当前位置: 仪器信息网 > 行业主题 > >

电容耐量仪

仪器信息网电容耐量仪专题为您提供2024年最新电容耐量仪价格报价、厂家品牌的相关信息, 包括电容耐量仪参数、型号等,不管是国产,还是进口品牌的电容耐量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电容耐量仪相关的耗材配件、试剂标物,还有电容耐量仪相关的最新资讯、资料,以及电容耐量仪相关的解决方案。

电容耐量仪相关的资讯

  • 盘点|压力测量仪器与技术大全
    压力是工业生产中的重要参数,如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。在某些工业生产过程中,压力还直接影响产品的质量和生产效率,如生产合成氨时,氮和氢不仅须在一定的压力下合成,而且压力的大小直接影响产量高低。此外,在一定的条件下,测量压力还可间接得出温度、流量和液位等参数。伴随经济、技术的进步,压力测试在实际的生产工作中发挥着至关重要的左右,为生产活动提供了大量有价值的参考信息,使生产和科研活动的质量和效率都得到了实质性的提升。而压力测量仪表是用来测量气体或液体压力的工业自动化仪表,又称压力表或压力计。压力测量仪表按工作原理分为液柱式、弹性式、负荷式和电测式等类型。类别原理仪器种类液柱式根据流体静力学原理,将检测压力转换成液柱高度进行测量U形管压力计、单管压力计、斜管压力汁等弹性式利用各种形式的弹性元件,在被测介质的作用下,使弹性元件受压后产生弹性形变的原理弹簧管压力计、波纹管压力计及膜片式压力计等电测式将压力转换成电信号进行传输及显示电阻式压力计、电容式压力计、压电式压力计和压磁式压力计等负荷式直接按照压力的定义制作。这类压力计误差很小,主要作为基准仪表使用常见的有活塞式压力计、浮球式压力计和钟罩式压力计仪器信息网特盘点各类常见压力检测仪器,以供读者参考。液柱式压力计 液柱式压力计是利用液柱所产生的压力与被测压力平衡,并根据液柱高度来确定被测压力大小的压力计。所用的液体叫封液——水,酒精,水银等. 液柱式压力计结构简单,灵敏度和精确度都高,常用于校正其他类型压力计,应用比较广泛。液柱式压力计按照结构形式可大致分为U形管压力计、单管压力计、斜管压力汁等。U形管压力计是根据流体静力学原理用一定高度的液柱所产生的静压力平衡被测压力的方法来测量正压、差压和负压既真空度的。由于其结构简单、坚固耐用、价格低廉、使用寿命长若无外力破坏几乎可永久使用、读取方便、数据可靠、无需外接电力既无需消耗任何能源。故在工业生产各科研过程中得到非常广泛的应用,广泛用于测量风机和鼓风机的压力、过滤器阻力、风速、炉压、孔压差、气泡水位、液体放大器或液压系统压力等,也可用于燃烧过程中的气比控制和自动阀门控制,以及医疗保健设备中的血压和呼吸压力监测。斜管压力计 在测量微小压差时,由于h值较小,用U形管或单管液柱式压力计测量时的相对误差极大,此时可休用斜管式压力计,斜管式压力计分墙挂式和台式两种。  在许多实验中往往需要同时测量多点的压力,例如压力分布实验。这时就要采用多管式压力计,多管式压力计的工作原理与斜管压力计相同,实际就是多根斜管压力计,由于多管压力计各测压管的内径不可能一样,因此,由毛细现象所造成的各测压管的初读数也不一致,测量前必须读出每根测压管的初读数,并作适当的修正。弹簧管压力计 弹簧管压力计又称波登管压力计。它是一种常见的也是应用最广泛的工程仪表,主要组成部分为一弯成圆弧形的弹簧管,管的横切面为椭圆形,作为测量元件的弹簧管一端固定起来,通过接头与被测介质相连,另一端封闭,为自由端,自由端借连杆与扇形齿轮相连,扇形齿轮又和机心齿轮咬合组成传动放大装置。当被测压的流体引入弹簧管时,弹簧管壁受压力作用而使弹簧管伸张,使自由端移动,其移动距离与压力大小成正比,或者带动指针指示出被测压力数值,适用于对铜合金不起腐蚀作用的气体和液体。波纹管压力计 波纹管压力计的波纹管由金属片折皱成手风琴风箱状,当波纹管轴向受压时,由于伸缩变形产生较大的位移,故一般可在其自由端安装传动机构,带动指针直接读数,从而测量出介质压力。波纹管压力计可广泛应用于石油、化工、矿山、机械、电力及食 品行业,直接测量不结晶体,有腐蚀性的气体、液体的压力。波纹管压力计的特点是低压区灵敏度高,常用于低压测量,但迟滞误差大,压力位移线性度差,精度一般只能达到1.5级,常在其管内安装线性度较好的螺旋弹簧。膜片式压力计 膜片压力计适用于测量无爆炸危险、不结晶、不凝固、有较高粘度,但对铜和铜合金无腐蚀作用的液体、气体或蒸汽的压力。 膜片压力计耐腐蚀性能取决于膜片材料。不锈钢耐腐膜片压力计的导压系统和外壳等均为不锈钢,具有较强的耐腐蚀性能。主要用于化学、石油、纺织工业对气体、液体微小压力的测量,尤其适用于腐蚀性强、粘稠介质(非凝固非结晶)的微小压力测量。 膜片压力计的工作原理是基于弹性元件(测量系统上的膜片)变形。在被测介质的压力作用下,迫使膜片产生相应的弹性变形——位移,借助连杆组经传动机构的传动并予放大,由固定于齿轮上的指针将被测值在度盘上指示出来。压阻式压力计 压阻式压力计是基于单晶硅的压阻效应而制成。