当前位置: 仪器信息网 > 行业主题 > >

拉伸传感器

仪器信息网拉伸传感器专题为您提供2024年最新拉伸传感器价格报价、厂家品牌的相关信息, 包括拉伸传感器参数、型号等,不管是国产,还是进口品牌的拉伸传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合拉伸传感器相关的耗材配件、试剂标物,还有拉伸传感器相关的最新资讯、资料,以及拉伸传感器相关的解决方案。

拉伸传感器相关的资讯

  • 《Research》:基于Pμ SL 3D打印的超拉伸抗冻导电水凝胶用于柔性传感及脑电信号的采集
    近年来,柔性电子在可穿戴设备、电子皮肤等众多应用中扮演着越来越重要的角色,以水凝胶为基质设计的柔性电子由于其良好的导电性、柔性以及生物相容性等特点受到广泛的关注,在柔性传感器、柔性能源器件及人机接口等方面表现出广阔的应用前景。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和定制设计的结构,为以水凝胶基质设计的柔性电子器件的制造提供了灵活性和简便性。结合3D打印技术,并对水凝胶进行诸如超抗冻、超拉伸、导电等性能设计,在一定程度上拓宽了水凝胶的功能和应用范围。近日,湖南大学王兆龙助理教授、段辉高教授与上海交通大学郑平院士等人合作,该团队基于摩方精密(BMF)超高精度光固化3D打印机nanoArch S/P140,开发了一种能够耐受-115℃极高导电能力的水凝胶体系,实现了极低温条件下的可穿戴设备运动信号检测及脑电信号高精度采集。文章以“3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogelfor Sensitive Motion and Electrophysiological Signal Monitoring”为题发表在Research(Volume 2020 |Article ID 1426078)上。其中,王兆龙助理教授及硕士研究生陈雷为共同一作。基于面投影微立体光刻技术制造水凝胶结构,首先,作者通过计算机辅助设计(CAD)软件生成的3D模型按照特定层厚切片为一系列平行的二维数字图像,然后,这些切出来的2D图案被传输到DMD芯片上,DMD芯片通过2D图案的形状调节其上照射的紫外光(LED,405nm)。具有相应定义的2D图案的成形紫外光通过一个缩小透镜,该透镜将2D图像投影到具有缩小特征尺寸的水凝胶前体溶液上。图案化的紫外光照射将会使水凝胶前体溶液在相应区域发生局部聚合反应并成型附着在打印平台上。再控制降低打印平台,紫外光投影照射继续打印下一层。这个过程反复进行,直到整个水凝胶结构被制造出来(图1)。研究者引入亲水性的三元醇作为光引发剂TPO-L的良性溶剂,将不溶于水的TPO-L均匀分散在水中,提高光引发剂引发效率,结合光固化3D打印nanoArchS/P140设备的离型膜的快速离型,大大提高水凝胶的光固化速度;利用纳米羟基磷灰石与水凝胶高分子链之间形成强烈的物理作用,从而提高3D打印水凝胶的拉伸性(2500%),并进一步提高其机械强度;三元醇和高浓度离子盐的协同作用赋予了水凝胶极佳的导电性和抗冻性(-115℃左右),3D打印水凝胶在极低温情况下仍然能够完成拉伸、弯曲和扭转的动作,并具有一定的低温导电性(图2)。图1 基于面投影微立体光刻技术的水凝胶加工过程图2 水凝胶的力学、电学和抗冻性能设计优异的机械性能和良好的导电性能使其3D打印水凝胶能够作为应变传感器用于识别包括手指弯曲、发声及吞咽等人体运动信号(图3);水凝胶还可作为柔性电极检测和采集诸如人睁、闭眼时的脑/眼电信号(EEG/ EOG),当志愿者在闭上眼睛并放松时,脑电信号显示出明显的α波(8~13Hz),当志愿者睁开眼睛并积极思考时,脑电α波即刻消失并逐渐向β波(14~30Hz)方向移动。与当前最精确的传统脑电信号采集装置对比实验表明,新体系水凝胶可以准确采集大脑中的脑电信号,反映大脑活动的整体信息,显示出在人机交互,特别是低温领域的脑机接口等方面的应用潜力(图4)。图3 柔性应变传感器应用图4 水凝胶柔性电极脑机接口应用总而言之,本研究基于面投影微立体光刻技术,引入亲水性的三元醇作为光引发剂TPO-L的良性溶剂,利用纳米羟基磷灰石提高拉伸性,并结合高浓度的离子盐和三元醇作为导电介质和抗冻剂,使得所开发的水凝胶体系具有优异机械、导电和抗冻性能,并且可作为柔性应变传感器实现对人体运动和微弱信号的实时监控,同时可进一步用作脑机接口,准确采集大脑中的脑电信号,包括α、β波以反映大脑活动的整体信息。本文提出的水凝胶在电子皮肤、人机交互甚至极低温情况下的可穿戴设备中具有良好的应用前景。未来,微尺度3D打印技术的加入使得复杂3D结构多功能柔性电子和复杂脑机接口的快速制造成为可能。原文链接:https://spj.sciencemag.org/journals/research/2020/1426078/
  • 湖南大学王兆龙课题组《Research》:基于Pμ SL 3D打印的超拉伸抗冻导电水凝胶用于柔性传感及脑电信号的采集
    近年来,柔性电子在可穿戴设备、电子皮肤等众多应用中扮演着越来越重要的角色,以水凝胶为基质设计的柔性电子由于其良好的导电性、柔性以及生物相容性等特点受到广泛的关注,在柔性传感器、柔性能源器件及人机接口等方面表现出广阔的应用前景。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和定制设计的结构,为以水凝胶基质设计的柔性电子器件的制造提供了灵活性和简便性。结合3D打印技术,并对水凝胶进行诸如超抗冻、超拉伸、导电等性能设计,在一定程度上拓宽了水凝胶的功能和应用范围。近日,湖南大学王兆龙助理教授、段辉高教授与上海交通大学郑平院士等人合作,该团队基于摩方精密(BMF)超高精度光固化3D打印机nanoArch S/P140,开发了一种能够耐受-115℃极高导电能力的水凝胶体系,实现了极低温条件下的可穿戴设备运动信号检测及脑电信号高精度采集。文章以“3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogelfor Sensitive Motion and Electrophysiological Signal Monitoring”为题发表在Research(Volume 2020 |Article ID 1426078)上。其中,王兆龙助理教授及硕士研究生陈雷为共同一作。基于面投影微立体光刻技术制造水凝胶结构,首先,作者通过计算机辅助设计(CAD)软件生成的3D模型按照特定层厚切片为一系列平行的二维数字图像,然后,这些切出来的2D图案被传输到DMD芯片上,DMD芯片通过2D图案的形状调节其上照射的紫外光(LED,405nm)。具有相应定义的2D图案的成形紫外光通过一个缩小透镜,该透镜将2D图像投影到具有缩小特征尺寸的水凝胶前体溶液上。图案化的紫外光照射将会使水凝胶前体溶液在相应区域发生局部聚合反应并成型附着在打印平台上。再控制降低打印平台,紫外光投影照射继续打印下一层。这个过程反复进行,直到整个水凝胶结构被制造出来(图1)。研究者引入亲水性的三元醇作为光引发剂TPO-L的良性溶剂,将不溶于水的TPO-L均匀分散在水中,提高光引发剂引发效率,结合光固化3D打印nanoArchS/P140设备的离型膜的快速离型,大大提高水凝胶的光固化速度;利用纳米羟基磷灰石与水凝胶高分子链之间形成强烈的物理作用,从而提高3D打印水凝胶的拉伸性(2500%),并进一步提高其机械强度;三元醇和高浓度离子盐的协同作用赋予了水凝胶极佳的导电性和抗冻性(-115℃左右),3D打印水凝胶在极低温情况下仍然能够完成拉伸、弯曲和扭转的动作,并具有一定的低温导电性(图2)。图1 基于面投影微立体光刻技术的水凝胶加工过程图2 水凝胶的力学、电学和抗冻性能设计优异的机械性能和良好的导电性能使其3D打印水凝胶能够作为应变传感器用于识别包括手指弯曲、发声及吞咽等人体运动信号(图3);水凝胶还可作为柔性电极检测和采集诸如人睁、闭眼时的脑/眼电信号(EEG/ EOG),当志愿者在闭上眼睛并放松时,脑电信号显示出明显的α波(8~13Hz),当志愿者睁开眼睛并积极思考时,脑电α波即刻消失并逐渐向β波(14~30Hz)方向移动。与当前最精确的传统脑电信号采集装置对比实验表明,新体系水凝胶可以准确采集大脑中的脑电信号,反映大脑活动的整体信息,显示出在人机交互,特别是低温领域的脑机接口等方面的应用潜力(图4)。图3 柔性应变传感器应用图4 水凝胶柔性电极脑机接口应用总而言之,本研究基于面投影微立体光刻技术,引入亲水性的三元醇作为光引发剂TPO-L的良性溶剂,利用纳米羟基磷灰石提高拉伸性,并结合高浓度的离子盐和三元醇作为导电介质和抗冻剂,使得所开发的水凝胶体系具有优异机械、导电和抗冻性能,并且可作为柔性应变传感器实现对人体运动和微弱信号的实时监控,同时可进一步用作脑机接口,准确采集大脑中的脑电信号,包括α、β波以反映大脑活动的整体信息。本文提出的水凝胶在电子皮肤、人机交互甚至极低温情况下的可穿戴设备中具有良好的应用前景。未来,微尺度3D打印技术的加入使得复杂3D结构多功能柔性电子和复杂脑机接口的快速制造成为可能。原文链接:https://spj.sciencemag.org/journals/research/2020/1426078/官网:https://www.bmftec.cn/links/10
  • 高铁检测仪器发布等双轴拉伸试验机(橡胶有限元分析)新品
    1 研发背景:橡胶材料具有许多独特的物理特性,如强弹性、易变形、耐磨性等,这使得其在工程上得到了广泛应用,同时作为一种超弹材料,橡胶在受力过程中可以看作一种只有形状改变而其体积几乎无变化的不可压缩物体,同时还伴随着几何非线性和物理非线性变化,所以在进行有限元分析(简称FEA,是将连续问题离散化的一种方法)时,正确了解橡胶材料的力学性能参数十分重要。想要完整的表述橡胶超弹性材料模型需要6种纯应变状态的力学实验,单轴拉伸、单轴压缩、双轴拉伸、双轴压缩、平面拉伸以及平面压缩,传统的拉力试验机搭配合适的夹具以及位移传感器可以进行单轴以及平面的实验,但是对于双轴实验的局限性较大。2 原理:等双轴拉伸(又叫多轴拉伸)借助多个环形排列的滑轮、钢丝绳和特制环形治具等代替传统的双轴试验机对试样进行拉伸,其形式也由垂直形式的双向拉伸转换为单向的拉伸,在保证实验效果的前提下更易实现;同时借助平面夹具可以进行单轴的平面拉伸试验,其中平面拉伸和平面压缩试验在应力状态上是等效的。创新点:创新点:16轴等双轴拉伸,目前国内外多采用双轴拉伸,误差较大。首创唯一。 1.等双轴拉伸,是企业和高校有限元分析建立橡胶材料的本构材料模型所必需。 2.采用激光引伸计,位移分解度可达0.00004mm 3.测试功能丰富,可实现进行单轴拉伸、等双轴拉伸、平面拉伸三种测试。 等双轴拉伸试验机(橡胶有限元分析)
  • 双应变-温度传感器性能研究取得进展
    近日,广东省科学院化工研究所研究员曾炜团队在国家自然科学基金项目等的资助下,在双应变-温度传感器性能研究方面取得新进展。相关研究发表于Composites Part A。张静斐为该论文第一作者,曾炜为通讯作者。   在目前的双应变-温度传感器研究中,一般是将应变/温度敏感的导电材料,如金纳米粒子、氧化石墨烯和碳纳米管等引入弹性体或水凝胶来实现的。由于弹性体的伸展性差和导电材料的不透明性限制了其在大应变和可视化设备中的应用。而离子导电水凝胶具有透明度高、柔韧性好的优点,可以实现基于三维网络离子传输的同时,利用其电导率随应变和温度的变化而实现应变-温度双重传感,为传感器的多功能化提供了广阔应用前景。   研究人员通过自由基聚合,在氯化锂和甘油的存在下,制备了具有良好应变和温度敏感性的可拉伸离子导电性水凝胶。氯化锂的强离子水化作用和水分子、甘油形成强氢键协同作用从而抑制了冰晶的生成,使水凝胶具有优异的抗冻能力,能在-30 ℃~ 80 ℃的较宽温度范围内检测温度的变化。该水凝胶在36.5~40 ℃范围内的温度灵敏度为5.51 %/℃,检测限为0.2 ℃,并具有良好的升温-降温循环稳定性。   此外,水凝胶传感器在2000%的宽应变范围内具有良好的线性,可以达到17.3的高灵敏度,并具有低至1%的检测下限。利用该方法制备的应变-温度双重刺激响应水凝胶,在人体运动监测、发热检测等可穿戴设备中具有很大的应用潜力。
  • 塑料拉伸强度及伸长率试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、大变形引伸计,根据《GB/T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》,进行了塑料拉伸强度及伸长率试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应塑料拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 塑料 高分子 聚合物 拉伸试验 拉伸强度 伸长率 标称应变塑胶原料定义为是一种以合成的或天然的高分子聚合物,可任意捏成各种形状最后能保持形状不变的材料或可塑材料产品。塑料是重要的有机合成高分子材料,由于其良好的物理化学性能,以及加工特性,被广泛应用于日常工作与生活中。根据各种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。本次应用选用日常生活中最常见的5种塑料进行试验,可以很直观的对比出各种塑料的力学性能差异。电子万能材料试验机在塑料的力学性能分析中是属于最重要的物理性能测试设备之一。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的大变形引伸计具有响应快、精度高的特点,配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10KN手动楔形拉伸夹具大变形引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级) 加载试验速率:5mm/min、50mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取5款注塑成型的塑料试样,包括原材料或增强塑料,材质分别为PP、PP+EPDM+TD20、ABS、PC、PA6+30GF,尺寸均为GB/T 1040.2标准1A型哑铃状试样,中间平行部分宽度约10mm,厚度约4mm,数量各5个。2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启载荷零点保持功能消除样品夹持后的预应力,将大变形引伸计夹持在试样的中间部位后将引伸计清零,对应不同伸长率的样品分别以5mm/min、50mm/min的速度进行试验,直至样品断裂,设备监测到试样断裂后自动停止,设备将测量过程中的力以及变形数据完整记录,并生成拉伸试验曲线。图7 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果 图13-试验曲线PP图14-试验曲线PP+EPDM+TD20图15-试验曲线ABS图16-试验曲线PC图17-试验曲线PA6+30GF从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、变形等各项数据用于分析。可以看出各种样品之间因材质不同的曲线差异,其中PP/PP+EPDM+TD20/PC/ABC试样有屈服现象,PA6+30GF无屈服现象,每组各5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、大变形引伸计,可以完全满足《GB/T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得塑料材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 126万!上海交通大学拉伸流变仪采购项目
