代用品。另外, 放电气体中掺杂有氩,氪,或者氙气时(取决于理想截止值),PDD 做为一种特殊的离子化检测器,主要用于脂肪族化合物,芳香族化合物,胺类和其它类型的选择性分析。D-2 型脉冲放电检测器D-2是一个双模式通用检测系统,可对原有的气相色谱仪进行改造增加检测器。D-2-1主要用作于脉冲氦离子化检测器模式工作,用以检测痕量物质。这套独立的系统包括检测器,控制器,静电计,氦纯化器和电源。 PDD检测器D-2模式成套完整部件检测系统包括检测池,脉冲发生部件,静电计,静电计和氦纯化器
    留言咨询

电离子体仪相关的资讯

  • 世界首创:DBDI介质阻挡放电离子源通过鉴定
    p    strong span style=" font-family: times new roman " 仪器信息网讯 /span /strong span style=" font-family: times new roman " 2016年1月26日,宁波大学和华仪宁创智能科技有限公司(以下简称华仪宁创) “DBDI-100型介质阻挡放电离子源”成果技术鉴定会在宁波召开。该鉴定会由中国分析测试协会主持,专家组成员为中国科学院大连化学物理研究所张玉奎院士、中国分析测试协会副理事长张渝英、中国质谱学会理事长李金英、北京大学教授刘虎威、浙江大学教授潘远江、湖南师范大学教授陈波、中国分析测试协会研究员汪正范等分析仪器行业著名专家。张玉奎院士在会上被推选为鉴定委员会主任。清华大学教授张新荣作为合作单位代表参加了此次鉴定。宁波市科技局副局长蒋如国、宁波市经济与信息化委员会处长徐伟洋、宁波鄞州区科技局局长叶龙、宁波大学副校长徐铁峰等相关主管部门及学校领导出席了鉴定会。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_9214_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/9c6b6231-d69d-4f71-8a84-0d8f645a2d67.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong 鉴定会现场 /strong /span /span /p p style=" text-align: center " span style=" font-family: times new roman " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong img title=" IMG_9333_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/91f5471e-26b0-4b01-b22e-38359e50e391.jpg" / /strong /span /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " 中国科学院大连化学物理研究所 张玉奎院士 /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " img title=" IMG_9222_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/a1617f90-eada-4030-9f02-0325f4dc4f97.jpg" / /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " & nbsp 中国分析测试协会副理事长 张渝英 /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " img title=" IMG_9335_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/b6ef028e-1a69-4a21-9583-7969ae685da6.jpg" / /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " & nbsp 中国质谱学会理事长 李金英 /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " img title=" IMG_9354_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/ecdf4276-5e17-4cf5-b212-ec4554d84d2a.jpg" / /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " & nbsp 北京大学教授 刘虎威 /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " img title=" IMG_9351_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/edcae475-4926-44b5-8286-739709113ee3.jpg" / /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " & nbsp 