采用单晶硅片为弹性元件,在单晶硅膜片上利用集成电路的工艺,在单晶硅的特定方向扩散一组等值电阻,并将电阻接成桥路,单晶硅片置于腔内。当压力发生变化时,单晶硅产生应变,使直接扩散在上面的应变电阻产生与被测压力成正比的变化,再由桥式电路获相应的电压输出信号。 具体来讲,当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化,而且前者的灵敏度比后者大50~100倍 压阻式压力计是电阻式压力计的一种。采用金属电阻应变片也可制成压力计,测量原理以金属的应变效应为主。电容式压力传感器 电容式压力传感器,是一种利用电容敏感元件将被测压力转换成与之成一定关系的电量输出的压力计。特点是,输入能量低,高动态响应,自然效应小,环境适应性好。 电容式压力传感器一般采用圆形金属薄膜或镀金属薄膜作为电容器的一个电极,当薄膜感受压力而变形时,薄膜与固定电极之间形成的电容量发生变化,通过测量电路即可输出与电压成一定关系的电信号。电容式压力传感器属于极距变化型电容式传感器,可分为单电容式压力传感器和差动电容式压力传感器。压电式压力传感器 压电式压力传感器是基于压电效应的压力传感器。它的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。 这种传感器的特点是体积小、动态特性好、耐高温等。现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。目前比较有效的办法是选择适合高温条件的石英晶体切割方法。而LiNbO3单晶的居里点高达1210℃,是制造高温传感器的理想压电材料。压磁式压力传感器 压磁式压力传感器是利用铁磁材料的压磁效应制成的,即利用其将压力的变化转化成导磁体的导磁率变化并输出电信号。压磁式的优点很多,如输出功率大、信号强、结构简单、牢固可靠、抗干扰性能好、过载能力强、便于制造、经济实用,可用在给定参数的自动控制电路中,但测量精度一般,频响较低。 所谓压磁效应就是在外力作用下,铁磁材料内部发生应变,产生应力,使各磁畴之间的界限发生移动,从而使磁畴磁化强度矢量转动,因而铁磁材料的磁化强度也发生相应的变化,这种由于应力使铁磁材料磁化强度变化的现象,称为压磁效应。 若某一铁磁材料上绕有线圈,在外力的作用下,铁磁材料的导磁率发生变化,则会引起线圈的电感和阻抗变化。当铁磁材料上同时绕有激磁绕组和测量绕组时,导磁率的变化将导致绕组间耦合系数的变化,从而使输出电势发生变化。通过相应的测量电路,就可以根据输出的量值来衡量外力的作用。霍尔式压力计 霍尔式压力计是利用霍尔效应制成的压力测量仪器。当被测压力引入后,弹簧管自由端产生位移,从而带动霍尔片移动,改变了施加在霍尔片上的磁感应强度,依据霍尔效应进而转换成霍尔电势的变化,达到了压力一位移一霍尔电势的转换。 霍尔压力计应垂直安装在机械振动尽可能小的场所,且倾斜度小于3°。当介质易结晶或黏度较大时,应加装隔离器。通常情况下,以使用在测量上限值1/2左右为宜,且瞬间超负荷应不大于测量上限的二倍。由于霍尔片对温度变化比较敏感,当使用环境温度偏离仪表规定的使用温度时要考虑温度附加误差,采取恒温措施(或温度补偿措施)。此外还应保证直流稳压电源具有恒流特性,以保证电流的恒定。活塞式压力计 活塞式压力计又称为静重式压力计,是利用流体静力平衡原理及帕斯卡定律工作的的一种高准确度、高复现性和高可信度的标准压力计量仪器。 流体静力平衡是通过作用在活塞系统的力值与传压介质产生的反作用力相平衡实现的。活塞系统由活塞和缸体(活塞筒)组成,二者形成极好的动密封配合。活塞的面积(有效面积)是已知的,当已知的力值作用在活塞一端时,活塞另一端的传压介质会产生与已知力值大小相等方向相反的力与该力相平衡。由此,可以通过作用力值和活塞的有效面积计算得到系统内传压介质的压力。在实际应用中,力值通常由砝码的质量乘以使用地点的重力加速度得到。 活塞式压力计也常简称活塞压力计或压力计,也有称之为压力天平,主要用于计量室、实验室以及生产或科学实验环节作为压力基准器使用,也有将活塞式压力计直接应用于高可靠性监测环节对当地其它仪表的表决监测。浮球式压力计 浮球式压力计是以压缩空气或氮气作为压力源,以精密浮球处于工作状态时的球体下部的压力作用面积为浮球有效面积的一种气动负荷式压力计。 压缩空气或氮气通过流量调节器进入球体的下部,并通过球体和喷嘴之间的缝隙排入大气。在球体下部形成的压力将球体连同砝码向上托起。当排除气体流量等于来自调节器的流量时,系统处于平衡状态。这时,球体将浮起一定高度,球体下部的压力作用面积(即浮球的有效面积)也就一定。由于球体下部的压力通过压力稳定器后作为输出压力,因此输出压力将与砝码负荷成比例。钟罩式压力计 钟罩式压力计的作用原理,是直接从压强定义出发,用一台天平对压力在液封受力器上 的垂直作用力F进行测定。这个受力器是一只几何形状有一定要求的钟罩,根据对钟罩几何 尺寸的精密测量和理论分析,求出其受力有效面积S后,待测压强p可由公示p=F/S求出。 因为钟罩式压力计有独特的结构原理,并具有、足够高的精度,这就可以通过与其他基准压力仪器比对,发现未知的系统误差。