    项目编号:0773-2241SHHW0182/02/校内编号:招设2022A00256项目名称:上海交通大学拉伸流变仪预算金额:126.0000000 万元(人民币)最高限价(如有):126.0000000 万元(人民币)采购需求:设备名称: 拉伸流变仪数量:1套简要技术参数:1.最小应力(取决于力传感器范围)≤ 15 Pa ;其余详见“第八章货物需求一览表及技术规格”。设备用途: 拉伸流变仪通过有效测定材料流变性能和数据,获取材料的流变参量,进行流变分析。通过一定的温度加热塑胶粒等材料,在一定的拉伸作用下,得出材料粘度与速率,应变与应力关系,分析材料应变硬化行为,得出特定分子的拉伸粘度依应变速率而变化的规律。指导材料的配方和应用开发。交货期:收到信用证后6个月内;交付地点:上海交通大学用户指定地点;合同履行期限:收到信用证后6个月内本项目( 不接受 )联合体投标。
  • 南科大杨灿辉和葛锜团队:多材料3D打印具有多模式传感功能的离子电容传感器
    在过去十年中,离电器件(Ionotronics or Iontronics,离子-电子混合器件,即基于离子与电子协同作用的器件)因其固有的柔韧性,可拉伸性,光学透明性和生物相容性等优势引起了越来越多的关注。然而,现有的离电传感器由于器件结构简单、成分易泄漏,导致器件稳定性差,传感功能单一,极大地限制了实际应用。因此,设计制造性能稳定且具有多模式传感能力的离电传感器具有重要的工程应用价值。南方科技大学力学与航空航天工程系杨灿辉团队与机械与能源工程系葛锜团队,报道了通过多材料光固化3D打印技术一体化设计制造基于聚电解质弹性体的多模式传感离子电容传感器,解决了传统离电传感器稳定性差和功能性单一的问题,为可拉伸离电传感器的设计、智造与应用提供了新的解决方案。相关研究成果以“Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing”为题发表在《Nature Communication》期刊。南方科技大学科研助理李财聪、博士生程健翔和何耘丰为论文共同第一作者,杨灿辉助理教授与葛锜教授为论文共同通讯作者。本研究得到了深圳市软材料力学与智造重点实验室和广东省自然科学基金等项目支持。如图1所示,受人体皮肤对于拉、压、扭及其组合等外力的多模态感知能力的启发,研究人员利用多材料光固化3D打印技术制备了具有多模式传感能力的离电传感器。传感器采用了聚电解质弹性体(PEE),其高分子网络中含有固定的阴离子或阳离子,以及可移动的反离子,具备抗离子泄漏的特性。在打印过程中,PEE材料与传感器上的介电弹性体(DE)材料之间通过共价和拓扑互连形成了牢固的界面粘接。图1. 皮肤启发的多模式传感离电传感器。(a) 人体皮肤内多种力感受器示意图。(b) 人体皮肤可以感知单一的力学信号如压拉、压、压+剪、压+扭。(c) 基于多材料数字光固化3D打印技术制备具有多模式传感能力的离电传感器。研究人员首先合成了一种名为1-丁基-3-甲基咪唑134-3-磺丙基丙烯酸酯(BS)的单体,作为聚电解质材料的组成成分之一,并与另一种名为MEA的疏水单体一起进行共聚。然后通过优化BS和MEA的比例,平衡聚电解质材料的力学性能和电学性能,从而优化传感器的性能,如图2所示。图2. 聚电解质弹性体的设计、制备与光学、力学、电学性能以及热、溶剂稳定性。如图3所示,研究人员进行光流变测试验证了所开发的PEE材料的可打印性。然后通过180°剥离测试,分别测量了3D打印和手动组装的PEE/DE双层结构的界面粘接强度。结果表明,3D打印的双层结构由于PEE和DE之间形成的共价键和拓扑缠结而具有强韧的界面,剥离过程发生了PEE材料的本体断裂, 粘接能达339.3 J/m2;相比之下,手动组装的PEE/DE双层结构界面弱,剥离过程发生了界面断裂,粘接能只有4.1 J/m2。在耐久度测试中,基于PEE的电容式传感器由于无离子泄漏可以长时间保持稳定的信号,而基于传统的LiTFSI掺杂离子的弹性体的传感器由于离子泄漏,信号持续发生漂移,直至发生短路。图3. 离电传感器的可打印性与性能。(a) PEE存储模量和损耗模量随光固化时间的变化曲线。(b) 固化时间与能量密度随层厚的变化关系。(c) 打印的PEE阵列展示。(d) 3D打印和手动组装的PEE/DE双层结构的180°剥离曲线。(e) 3D打印的PEE/DE双层结构本体断裂示意图。(f) 手动组装的PEE/DE双层结构界面断裂示意图。(g) 基于PEE和基于LiTFSI掺杂离子的弹性体的电容式传感器的ΔC/C0随时间变化曲线。(h) 基于PEE的电容式传感器无离子泄漏。(i) 基于LiTFSI掺杂离子的弹性体的电容式传感器离子泄漏示意图。3D打印技术为器件的结构设计提供了极高的灵活性。如图4所示,研究人员分别设计并一体化打印了拉伸、压缩、剪切、扭转四种不同的离电传感器,器件均具有良好的性能和稳定性。特别地,通过器件的结构设计,即可以实现传感器灵敏度的大幅度优化,例如通过在压缩传感器的介电弹性体层引入微结构可以将灵敏度提高两个数量级,又可以实现传感器灵敏度的按需调控,例如通过设计剪切传感器前端的轮廓线或扭转传感器的扇形区域数量可以分别实现不同相应的剪切传感器和扭转传感器。图4. 拉伸、压缩、剪切、扭转离电传感器。(a) 拉伸传感器原理示意图。(b) 电容-拉伸应变曲线。(c) 压缩传感器原理示意图。(d) 有/无微结构的压力传感器的电容-压力曲线。(e) 剪切传感器原理示意图。(f) 一种剪切传感器实物图。(g) 不同灵敏度的剪切传感器的电容-剪切应变曲线。(h) 剪切传感器的疲劳测试曲线。(i) 扭转传感器原理示意图。(j) 一种扭转传感器实物图。(k) 不同灵敏度的扭转传感器的电容-扭转角曲线。(l) 扭转传感器的疲劳测试曲线。如图5所示,研究人员进一步设计并一体化打印了拉压、压剪、压扭三种组合式离电传感器。组合式传感器最大的挑战之一在于不同传感通路之间相互的信号串扰,例如,当器件拉伸时,由于材料的泊松效应会导致垂直方向上的器件几何尺寸缩小,等效于压缩变形,导致拉伸激励引起压缩通道的信号变化。研究人员结合有限元模拟分析,通过合理的器件结构设计,有效地避免了不同通道之间的信号串扰。图5. 组合式离电传感器。(a) 拉压组合传感器示意图。(b) 器件实物图。(c) 拉压组合传感器等效电路图。(d) 单一传感模式下的器件信号。(e) 压缩激励下的电容-圈数变化曲线。(f) 拉伸激励下的电容-圈数变化曲线。(g) 拉压组合变形下的信号谱。(h) 压剪组合传感器示意图。(i) 器件实物图。(j) 压剪组合传感器等效电路图。(k) 单一传感模式下的器件信号。(l) 压扭组合传感器示意图。(m) 器件实物图。(n) 压扭组合传感器等效电路图。(o) 单一传感模式下的器件信号。最后,研究人员展示了一个由四个剪切传感器和一个压缩传感器组成的可穿戴遥控单元,并将其连接到一个远程控制系统,用于远程无线控制无人机的飞行,如图6所示。这个可穿戴遥控单元中的四个剪切传感器负责感知手部的手指运动,用于控制无人机的方向。而压缩传感器则用于感知手指的压力,控制无人机的翻滚。这种可穿戴遥控单元的设计可以实现人机交互,提供更加灵活的控制方式。图6. 组合式离电传感器用于无人机的远程无线操控。(a) 无人机控制系统示意图。(b) 组合式离电传感器中剪切传感模块工作模式示意图。(c) 剪切传感模块工作原理。(d) 传感器五个通道电容信号测试。(e) 指令编译逻辑。(f) 组合式离电传感器实时电容信号。(g) 不同时刻的无人机飞行状态。文章来源:高分子科技023-40583-5MultiMatter C1基于高精度数字光处理3D打印技术和独家离心式多材料切换技术,MultiMatter C1多材料3D打印装备可实现任意复杂异质结构快速成型,在力学超材料、生物医学、柔性电子、软体机器人等领域具有重要应用潜力。离心式多材料切换技术:独家开发的离心式多材料切换技术可实现高效材料切换和残液去除。离心转速可调,最高达8000转/分钟,60秒内即可完成多材料切换,单次打印多材料切换最大次数高达2000次,处于业内领先水平。可打印材料范围广:该设备支持粘度在50-5000 cps范围内的硬性树脂、弹性体、水凝胶、形状记忆高分子和导电弹性体等材料及这些材料组合结构的多材料3D打印,为不同行业和应用领域,提供了材料选择的灵活性。多功能多材料耦合结构实现:该设备可打印高复杂度、高精度、多功能、多材料耦合结构,支持同时打印2种材料,可打印层内多材料和层间多材料,且多材料层内过渡区尺寸在200μm以内,为复杂多材料结构制造提供高精度解决方案。
  • 锐欧森发布多功能拉伸流变仪 VADER 1000新品
    多功能拉伸流变仪 VADER 1000单剪切和单轴延伸之间存在根本区别。 然而,在剪切中,材料的横截面积在流动的存在下是固定的,典型的是拉伸流动引起材料的横截面积随时间的变化。 因此,应变和应力的定义需要精确测量力和横截面积。 对于VADER 1000的工作原理,称为长丝拉伸流变学,应变和应力由下式给出:产品规格:仪器功能最小应力(取决于称重传感器范围)15Pa最大应力(取决于称重传感器范围)1×1010Pa最大Hencky应变力(计算)9最小应变率(假设理想的轴向变形计算。根据样品属性可能降低速率。)0.0001s-1最大应变率(考虑闭环控制。想获得更高的速率,请咨询。)5s-1建议最小的样品粘度(这是为了尽量减少表面张力的影响。根据施加的速率,可能的粘度较小。)1000Pa.s最小直径0.1mm最大直径10.0mm最小温度周围环境温度最大温度250℃气流(可选燃气加热器)5L/min最小轴向速度0.001mm/s最大轴向速度600mm/s温度控制温度传导箱可选温度传导箱 VADER 1000配有三区导气箱,可确保温度均匀性,稳定性和响应时间。 传导箱采用陶瓷绝缘,可以以避免过多的热量损失。专利待定烤箱安装在特殊的滑动系统上,可以在不降低温度的情况下快速更换样品。传导箱可以达到-250°C的环境温度。 VADER 1000具有可选的温度对流箱附件,可减少加热时间,确保整个烤箱腔内的温度均匀,并使用惰性气体防止样品在测试过程中降解。对流式温度箱配有安全开关,当导热炉处于向上位置时,它会自动关闭气流。 所有连接均为不锈钢,可使用各种气体。底部对流板允许插入气体进入样品室,防止氧化并确保温度均匀。创新点:ADER 1000配有三区导气箱,可确保温度均匀性,稳定性和响应时间。 传导箱采用陶瓷绝缘,可以以避免过多的热量损失。 专利待定烤箱安装在特殊的滑动系统上,可以在不降低温度的情况下快速更换样品。 传导箱可以达到-250° C的环境温度。 多功能拉伸流变仪 VADER 1000
  • 山西大学激光光谱团队制作出基于三维竖直石墨烯应变传感器
    近日,山西大学激光光谱研究所陈旭远教授和王梅教授等人在《ACS Applied Materials & Interfaces》上发表文章《Vertical Graphene Canal Mesh for Strain Sensing with a Supereminent Resolution》,报导了一种基于三维竖直石墨烯(Vertical Graphene, VG)的超低检测限应变传感器。   微应变传感器的发展为微型机器人、智能人机交互、健康监测和医疗康复等众多领域提供了广阔的前景。高分辨率的柔性应变传感器可广泛应用于多种柔性可穿戴电子设备中,有助于提升设备探测灵敏度并保证亲肤性。目前,已有诸多活性材料在柔性传感器中展示了良好的应用效果,如碳纳米管、银纳米线、MXene等。但是具有极高分辨率的柔性应变传感器仍然是应变传感器研究中的一项挑战。   作者通过设计三维石墨烯微观和宏观结构制作了网状结构的应变传感器(VGCM),使其在0-4%的总应变范围内实现了低至0.1‰的应变精确响应,获得了极高的分辨率。同时通过实验验证及理论模拟揭示了VG在应变过程中微裂纹的演化规律和电阻变化机理。 图1 基于VGCM的应变传感器制备过程及VGCM的SEM图像   此工作以铜网为模板,利用等离子化学增强气相沉积法在铜网上生长了VG。利用化学刻蚀去除铜网后获得中空网状VGCM结构。这种网状结构使得拉伸应力集中,增强了应变过程中的电阻变化,实现了对低至0.1‰的微小应变的高分辨响应。 图2 拉伸过程中的应力分布示意图   有限元模拟展示了VGCM在拉伸过程中的应力分布。结果显示VGCM的中空管道结构使得应力集中分布在管状VGCM的顶端和底部。同时,三维石墨烯竖直结构也会导致应力在竖直结构之间形成集中。 图3 VGCM传感器传感原理图;VGCM应变中的SEM图像;VG和2D石墨烯应力分布模拟图   进一步通过实验验证了在拉伸情况下,应力集中产生裂纹且主要分布在中空管道顶端和底部。裂纹的产生加速了电阻的增加,从而提高了VGCM的灵敏度和分辨率,与模拟结果完全吻合。VGCM传感器利用了三维石墨烯的微观结构和网状的宏观结构的协同作用,使得应力集中,增大了电阻在拉伸过程中的变化,赋予了VGCM传感器卓越的分辨率和良好的应用前景。