浙江大学教授 潘远江 /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " img title=" IMG_9357_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/f8486e2d-5791-43f0-afd6-cdb5c9d37ae3.jpg" / /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " & nbsp 湖南师范大学教授 陈波 /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " img title=" IMG_9340_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/9c108008-7efc-4613-97c0-dcf6ec439e52.jpg" / /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px "    中国分析测试协会研究员 汪正范 /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " img title=" IMG_9361_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/6750a5c1-fc3a-43c0-992a-c2407a5e4910.jpg" / /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " 合作单位代表、DBDI发明人 清华大学教授张新荣 /span /strong /span /p p span style=" font-family: times new roman "   在鉴定会上,华仪宁创总经理闻路红向鉴定专家及领导介绍了成果的研发背景和技术特点。介质阻挡放电离子源(DBDI-100)是一种非表面接触型的常压敞开式离子源,能够实现气体、液体和固体样品的离子化,并与质谱联用实现原位分析。此离子源系统主要包括离子源和进样系统、系统控制箱、移动控制系统和控制软件,在药物研发和质量控制、材料和天然产物分析、食品质量和药残检测、司法鉴定和物证检验、化学分析和技术研究、临床检验和方法研究等领域具有很好的应用前景。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_9231_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/4df945a1-18c2-487e-9965-96bb3fdcc573.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " 华仪宁创总经理闻路红 /span /strong /span /p p span style=" font-family: times new roman "   DBDI由清华大学教授张新荣于2007年首次提出,并已得到到国际同行的广泛认可。为了实时、快速的解决各种应用问题,质谱技术在向原位和小型化方面发展。在目前30余种现场离子源技术中,成熟的商品化离子源只有DESI(解吸电喷雾离子化)和DART(实时直接分析)。我国亟需自主知识产权的商品化现场离子源研发生产技术。 /span /p p span style=" font-family: times new roman "   在这种情况下,华仪宁创基于介质阻挡放电离子化方法进行了二次创新,最终的DBDI技术具有以下关键创新点:1、单电极放电技术令离子束源外喷射长度& gt 4.5cm,提高了现场原位分析的适用性 2、真空辅助离子化技术降低了背景噪声,从而提高了信噪比和检测灵敏度 3、高温、高压安规保障技术消除了信号串扰和安全隐患,保证系统稳定和安全。 /span /p p span style=" font-family: times new roman "   DBDI离子化涉及潘宁电离、电子电离、化学电离和光子电离等众多电离机理。应用对比分析结果显示:与ESI相比,DBDI能离子化极性范围更大的化合物并提供更多的离子峰信息 对于一些难挥发、弱极性的化合物,DBDI的离子化能力是DART的10倍左右,信噪比与DART相当或略低。 /span /p p span style=" font-family: times new roman "   除了科学技术效益和经济效益以外,该成果也将带来巨大的社会效益,如:提升国产离子源设备水准和国际竞争力 丰富国产离子源类型,促进质谱应用普及 利于国家和地方科学仪器产业结构升级,形成新经济增长点 替代进口,节约外汇 拉动内需,促进就业。 /span /p p span style=" font-family: times new roman "   在听取成果汇报和审阅查新报告、检验报告、用户报告等资料之后,专家组观看了成果样机。