同时,钟罩式压力计在测量压强差时,其单端静压强可以根据需要调整,直至单端压强为零,即可以测量绝对压强。另外,该仪器还具有操作简单、受外界干扰小等优点。在高新科技快速发展的现今,静态的压力测量方法已获得了较大的优化,成为了各领域中常用的测量体系,并逐渐朝着动态的压力校准趋势发展。由此,相关技术人员针对压力计量检测方法的进步展开了深入的探究。简而言之,压力计量检测的未来趋势表现在测试精度等级、测试响应速率、测试可靠性与智能化水平这几个方面的提高。比如,在活塞式仪表测试中融进了智能加码与操作部位激光监测方法,如此不仅提升了检测效率,并且提高了测试的精准性,同时为绝压式仪表与活塞式仪表智能测试体系的进步打下了良好的基础。针对数字式仪表及压力变送器和压力传感器等设备的量传任务有了精良的全智能压力控制其能够用作量传标准,利用1台控制器配置若干个压力模块能够操作许多量程范围,随意确定测试点的高精度检测任务,而且能够选用气介质来工作,如此防止了采用液体介质在检测压力时引起的诸多问题,大幅度提升了数字式仪器的测试效率与智能化程度。
  • 【新品主推】粮食水分测量仪的应用与发展趋势
    点击此处可了解更多产品详情:粮食水分测量仪  随着科技的不断发展,粮食水分测量仪在农业生产中得到了广泛的应用。该仪器利用物理和化学方法,快速准确地测量粮食的水分含量,为农业生产提供了重要的参考依据。    一、粮食水分测量仪的原理    粮食水分测量仪的原理主要基于电学和近红外原理。电学方法主要利用粮食的导电性与其含水量的关系,通过测量粮食的电导率或介电常数来推算其水分含量。近红外原理则是利用近红外光谱技术,通过分析粮食对特定波长光线的吸收和反射特性,来推断其水分含量。    二、电学方法原理    电学方法中,常用的有电阻式和电容式两种。电阻式水分测量仪利用粮食的导电性,通过测量电阻值与水分含量的关系来推算水分。电容式水分测量仪则是利用粮食的介电常数与其含水量的关系,通过测量电容值来推算水分。    三、近红外原理    近红外光谱技术是利用粮食中水分子对近红外光线的吸收特性来推断水分。该技术具有非破坏性、快速准确等优点,但也存在着对样品颜色、颗粒大小等因素敏感的问题。为提高测量的准确性和稳定性,常采用光谱预处理、多元回归等方法进行校正和优化。    四、粮食水分测量仪的应用与发展趋势    粮食水分测量仪在农业生产、粮食储存和加工等领域有着广泛的应用。通过准确测量粮食的水分含量,可以指导农业生产和储粮工作,避免因水分过高导致霉变或水分过低影响口感等问题。未来随着科技的不断进步和应用需求的提高,粮食水分测量仪将向着更加智能化、高精度、快速响应等方向发展。同时,随着物联网技术的普及,粮食水分测量仪将与智能农业系统相结合,实现远程监控和智能化管理,进一步提高农业生产效率和管理水平。    五、结论    粮食水分测量仪作为一种快速、准确的测量方法,对于农业生产具有重要意义。了解其工作原理和应用特点,有助于更好地选择和使用适合的水分测量仪,为农业生产提供科学依据。未来随着技术的不断创新和发展,相信粮食水分测量仪在农业生产和科研领域将发挥更大的作用,为实现农业现代化作出积极贡献。【新品主推】粮食水分测量仪的应用与发展趋势
  • 超级电容器多孔炭首个国际标准发布
    记者24日从中国科学院山西煤炭化学研究所获悉,日前由该所主持,宁波中车新能源科技有限公司、深圳市标准技术研究院及国家纳米科学中心共同参与制定的国际标准——电化学电容器多孔炭(简称电容炭)空白详细规范,经国际电工委员会纳米电工产品与系统技术委员会通过,正式对外发布。该标准由中国科学院山西煤炭化学研究所709组技术团队承担制定工作。  这一电容炭领域首个国际材料空白详细规范,全面梳理了材料对器件性能的影响因素,包括电容炭的化学、物理、结构及电化学关键控制特性23项,其中电化学关键控制特性除了比容量、倍率性能等一些短期性能指标,还包括了下游用户更加关心的长期稳定性、温度耐受性等指标。标准对这23项关键控制特性的测试方法进行了详细的阐述,并且通过查阅国际国内标准,对这些测试方法的标准化成熟度进行了归类。  技术团队通过主持该标准的制定,一方面能全方位梳理总结材料影响器件性能的潜在因素,从内部把技术做精做细,另一方面也能促进国内研发人员与技术水平先进的国际公司充分交流,帮助技术升级,从而助力国产电容炭走向国际市场。  电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛用于电力监测通信终端、电网调频和规模储能等领域,拥有广阔的市场前景。然而,我国电化学电容器的关键活性材料——电容炭,长期依赖日韩进口。  近年来,我国电容炭生产技术取得重要突破。中国科学院山西煤炭化学研究所打通电容炭料—材—器—用技术创新链,成功实现成果转移转化,启动500吨电容炭产业化项目建设,目前已进入量产阶段。在电容炭研究过程中,科研人员发现其制备工艺路线长、影响因素繁多、构效关系复杂,缺乏标准文件指导。  基于此,技术团队自2019年向IEC(国际电工委员会)提出制定电容炭空白详细规范国际标准和超级电容器电极片空白详细规范的标准提案,旨在通过一系列高质量的国际标准“组合拳”引导该行业健康快速发展。