  • 塑料拉伸模量及泊松比试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、Reliant精密轴向引伸计以及横向引伸计,根据《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》,进行了塑料拉伸模量及泊松比试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应塑料拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 塑料 高分子 聚合物 拉伸试验 拉伸模量 泊松比塑胶原料定义为是一种以合成的或天然的高分子聚合物,可任意捏成各种形状最后能保持形状不变的材料或可塑材料产品。塑料是重要的有机合成高分子材料,由于其良好的物理化学性能,以及加工特性,被广泛应用于日常工作与生活中。根据各种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。本次应用选用日常生活中最常见的5种塑料进行试验,可以很直观的对比出各种塑料的力学性能差异。电子万能材料试验机在塑料的力学性能分析中是属于最重要的物理性能测试设备之一。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持对中装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的Reliant精密轴向引伸计以及横向引伸计配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10kN手动楔形拉伸夹具Reliant轴向引伸计Reliant横向引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级)加载试验速率:5mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取5款注塑成型的塑料试样,包括原材料或增强塑料,材质分别为PP、PP+EPDM+TD20、ABS、PC、PA6+30GF,尺寸均为GB/T 1040.2的1A型试样,数量各5个。2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启试样保护,将夹持后的预应力消除,然后分别将横向引伸计及轴向引伸计夹持在试样的中间部位,然后将引伸计清零,再以5mm/min的速度进行试验,直至拉伸应变超过拉伸模量及泊松比取值范围后,停止测试,将引伸计卸除。测量过程中的力以及变形数据,并生成拉伸试验曲线。图7 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果图8-试验曲线PP图9-试验曲线PP+EPDM+TD20图10-试验曲线ABS图11-试验曲线PC图12-试验曲线PA6+30GF从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、轴向变形、横向变形等各项数据用于分析。可以看出各种样品之间因材质不同的曲线差异,模量大刚性高的样品,曲线斜率更大,每组各5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、Reliant轴向引伸计以及横向引伸计,可以完全满足《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得塑料材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 层压板拉伸模量及泊松比试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、Reliant精密轴向引伸计以及横向引伸计,参考《ASTM D638-22塑料拉伸性能的标准试验方法》,进行了层压板的拉伸模量及泊松比试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应层压板的拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 层压板 PCB基板 拉伸试验 拉伸模量 泊松比层压板是层压制品中的一种。层压制品是由两层或多层浸有树脂的纤维或织物经叠合、热压结合成的整体。层压制品可加工成各种绝缘和结构零部件,广泛应用在电机、变压器、高低压电器、电工仪表和电子设备中。随着电气工业的发展,高绝缘性。高强度、耐高温和适应各种使用环境的层压塑料制品相继出现。印制电路用的覆铜箔层压板也由于电子工业的需要迅速发展。层压制品的性能取决于基材和粘合剂以及成型工艺。按其组成、特性和耐热性,层压制品可分为有机基材层压板和无机基材层压板,本次应用选用电路板行业常用的PCB基板-环氧玻纤层压板作为样品进行试验,通过万能材料试验机可以进行层压板的各项力学试验,表征层压板的各项力学性能,从而做好层压板的质量控制。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的Reliant精密轴向引伸计以及横向引伸计配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠 的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10KN手动楔形拉伸夹具Reliant轴向引伸计Reliant横向引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级)加载试验速率:5mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取层压板长度为165mm,中间平行段宽度约10mm,数量3个。图1 标准试样2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启载荷零点保持功能后将自动消除因夹持产生的夹持力,然后分别将横向引伸计及轴向引伸计夹持在试样的中间部位,再将两个引伸计清零,以5mm/min的速度进行试验,直至拉伸应变超过拉伸模量及泊松比取值范围后卸除引伸计并直至拉伸到样品断裂。测量过程中的力以及变形数据,并生成拉伸试验曲线。图2 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果图3-试验曲线从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、轴向变形、横向变形等各项数据用于分析,数据重现性良好,可满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、Reliant轴向引伸计以及横向引伸计,可以完全满足《ASTM D638-22塑料拉伸性能的标准试验方法》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得层压板的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 玻璃纤维机织物拉伸断裂强力和断裂伸长的测定
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合1kN气动拉伸夹具,根据《GB/T 7689.5-2013增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》,进行了玻璃纤维机织物拉伸试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应玻璃纤维机织物拉伸断裂强力和断裂伸长的试验。 关键词:鲲鹏BOYI 2025电子万能材料试验机 玻璃纤维 拉伸试验玻璃纤维布(Glass Fiber) 是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,绝缘层压板以及印刷电路等各个领域。玻璃纤维布的特性由纤维性能、经纬密度、纱线结构和织纹所决定。经纬密度又由纱结构和织纹决定。经纬密度加上纱结构,就决定了玻璃纤维布的物理性质。本应用介绍了使用电子万能材料试验机进行玻璃纤维机织物拉伸断裂强力和断裂伸长试验。鲲鹏电子万能材料试验机配备的气动拉伸夹具,有以下几个特点:首先,夹面采用专用高分子夹面,平整度好,可以避免夹伤试样,避免拉伸过程中出现夹持部位断裂的情况;其次,气动控制可以提供适当且恒定的夹持力,避免拉伸过程中出现滑移的情况;另外,夹具设有对中标识,可以辅助夹持试样,保证夹持后试样的垂直度,避免拉伸过程中出现左右两边受力不均匀的情况。 除夹具外,试验机主机的高精度以及超过1000HZ的采集频率,可以完整的拉伸过程中的所有特征数据,准确识别试样拉伸断裂点,确保给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。本篇报告参照《GB/T 7689.5-2013增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》进行试验,标准要求如下: 1.样品要求:Ⅱ型试样、试样宽度25mm、有效长度100mm 2.夹持距离:100mm±1mm 3.拉伸速度:50mm/min±3mm/min 1. 实验部分 1.1仪器与夹具 BOYI 2025-001 电子万能试验机 1kN气动拉伸夹具 90°剥离夹具 Smartest软件 1.2分析条件 试验温度:室温23℃左右 载荷传感器:1kN(0.5级) 加载试验速率:50mm/min 图1 BOYI 2025-001 电子万能试验机 1.3样品及处理本次试验,选取6组国内主流的不同种类的玻璃纤维布,统一切割成GB Ⅱ型试样,宽度约为25mm的长条试样,每组样品分经向和纬向。 2.试验介绍使用BOYI 2025-001电子万能试验机进行试验,设定夹具间距为100mm,将样品分别夹持在上下夹具中,以50mm/min的速率进行试验。测量拉伸过程中的力值以及位移数据,拉伸试样至断裂,记录最终断裂强力及断裂伸长(GB要求精确至1mm),取拉伸过程中第一组纱断裂时的最大强力作为拉伸断裂强力,根据数据计算得出结果,并生成拉伸曲线。图2 测试系统图(主机、夹具) 3.结果与结论 3.1第一组玻璃纤维布试验结果 3.2第二组玻璃纤维布试验结果 3.3第三组玻璃纤维布试验结果 3.4第四组玻璃纤维布试验结果 3.5第五组玻璃纤维布试验结果 3.6第六组玻璃纤维布试验结果 从上上述数据以及断裂后试样状态可以看出,整个测试过程中,拉伸试样夹持良好,断裂部位均在试样中部,满足GB要求(断裂点距离夹口10mm以上),两个方向各5个试样结果平均值非常接近,曲线重合度再现性良好,无较低异常测试值,满足GB要求。从本次试验结果可以体现出鲲鹏BOYI 2025-001 电子万能试验机的高精度及高稳定性。4.结论 综上所述,鲲鹏BOYI 2025-001 电子万能试验机、1kN气动拉伸夹具,可以完全满足GB/T 7689.5-2013 增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得玻璃纤维布各项力学数据,且稳定可靠,这对于玻璃纤维布以及绝缘电路板材、印刷电路板的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 祺跃科技发布祺跃科技拉伸台 MINI-MTS5000新品
    产品综合介绍: 产品功能介绍: 扫描电镜原位高温拉伸台:为国家重大科研仪器设备研制专项《针对若干国家战略需求材料使役条件下性能与显微结构间关系原位研究系统》的科技成果转化产品,其特征是将宏观材料力学实验置于具有纳米分辨率的扫描电子显微镜内,实现了宏观力学性能与纳米层次结构分析的一体化。产品的性能指标达到国际一线品牌的水平。 1.1 解决了小尺度有限空间内力学加载机械单元的结构稳定性和刚度设计,实现了高稳定性加载、高精度测量 1.2 通过对称加载和高精度实时反馈控制, 解决了高倍数放大成像过程中样品受力、受热漂移问题,实现了加载加热条件下原位、实时跟踪和高分辨成像; 1.3 可与当前主流扫描电镜集成,突破了结构兼容、电磁兼容和真空兼容的限制,达到高分辨率成像、高精度控制、长时间稳定运行。该仪器也可以兼容匹配各类光学显微镜(OM)、X射线衍射仪(XRD)和原子力显微镜(AFM)等材料微观分析仪器; 1.4 空间结构布局合理、能够同时实现二次电子、EBSD高质量成像; 1.5 实现了高速数据采集与存储,显微图像和温度、力、位移等物理信号同步检测; 品牌介绍 浙江祺跃科技有限公司成立于2019年3月,坐落在杭州市桐庐县经济开发区富春江科技城,是浙江省科创新材料研究院孵化的高科技企业,主要从事基于扫描电子显微镜(兼容X-射线衍射仪、原子力显微镜和光学显微镜)的原位分析测试精密仪器的设计研发、生产销售、以及材料检测与分析服务等。 通过张泽院士主持的“国家重大科研仪器设备研制专项(11372901)”科技成果转化,公司已经开发出了在能够在扫描电子显微镜(SEM)中实现原位拉伸、加热、蠕变、疲劳、高温力学性能测试的高端科学仪器。 公司的产品目前已经在国内外高校研究所销售使用,如:清华大学、北京大学、浙江大学、中国科学院金属研究所、南京大学、南京理工大学、北京科技大学,北京航空材料研究院、中国石油大学等。 公司由院士领衔,研发人员大部分具有博士学位和高级职称,技术力量雄厚、创新能力强,专注于先进材料结构/性能关系研究的高端分析测试设备研发,加快新材料研发进程,推动我国新材料产业的发展。 产品的优势与特点 加载台: 同轴双向对称加载:观察区保持在SEM视场中心; 多级减速结构,扭矩输出平稳:高精度高稳定性测试、高质量成像; 线性加载:测试精度高,测试误差小; 传动自锁:随时起停,实时原位研究; 高强度部件:承载能力强; 结构紧凑:结构兼容性强、便于携带、易于安装。 控制器: 模块化功能单元设计; 高精度线性放大、24位AD转换模块; 数字化高速位移采集接口; 数字化驱动器,电磁兼容性强; 高效隔离加热电源,输出纹波小; 驱动双闭环反馈,响应灵敏; 全自动散热系统。 软件功能: 界面简洁,功能丰富; 数据高速存储,实时显示; 位移、力PID闭环控制。 产品应用领域 应用研究内容:显微结构、相变行为、取向变化、裂纹萌生与扩展、材料疲劳机制、断裂机制、热-力耦合行为、微结构或构件力学性能、高温蠕变、疲劳、高温氧化腐蚀、固溶时效、等… … 服务领域:航空航天、国防、汽车制造、石油化工、钢铁冶金、有色金属、船舶制造、生物医学、微型传感器、大型装备制造、微机电系统、高分子复合材料、绿色新能源产业等领域。创新点:可以根据客户扫描电镜样品室大小进行加工设计相应的原位高温微型拉伸台,周期短。 可以设计不同载荷(10N,50N,100N,200N,500N,1000N,2000N,3000N, 5000N)和加热温度(0~1200℃),同时可兼容匹配光学显微镜、X射线衍射仪和原子力显微镜的原位微型高温拉伸台。 适应于TESCAN、ZEISS,FEI ,KYKY,HITACHI、JEOL等各种型号电镜。 产品质量一流,配件齐全,性价比高,服务能力强,响应速度快。 祺跃科技拉伸台 MINI-MTS5000
  • 基于Pμ SL技术的微米级可拉伸电子一体化制造
    柔性可拉伸电子器件具有可弯曲、可拉伸和可扭曲的优异力学特性,其在生物医学工程、机器人技术、人机界面等各个领域的应用重要性日益凸显。常见制备方法一方面是开发本征可拉伸的导电材料,例如掺杂导电纳米材料的软弹性体、导电聚合物和水凝胶等。但是,这些新型材料通常电导率较低、机电稳定性能较差和易对实际应用中的电信号造成干扰。另一方面则是通过构建如平面蛇形等几何结构来提升传统导电材料(包括金属等)在力学服役下的最大可拉伸应变。虽然以上两种(结合)方法都已有大量报道,然而大部分的可拉伸电子受限于加工方式的难度,制备的结构大多集中在二维平面尺度,限制了可拉伸电子在三维方向的应用扩展。近日,香港城市大学机械工程学系陆洋,南方科技大学葛锜与西安电子科技大学高立波等合作报道了一种相对便捷、灵活和可批量制造的可拉伸微电子的高精度制作方法。通过利用摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArch P130, S140, BMF Precision, Shenzhen, China),实现了一种通用的微加工工艺,可以以2μm的高分辨率获得以前无法实现的复杂3D几何形状。后续结合磁控溅射工艺,可制备3D导电结构,该结构具有出色的可拉伸性(~130%)、贴合性、稳定的导电性(在100%拉伸应变下电阻变化小于5%),以及循环载荷下的稳定性。与2D结构相比,3D微结构具有紧凑的几何形状,并且其可以在平面外自由变形的特点使适应更大的拉伸应变成为可能。图1. 基于面投影微立体光刻(PμSL)3D打印的可拉伸微电子的制作过程:3D几何设计、PμSL 3D打印、磁控溅射导电金属薄膜、组装和应用此外,利用基于PμSL的3D打印技术可以制作高度复杂几何结构的优势,该方法可实现集成电路的一体化制造。例如,研究者们制造了由三维可拉伸微结构连接的复杂三维电容式压力传感器阵列。凭借其结构设计高通量性、加工方式便利性和器件制造一体化性,该研究成果在集成3D可拉伸电子系统上显示出巨大的应用潜力。图2. 三维可拉伸导电微结构的力学和电学鲁棒性测试:拉伸、弯曲、循环和面外压缩加载下的电阻变化图3. 3D打印三维可拉伸电子网络结构表征和变形能力测试图4. 三维可拉伸电容式压力传感器阵列示意图、细观实物图和性能测试结果该项研究成果获得深圳市科创委基础研究项目支持,以“Three-Dimensional Stretchable Microelectronics by Projection Micro Stereolithography (PμSL)”为题发表于新一期国际知名期刊《ACSApplied Materials & Interfaces》(香港城市大学王月皎博士生为第一作者)。文章链接:https://dx.doi.org/10.1021/acsami.0c20162