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_9298_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/f4183954-e59c-48da-8e09-aebfb9ff824a.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " DBDI-100样机 /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " img title=" IMG_9292_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/d7b21355-1633-4686-94ab-a3a38db7b302.jpg" / /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " 鉴定组成员参观实验室并观看样机 /span /strong /span /p p span style=" font-family: times new roman "   华仪宁创总经理闻路红与宁波大学高级工程师赵鹏代表团队回答了鉴定组专家的质疑和提问。在答辩过后,专家组成员经认真讨论,一致达成以下鉴定意见: /span /p p span style=" font-family: times new roman "   1、 DBDI-100型介质阻挡放电离子源采用了具有自主知识产权的介质阻挡放电离子化技术、单电极放电技术和真空辅助技术。其与质谱联用的检测限为10~100ppb 质量范围为5~3000amu 离子源内气体加热控制温度范围为25~600℃ 温度稳定性≤± 0.05℃ 离子化区域最大温度& gt 400℃ 等离子体源外喷射长度& gt 4.5cm 载气速度范围为0.2~5.0L/min,支持多路气体同时混合。 /span /p p span style=" font-family: times new roman "   2、 DBDI型介质阻挡放电离子源具有免试剂、结构简单、操作方便、离子化效率高等特点,能够在几秒钟内实现气体、液体和固体样品离子化,可与各类质谱仪联用进行原位、实时、快速分析,获得的质谱图背景噪声小,检测灵敏度高,便于质谱解析和定量分析,在敞开式大气压质谱离子源中,处于国际先进水平,具有良好的应用前景和市场前景,该成果是国际首创。 /span /p p span style=" font-family: times new roman "   3、该成果已授权发明专利2项、实用新型专利7项,已受理发明专利7项。 /span /p p span style=" font-family: times new roman "   4、提供的鉴定材料齐全,符合鉴定要求。 /span /p p style=" text-align: center " img title=" h_副本.jpg" src=" http://img1.17img.cn/17img/images/201601/insimg/099aeff8-a00b-4142-b670-fd14714903b8.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " 鉴定会参会人员合 /span /strong /span span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " 影 /span /strong /span /p p span style=" font-family: times new roman "   据该团队介绍,国家对分析仪器研发和成果转化支持力度不断提升,宁波市、区政府部门积极响应“大众创业,万众创新”,鼓励中小科技创新企业。宁波市及宁波鄞州区相关主管单位为华仪宁创这样的创新团队提供了优厚、便利的创业条件。同时,宁波大学从人员及场所等方面为该团队建设提供了很多宝贵的资源。 /span /p p span style=" font-family: times new roman "   华仪宁创即宁波大学科学仪器创新团队是一支年轻的创新团队,目前拥有多个学科专业背景的高端人才,骨干人员具有多年企业背景和丰富的工程化产业化经验。团队定位主要从事科研成果从实验室到市场的成果转化,解决科学研究与市场产业化最后“一公里”的问题。目前,该团队正在积极与科研院所等研发机构合作,共同促进科研成果转化与应用。 /span /p p style=" text-align: right " span style=" font-family: times new roman " 编辑:郭浩楠 /span br/ /p
  • 德国在实验室制造出黑洞等离子体