  • 申贝发布环境氡测量仪新品
    环境氡测量仪PRn700仪器符合新标准GB 50325-2020《民用建筑工程室内环境污染控制标准》少量抽气—静电收集-射线探测器法GB/T 14582-93《环境空气中氡的标准测量方法》 T/CECS 569-2019《建筑室内空气中氡检测方法标准》的测量原理和要求。环境氡测量仪PRn700采用泵吸-静电收集-半导体传感器-α能谱分析法氡测量仪。基于Android4.4系统全触控操作,用于空气、土壤、氡析出率等氡活度定量测量。应用领域环境空气、土壤、水等氡体积活度及土壤、建材等表面氡析出率的测量。可用于环境监测、地质找矿、辐射防护、核事故监测、辐射剂量评价、地震预报及教学等。仪器特点精致、轻巧 、便携: 外型尺寸(275x220x167)mm,重量2.5kg。先进、准确、可靠:PRn700环境氡测量仪为静电收集-半导体传感器-α能谱分析法氡测量仪。通过泵吸将被测量气体(空气)吸入静电收集室内,在静电收集室内通过高压电场将222Rn的一代衰变产物RaA(218Po)吸附于半导体α射线传感器的表面(阴极),通过能谱分析,测量RaA的α粒子线计数率,定量测量222Rn的体积活度。采用用222Rn的短半衰期子体(218Po半衰期为3分钟)的α粒子的能谱测量,可能有效解决土壤氡测量过程中钍射气干扰,同时,由于被测量的子体半衰期短,在进行高活度(例如土壤氡)测量时,探测器能的较短时间内(典型条件下小于30分钟)恢复到低本底状态。内置气候传感器,可精确测量静电室内气体温度、温度、大气压强,用于指示干燥器状态,气体体积修正及温度-吸附率修正。智能、易用:PRn700环境氡测量仪采用基于ARM处理器与Android4.4系统的智能触控平台完成数据获取、处理、显示打印等,这使得PRn700系列智能环境氡测量仪具有图像、声音、有线\无线网络、触控感应等多种直观友好的人机交互模式。基于ARM处理器与Android4.4操作系统构成的计算机平台拥有强大的数据处理能力,WIFI、蓝牙、USB(HOST\DEVICE模式)、RJ45、RS232等丰富的数据连接模式,支持用户更新软件。智能背光、无任务自动关机、关键操作确认等符合主流智能触控设备操作模式的软件设计,产品易操控,使用者经过短时简单的摸索即可正确操作作用本设备。手持式蓝牙打印机,自粘贴式报告标签。一键打印,一撕一粘即可完成数据的保存 。主机即可为打印机提供充电服务,免去野外打印机无处充电的尴尬!配套、功能齐全配备有各种专业附件,用于土壤、建材、水等氡活度测量。成熟可靠的技术方案、高度集成化的平台、成熟的软件环境,因此、设备结构紧凑性能更可靠。技术指标1. 静电室:容积700ml,静电场高压2500~3000V 2. 探测器:半导体平面硅探测器,有效探测器面积572mm2;α粒子能量测量范围为0~10(MeV),能量分辨率37KeV(FWHM);3. 本底计数率:≤0.01cpm ;4. 探测灵敏度:0.2 cpm /pCi/L;5. 探测下限:≤3.7Bq/m3;6. 测量范围:0.1~25000pCi/L (3.7Bq/m3~925000Bq/m3);7. 测量不确定度:≤10%(k = 2); 测量范围:空气氡: (3.7~10000)Bq/ m3;土壤氡: (300~300000)Bq/ m3;水中氡: (0.003~100.00)Bq/L;氡析出率:(0.001~10.000)Bq/[m2• s] ;8. 体积活度响应年偏移量:≤±20%;9. 相对固有误差:≤±20%;10. 电 源:锂离子充电池:11.1V、5400mA/h。充电器输入:AC(110~240)V、输出:12.6V/2A; 11. 工作环境温度:(5~40)℃ 湿度:≤90%RH;12. 显 示 器:5.5寸5点电容触控液晶显示屏; 13. 取气方式:主动泵吸式 ,泵气速率:2L/min(无真空负载);14. 测量时间(典型条件下):空 气 氡:120min 、土 壤 氡:17min 、氡析出率:300 min (不含集气收集时间);15. 尺 寸: (330 × 210 × 170)mm ;16. 重 量:2.5 ㎏(含设备防护箱、过滤器、充电器);17.气候传感器:温度:测量范围(0~50℃) ,精度±0.5℃;压力:测量范围(300~1100) hPa ,精度±1.0 hPa;湿度:测量范围(0~100)%RH ,精度±3 %RH。注:上述参数仅为一般性参数,具体到某一台设备时可能会有特殊要求,请以合同或招投标文件表述为准。仪器配置1.PRn700系列智能环境氡测量仪主机一台;2.管道式干燥器一只;3.充电器一只;4.过虑器一只; 5.蓝牙热敏打印机一台(选配);6.土壤聚气钎杆一套(打孔取气各一根)(选配);7.氡析出率测量附件一套(选配);8.水中氡测量附件一套(选配);9.仪器校准证书一份;10.检验合格证一份;11.用户使用手册一份;注:上述配置为常规配置,仅供参考。根据用户需求不同配置也会不同,实际请以销售合同或投标文件为准。创新点:仪器符合:新标准:GB 50325-2020《民用建筑工程室内环境污染控制标准》T/CECS 569-2019《建筑室内空气中氡检测方法标准》的测量原理和要求。创新点:采用用222Rn的短半衰期子体(218Po半衰期为3分钟)的α 粒子的能谱测量,可能有效解决土壤氡测量过程中钍射气干扰,同时,由于被测量的子体半衰期短,在进行高活度(例如土壤氡)测量时,探测器能的较短时间内(典型条件下小于30分钟)恢复到低本底状态。环境氡测量仪