  • 基于Pμ SL技术的微米级可拉伸电子一体化制造
    柔性可拉伸电子器件具有可弯曲、可拉伸和可扭曲的优异力学特性,其在生物医学工程、机器人技术、人机界面等各个领域的应用重要性日益凸显。常见制备方法一方面是开发本征可拉伸的导电材料,例如掺杂导电纳米材料的软弹性体、导电聚合物和水凝胶等。但是,这些新型材料通常电导率较低、机电稳定性能较差和易对实际应用中的电信号造成干扰。另一方面则是通过构建如平面蛇形等几何结构来提升传统导电材料(包括金属等)在力学服役下的最大可拉伸应变。虽然以上两种(结合)方法都已有大量报道,然而大部分的可拉伸电子受限于加工方式的难度,制备的结构大多集中在二维平面尺度,限制了可拉伸电子在三维方向的应用扩展。近日,香港城市大学机械工程学系陆洋,南方科技大学葛锜与西安电子科技大学高立波等合作报道了一种相对便捷、灵活和可批量制造的可拉伸微电子的高精度制作方法。通过利用摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArch P130, S140, BMF Precision, Shenzhen, China),实现了一种通用的微加工工艺,可以以2μm的高分辨率获得以前无法实现的复杂3D几何形状。后续结合磁控溅射工艺,可制备3D导电结构,该结构具有出色的可拉伸性(~130%)、贴合性、稳定的导电性(在100%拉伸应变下电阻变化小于5%),以及循环载荷下的稳定性。与2D结构相比,3D微结构具有紧凑的几何形状,并且其可以在平面外自由变形的特点使适应更大的拉伸应变成为可能。图1. 基于面投影微立体光刻(PμSL)3D打印的可拉伸微电子的制作过程:3D几何设计、PμSL 3D打印、磁控溅射导电金属薄膜、组装和应用此外,利用基于PμSL的3D打印技术可以制作高度复杂几何结构的优势,该方法可实现集成电路的一体化制造。例如,研究者们制造了由三维可拉伸微结构连接的复杂三维电容式压力传感器阵列。凭借其结构设计高通量性、加工方式便利性和器件制造一体化性,该研究成果在集成3D可拉伸电子系统上显示出巨大的应用潜力。图2. 三维可拉伸导电微结构的力学和电学鲁棒性测试:拉伸、弯曲、循环和面外压缩加载下的电阻变化图3. 3D打印三维可拉伸电子网络结构表征和变形能力测试图4. 三维可拉伸电容式压力传感器阵列示意图、细观实物图和性能测试结果该项研究成果获得深圳市科创委基础研究项目支持,以“Three-Dimensional Stretchable Microelectronics by Projection Micro Stereolithography (PμSL)”为题发表于新一期国际知名期刊《ACSApplied Materials & Interfaces》(香港城市大学王月皎博士生为第一作者)。文章链接:https://dx.doi.org/10.1021/acsami.0c20162官网:https://www.bmftec.cn/links/10
  • 乐金涛:我国全自动拉伸试验机技术的发展、挑战与前景
    乐金涛老师乐金涛,1983年开始在宝钢集团从事金属材料力学性能检测工作,目前还兼任中国仪器仪表学会试验机分会副秘书长、广东省金属学会理化检验专业委员会副主任委员、全国冶金物理测试网力学与试样加工技术委员会副主任委员、全国钢标准化技术委员会力学及工艺性能试验分技术委员会顾问、《理化检验-物理分册》副主编、中国国际招标网机电产品评标专家等。近日,仪器信息网有幸采访了乐金涛老师,请他谈一谈国内全自动拉伸试验机技术的发展、挑战与前景。 仪器信息网:请问,为什么要研发全自动拉伸试验机技术?乐金涛老师:三年疫情给智慧制造的发展带来非常有利的机遇,如何让试验室利用先进技术提高自动化检测和抗风险的能力,在特殊情况下也可以稳定、高质量、无人值守的开展检测工作,是业内同行普遍关心问题。为了保证测试结果精准、可重复、可追溯,提高劳动生产率,利用信息化、自动化、智能化等技术建设一个可以实现整个试验过程无人值守、无人干预的钢铁材料力学性能检测全自动试验室,已经成为这个领域的发展方向。 随着工业发展至4.0时代,制造业逐渐步入智能化、数字化时代,对于钢铁材料生产企业,质量检测环节中的材料拉伸试验也向半自动化、全自动化快速发展。全自动电子拉伸试验机(薄板材料)近年来,国内钢铁企业检测系统已经在许多领域实现了全流程的自动化检测。国内一些大型钢铁企业的力学试验室,依靠多套全自动拉伸试验机一天可以轻松地完成1000多件拉伸试样的自动检测。 材料试验机如实现了自动化智能化后,可以实现试验室装备水平的大幅度提升;减少人为因素影响,提高检测精度,确保试验数据准确性;缩短检验周期;提高劳动生产率等。仪器信息网:要建设好一个自动化检测试验室,需具备哪些条件和掌握哪些关键技术?乐金涛老师:要建设好一个自动化力学性能检测试验室,必须要了解试验室的工艺流程、特点,掌握当前拉伸试验机和自动化、智能化等最新技术的发展状况。1. 钢铁企业成品力学性能检验特点和对设备配置的要求1) 检验量大,设备要耐用;2) 产品规格相对集中、检验项目相对简单,设备要专业化配置;3) 检验周期紧,试样来样量不均匀,设备配置要有一定的富余量;4) 对检验的精度要求相对较低,主要判断产品是否合格。2. 建设自动化力学检测试验室的关键技术自动化、智能化建设适合于流水线、重复性等作业,根据钢铁企业试验室的流程和特点,其比较适合开展自动化项目的建设工作。要建设一个成功的自动化力学性能检测试验室,必须包含以下基本的关键技术:1) 通过机械手实现试样自动上、下料功能;2) 样号的自动识别;3) 试样传送系统;4) 全自动试验设备;5) 样品自动收集保存等。仪器信息网:当前,我国全自动拉伸试验机已经发展到了什么程度?乐金涛老师:我国试验机制造业通过近二十年的努力,在钢铁材料力学性能检测中最主要、使用最多的拉伸试验机产量、品种和得到了快速发展,技术水平有了很大的提升。通过验证或比对试验可以证明,我们国内试验机制造行业的一线品牌的试验机制造厂家制造的静态电子试验机、微机控制电液伺服试验机的技术指标已接近或已达到国际同类产品的水平,完全能够满足如ISO6892-1和GB/T 228.1等试验方法标准的要求,虽然还存在不少的问题,但并不是想像中的那么差。国内最早使用全自动拉伸试验机大概是在2005年左右,是国内几个特大型的钢铁企业试验室开始引进的。它们主要是做薄板拉伸试验的采用往复式机械手的小吨位全自动拉伸试验机、做厚板拉伸试验的采用龙门桁架式机械手的大吨位全自动拉伸试验机。记得在那个时候,国内有试验机厂家想仿制,但由于种种原因没有成功。全自动电液伺服拉伸试验机(中、厚板和螺纹钢)2015年以来,根据钢铁企业试验室检验量大、产品规格相对集中、检验项目相对简单、检验周期紧、流水线重复性检验等作业特点,国内部分一线品牌的试验机制造厂家,运用自动化、智能化、信息化等先进技术,开发研制了各种全自动试验机,国内全自动试验机的技术才真正开始发展,大大地推进了钢铁企业智慧试验室的建设工作。其中早期的小吨位往复式机械手全自动拉伸试验机、大吨位龙门桁架式机械手全自动拉伸试验机,到目前采用比较多的多工位六轴机械手全自动拉伸试验机的开发运用,实现了对各种类型全自动试验机的全覆盖。仪器信息网:全自动拉伸试验机主要的工作流程是什么?乐金涛老师:全自动拉伸试验机试验时,试验人员根据自动接收到的试验顺序、试验项目要求等,将经过打标的试样用机械手放入试样架内或通过AGV小车送达指定的位置→机械手根据预先在试验程序上设置好的试样位置抓取试样→进行试样长度测量→进行试样平行部分位置对中测量→试样横截面尺寸测量(可取n次测量数据的最小值或者平均值等)→机械手将试样放置到试验机测试位置,在确保按平行段对中的情况下自动调用预定的试验方法进行试验→试验结束后机械手自动取下断样→自动分拣合格与不合格试样→试验数据自动保存并发送给上位机。全自动拉伸试验机的工作效率一般不低于每小时15件。仪器信息网:全自动拉伸试验机除了主机以外,其配套的主要零部件技术对于整个系统也是非常关键,请举例介绍一下其优点?乐金涛老师:简单介绍一下全自动拉伸试验机中主要的配套零部件视频引伸计在整个系统中的应用。在全自动化拉伸试验系统中常用的变形测量手段是自动化接触式引伸计,但接触式引伸计大多只能测量一组标距变形,使用中常常遇到试样断裂在标距外或是贴近标距的位置,导致测试数据的不准确甚至不可用。1) 视频引伸计采用标准化DIC技术,可非接触实现三维变形测量,在拉伸试验过程中能同时测量多组纵向和横向标距变形。配合全自动拉伸试验系统使用时,可实现同步触发、自动测量、实时以数字信号或模拟信号向试验机传输数据。2) 视频引伸计可自动识别多种标距标识,同时也可对试样进行无标识点自动识别测量,监控试样直至其断裂,可自动测量试样断裂伸长率,大大提高检测效率。3) 自动识别应变分布状态,可以在整个试验过程中自动追踪最大应变产生的实际位置,从而将原始标距L0重新定位在最高应变区域的中心。4) 与接触式引伸计相比,使用视频引伸计避免了试样断在标距外或标距附近时的无效测试,有效提高试样利用率,节省试样成本。5) 带全自动引伸计的电子拉伸试验机的普及,特别是视频引伸计开发运用,加速了应变硬化指数n值和塑性应变比r值等全自动测量技术的发展,根据宝钢湛江钢铁有限公司验证试验的文献介绍:——采用人工、半自动、全自动方法测量的r值不存在显著性差异,其中全自动测量方法测量r值的精度最高;——视频引伸计与机械接触式引伸计测量r值的结果接近,但前者的精度更高。配置视频引伸计的全自动拉伸试验机仪器信息网:据了解,为了满足用户个性化要求,国内也研发了一些有特殊功能的全自动拉伸试验机,请您介绍一下?乐金涛老师:常规的全自动拉伸试验机在一根试验结束后,机械手自动取下断样→自动分拣合格与不合格试样→机械手将断样扔到对应的料框里。但经常会碰到有些重要的、异常的断样需要试验室保留以备查验等情况,传统的模式是试验室人员要等这一批次试验全部完毕后再按编号在留样框里翻找拼接,方式原始繁琐、效率低。现在全自动拉伸试验机断样收集专用料斗的配套设计,机械手可以按需按组收集需要保留的断样,大大方便了样品留存工作。带断料回收装置全自动拉伸试验机另外,如许多钢铁企业生产的螺纹钢或圆钢,由于轧钢工艺的需要,生产出来的产品是呈盘状的,俗称盘圆或盘螺。为了保证试样可以正常的在全自动拉伸试验机上装夹或保证试验时的同轴度,此类产品在做拉伸试验前,需要对带有一定弧度的样品进行矫直处理,目前国内绝大部分试验室都是采用人工矫直的方法。目前在常规全自动试验机里配套开发的全自动盘条多轮交叉弯曲矫直系统,比较完美的避免了用其他如敲击方式在矫直过程中应力集中等缺陷的产生,提高了盘圆盘螺类产品检测精度。带自动校直全自动拉伸试验机仪器信息网:您长期在中国宝武集团检化验系统工作,能否就宝钢范围的全自动试验技术方面提供一个案例分享给读者?乐金涛老师:针对繁琐的热轧带肋钢筋外部和内在质量的检测项目和不同的试验工位,运用自动化、智能化、信息化和机器人技术,宝钢武钢有限公司成功应用了钢筋全自动测试系统。该系统由电子拉伸主机,配上全自动视频引伸计、扫码系统、称重测长装置、ABB机器人、试样架、控制系统、软件等组成,集钢筋称重、测长、拉伸试验、弯曲和反复弯曲试验等功能,在一套全自动系统里实现全部检测功能。该系统还可以通过配置钢筋全自动弯曲校直、筋肋测量装置、温度养护箱等装置,完成试样矫直、钢筋外形检测、钢筋人工时效等工序。系统自动化模式运行时,可以同时在系统的不同组件上测试不同的样品,极大的提高测试效率。宝钢武钢有限公司1000kN钢筋试验系统仪器信息网:当前国内全自动拉伸试验机急需解决的关键技术是什么?乐金涛老师:当前,国内全自动拉伸试验机急需解决的关键技术主要归纳起来分如下几个方面:1) 激光引伸计、视频引伸计、全自动引伸计、高低温引伸计等技术;2) 高精度、高分辨率、宽量程的力传感器等技术;3) 高精度、高分辨率、宽量程的试样横截面尺寸测量传感器等技术。仪器信息网:能否针对目前我国全自动拉伸试验机的现状,谈谈您的感受或想法?乐金涛老师:在国外1000KN以上的电子拉伸试验机技术已经非常成熟,在国内常规的电子拉伸试验机绝大部分企业只能做到600KN。近三年,国内几家一线品牌的试验机制造厂家已经有在开发制造1000KN的电子拉伸试验机,但据了解总数也就在十台左右。国内已经有自主研发制造的2000kN电子拉力试验机,开创了中国试验机行业在大吨位电子拉力试验机的先河,为大吨位全自动拉伸试验机的开发运用打下了良好的基础。目前国内制造的全自动拉伸试验机如主要的配套零部件力传感器、位移传感器、引伸计等品牌选型更好,在其功能、试验精度等方面,完全可以胜任日常检验任务。随着钢铁企业智慧制造风潮的兴起,由拉伸试验机和机器人组合的全自动试验机需求大增,现在许多试验机厂家都去做全自动拉伸试验机或系统。目前我们国家研发制造的全自动试验机或系统的主要特点是集成其他自动化配套装置,但平心而论对试验机本身技术没有大的提高。我们现在国内生产的全自动拉伸试验机的长期稳定性和故障率等指标,和国外同类设备比还存在一定的差距。仪器信息网:最后,请您对国内的试验机制造厂家提一点要求或希望?乐金涛老师:希望国内的试验机制造厂家要重视市场需求和技术研发,以自动化、智能化为发展目标和发展方向,来满足用户个性化需求。要多与相关试验室合作开发关键技术,在高档或专用试验设备的研发制造等方面争取再获突破,包括对原来进口全自动拉伸试验机的技术消化和升级工作,以促进我国试验设备在自动化技术方面水平的提升,切实减少全自动试验设备的进口数量。
  • 传感器:智能时代的“慧眼”