    据美国物理学家组织网11月4日报道,德国马克斯普朗克核物理研究所和赫尔姆霍茨柏林中心的研究人员使用柏林同步加速器(BESSY Ⅱ)在实验室成功产生了黑洞周边的等离子体。通过该研究,之前只能在太空由人造卫星执行的天文物理实验,也可以在地面进行,诸多天文物理学难题有望得到解决。   黑洞的重力很大,会吸附一切物质。进入黑洞后,任何东西都不可能从黑洞的边界之内逃逸出来。随着被吸入的物体的温度不断升高,会产生核与电子分离的高温等离子体。   黑洞吸附物质会产生X射线,X射线反过来又会刺激其中的大量化学元素发射出具有独特线条(颜色)的X射线。分析这些线条可以帮助科学家了解更多有关黑洞附近等离子体的密度、速度和组成成分等信息。   在这个过程中,铁起了非常关键的作用。尽管铁在宇宙中的储量并不如更轻的氢和氦丰富,但是,它能够更好地吸收和重新发射出X射线,发射出的光子因此也比其他更轻的原子发射出的光子具有更高的能量、更短的波长(使得其具有不同的颜色)。   铁发射出的X射线在穿过黑洞周围的介质时也会被吸收。在这个所谓的光离化过程中,铁原子通常会经历几次电离,其包含的26个电子中有超过一半会被去除,最终产生带电离子,带电离子聚集成为等离子体。而现在,研究人员在实验室中重现了这个过程。   实验的核心是马克斯普朗克核物理研究所设计的电子束离子阱。在这个离子阱中,铁原子经由一束强烈的电子束加热,从而被离子化14次。实验过程如下:一团铁离子(仅仅几厘米长并且像头发丝一样薄)在磁场和电场的作用下被悬停在一个超高真空内,同步加速器发射出的X射线的光子能量被一台精确性超高的“单色仪”挑选出来,作为一束很薄但却集中的光束施加到铁离子上。   实验室测量到的光谱线与钱德拉X射线天文台和牛顿X射线多镜望远镜所观测的结果相匹配。也就是说,研究人员在地面实验室人为制造出了太空中的黑洞等离子体。   这种新奇的方法将带电离子的离子阱和同步加速器辐射源结合在一起,让人们可以更好地了解黑洞周围的等离子体或者活跃的星系核。研究人员希望,将EBIT分光检查镜和更清晰的第三代(2009年开始在德国汉堡运行的同步辐射源PETRAⅢ)、第四代(X射线自由电子激光XFEL)X射线源结合,将能够给该研究领域带来更多新鲜活力。
  • 中智科仪逐光IsCMOS像增强相机拍摄激光诱导等离子体羽流
    1、应用背景   等离子体是区别于固体、液体和气体的第四种物质聚集状态。在高能环境下,原子的外层电子摆脱原子核的束缚成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离,这种电离气体就是等离子体,通常由带电离子、自由电子、基态/激发态分子原子和自由基等粒子组成。等离子体在自然界中广泛存在,如太阳、恒星、星际物质、闪电等都是等离子体。   激光诱导等离子体(Laser-Induced Plasma, LIP)是通过激光与物质相互作用产生的一种高温、高密度的等离子体状态物质。当高能量的激光脉冲照射到物体表面时,会使得物质迅速加热并部分或完全电离,形成等离子体。伴随形成的等离子体羽流的演化过程具有超高速、持续时间短(一般几百纳秒)、强自发光背景和小空间尺度的特点,这使得其观测变得具有挑战性。   本次实验采用中智科仪的逐光IsCMOS像增强相机(TRC411),拍摄了激光诱导等离子体羽流的形貌演化过程。基于逐光IsCMOS像增强相机的纳秒级快门门控、高精度的时序同步技术和变延迟序列推扫功能,记录了等离子体羽流的完整演化过程。 2、实验方案   实验设备:   中智科仪逐光IsCMOS像增强相机,型号:TRC411-S-HQB-F F2UV100大通量紫外镜头。   实验室所用激光器为镭宝Dawa-200灯泵浦电光调Q纳秒Nd:YAG激光器,波长1064nm,重复频率1-20Hz。采用激光器Q-out输出触发TRC411相机的方式,对相机Gate通道进行变延迟序列推扫,寻找相机与激光器的同步时刻。   实验流程:   1.实验材料被激发的等离子体羽发光在200nm-500nm左右,因此在镜头前端安装一个430nm的带通滤光片,屏蔽掉1064nm的激发激光和其他杂散光。需要注意观察成像画面中是否有强反射材料,比如样品台的光滑金属反光面或螺丝帽等,为了防止这些强烈反射面的反射光对相机造成损害,需要使用黑色电工胶带将它们遮挡或覆盖。   2. 激光器的Q-out触发输出接到示波器,测得同步输出的TTL信号电平为5V@1MΩ,频率与激光输出频率匹配,均为5Hz。TRC411相机可接受的最大外触发信号电平为5V,保守起见,在触发线末端加入了6dB衰减器,将激光器Q-out输出电平减半。   3. 由于等离子体的发光强度较大,无法确定所使用的滤光片的衰减倍率是否足够,因此首先将镜头光圈调至最小,设置增益为1800,Gate时间13ns(对应光学门宽3ns)。   软件参数设置如下表:   4. 对Gate通道进行变延迟序列扫描,最终找到Gate延时起止时刻在700ns至1100ns之间时,可以捕获到等离子体的发光信号。   软件参数设置界面: 3、实验结果   序列采集SEQ曲线:   根据曲线可以看到实验材料被激发的等离子体发光持续时间约为400ns。   高功率纳秒脉冲激光激发产生的完整等离子体羽形貌演变过程: 4、结论   中智科仪逐光IsCMOS像增强相机具有短至纳秒级的快门,超短的门控可以屏蔽背景噪声,提高信噪比。相机内置的高精度时序控制器可以确保相机与脉冲激光器的同步工作,在确定的延迟捕获等离子体信号。相机的变延迟序列扫描功能可以使相机快速拍摄不同延迟时刻的等离子体信号,获得完整的等离子体演化过程。诸多优势展示了TRC411相机在等离子体诊断方面的重要应用价值。   免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。 5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。