  • 欧盟公布含汞测量仪器和含苯汞物品相关限令
    2012年9月19日,欧盟官方公报公布了欧委会第847/2012号条例,对REACH法规附录XVII中现有的18a(即汞限令)条进行修订。现行的汞限令禁止体温表和向公众销售的其它测量仪器使用汞。欧洲化学品管理局(ECHA)建议在工业和职业(包括卫生保健)用测量仪器中也限制使用汞。另外,新条例禁止此类含汞仪器于2014年4月10日后在欧盟上市。   新条例限制的测量仪器包括工业和职业用含汞气压计、湿度计、纳米计、血压计。受限含汞和使用汞的测量仪器列表可参见该条例。   最新的条例指出目前已经有无汞测量仪器,其与含汞测量仪器相比,健康和环境风险要低得多。因此,该条例希望限制含汞测量仪器。然而也有一些例外,比如用于某些环境下的血压计就被免于限制。同时,对于那些尚无可行替代产品的含汞产品,其使用也是不受限制的,例如孔隙率计、伏安测量法中使用的汞电极以及电容电压测量中使用的汞探头。   另外,2012年9月19日,《官方公报》公布了第848/2012号委员会条例,进一步修订REACH法规的附录XVII。与附录XVII限令相关的是,挪威已经准备了5种苯汞化合物的文献资料,强调有必要在欧盟范围内采取行动,避免和应对生产、使用、销售含此类物质混合物和物品所造成的健康和环境风险。   苯汞化合物专门用作聚氨酯系统的催化剂,用于涂料、黏合剂、密封剂、合成橡胶等领域。汞催化剂融入聚合物结构,并残留于最终物品,而其中的汞或苯汞化合物并非有目的释放。   欧委会认为,环境中上述物质对人类的暴露主要途径为食物。甲基水银作为苯汞化合物的降解产品,其在水产食物链中的生物放大作用明显,会对大量摄入鱼类的人群和野生生物造成较大影响。   REACH法规附录XVII现在对下列物质进行了限制:苯汞醋酸盐 苯汞丙酸盐、苯汞2-乙基已酸、苯汞辛酸、苯汞新癸酸。   “如果某物品或任何部件中含有一种或多种此类物质,且在物品或部件中的汞浓度等于或大于0.01%(以重量计),则自2017年10月10日起不得上市。”   第848/2012号条例并未给出任何豁免条款。因此,含有上述苯汞化合物的所有物品均将禁止在欧盟上市。该法规自其公布之日起20天后实施,并自2017年10月10日应用。
  • 牛津仪器推出全新快速扫描电容显微镜SCM
    牛津仪器Asylum Research近日发布了具备可直接对电容(Capacitance)成像功能的高灵敏度快速扫描电容显微镜(SCM)。 扫描电容显微镜(SCM)是研究半导体和失效分析的有效工具。传统的SCM技术采用的 Video Disco 探测技术,信噪比相对较弱,噪音较大,数据准确性欠佳。现在牛津仪器Asylum Research发布的快速SCM采用全新微波电路设计,采用的频段更高(~2.0 GHz),带宽也更宽(600 MHz),从而实现更高的信噪比和灵敏度,和更好的分辨率。新发布的SCM可以直接对电容(Capacitance)高质量成像,结果显示电容成像与样品掺杂浓度成非常好的线性关系,如图1D。差分电容也因此变得更加灵敏,不需要太高调制电压,可以对更脆弱的样品成像。图1 静态随机存储 (SRAM) 样品。所有通道同时获得了29μm扫描区域:A:形貌;B:dC/dV振幅(与掺杂浓度成反比);C:dC/dV相位(蓝色表示p型掺杂,红色表示n型掺杂);D:电容(与掺杂浓度有线性关系);结合牛津仪器Asylum Research旗下的高速AFM系统(Cypher高端科研系列和Jupiter大样品系列),新SCM模块可达到26Hz的扫描速度时仍能保证成像质量,如图2,对于原先采集一幅结果需要耗时时间5~10分钟的实验,现在仅需十几秒,速度提高近几十倍,让原位动态监测表面电容/掺杂变化成为可能。图2 微分电容(dC/dV)振幅图像快速SCM也适用于金属和绝缘体,进而在半导体、能源、2D材料,金属材料、陶瓷等领域有着广泛的应用。
  • 南科大杨灿辉和葛锜团队:多材料3D打印具有多模式传感功能的离子电容传感器