    如果把智能系统比作“人”,那么传感器就是“人”的感觉器官。不同类型的传感器,感知周围环境并把数据传递给系统进行计算,对情况进行实时分析、判断和应对。随着数字化智能化不断深入,各式各样传感器的用武之地大为拓宽,为人类创造美好生活发挥着巨大作用。一部智能手机里有上百个传感器:有用于摄像的CMOS图像传感器,有用于检查环境明暗的环境光传感器,还有用于导航的地磁传感器、陀螺仪,等等。正是基于这些传感器,手机里的各种应用软件才能流畅工作,手机才能成为集工作、生活、娱乐于一体的便携式智能设备,带来人们生活方式的巨大变化。风云卫星上的可见和红外光电传感器,能够不分昼夜地获取大气信息,精准预测天气,甚至在月球上、火星上都有传感器工作,帮助人类探索宇宙奥秘。比人的感官更敏锐、更强大传感器是信息系统的“慧眼”。它就像人类的眼睛、耳朵、皮肤等器官一样,感知周围环境,帮助我们认识多姿多彩的世界。不同之处在于,传感器比人的感官更敏锐、更强大。客观世界所包含的信息多样程度,远远超出我们感官的能力范围。人的眼睛无法观察红外辐射和紫外辐射,耳朵听不见次声波和超声波,对于“不见踪影”却时刻产生影响的磁场也无法感知。这些超出感官范围的信息,传感器都能“感受”到。随着生产力发展,人类越来越需要全方位地感知世界。1821年,科学家利用材料因温差产生电压的原理,研制出世界上第一个传感器——温度传感器。最初,人们直接利用光、热、电、力、磁等物理效应制备各种传感器,这些传感器尺寸大、灵敏度低、使用不方便。上世纪70年代,出现了将敏感元件与信号电路进行一体化设计的集成传感器,如热电偶传感器、霍尔传感器、光敏传感器等。这类传感器由半导体、电介质、磁性材料等固体元件构成,输出模拟信号。上世纪末开始,数字化传感器快速发展,通过“模拟/数字”转换模块,实现数字信号输出。数字化传感器集成智能化处理单元,可以自动采集、处理数据,并能根据环境自动调整工作参数,数码相机中的光敏元件就是其代表产品。总的来说,传感器的工作原理是某些物质的电学特性会随环境因素变化。例如铂在不同温度下电阻率不同,硅在可见光照射下电阻会减小,石英受到压力后表面会产生电荷,等等。利用电阻与温度的对应关系,可以制成温度传感器,进一步给敏感元件添加隔热结构,依据敏感元件温度变化与红外辐射能量之间的关系,可以制成红外传感器。在此基础上,还可以根据目标温度与红外辐射能量之间的关系,制造出非接触测温传感器。人们熟悉的用来测量体温的额温枪就利用了这一原理。借助丰富的物理和化学效应,人们制备出灵敏度比狗鼻子高1000倍、可以“闻到”气体分子的“电子鼻”,以及可以在黑夜中观察物体的红外相机等种类丰富、功能强大的传感器。没有传感器就没有数字化、智能化数字化是对事物属性的量化,并用数字将其表达为抽象结果。借助现代信息技术,人们可以存储、处理、传播各种数字化信息。传感器可以将事物蕴含的各种信息转换成电信号,并利用数模转换电路将电信号用数字表达,是数字化的有效工具。当你拿出手机拍照片或视频时,光敏传感器会将接收的光强度信号转换成电信号,再按一定的规则用数字表达、存储,最终形成手机屏幕上的影像。数字化基于传感器获取信息。数字化系统需要处理的信息量非常庞大,仅靠人工或者传统设备无法获取,凭借传感器则能够实时、高效、精准、快速地获取,于是有了城市大数据、天气大数据、医疗大数据、农业大数据等。利用各类传感器,人们可以召开远程会议、学习网络课程、扫码支付甚至直播带货,由此发展出数字经济业态。数字经济涉及的云计算、物联网、人工智能、5G通信等各类技术,都与传感器息息相关。没有传感器就没有数字化和智能化。传感器是智能化系统的第一关,它的水平决定了智能化系统及其仪器设备的水平。传感器技术已经成为国际上信息高端器件领域的研究前沿,在人工智能、智慧城市、5G通信、航空航天、生命健康等领域均发挥着不可替代的作用。比如一辆汽车会安装压力、温度、位置、声音、光、电等超过100种传感器,由车载电脑进行处理,帮助驾驶员作出判断。对数据的智能化分析降低了驾驶汽车的难度,让汽车变得更安全、更好开。更进一步,无人驾驶汽车通过传感器实时获取道路信息,一旦发现障碍物,便通过智慧分析及时避让。城市中高楼大厦、桥梁、隧道等建筑,也需要通过视频、温度、压力和烟雾等传感器实时监控安全状况,当数据汇总到一起,智能化系统便会及时分析,凝练出少量关键信息供使用者作出决策。甚至在未来,人类的感官也可以借助传感器变得更加强大,构建起智能化系统。智能传感器开拓新应用场景当前,各类传感器都处在进一步提升性能、降低成本,向数字化、智能化、小型化微型化、绿色低碳、可穿戴等方向进化,呈现出蓬勃发展态势。其中,智能传感器、柔性传感器、新原理传感器的研发具有代表性意义,有望塑造新的工作生活方式。发展智能传感器是重要趋势。借助智能传感技术,人们设计制造出具备获取、存储、分析信息功能的各种传感单元及微系统,实现低成本、高精度信息采集。智能传感器广泛应用在机器人、无人驾驶、智能制造、运动定量监测等方面,还可用于开发无创或微创健康监测器件等。近年来流行的动态血糖仪是个很好的例子。糖尿病患者将柔性传感器无痛置入身体,传感器每5分钟测一次血糖值,并传送到手机应用中。患者可以观察血糖曲线变化,及时通过饮食和运动等方法调节血糖,有的患者甚至由此告别了药物和胰岛素治疗。此外,人们还在研发可降解电子器件,让智能传感器更好助力低碳环保生活。发展柔性传感器是另一趋势。许多应用场景要求传感器制备在柔性基质材料上,并具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点。目前制备柔性传感器的常用传感材料有碳基材料(炭黑、碳纳米管和石墨烯等)、金属纳米材料(金属纳米线、金属纳米颗粒等)、高分子聚合物和蛋白纤维等。例如一种具有可拉伸、抗撕裂和自我修复能力的交联超分子聚合物薄膜电极材料,可用于制造下一代可穿戴和植入式柔性电子器件。将集成多功能的柔性传感器与柔性印制电路结合,可以制成“智能带”,把它穿戴在身体的不同部位,可实时监测与分析生理信息,帮助人们特别是感官退化的群体了解自身健康状况。新原理传感器也在不断出现。在基础研究领域,新的规律陆续被发现,人们正利用这些科学新认知制备传感器。同时,技术进步也对基础研究提出新要求。在生活中,人们希望提高相机的像素、灵敏度、速度等性能参数;在高速实验中,需要可以记录飞秒尺度信息的条纹相机;在量子通信中,需要灵敏度达到单光子的光电探测器;在空天科技中,需要实现对高速运动物体和冷目标的探测,等等。这就要求科学家们进一步探索物理世界,发现新现象新规律,提升传感器性能。随着科技快速发展,新材料新工艺不断投入应用,性能更强、种类更丰富、智能化水平更高的传感器将创造更多工作生活新场景,帮助人们“感受”美好生活。(作者:褚君浩,系中国科学院院士、中国科学院上海技术物理研究所研究员)
  • 美国研发新型折纸传感器,应用于柔性机器人、可穿戴设备和植入设备
    美国南加州大学工程学院研究人员受折纸启发创造出一种新的传感器,这些传感器有朝一日可用于检测器官微小变形从而预测疾病,也可用于可穿戴设备和柔性机器人。论文发表在最新一期《科学进展》上。新型传感器。图片来源:南加州大学工程学院赵航波研究小组该论文通讯作者、南加州大学航空航天、机械工程和生物医学工程助理教授赵航波指出,创建能够显著拉伸、快速响应、即使在测量大的动态变形时也能提供精确读数的传感器,是一个极大挑战。目前的可拉伸应变传感器大多使用橡胶等柔性材料,但经过重复使用后,材料特性可能发生不可逆的变化,从而产生与变形检测相关的不可靠指标。研究人员因此设计了一种新型的传感器结构。受折纸的启发,坚硬的材料被折叠起来,面板的每一侧都有电极。人们可以将该传感器想象成一本颠倒的、打开的书,在封面和封底有两个电极。当电极展开时,电极之间的电场强度就能被捕获,团队开发的模型将该读数转换为捕获变形幅度的测量值。新传感器可拉伸至原始尺寸的3倍,即使重复使用也具有很高的传感精度。此外,传感器响应速度非常快,可在不到22毫秒的时间内检测到非常微小区域(约5平方毫米)的变形,还能检测来自不同方向的应变。研究人员表示,此类传感器可准确测量复杂而大量的变形,也可应用于感知柔性机器人的运动、跟踪人体关节的运动,甚至监测膀胱等器官以确定可能预示疾病的异常情况。总编辑圈点随着柔性可穿戴设备的发展,可拉伸应变传感器的作用也越发重要。通常来说,它测量的是机械形变转换成的电信号,用于人机交互、健康监测等领域。不过,橡胶这种传统的可拉伸应变传感器材料很难经住长期重复使用,影响传感器的准确性。本文的研究者设计了一种折纸式创新结构,配合专用模型,将电场强度转换为变形幅度的测量值。这种新型传感器可以描摹更大幅度更复杂的运动变形,在医疗健康领域具有极大潜力。
  • 仪器表征,科学家开发了基于分子级裂纹调制策略的新型应变传感器!
    【科学背景】应变传感器是一种关键技术,用于在多种应用中实现高灵敏度的机械感知,如人形机器人的指尖控制和皮肤贴合健康监测设备。然而,现有的应变传感器普遍依赖于裂纹生成机制,这限制了它们在灵敏度、应变范围、稳定性和时间空间分辨率上的综合性能。传统裂纹导电材料在小传感面积与高性能之间存在固有的权衡,其裂纹易于扩展并难以控制,导致传感器在应对大应变和长期稳定性方面的表现有限。为解决这些挑战,天津科技大学生物基纤维材料国家重点实验室刘阳教授、国家重点实验室主任程博闻教授、南开大学Jiajie Liang课题组联合提出了一种分子级裂纹调制策略,采用逐层组装技术在MXene和银纳米线复合薄膜中引入了强、动态和可逆的硫-银(S-Ag)配位键。这种创新策略不仅在传感器中实现了极小的感测面积(仅0.25 mm² ),同时提供了超宽的工作应变范围(0.001-37%)、极高的灵敏度(在0.001%时的增益因子超过500,在35%时超过150,000)、快速的响应时间、低滞后和优异的长期稳定性。此外,基于这种高性能传感元件,研究团队成功实现了每平方厘米100个传感器的可拉伸传感器阵列,展示了高时间空间分辨率的实际应用,如多通道脉冲信号监测系统。【科学亮点】(1)本研究首次采用分子级裂纹调制策略,在MXene和银纳米线复合导电薄膜中引入强、动态和可逆的硫-银(S-Ag)配位键。这一策略通过逐层组装技术,实现了裂纹生成和传播的精确控制。(2)实验结果表明,所制备的基于裂纹的可拉伸应变传感器(S-M/A)具有多重优异的性能特征:传感面积极小(仅0.25 mm² ),但具备超宽的工作应变范围(0.001-37%),高灵敏度(在0.001%应变下的增益因子超过500,35%应变时超过150,000),快速的响应时间(约5毫秒),低滞后和长期稳定性。此外,通过S-Ag配位键的动态调控,传感薄膜能有效地能量耗散,防止裂纹间隙的扩展,从而保持了纳米级别的裂纹结构和传感性能的稳定性。(3)这一研究突破了传统裂纹调制策略的限制,克服了传感面积和性能之间的固有权衡,为高密度、高分辨率的可拉伸应变传感器阵列的实现提供了新的思路和方法。通过高效的组装工艺,作者实现了每平方厘米100个传感器的集成,展示了该传感器阵列在多通道脉冲感测系统中的实际应用,具备优异的时间空间分辨率和监测精度。【科学图文】图1:引入S-Ag配位键到S-M/A感测薄膜中。图2:S-MXene和S-M/A薄膜的表征。图3:S-M/A传感器的应变感测性能。图4:应变感测性能比较。图5:S-M/A感测薄膜的裂纹调制行为。图6:S-M/A传感器阵列在脉冲信号测量中的应用。【科学结论】本文开发了一种基于分子级裂纹调制策略的新型应变传感器,通过引入强、动态和可逆的S-Ag配位键,有效地解决了传统裂纹型传感器中传感面积与性能之间的权衡问题。此技术不仅在传感面积极小的情况下实现了超高灵敏度和广泛的应变范围,还通过动态调控裂纹形态和能量耗散机制,提高了传感器的稳定性和可靠性。通过分子级的设计和制备过程,将有机和无机材料有效地结合在一起,为高性能应变传感器的设计提供了新的思路和方法。此外,本文展示了简便且可扩展的制造工艺,为实现高密度、高分辨率的传感器阵列奠定了基础。这种基于分子级裂纹调制的策略不仅有助于推动应变传感器技术的进步,还为未来在可穿戴设备、健康监测和智能机器人等领域中需求高精度、高稳定性传感器的开发提供了新的理论和实践基础。原文详情:Liu, Y., Xu, Z., Ji, X. et al. Ag–thiolate interactions to enable an ultrasensitive and stretchable MXene strain sensor with high temporospatial resolution. Nat Commun 15, 5354 (2024). https://doi.org/10.1038/s41467-024-49787-9
  • 合肥研究院制备可穿戴传感器实现对尿素的视觉监测
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员蒋长龙团队在可穿戴水凝胶贴片及体液中尿素视觉监测方面取得进展,通过在三维多孔聚丙烯酰胺(PAM)水凝胶中嵌入上转换光学探针,设计制备了一种可穿戴传感贴片,并将该贴片与智能手机的颜色识别器结合,实现了对尿素的现场快速定量分析。相关研究成果发表在Analytical Chemistry上。   尿素是人体含氮物质最终代谢的主要产物,会通过汗液、尿液、唾液和血液排出,其在临床诊断中被认为是肾功能的重要指标,因此有效检测尿素水平对于疾病的研究和早期诊断至关重要。可穿戴传感器由于可以直接佩戴在人体皮肤上且具有非侵入性的特性受到广泛关注,三维网络状结构的水凝胶具有良好的柔韧性、拉伸性和生物相容性,这些特性使其成为可穿戴传感器的理想材料,然而目前报道的大多数荧光水凝胶都是由短波长激发的,在检测生物样品时容易受到自发荧光和背景荧光的干扰。上转换纳米粒子(UCNPs)与传统的荧光材料相比,能消除生物样品的自荧光和背景干扰,提高检测灵敏度。因此,利用UCNPs设计可穿戴传感器是检测人类生物标志物的有效策略。   鉴于此,研究团队设计了一种基于上转换光学探针的聚丙烯酰胺水凝胶传感器。探针由UCNPs和对二甲氨基肉桂醛(p-DMAC)组成,基于内滤效应(IFE),尿素与p-DMAC反应产生的红色产物猝灭UCNPs的绿色荧光,使上转换荧光从黄色转变为红色,实现尿素的荧光检测。在此基础上该研究结合PAM水凝胶制作了柔性可穿戴传感器,并利用3D打印技术构建便携式传感平台。   研究团队设计的上转换荧光探针和水凝胶传感器的检测限(LOD)分别为1.4μM和30μM。水凝胶传感贴片为检测体液中的生物标志物提供了便利和准确的传感策略,在疾病预警和临床诊断设备上具有应用潜力。图(a)设计可穿戴水凝胶传感贴片;(b)汗液中尿素的传感和水凝胶的SEM图像;(c)水凝胶传感贴片在980 nm激发光和日光下对尿素的响应;(d)便携式尿素检测传感平台;(e) G/R比值与尿素浓度在0-40 mM范围内的线性关系。
  • 俄罗斯科研人员用纳米圆盘制成的柔性光学传感器可以监测结构中的变形
    俄罗斯克拉斯诺亚尔斯克科学中心和西伯利亚联邦大学的科研人员从理论上研究纳米圆盘二维光栅光学特性,并提出可监测结构形变的光学传感器模型。该研究成果发表在《纳米材料》杂志上。该设备的工作原理基于在变形过程中结构谐振波长的变化。研究人员发现,光栅在两个相互垂直的方向被压缩和拉伸时的光学反应不同。被压缩时,共振波长没有变化,但被拉伸时,可以观察到产生移动。这种器件的灵敏度由结构变形系数相对于谐振波长的差异决定。该设备应用范围决定了其必须具有高弹性。因此,研究人员建议将纳米颗粒置于凝胶基质中或植于柔性基材上,例如聚二甲基硅氧烷薄膜上。利用这些高弹性材料,使传感器看起来像软物质或活体组织。它能使传感器像 “活体植物”一样,根据光栅的变化和相应的光谱偏移,监测结构变形。这种结构利用其光栅变形进行监测,而纳米粒子本身没有发生改变,从而保证其高灵敏度。采用此种方法,极大减少了设备技术难度,并降低了成本。
  • 半导体情报,科学家研发高密度集成的柔性模块化触觉传感器!