电离子体仪相关的方案

电离子体仪相关的资料

电离子体仪相关的试剂

电离子体仪相关的论坛

  • 静电离子色谱分离方法

    近年来离子色谱研究的一个重要趋势是研究各种分离效率高, 选择性好, 分析速度快, 可同时分析阴离子和阳离子的色谱柱. 研究的重点是将涂覆有生物表面活性剂的物质作离子色谱固定相, 并已在光学异构体和无机离子分离分析方面展示出独特的优越性和发展潜力. 1994年, Hu Wezhi等人首先采用在一分子内含有正负电荷的两性离子分子的表面活性剂作色谱固定相, 开创了静电离子色谱法. 本文利用自制的静电离子色谱柱, 选用不同种类流动相, 对含有不同阴离子的钠盐进行分离, 并初步探讨在磁场中静电离子色谱的保留行为. 1 实验部分  1.1 仪器和试剂  LC-4A高效液相色谱仪; RID-2AS示差析光检测器, C-R2A数据处理机. 静电离子色谱柱(自制), 流动相分别为水, 10 mmol/L Na2HPO4-NaH2PO4缓冲液(pH=6.8), 2.4 mmol/L NaHCO3和3 mmol/L Na2CO3; 1 mmol/L十二烷基磺酸钠. 所用试剂均为优级纯或分析纯; 溶液用二次蒸馏水按常规配制.   1.2 色谱柱制备和分离方法  把含有胆汁酸盐水溶液通过动态涂层法涂覆在ODS表面. 选用国产ODS分离柱(4.6 mm×250 mm), 将30 mmol/L的CHAPS溶液(经0.4 μm滤膜过滤)以 0.7 mL/min流速流经ODS柱80 min, 收集流出液重复上述操作2次, 然后用水冲洗40 min, 即得到在ODS柱表面涂覆一层含有正/负电荷胶束的静电离子色谱柱.  静电离子色谱法是利用在ODS载体上涂覆在同一分子内同时含有正/负两种电荷的胆汁酸诱导体胶束作固定相, 纯水或电解质溶液作流动相, 被测样品中的阴离子和阳离子通过纯粹的静电吸引、 离子配对后形成正、 负离子的缔合物(离子对), 由于被测离子的电荷和半径、 离子种类和离子浓度的不同, 因此形成的各种离子对受涂覆在固定相上的表面活性剂所带的正/负电荷静电吸引和排斥作用力不同而相互分离. 分离后的离子对进入检测器进行定量检测. 实验表明, 用本法制备的静电离子色谱柱, 连续使用3个月未发现分离效率下降. 2 结果与讨论 2.1 流动相和色谱图  分别以纯水、磷酸盐缓冲溶液为流动相得到色谱分离图  纯水为流动相时, Na2SO4和NaBr, KNO3和NaNO3, Na2S2O3和NaF+NaNO3各离子对得到分离, 但NaF与NaNO3不能分离开. 而磷酸盐为缓冲溶液时(图2), 不但Na2SO4和NaBr得到分离, 而且Na2S2O3, NaF, NaNO3也可相互分离. 由图2可见, 与纯水流动相相比, 流动相中磷酸盐的存在使各离子对保留时间和色谱峰形状发生变化, 虽然各离子对保留时间显著增加, 但出峰顺序未发生变化. 实验表明, 各离子对的保留时间与阴阳离子的半径、 电荷、 流动相种类和离子强度有关, 在流动相中加入不同种类的电解质溶液将有利于某些离子对的分离.   分别以碳酸盐、十二烷基磺酸钠为流动相得到的静电离子色谱分离图如图3所示. 由图3可见NaBr和Na2SO4可以完全分离, 与纯水为流动相相比, NaBr和Na2SO4的分离效率提高, 但保留时间增加. 特别是以十二烷基磺酸钠(表面活性剂)为流动相时, 使NaBr的保留时间延长(见图3(b)), 这说明表面活性剂的存在将对离子对的分离效率产生重要影响. 可以认为, 在流动相中加入电解质溶液, 除样品离子与固定相相互作用外, 流动相中电解质也参与了与固定相之间的静电吸引和排斥作用, 由于各离子对和电解质与固定相相互竞争的静电作用, 提高了各离子对的分离度.   2.2 流动相流速影响 当流动相流速不同时, 各离子对的保留时间发生改变. 纯水为流动相时, NaBr和Na2SO4离子对的保留时间与纯水流速的关系. 实验表明, 当采用不同种类流动相时, 随着流动相流速的增加, 保留时间都有不同程度的缩短. 但要根据被分离的离子对的分离效率和分析速度来选择流动相流速, 本实验选择流动相流速为0.6 mL/min. 2.3 外加磁场对静电离子色谱分离的影响  将静电离子色谱置于静态磁场(Nb磁铁, 160 mm×30 mm)中, 考察各离子对的分离效率和保留时间. 实验表明, 在外加磁场作用下, 纯水为流动相时, NaNO3和Na2S2O3离子对的保留时间稍向后位移(见图5), 但二者的峰形状未发生变化. 这可能是在离子对形成和洗脱过程中, 由于外加磁场的作用, 使形成的离子对与涂覆在载体上胆汁酸盐胶束所带的正负电荷静电吸引和排斥作用力发生变化, 打破了原来的平衡状态, 使离子对的保留时间发生位移.