    在过去十年中,离电器件(Ionotronics or Iontronics,离子-电子混合器件,即基于离子与电子协同作用的器件)因其固有的柔韧性,可拉伸性,光学透明性和生物相容性等优势引起了越来越多的关注。然而,现有的离电传感器由于器件结构简单、成分易泄漏,导致器件稳定性差,传感功能单一,极大地限制了实际应用。因此,设计制造性能稳定且具有多模式传感能力的离电传感器具有重要的工程应用价值。南方科技大学力学与航空航天工程系杨灿辉团队与机械与能源工程系葛锜团队,报道了通过多材料光固化3D打印技术一体化设计制造基于聚电解质弹性体的多模式传感离子电容传感器,解决了传统离电传感器稳定性差和功能性单一的问题,为可拉伸离电传感器的设计、智造与应用提供了新的解决方案。相关研究成果以“Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing”为题发表在《Nature Communication》期刊。南方科技大学科研助理李财聪、博士生程健翔和何耘丰为论文共同第一作者,杨灿辉助理教授与葛锜教授为论文共同通讯作者。本研究得到了深圳市软材料力学与智造重点实验室和广东省自然科学基金等项目支持。如图1所示,受人体皮肤对于拉、压、扭及其组合等外力的多模态感知能力的启发,研究人员利用多材料光固化3D打印技术制备了具有多模式传感能力的离电传感器。传感器采用了聚电解质弹性体(PEE),其高分子网络中含有固定的阴离子或阳离子,以及可移动的反离子,具备抗离子泄漏的特性。在打印过程中,PEE材料与传感器上的介电弹性体(DE)材料之间通过共价和拓扑互连形成了牢固的界面粘接。图1. 皮肤启发的多模式传感离电传感器。(a) 人体皮肤内多种力感受器示意图。(b) 人体皮肤可以感知单一的力学信号如压拉、压、压+剪、压+扭。(c) 基于多材料数字光固化3D打印技术制备具有多模式传感能力的离电传感器。研究人员首先合成了一种名为1-丁基-3-甲基咪唑134-3-磺丙基丙烯酸酯(BS)的单体,作为聚电解质材料的组成成分之一,并与另一种名为MEA的疏水单体一起进行共聚。然后通过优化BS和MEA的比例,平衡聚电解质材料的力学性能和电学性能,从而优化传感器的性能,如图2所示。图2. 聚电解质弹性体的设计、制备与光学、力学、电学性能以及热、溶剂稳定性。如图3所示,研究人员进行光流变测试验证了所开发的PEE材料的可打印性。然后通过180°剥离测试,分别测量了3D打印和手动组装的PEE/DE双层结构的界面粘接强度。结果表明,3D打印的双层结构由于PEE和DE之间形成的共价键和拓扑缠结而具有强韧的界面,剥离过程发生了PEE材料的本体断裂, 粘接能达339.3 J/m2;相比之下,手动组装的PEE/DE双层结构界面弱,剥离过程发生了界面断裂,粘接能只有4.1 J/m2。在耐久度测试中,基于PEE的电容式传感器由于无离子泄漏可以长时间保持稳定的信号,而基于传统的LiTFSI掺杂离子的弹性体的传感器由于离子泄漏,信号持续发生漂移,直至发生短路。图3. 离电传感器的可打印性与性能。(a) PEE存储模量和损耗模量随光固化时间的变化曲线。(b) 固化时间与能量密度随层厚的变化关系。(c) 打印的PEE阵列展示。(d) 3D打印和手动组装的PEE/DE双层结构的180°剥离曲线。(e) 3D打印的PEE/DE双层结构本体断裂示意图。(f) 手动组装的PEE/DE双层结构界面断裂示意图。(g) 基于PEE和基于LiTFSI掺杂离子的弹性体的电容式传感器的ΔC/C0随时间变化曲线。(h) 基于PEE的电容式传感器无离子泄漏。(i) 基于LiTFSI掺杂离子的弹性体的电容式传感器离子泄漏示意图。3D打印技术为器件的结构设计提供了极高的灵活性。如图4所示,研究人员分别设计并一体化打印了拉伸、压缩、剪切、扭转四种不同的离电传感器,器件均具有良好的性能和稳定性。特别地,通过器件的结构设计,即可以实现传感器灵敏度的大幅度优化,例如通过在压缩传感器的介电弹性体层引入微结构可以将灵敏度提高两个数量级,又可以实现传感器灵敏度的按需调控,例如通过设计剪切传感器前端的轮廓线或扭转传感器的扇形区域数量可以分别实现不同相应的剪切传感器和扭转传感器。图4. 拉伸、压缩、剪切、扭转离电传感器。(a) 拉伸传感器原理示意图。(b) 电容-拉伸应变曲线。(c) 压缩传感器原理示意图。(d) 有/无微结构的压力传感器的电容-压力曲线。(e) 剪切传感器原理示意图。(f) 一种剪切传感器实物图。(g) 不同灵敏度的剪切传感器的电容-剪切应变曲线。(h) 剪切传感器的疲劳测试曲线。(i) 扭转传感器原理示意图。(j) 一种扭转传感器实物图。(k) 不同灵敏度的扭转传感器的电容-扭转角曲线。(l) 扭转传感器的疲劳测试曲线。如图5所示,研究人员进一步设计并一体化打印了拉压、压剪、压扭三种组合式离电传感器。组合式传感器最大的挑战之一在于不同传感通路之间相互的信号串扰,例如,当器件拉伸时,由于材料的泊松效应会导致垂直方向上的器件几何尺寸缩小,等效于压缩变形,导致拉伸激励引起压缩通道的信号变化。研究人员结合有限元模拟分析,通过合理的器件结构设计,有效地避免了不同通道之间的信号串扰。图5. 组合式离电传感器。(a) 拉压组合传感器示意图。(b) 器件实物图。(c) 拉压组合传感器等效电路图。(d) 单一传感模式下的器件信号。(e) 压缩激励下的电容-圈数变化曲线。(f) 拉伸激励下的电容-圈数变化曲线。(g) 拉压组合变形下的信号谱。(h) 压剪组合传感器示意图。(i) 器件实物图。(j) 压剪组合传感器等效电路图。(k) 单一传感模式下的器件信号。