    【科学背景】随着柔性电子技术的迅猛发展,柔性触觉传感器因其在多种应用中的潜力而引起了科学家的广泛关注。柔性触觉传感器的核心概念是模仿人类皮肤的物理特性和感知能力,以实现对外部环境的高精度感测。这些传感器在工业自动化、人机界面、机器人操作和生物医学等领域具有重要应用前景。然而,由于其柔性的形式因子,这些传感器在与基于晶片的设备、商业芯片或电路板的集成方面面临诸多挑战。具体来说,现有的柔性触觉传感器面临以下几个主要难题:首先,一些用于制造这些传感器的弹性或复合材料无法使用传统的光刻和湿/干法刻蚀进行图案化,从而限制了触觉传感器的特征尺寸和空间分辨率。其次,构建柔性触觉传感器的过程通常需要转移、粘接等步骤,这些步骤阻碍了与其他基于硅片的设备和集成电路(IC)的单片集成。第三,大面积的柔性触觉传感器阵列通常具有固定设计,而为了满足多样的应用需求,需要可定制的空间分布和整体形状。有鉴于此,北京大学未来技术学院生物医学工程系助理教授韩梦迪研究员团队提出了一套创新的制造方法和设备设计方案。这些方案包括利用微电机系统(MEMS)技术制造柔性模块化触觉传感器,通过在传感器中引入具有内应力的二氧化硅(SiO2)层,使得可以构建用于测量机械刺激的三维微应变传感器(μSGs)阵列。这种方法与微电子工艺的兼容性使得这些传感器能够与其他传感器在硅(Si)晶片上进行单片集成,或配置成具有高空间密度的阵列。此外,这些传感器还具有模块化特性,使其与贴片、柔性印刷电路板(FPCB)及其他宏电子技术兼容,可以组装成大面积阵列,并与商业设备配合使用。【科学亮点】1. 本文首次展示了高密度集成的柔性模块化触觉传感器。这些传感器通过在晶片或柔性印刷电路板(FPCB)上布置二维和三维金属/合金细线,实现了与其他电子组件的无缝集成。这种设计克服了传统柔性传感器在集成中的挑战,提高了传感器的空间分辨率和适应性。2. 实验采用模块化设计和微电机系统(MEMS)技术,使得传感器能够在柔性印刷电路板上与商业电子产品配合,形成多种电子系统。这些系统具备了无线测量皮肤界面、生物力学信号连续监测和触觉信息空间映射的能力,展示了柔性传感器在不同应用场景中的兼容性。3. 实验表明,这些二维和三维金属/合金细线的触觉传感器能够准确区分法向力、剪切力和温度,并且对弯曲和拉伸等机械刺激具有免疫性。这种高空间分辨率和大面积覆盖的能力,使得这些传感器在机器人技术、生物医学和消费电子产品中具有广泛的应用潜力。【科学图文】图 1. 柔性模块化触觉传感器的设计与制造。图 2. 触觉传感器的表征。图 3. 由模块化触觉传感器构建的各种阵列。图 4. 由模块化触觉传感器和其他电子组件构建的多功能系统。图 5. 皮肤界面的触觉信息空间映射。【科学结论】本文的研究提供了关于柔性触觉传感器设计与制造的新视角,揭示了将这些传感器与电子组件无缝集成的潜力。通过利用光刻定义的金属/合金细线,这些传感器在三维空间中精准测量法向力、剪切力和温度,并对弯曲和拉伸等机械刺激表现出免疫性。这种设计不仅提高了传感器的空间分辨率和测量准确性,还扩展了其在机器人技术、生物医学和消费电子等领域的应用前景。尤其是高密度阵列、柔性多功能系统、大面积弯曲无敏感阵列和无线可穿戴贴片等示例,展示了柔性触觉传感器在微电子和宏电子技术中的兼容性及其实际应用潜力。研究表明,通过优化传感器的设计和集成策略,可以显著提升其性能,并为未来的技术进步提供新的机会。参考文献:Chen Xu et al. ,Three-dimensional micro strain gauges as flexible, modular tactile sensors for versatile integration with micro- and macroelectronics.Sci. Adv.10,eadp6094(2024).DOI:10.1126/sciadv.adp6094
  • 英学者研发可伸缩传感器 有助提高慢性病检测效率
    p   新华社伦敦2月22日电& nbsp 英国格拉斯哥大学22日发布一项研究说,利用高伸缩性材料制作的无线健康传感器有利于糖尿病等慢性病患者日常佩戴,可检测一些关键指标,减少患者血检次数,提高慢性病日常护理效果。 /p p   人体汗液中含多种物质,其中就包括血糖和尿素,因此监测汗液中这类物质的水平有助于医生更好地诊断和监控包括糖尿病、肾病以及部分癌症在内的慢性病。但目前很多可穿戴健康设备精确性达不到要求,也过于笨重,影响患者使用。 /p p   格拉斯哥大学教授拉温德· 达希亚领衔的团队设计了一款全新传感器,能监测汗液PH值。传感器采用一种石墨-聚氨酯合成材料制作,不但轻便,还拥有非常优良的伸缩特性,长度能伸缩达53%,适合患者长时间佩戴。 /p p   传感器还采用了近场通信技术,能将监测数据无线传输到智能手机应用中,让医护人员利用智能手机等移动设备实时监控患者的相关数值。 /p p   达希亚说,人体汗液与血液含有很多相同的生理信息,检测汗液能省去穿透皮肤来采集血样进行检测的麻烦。 /p p   下一步,团队将尝试拓展这一传感器的性能,让它成为一个完整的诊断系统,最终实现对汗液中血糖、氨以及尿素水平的监测。 /p p   相关研究结果刊登在国际学术期刊《生物传感器与生物电子学》上。 /p
  • “智能传感器”重点专项2022项目申报指南征求意见
    近日,科技部发布“十四五”国家重点研发计划“智能传感器”重点专项2022年度项目申报指南(征求意见稿),向社会征求意见和建议。根据征求意见稿,本专项2022年度拟支持项目及“揭榜挂帅”榜单如下:1. 智能传感基础及前沿技术1.1 光声量子纠缠调控机理及加速度传感器研制1.2 精准分子识别智能增强嗅觉传感技术研究1.3 微机电同步共振弱力传感机理及器件研究1.4 非侵入式血糖持续高精度检测传感技术研究1.5 动态非线性磁场传感机理及生物组织成像技术研究1.6 耐高温功能陶瓷共形制造方法与传感技术研究1.7 超高温压电材料制备及振动传感器研制1.8 高灵敏钙钛矿X/γ射线传感原理与技术研究1.9 光学超材料调控机理及微型气体传感器研制1.10 声学超材料增强机理及穿颅脑成像技术研究1.11 碳纳米管生物传感芯片晶圆级制造工艺研究1.12 工业传感网多协议实时处理机及芯片技术研究1.13 高性能硅基和碳基低维材料的变革性传感特性研究2. 传感器敏感元件关键技术2.1 MEMS多力学量敏感元件及智能传感器2.2 高精度航空大气压力敏感元件及传感器2.3 高频响三轴MEMS陀螺敏感元件及传感器2.4 高灵敏宽动态图像敏感元件及传感器2.5 受限空间相干光学位移传感器2.6 高精度温盐深集成光纤矢量水声传感器2.7 MEMS超声换能器元件及传感器2.8 危险气液识别敏感元件及柔性传感器2.9 活细胞内生物质动态检测纳米孔传感器2.10 抗体条形码微阵列超高通量快速检测生物传感器2.11 磁电耦合自供能磁场敏感元件及传感器2.12 微型高精度真空度敏感元件及传感器2.13 路面气象状态敏感元件及传感器2.14 高精度线光谱共焦尺寸测量传感器2.15 多参数融合智能工业传感器集成技术(科技型中小企业)3. 面向行业的智能传感器及系统3.1 飞机故障预测与健康管理成套传感器及应用3.2 轮胎内嵌集成传感器阵列及路面状态感知应用3.3 机床切削工况刀具状态原位实时监测传感器及应用3.4 强磁场高电压设备运行状态非侵入式监测传感器及系统3.5 河流全断面鱼群信息探测传感系统及应用3.6 特种力热参数传感器测试标定标准化技术及装置4. 传感器研发支撑平台4.1 多尺寸兼容的多材料体系MEMS研发平台4.2 MEMS传感器芯片先进封装测试平台“智能传感器”重点专项2022年度“揭榜挂帅”榜单1. 新冠突变株快速检测敏感元件及传感器附件:“十四五”国家重点研发计划“智能传感器”重点专项2022年度项目申报指南(征求意见稿).pdf
  • 便携式明渠流量计比对装置采用磁致伸缩传感器的好处在哪里?