电离子体仪相关的耗材

  • 微波等离子体清洗器配件
    微波等离子体清洗器配件是目前最为先进的等离子体清洗机,采用微波能量生产等离子体,在氧气或氩气以1-5torr的压力流经样品室时,微波能会有效地激发等离子体。等离子体清洗机配件产生的等离子体是电中性的高度电离的气体,这种等离子流经污染表面与之发生反应,污染表面自好清洗而不影响材料的大部分特性。与其他等离子产生方法不同,这款微波等离子清洗器使用2.45GHz的微波能,具有可调的的功率占空比和模拟功率调节功能。功率可调范围高达10-550瓦。使用该产品,可以获得更高的气压,更高的功率和更高的温度,当然,您将获得以前从未实现的更高的反应速度。微波等离子体清洗器配件特点微波等离子清洗技术是一种革命性的清洗方法。微波等离子清洗器本身价格不高,安全而易于使用,而且还节省空间。这种等离子体清洗机,微波清洗器不产生垃圾,不排放有毒有害的溶解物或气体,不需要独立的操作空间。是一种远远比化学清洗方法安全经济环保的清洗方式。我们提供三种规格的微波等离子体清洗器,这三款等离子体清洗机,微波清洗器的区别主要在于耐温玻璃样品室的容积大小。第一种等离子体清洗机,微波清洗器的样品室是直径4.1’’x6’’长,第二种等离子体清洗器是8’’x6’’x2’’,第三种是9’’x7’’x3’’。具有长方形样品室的清洗器都配有水冷系统可以控制温度,这样就可以清洗更多种类的器具而不必单位热损伤。微波等离子体清洗器配件配置:1.水循环浴;2.双气真空流动控制器:可与微波等离子清洗器联合使用的独立的器件,它的作用是按不同比例混合两种气体。该控制器包括为真空泵和水循环浴提供的功率输出,两个流量(0-5SCFM)计,两个压力计(0-60帕),一个真空压力计(0-30’’Hg)和一个开关;3.离子阱:该离子阱用于保护易损伤材料,如:激光二极管发光面,光刻胶等。该离子阱可以中和带电离子,从而只允许中性辐射物参与清洗使得易伤材料免于清洗伤害。
  • 日本A&D AD-1683静电消除器
    不需高压电线,安装简单,使用方便 直流电源,具有强大的产生正负电离子的能力 体积小,可随意放置欲消除静电的位置 内置限流电流,减少触电的可能性 无风扇装置,不影响仪器的稳定性 工作原理 通过产生正负电离子来消除静电 除电范围 距电极10-30cm,面积范围约30× 30cm 离子浓度 正极:0.07ppm;负极:0.25ppm 电源类型 直流电,AC100V,50/60HZ,约1.5VA 电极针寿命 连续使用约10,000小时 外部尺寸 112× 92× 60mm 重量 约300g
  • 用于 s 透镜的 Omega 透镜,适用于 Agilent 7700s 和 8800 半导体 ICP-MS
    适用于 7700/7800/7900 和 8800/8900 型 ICP-MS 安捷伦生产了多种用于市场领先的 7700 ICP-MS 系列产品的优质离子透镜。静电离子透镜在离子穿过真空系统进入容纳质谱仪和检测器的最后一个室时,可保持这些离子聚焦成紧密的“离子束”。离子透镜还能将离子与光子、残留的中性物质分离。与其他配置相比,“离轴”离子透镜的离子传输效率更高,质量数范围也更宽。离轴透镜中并没有使用光子挡板,所以仪器总体的离子传输效率更高。安捷伦还提供各种组件和附件。 离子传输效率极高的离轴或 omega 透镜能够将带正电荷的离子与光子和中性颗粒分开。 可提供两种提取透镜。提取透镜的位置正好在截取锥后面,安装在截取锥基座上。它们的作用是提取正离子并将正离子加速传输到 Einzel 透镜。 Omega 透镜由 5 个透镜(omega 偏置、omega (+)、omega (-)、QP 聚焦和板偏置)组成,其作用是将光子和离子分开,引导离子进入四极杆质谱仪。 提供用于提取透镜或 omega 透镜的螺钉和垫片。 可提供各种额外的组件和消耗品:透镜清洁及抛光组件包、八极杆和八极杆组件以及用于反应气的管线。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制