(l) 压扭组合传感器示意图。(m) 器件实物图。(n) 压扭组合传感器等效电路图。(o) 单一传感模式下的器件信号。最后,研究人员展示了一个由四个剪切传感器和一个压缩传感器组成的可穿戴遥控单元,并将其连接到一个远程控制系统,用于远程无线控制无人机的飞行,如图6所示。这个可穿戴遥控单元中的四个剪切传感器负责感知手部的手指运动,用于控制无人机的方向。而压缩传感器则用于感知手指的压力,控制无人机的翻滚。这种可穿戴遥控单元的设计可以实现人机交互,提供更加灵活的控制方式。图6. 组合式离电传感器用于无人机的远程无线操控。(a) 无人机控制系统示意图。(b) 组合式离电传感器中剪切传感模块工作模式示意图。(c) 剪切传感模块工作原理。(d) 传感器五个通道电容信号测试。(e) 指令编译逻辑。(f) 组合式离电传感器实时电容信号。(g) 不同时刻的无人机飞行状态。文章来源:高分子科技023-40583-5MultiMatter C1基于高精度数字光处理3D打印技术和独家离心式多材料切换技术,MultiMatter C1多材料3D打印装备可实现任意复杂异质结构快速成型,在力学超材料、生物医学、柔性电子、软体机器人等领域具有重要应用潜力。离心式多材料切换技术:独家开发的离心式多材料切换技术可实现高效材料切换和残液去除。离心转速可调,最高达8000转/分钟,60秒内即可完成多材料切换,单次打印多材料切换最大次数高达2000次,处于业内领先水平。可打印材料范围广:该设备支持粘度在50-5000 cps范围内的硬性树脂、弹性体、水凝胶、形状记忆高分子和导电弹性体等材料及这些材料组合结构的多材料3D打印,为不同行业和应用领域,提供了材料选择的灵活性。多功能多材料耦合结构实现:该设备可打印高复杂度、高精度、多功能、多材料耦合结构,支持同时打印2种材料,可打印层内多材料和层间多材料,且多材料层内过渡区尺寸在200μm以内,为复杂多材料结构制造提供高精度解决方案。
  • 电容去离子技术让“硬水”快速“服软”
    p style=" text-indent: 2em " 记者从中科院合肥研究院获悉,该院固体所环境与能源纳米材料中心团队,基于电容去离子技术发展了铜基普鲁士蓝(CuHCF)选择性吸附电极,基于其独特的晶体通道及特有的赝电容效应,该电极展现出高效的选择性电吸附钙离子能力,该工作对于硬水软化技术具有重要意义。相关成果日前发表在《ACS应用材料与界面》上。? /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/616c07a5-64f1-4a55-b2ff-025308b70477.jpg" title=" c6ef220360ec4e42a68b6c1ce16fb4c7.png" alt=" c6ef220360ec4e42a68b6c1ce16fb4c7.png" / /p p style=" text-indent: 2em " 水的硬度是世界各国普遍存在的水质问题。据统计,85%以上的可用淡水为硬水。自来水、地面水、河水等常见的硬水一般都是由钙、镁离子引起的,会导致洗涤剂作用减弱,锅炉、管道、热交换器结垢。长期饮用硬水还会增加人体泌尿系统结石的得病率,因此硬水的软化处理得到高度关注。然而,现有的硬水处理技术如化学沉淀法、离子交换、膜过滤等,需要过度使用化学物质、复杂的基础设施、昂贵的维护且能源消耗高。 /p p style=" text-indent: 2em " 电容去离子技术(CDI)作为一种新型的水处理技术,由于其操作方便、环境友好、能耗低等优点,引起了人们的广泛关注。但由于该技术所用电极材料多为碳材料,缺乏目标离子的高效选择性,而具有高比电容的赝电容材料因其特有的离子选择性有望用于CDI硬水软化领域。? /p p style=" text-indent: 2em " 为此,科研人员基于Ca2+离子的插层作用,首次利用铜基普鲁士蓝CuHCF作为赝电容电极,在Na+、Ca2+、Mg2+等多种阳离子混合溶液中对Ca2+实现了高选择性电吸附。在非对称电容去离子装置中,1.4?V工作电压下获得了42.8?mg/g的钙离子最大吸附容量,尤其是在高钠/钙离子摩尔比(10:1)溶液中依然保有最高吸附选择性系数3.05,并且在循环过程中铜基普鲁士蓝CuHCF电极材料也能保持原有的形貌和稳定的吸附容量。科研人员结合电化学表征以及分子动力学模拟技术,阐明了铜基普鲁士蓝CuHCF电极材料选择性吸附钙离子的赝电容本征特性。 /p p style=" text-indent: 2em " 该研究成果对于探索CDI赝电容电极材料高效选择性电吸附目标离子以及CDI硬水软化技术具有重要意义。? /p p br/ /p
  • 高能镍碳超级电容器问世 解决电动车电源问题