    便携式明渠流量计比对装置采用磁致伸缩传感器的好处在哪里?HJ355-2019水污染源在线监测系统中明确指出。每季度至少使用便携式明渠流量计比对装置对现场安装的超声波明渠流量计进行至少1次的比对测试,比对结果不符合要求的,按要求多现场的超声波明渠流量计进行校准,校准完成后再进行比对。同时要求便携式明渠流量计采用磁致伸缩传感器加标注流量计算公式的方法进行比对。、其中液位比对中要求,比对装置的液位精度≤1mm,每2min读取一次数据,连续读取6次,安装公式完成比对误差计算。液位比对误差=|第n次明渠流量比对装置测试液位值-第n次超声波明渠流量计测量液位值|其次流量比对要求明渠流量比对装置与现场流量计测量统一水位观测断面处的瞬间流量,进行比对。且在数值稳定后,10min内读取该时间段的累计流量,按公式计算误差.流量比对误差=(明渠流量比对装置累积流量-超声波明渠流量计累积流量)/明渠流量比对装置累积流量一般以月为段位,明渠流量比对装置对某一时间点进行流量测试,明渠超声波流量计的比对。如何快速准确地对明渠污水流量计进行验收?这是现今遇到的一大难题。解决这个难题就需要考虑以下几方面:1.比对时间,比对工具与现场的明渠流量计是否是实时比对,同一时刻,统一数据。否则不同时间节点的数据是没有对比性的。2.XY-6800R比对工具测试的数据是否准确。比对数据的数据可靠性及精度是衡量计量仪器的一个重要指标。不应该受到环境影响测量精度,如雾霾,沙城爆,强光,泡沫,结露等。常规的超声波流量计测试不能避免这些因素。目前采取磁致伸缩传感器能有效避免这些困扰。测试时,电路单元产生电流脉冲,该脉冲沿着磁致伸缩线向下传输,并产生一个环形的磁场。在探测杆外配有浮子,浮子沿探测杆随着液位的变化从上而下移动。由于浮子内装有一组永磁铁,所以浮子同时产生一个磁场。当磁场与浮子磁场相遇时,产生一个扭曲脉冲,或称“返回”脉冲,将“返回”脉冲与电流脉冲的时间转换成脉冲信号 ,从而计算出浮子的实际位置,测得液位 通过无线模块将液位传到计算机。利用内置堰槽参数计算出流量。为什么XY-6800R明渠流量比对系统要选择磁致伸缩传感器?主要原因:1.测量精度高2.抗干扰性强3.寿命长4.性能可靠5.可进行多点,多参数的液位测试,免校准,免维护。磁致伸缩液位传感器输出的液面和界面信号主要分为模拟量和串口两种形式,串口为RS485/232形式,模拟量为4~20mA电流模拟信号,对应量程为0~1m。输出的串口或者模拟信号通过屏蔽电缆传送至主板,主板通过内集成电路将接收到的串口信号或者模拟信号转换成为数字量在文本显示器上显示,由于在线监控过程中存在电机或泵等执行设备运行产生的干扰信号,且现场信号的采集点与控制柜之间存在距离问题,为减少信号在传输过程中受到干扰,故要使用优质的屏蔽电缆线。青岛新业环保科技有限公司是一家集环保科研,设计,生产,维护,销售为一体的综合性实地厂家。青岛凌恒环境科技有限公司属于江苏凌恒环境科技有限公司青岛分公司,主要业务范围:在线水质监测仪销售服务。服务承诺:客户的需求放在首位,“今天的质量、明天的市场、服务到永远”是我们新业环保公司为客户服务的准则,并将其贯穿到研发、生产、安装、销售及售后服务的各个环节中。公司郑重承诺:完善沟通协调机制:通过加强沟通交流,提高信息传递的及时性,准确性,深入市场,倾听用户心声了解客户仪器设备的需求。我公司承 诺:按质、按量、按时完成所供产品的生产任务,并及时将产品运到用户需求现场,确保正常运转。全过程监控:客户只需一个电 话,售后服务部采用一站式模式、全面负责制、全程监控实施并跟踪处理结果,确保客户满意。
  • 新品上市|低密度聚乙烯拉伸流变性能新技术--VADER 1000
    摘要在单轴拉伸流动中测量了三种选定的商用低密度聚乙烯(LDPE)的非线性流变性能。使用三种不同的设备进行测量,包括拉伸粘度装置(EVF),自制长丝拉伸流变仪(DTU-FSR)和商用长丝拉伸流变仪(VADER-1000)。通过测试显示,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪能够在达到稳态的更大Hencky应变值下探测非线性行为。利用长丝拉伸流变仪的能力,我们表明具有明显差异的线性粘弹性的低密度聚乙烯可以具有非常相似的稳定拉伸粘度。这表明有可能在一定的速率范围内独立控制剪切和拉伸流变。关键词拉伸流变;聚乙烯;聚合物熔体;非线性粘弹性正文多年来,控制聚合物流体的流变行为作为分子化学的一个性能,引起了学术界和工业界的极大兴趣。最成功和最多产的理论预测的流变行为的纠缠聚合物系统是De Gennes(1971)和Doi和Edwards(1986)提出的 "管模型"。然而,尽管三十年来人们一直在努力改进管模型,但即使对于最简单的情况,即单分散线性聚合物体系,缠结聚合物在拉伸流动中的非线性流变行为仍然没有得到充分理解(Huang等人,2013a;Huang等人,2013b)。低密度聚乙烯等工业聚合物是最复杂的缠结聚合物系统,它们不仅具有高度的多分散性,而且还含有不同的支化分子结构。预测低密度聚乙烯的流变行为,特别是拉伸流动中的非线性行为,是非常具有挑战性的。在明确定义的模型系统上,已经进行了探索延伸流中支化聚合物动力学的实验工作(Nielsen等人,2006;Van Ruymbeke等人,2010;Lentzakis等人,2013)以及商业聚合物系统,如低密度聚乙烯LDPEs。有几个小组观察到低密度聚乙烯LDPE的瞬时拉伸应力的最大值(Raible等人,1979;Meissner等人,1981;M¨unstedt和Laun,1981)。Rasmussen等人(2005年)首次报告了应力过冲后的稳定应力,并通过比较长丝拉伸流变仪和十字槽拉伸流变仪的测量结果(Hoyle等人,2013年)以及比较恒定拉伸速率和恒定应力(蠕变)实验(Alvarez等人,2013年)进行了实验验证。已经开发了几个模型(Hoyle等人,2013;Wagner等人,1979;Hawke等人,2015),试图了解应力过冲背后的物理学。然而,这些模型都不能实际用于预测工业中低密度聚乙烯LDPE的流变行为,因为这些模型包含许多与分子结构没有直接关系的拟合参数。最近,Read等人(2011)提出了一个预测方案,能够计算随机长链支化聚合物熔体的线性和非线性粘弹性,作为其形成的化学动力学的函数。这些预测似乎与剪切流和拉伸流中三个低密度聚乙烯的测量结果非常一致。然而,测得的拉伸数据受到最大Hencky应变约为3.5的限制,并且没有显示出稳定状态的迹象,而模拟结果则达到了更大的 Hencky应变值,并预测了每个应变速率的稳定应力。在更大的Hencky应变值下预测非线性行为的质量仍然是未知的。此外,在Read等人(2011)的模拟中,没有预测到应力过冲。在这项工作中,我们介绍了三种不同的商用低密度聚乙烯的拉伸测量。这三种低密度聚乙烯是根据Read等人(2011)的模型预测而专门设计的。预计它们具有不同的零剪切速率粘度,但在非线性拉伸流动的大变形中具有相似的应力-应变反应。测量是在三个不同的设备上进行的,包括两个长丝拉伸流变仪和一个拉伸粘度夹具。我们表明,长丝拉伸流变仪的测量结果可以达到5以上的大Hencky应变值,在那里达到非线性稳定状态。我们还表明,低密度聚乙烯LDPE样品在拉伸流动中的大Hencky应变值具有相似的非线性行为,包括相同的应力过冲幅度和过冲后的相同稳定应力,尽管Read模型预测没有应力过冲现象。这些结果表明,低密度聚乙烯LDPE熔体的非线性粘弹性可以通过选择性聚合方案来控制。实验材料陶氏化学公司提供了三种类型的商用低密度聚乙烯树脂,分别为PE-A、PE-B和PE-C。所有样品都是颗粒状的。表1总结了样品的特性,包括密度、熔体流动指数(I2)、重量-平均摩尔质量(Mw)、数量-平均摩尔质量(Mn)和熔体强度。重量-平均摩尔质量是由多角度激光散射法确定的,而数量-平均摩尔质量是由微分折射率确定的。摩尔质量值是若干次重复的平均数。熔体强度是用通用流变仪结合通用ALR-MBR 71.92挤出机测量的。测量是在150℃下进行的,产量为600g/h。模具的长度为30毫米,直径为2.5毫米。表1实验是在24mm/s2的加速度下进行的。纺丝线的长度被设定为100毫米。流变仪测试在膜生物反应器挤出机系统清扫30分钟后进行,并一直运行到纺丝线失效。通过力-拉速数据拟合出一个四参数交叉函数,根据拟合的破坏速度曲线确定破坏时的力。表中的数据是五次连续测量的平均数。力学谱三种低密度聚乙烯样品的线性粘弹性(LVE)特性是通过小振幅振荡剪切(SAOS)测量得到的。TA仪器公司的ARES-G2流变仪采用25毫米的板-板几何形状。图1所有样品的时间-温度偏移因子αT作为温度的函数,参考温度为Tr= 150℃测量是在氮气中,在130℃和190℃之间的不同温度下进行的。对于每个样品,使用时间-温度叠加(TTS)程序,在参考温度Tr= 150℃时,数据被移动到单个主曲线。所有样品的时间-温度偏移系数(αT)与单一的阿伦尼乌斯公式一致,其形式为其中活化能∆H = 65 kJ/mol。R是气体常数,T是以开尔文表示的温度。在图1中,偏移因子αT被绘制为温度的函数。拉伸应力测量拉伸应力测量使用三种不同的设备:TA仪器的延伸粘度夹具(EVF)、自制的长丝拉伸流变仪(DTU-FSR)(Bach等人,2003a)和Rheo Filament的商用长丝拉伸流变仪(VADER-1000)。将不同设备的结果进行相互比较。用于EVF测量的样品在150℃下压缩成型,在低压10bar下3分钟,在高压150bar下1分钟,然后用淬火冷却盒在150bar下淬火冷却到室温。在短时间内,当冷却盒插入时,样品会出现压力损失。在相对较低的温度下进行短时间的压缩成型是为了防止样品的任何潜在氧化或降解。样品模具为特氟隆涂层,尺寸为100×100 0.5mm。从约20mm长的铭牌上冲压出12.7mm-12.8mm宽的样品。最终样品的厚度约为0.6mm。在EVF测量中,样品被插入设备中,在150℃下180s的平衡时间后,样品以0.005s-1的应变速率被预拉伸15.44s,然后松弛80s,然后样品被拉伸。报告的Hencky应变是由圆柱体的旋转计算出来的。通常情况下,使用EVF的拉伸测量仅限于样品保持均匀的情况。EVF一次旋转所能达到的Hencky应变值通常低于4,与EVF相比,长丝拉伸仪器并不依赖于沿拉伸方向的均匀变形的假设。事实上,由于板材上的无滑移条件,变形在轴向上是不均匀的。这些设备只是探测了通常在中间细丝平面发现的最小直径平面内的变形和应力之间的关系。在这个平面外的剩余材料只需要固定在研究的薄片上,就像在固体力学测试中用狗骨形状来固定材料一样。长丝拉伸装置确实依赖于最小直径平面内的径向均匀变形的假设。Kolte等人(1997年)的模拟表明,在长丝中间平面几乎没有任何径向应力变化。用激光测微计来测量中丝薄片的直径。为了探索更高的应变,在DTU-FSR和VADER 1000流变仪都采用了在线控制方案,该方案首先由Bach等人(2003b)使用,后来由Mar´ın等人(2013)发表,用于在拉伸过程中控制长丝中平面的直径,以便在样品断裂前确保恒定的应变速率。根据样品的类型,DTU-FSR和VADER-1000都可以达到最大Hencky应变值7。在长丝拉伸流变仪上进行测量之前,样品被热压成半径为R0、长度为L0的圆柱形试样。长宽比定义为∆0= L0/R0。样品在150℃下压制,并在相同温度下退火10分钟,然后冷却至室温。在测量中,所有样品被加热到150℃,在180s的平衡时间后,样品在拉伸实验之前被预拉伸到Rp的半径。对于DTU-FSR,R0= 4.5mm,L0= 2.5mm,Rp在3到4.5mm之间,而对于VADER-1000,R0 = 3.0mm,L0= 1.5mm,Rp = 2.5mm。在拉伸测量过程中,力F(t)由称重传感器测量,中间灯丝平面的直径2R(t)由激光测微计测量。在拉伸流动开始的小变形时,由于变形场中的剪切分量,部分应力差来自于压力的径向变化。这种影响可以通过Rasmussen等人(2010)描述的校正因子来补偿。 对于大应变,校正消失,对称平面中应力的径向变化变得可以忽略不计(Kolte等人,1997)。对于本工作中的所有样本,当Hencky应变值大于2时,校正值小于4 %,Hencky应变和中丝平面上应力差的平均值计算如下其中mf是灯丝的重量,g是重力加速度。应变率定义为ϵ• =dϵ/dt,拉伸应力增长系数定义为η-+=〈σzz-σrr 〉/ϵ• 结果和讨论线性粘弹性图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。(b)表示在150°C相应的复数粘度η*。图中的两个星号来自稳定剪切测量,在 150°C下剪切速率为0.005 s-1图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。相应的复数粘度η*绘制在图2(b)中。图中实线是多模麦克斯韦(multimode Maxwell fitting)拟合的结果。Maxwell relaxation modulus多模麦克斯韦弛豫模量G(t)由下式给出 其中gi和τi列于表2。表中的零剪切速率粘度η0通过下式计算 在图2(b)中,很明显三个样品具有不同的零剪切速率粘度。然而,在图2(a)、(b)中,似乎PE-C的线性行为在较低频率下接近PE-A,在较高频率下与PE-B重叠。而且在ω 1 rad/s时,PE-C的G′和G″曲线几乎与PE-A平行,垂直位移因子约为0.6。表2 LDPE 在 150°C 熔体的线性粘弹性启动和稳定状态下的拉伸流变图3(a)显示了PE-A在150℃时的拉伸应力增长系数与时间的关系。图中比较了EVF、DTU-FSR和VADER-1000的测量值。图中的虚线是根据表2中列出的麦克斯韦弛豫谱计算的LVE包络线。EVF的测量值受到最大Hencky应变4的限制,在图3(b)中可以清楚地看到。其中测量的应力是作为Hencky应变的函数绘制的。两个长丝拉伸流变仪的测量值能够达到大于5的较大Hencky应变值,在该值下观察到稳定的应力。图3我们注意到EVF和长丝拉伸测量之间存在明显的偏差。我们认为EVF测量的应力太低,特别是在低应变率下,Hoyle等人(2013)也观察到这一点,他们将长丝拉伸测量值与Sentmanat拉伸流变仪测量值进行了比较。因此,对于图3(b)中的ϵ• =0.01 s-1,已经与ϵ• =0.5有偏差,而对于ϵ• =2.5 s-1,EVF测量与DTU-FSR测量一致,最高ϵ• 为3.5。请记住,在EVF中,只有横截面的初始面积是已知的;在拉伸过程中横截面面积的变化不是测量的,而是由一个假设均匀单轴拉伸速率不变的方程计算出来的。此外,在EVF测量中,样品宽度为12.8mm略微超过了Yu等人(2010)建议的12.7mm的上限,这导致在更大的Hencky应变值下的平面延伸而不是单轴延伸。相比之下在DTU-FSR和VADER-1000中,中间直径一直被测量,因此在拉伸过程中横截面的实际面积是已知的,由此计算出中间细丝平面中的真实Hencky应变。借助于在线控制方案,在整个测量过程中保证了单轴拉伸过程中恒定的Hencky应变率。来自DTU-FSR和VADER-1000的大Hencky应变值的数据由于力小而有些分散。此外,在拉伸速率超过0.4s-1时,使用DTU-FSR和VADER-1000进行的测量观察到了应力过冲的现象。由于仪器中采用的控制方案的限制,使用两个长丝拉伸流变仪进行测量的拉伸速率不超过2.5s-1。在长丝拉伸中,表面张力可能对测量的应力有影响,尤其是在长丝中间平面的半径非常小,大的亨基应变值的时候。在所有的测量中,最小的半径是R = 0.12mm。如果我们把低密度聚乙烯LDPE的表面张力γ = 0.03 J/m2,表面张力效应产生的最大应力是σsur =γ/R = 250Pa。在图3(b)中,很明显,对于所有达到Hencky应变大于4的测量,测量的应力高于104Pa。因此可以忽略表面张力效应。图4图4显示了PE-C在150℃时拉伸应力增长系数与时间的函数关系。DTU-FSR和VADER-1000的测量结果非常一致。在0.15和2.5s-1之间的中间拉伸速率下,EVF的测量值与DTUFSR一致。拉伸速率低于0.1s-1时,偏差越来越大。根据DTU-FSR和VADER-1000的测量,在拉伸速率快于0.4s-1时,再次观察到应力过冲。图5图5比较了DTU-FSR测量的拉伸流动中PE-A和PE-C的非线性行为。如图2所示,PE-A和PE-C具有不同的线性粘弹性,这也由图5(a)中不同的LVE包络表示。在拉伸流的启动过程中,PE-A和PE-C也有不同的非线性反应。从图5a中可以清楚地看出,在所有拉伸速率下,PE-C 比 PE-A 有更明显的应变硬化。然而,在图5(a)、(b)中,有趣的是,尽管PE-A和PE-C最初有不同的非线性行为,但是它们在更大的Hencky应变值下具有相同的反应,并且在每个应变速率达到相同的拉伸稳态粘度,如图6所示。图6还显示在快速应变率下,拉伸稳态粘度表现出幂律行为,粘度比例约为ε• -0.6,这与Rasmussen等人(2005)和Alvarez等人(2013)的观察结果一致。应该注意的是,如图5(b)所示,相同的非线性行为仅在Hencky应变值大于4时观察到,这一点无法通过EVF测量。图6图7(a)比较了PE-B与PE-C在150℃时的拉伸应力增长系数。在所提出的速率下,PE-B没有显示任何应力过冲。尽管PE-B和PE-C在线性和非线性流变学方面的表现不同,但在每种拉伸速率下,它们的相对应变硬化量似乎是相似的。在图7(b)中可以更清楚地看到这一点。图7(b)中比较了Trouton比率。Trouton 比值定义为Tr = η-+ /η0,其中η0是零剪切率粘度,其数值列于表2。可以看出,在每个拉伸速率下,PE-B达到与PE-C相同的最大Trouton比率,证实它们具有相同的相对应变硬化量。图7结论我们使用三种不同的设备测量了三种商用低密度聚乙烯样品的拉伸流变性能。这三种设备在拉伸流变的启动方面给出了一致的结果。然而,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪达到了更大的Hencky应变值,在这里可以观察到应力过冲和稳态粘度。此外,EVF的测量仅在取决于应变速率的应变范围内跟随长丝拉伸测量。尽管三种低密度聚乙烯样品具有不同的线性粘弹性能,但已经表明,PE-A和PE-C在Hencky应变值大于4时具有非常相似的非线性rhelogical行为,而PE-B和PE-C具有相同的相对应变硬化量。上述结果表明,工业低密度聚乙烯的非线性流变性可以通过聚合来调整。特别是,有可能合成一种聚合物(PE-C),其具有比参考聚合物(PE-A)低得多的粘弹性模量,但仍具有与参考聚合物相同的拉伸粘度。
  • “智能传感器”重点专项2021申报项目答辩评审专家名单公布
    国家重点研发计划“智能传感器”重点专项2021年度申报项目答辩评审专家名单公告根据2021年度国家重点研发计划重点专项评审工作安排,科技部高技术研究发展中心于2021年10月12日至17日组织开展了“智能传感器”重点专项2021年度项目答辩评审。本次答辩评审采用网络视频方式进行,评审专家按照国家科技计划项目评审专家选取和使用的统一要求,从国家科技专家库中产生,共136人。根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发﹝2014﹞11号)和中共中央办公厅、国务院办公厅印发《关于深化项目评审、人才评价、机构评估改革的意见》(中办发﹝2018﹞37号)等文件精神,现将答辩评审专家名单予以公布,公示期为10月20日至10月24日。专项管理办公室联系方式:010-68335817组1:生化传感器序号专家姓名单位名称1于洪宇南方科技大学2方晓红中国科学院化学研究所3田扬超中国科学技术大学4刘友庆北京京成会信会计师事务所有限公司5刘爱骅青岛大学6江建平普天新能源有限责任公司7李晓炜北京理工大学8张志力北京交通大学9张修华湖北大学10张斌珍中北大学11陈航榕中国科学院上海硅酸盐研究所12陈涛中国科学院宁波材料技术与工程研究所13陈银广同济大学14黄玉明西南大学15彭绍亮湖南大学16虞益挺西北工业大学17薛欣宇电子科技大学组2:人体健康及环境监测传感器序号专家姓名单位名称1王文中国科学院声学研究所2王毅温州医科大学3冯亮中国科学院大连化学物理研究所4成昱*同济大学5朱葛夫中国人民大学6许敬亮中国科学院广州能源研究所7杨永进中国科学院金属研究所8闵丽艳建设综合勘察研究设计院有限公司9宋宏伟吉林大学10孟凡利*东北大学11赵刚中国科学技术大学12赵志敏南京航空航天大学13聂诗军北京和兴会计师事务所有限责任公司14常钢湖北大学15康跃军西南大学16蒋明峰浙江理工大学17颜梅济南大学组3:加速度传感器和系统及应用序号专家姓名单位名称1王建梅太原科技大学2王保锐中国电子科技集团公司第四十一研究所3朱少岚中国科学院西安光学精密机械研究所4乔学光西北大学5关亚风中国科学院大连化学物理研究所6杨龙兴江苏理工学院7张明中国电子科技集团公司第九研究所8孟宪伟中国科学院合肥物质科学研究院9赵亚维中国电子科技集团公司第二十八研究所10赵剑大连理工大学11顾佩芝中国科学院遗传与发育生物学研究所12龚杰洪中国电子科技集团公司第四十八研究所13韩旭湖南大学14程振洲天津大学15鲁琼北京纵横联合会计师事务所16温泉重庆大学17熊璐同济大学组4:热学传感材料及传感器序号专家姓名单位名称1王愿兵武汉嘉仪通科技有限公司2王毅中国航空工业集团公司北京长城计量测试技术研究所3乔冠军江苏大学4刘刚上海卫星装备研究所5关柏鸥暨南大学6芦鹏飞北京邮电大学7李松北京玻钢院复合材料有限公司8张国军湖北中医药大学9张景贤中国科学院上海硅酸盐研究所10罗坚义五邑大学11郑兴华中国科学院工程热物理研究所12郑丽珠北京信息科技大学13耿佳四川大学14耿照新中央民族大学15高莲中国科学院过程工程研究所16郭鑫中国科学院大连化学物理研究所17韩秀峰中国科学院物理研究所组5:光学传感器及应用序号专家姓名单位名称1马朝松中天运会计师事务所2王军华武汉大学3尹国路重庆大学4刘亚滨北京万桥兴业机械有限公司5杨军广东工业大学6张帆北京化工大学7张其锦中国科学技术大学8陈本永浙江理工大学9苟劲松北京京仪世纪电子股份有限公司10赵霞江苏法尔胜光电科技有限公司11姜利军浙江大立科技股份有限公司12陶继方山东大学13蒋湘武汉飞思灵微电子技术有限公司14韩建忠中电科电子装备集团有限公司15靳志文兰州大学16翟俊宜北京纳米能源与系统研究所17颜志红中国电子科技集团公司第四十八研究所组6:MEMS传感器制造序号专家姓名单位名称1王文红中国科学院微生物研究所2王高峰杭州电子科技大学3方允樟浙江师范大学4孔凡忠国汽(北京)智能网联汽车研究院有限公司5邢朝洋北京航天控制仪器研究所6余洪斌华中科技大学7张海燕北京林业大学8胡伟达中国科学院上海技术物理研究所9徐敏义大连海事大学10郭正安徽大学11郭杭南昌大学12黄晓东*东南大学13屠娟南京大学14董磊山西大学15谢会开北京理工大学16黎永前西北工业大学17魏兴战中国科学院重庆绿色智能技术研究院组7:磁传感器及应用序号专家姓名单位名称1王向军天津大学2石嵩北京市科学技术研究院城市安全与环境科学研究所3田文超西安电子科技大学4乔文昇中国电子科技集团公司第十研究所5李红浪国家纳米科学中心6张东华武汉中原电子集团有限公司7陈永平中国科学院上海技术物理研究所8陈向东西南交通大学9陈明桂林电子科技大学10陈音中国科学院工程热物理研究所11范弘姜园中山大学14祖龙起大连工业大学朱健中国电子科技集团公司第五十五研究所5刘亚华大连理工大学6
  • 深视智能完成数亿元C轮融资,专注工业传感器研发生产
    近日,深圳市深视智能科技有限公司完成数亿元C轮融资,本轮融资由国投创新管理的先进制造基金领投、高瓴创投追投。深视智能成立于2014年,专注于工业传感器研发生产。公司深耕行业多年,现产品线围绕3D工业传感器推出线激光、点激光、点光谱、纠偏、高速相机等产品,部分性能参数实现世界领先,已逐步成为引领行业发展的新标杆。现如今,深视智能凭借专业的综合性研发平台、成熟的生产品控体系、高质量的本地化服务,已成长为国产品牌领导者,成功打破国外垄断,批量导入国内外消费电子、锂电、光伏等行业的头部企业,并陆续赋能半导体、面板、汽车、轨交、食品等行业。
  • 梅特勒托利多InPro 4850i传感器新品推出 为氯碱业度身设计的双膜pH传感器
    梅特勒托利多过程分析最新推出新型InPro 4850i传感器,InPro 4850i专为氯碱行业提供长寿命和高精度的pH/ORP测量解决方案。 通常,pH传感器在氯碱生产过程中面临各种非常恶劣的条件:氯气污染参比系统,结晶盐溶液和沉淀杂质堵塞隔膜,介质还可能会腐蚀液接材料。此外,传感器的高阻抗输出信号非常容易受到干扰,导致测量准确度低,传感器频繁出现故障。 梅特勒托利多的新款InPro 4850i双膜pH传感器是专为氯碱行业的需求而设计,InPro4850i传感器独特的技术优势,可确保在任何苛刻的环境下实现出色的测量。采用钠离子敏感膜参比系统该敏感膜对于盐水中的钠离子非常敏感,有助于提高测量精度。无隔膜设计钠离子敏感膜参比系统采用密封设计,没有隔膜,可避免传感器污染或阻塞,确保测量更加稳定。数字信号传输InPro4850i传感器和变送器之间传输的信号均为数字信号,无电磁干扰和信号失真,确保数据稳定和精确。智能传感器管理(ISM)技术智能传感器管理技术具有即插即测和自诊断功能、实现预测性维护,帮助您减少维护量和生产成本。双敏感膜设计、密封参比系统、数字信号传输,InPro 4850i在氯碱行业苛刻条件下均可实现长寿命和高精度测量。 了解更多InPro 4850i信息,请访问:www.mt.com/InPro4850www.mt.com/ISM 梅特勒托利多过程分析提供广泛的pH,ORP,溶解氧,气相氧,二氧化碳,电导率和浊度传感器、变送器和清洗系统,为您的过程分析和检测提供完整、精确、可靠的解决方案。梅特勒托利多也为客户提供全球范围的全方位服务管理,包括校准服务、性能测试、安装及运行认证、技术培训等。咨询热线:4008-878-788
  • 宁波材料所李润伟团队在超稳定可拉伸电极方面取得重要进展
    在智能可穿戴电子领域,稳定耐用的柔性可拉伸导体仍然是一个巨大的挑战。尤其是在人体表皮生理信号的收集过程中,稳定的可拉伸电极可以实现长时间精准的信号收集。目前无论是表面结构设计型、导电材料复合型还是本真可拉伸型电极,均难以实现在动态变形下稳定的电性能。所以,制备具有高稳定电性能的电极仍然是一个极大的挑战。近日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在李润伟研究员的带领下,受到人工渔网启发,模仿“水膜-鱼网”结构设计了具有柔性自适应导电界面的超稳定可拉伸电极,提出利用静电纺丝法构建液态金属聚氨酯(TPU)二维“仿水膜-鱼网”结构薄膜,实现了极低初始方阻(52mΩ sq-1),解决了弹性电极中导电率和拉伸率不可兼容、循环变形下电性能不稳定的问题,应变下通过网孔束缚液态金属对外扩展和液态金属在网孔内自适应流动,实现低电阻高稳定可拉伸电极,该电极的动态自适应导电网络使其具备极强的动态循环稳定性,经过33万次100%拉伸应变循环,电阻仅变化5%,同时电极面对冷热、酸碱、浸水等服役环境变化,依旧表现出稳定的电性能。该电极可应用于全天候人体表皮生理信号监测、智能人机交互界面及人体热疗等方面,有望助力基于万物互联的可穿戴健康监护系统及电子皮肤人机交互界面的持续发展。该工作以题为“Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction”的论文发表在InfoMat上(DOI:10.1002/inf2.12302),并被选为封面文章(如图1)。图1 液态金属基超稳定可拉伸电极及应用InfoMat封面该团队通过TPU静电纺丝与液态金属微纳颗粒静电喷涂的原位复合,以及随后进行的机械激活,制备出了仿“水膜-渔网”的可拉伸电极。该电极的超稳定电性能,主要得益于其仿“水膜-渔网”结构,也可称之为液态金属动态自适应网络,由于液态金属薄膜与聚氨酯纺丝网的交互作用,在小应变下(<100%的应变),SEM原位观察到液态金属可以实现自适应流动,卸去局部应力,保持导电薄膜连续;在大应变下(300%-500%的应变),尽管液态金属薄膜会破裂,但聚氨酯纺丝网会阻碍其断裂,并使其包裹在纤维丝上,保持整体导电网络的稳定性(图2a)。作者还透彻分析了液态金属微米纳米球如何通过尺寸效应和微观捆绑结构实现与纳米纤维丝网络的复合。图2 超稳定电极机理及应用同时,通过局部激活和激光切割,可以将聚氨酯液态金属复合材料制备成多层多功能人机交互系统。上层电容传感阵列连接在集成电路和蓝牙模块上,能够实现无线信号传输,在拉伸和弯曲状态下均可以对计算机输入无线指令,可应用在智能可穿戴游戏控制等方面。下层蛇形加热器展现出良好的电热稳定性,可以实现45℃-90℃稳定加热,并展现出优异的加热循环性能,可用于人体加热治疗。局部激活的电路对机械破坏展现出很好的抵抗性,该电极可以实现即时导电通路重建,使电极在破坏、拉伸状态下依然能够正常工作(图2b)。该电极展在100%应变拉伸循环试验中,在第一次拉伸电阻发生了轻微升高,后续的33万次循环中,其电阻仅上升了5%,该特性要远远优于其他已报道的可拉伸电极(图2c)。该电极可以实现人体表皮全天候心电信号检测。首先,通过体外细胞实验证明该电极具有良好的生物相容性和极低毒性,可以用在人体表皮进行心电监测,其展现出与商用凝胶电极类似的阻抗性能。其次,该工作根据人的活动场景,为电极设计了静态、运动、水冲三个工作场景,超稳定电极展现出优异的心电信号收集能力,信噪比达到0.43,尤其是在水冲环境中,该电极依然能够收集到稳定、清晰的心电信号,可用于全天候心电诊断(图3)。图3 超稳定电极的生物相容性探究及其在全天候心电监测方面的应用综上所述,该工作设计并实现了超耐用可拉伸电极,基于液态金属和聚氨酯纺丝网络构成的自适应导电网络,实现了在机械变形、长时间氧化、循环浸没、加热、酸碱浸泡等各种环境刺激下的稳定电性能,尤其实现了33万次拉伸循环下极小的电阻变化。该电极可以应用在全天候心电监测、智能人机交互系统等方面,在长时间体表电子皮肤、体内生物相容性器件等方面展现出很大的潜力。该工作由曹晋玮、梁飞、李华阳等在李润伟研究员与宁波诺丁汉大学朱光教授的共同指导下完成,并得到国家自然科学基金(51525103、51701231、51931011),宁波市3315人才计划,宁波科技创新2025项目(2018B10057),浙江省自然基金(LR19F010001),浙江省杰出青年科学基金(2016YFA0202703)中国科学院王宽诚教育基金(GJTD-2020-11)的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制