    周国泰院士(左二)和科技人员一起检验汽车用高能镍碳超级电容器   你看满大街上跑的汽车,有几辆是电动车?   2008年北京奥运会,2010年上海世博会,人们看见电动汽车上路了,跑起来了。让人振奋!   可是,到了今天,电动汽车还是“雾里看花”。   怎么回事呢?   周国泰院士斩钉截铁地说,问题出在电动车的电源上。电动车的电池技术还没有“过关”。   这是在北京的总后军需物资油料部“周国泰院士工作室”,科技日报记者采访周国泰院士的一段对话。   紧接着,周国泰说:“如今,我们研发成功了高能镍碳超级电容器,这是电动车电源的一个新突破,将对电动车产业发展带来深刻影响。”   他随手拿给记者一份邀请函,是8月24日天津市政府印发的。上面写道:“天津市围绕推动新能源产业发展,与中国工程院院士周国泰合作,成功开发出高能镍碳超级电容器产品。经天津市科委组织成果鉴定,达到国际先进、国内领先水平,在电动汽车和储能电站中将具有竞争优势。天津市人民政府定于2011年9月1日上午10时在天津大礼堂召开高能镍碳超级电容器产品新闻发布会。”   眼前的周国泰院士,怎么搞起电动汽车研究了?   周国泰,我国军用、民用功能服装材料和士兵个体防护研究领域的知名专家。   从一名战士,到大学生,到走上总后军需装备研究所的科研之路,几十年来,周国泰在防弹装备、特种防护服装和防寒保暖材料研究等方面,取得多项成果。先后主持研制防弹背心、防弹头盔,解决了防弹材料及防弹结构体复合成型、树脂基体合成等一系列技术关键,研究成果居国际先进水平,他研制出的服装已装备军、警、法等部门,并出口美国等10余个国家。开展静电防护理论、特种防护服装研究与技术开发,研制的防静电、抗油拒水、阻燃等系列防护服装,装备到全国各大油田,并广泛用于石化、冶金、林业等部门。主持被服保暖材料、保暖机理和生产技术研究,合作研制成功热熔粘结絮片和PTFE防风防水透湿层压织物,广泛用于作训服、防寒服、南极考察服和运动服等。创建我国服装工效研究中心和单兵防弹装备V50弹击试验室,系统开展了服装工效学研究,实现了我国防弹装备测试评价与国际接轨。曾先后获得国家科技进步一等奖3项、二等奖3项,省部级科技进步奖多项成果奖励。1999年,当选为中国工程院院士,并晋升为少将。   今天的话题,还是谈谈你搞的超级电容器吧。   “你千万别说是我一个人搞成的。我有一个研发团队,有中央领导同志、有多个部委的关心支持,有天津市、张家港市、淄博市,有一大批多学科、多领域的专家协同合作创新,才开发出超级电容器,成为电动汽车的新电源。”院士、将军集于一身的周国泰,说话睿智果断,开门见山。   高能镍碳超级电容器,有哪些技术突破   高能镍碳超级电容器,成为一种用在电动车上的全新电源,周国泰说:“实现了几个突破。”   周国泰介绍,高能镍碳超级电容器,首先在加大材料的比表面积上实现突破。传统电容,100年前就发明了,电容是靠比表面积存储电荷,其优点是可无数次充放电,而且不发热。储电量的大小由其内部比表面积大小而决定。超级电容器,就是在研发出新材料的基础上,尽可能地扩大比表面积,使储电量大幅增加 第二,超级电容在正负极的材料结构上获突破。电池的优点是储电量大,由电能转化成化学能,再转化成电能释放出来,其比功率比传统电容高得多。超级电容,在结构上实现了电池和传统电容的内并,实现了电池和电容的优点兼备。   锂离子电池,不是业界推崇的电源吗?周国泰说:“技术还不过关!”他将这种电池与超级电容器作了比较。   第一,锂离子电池存在安全隐患。锂离子、有机电解质,其本身有易燃、易爆性,杭州、上海曾发生的电动汽车自燃事件,今天谈起来还让人后怕。超级电容器,充满电后用射钉枪打,使其短路,任何反应都没有 放火上烧,不锈钢外壳快烧红了,也没发生爆炸。锂离子电池,一旦发生短路,就会燃烧或者爆炸。   第二,锂离子电池,基本是300A电流充电,时间长,一次充电要6—8小时,使用不方便。超级电容器,可1500A,甚至3000A大电流充电,单块充满电只要几秒钟,上百块串联在一起充电,6分钟可达90%以上。   第三,锂离子电池寿命短。充放电的标准是2000次,目前很少有能达到的,即使达到了,性价比不实用。超级电容器,可大电流充电,瞬间大电流放电,效果理想,充放电可达5万—50万次,而充放电的国家标准是5万次。就说在淄博那次试验,公交车装上超级电容器充电后,乘坐满员,上了高速路,时速120公里,一次充电跑了210公里。使用超级电容器的小轿车,瞬间可大提速,时速可达130公里。   “你说超级电容器的优势怎么样?”说到此,周国泰问记者。大家都笑了。   回顾电动汽车发展历程,人们不难掂量出超级电容器的分量,也不难理解天津市政府为什么要召开新闻发布会的原因。   电动汽车诞生有100多年了,1839年,苏格兰人罗伯特安德森造出了世界上的第一台“电动车”。不过它不十分成功。主要原因是,电池寿命太短,电力太小,只能挪动一个非常轻的底盘。到了19世纪后期,长效电池诞生,促进了电动车的进一步发展,人们才在伦敦的大街上见到电力驱动的出租车,不过行驶距离非常短,还必须不停地在充电站里充电。   罗伯特不会预想到,历史进入到21世纪,随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,各国政府及汽车企业普遍认识到节能和减排是未来汽车技术发展的主攻方向,发展电动汽车成为解决这两个技术难点的最佳途径。电动汽车也随之成为世界各国的选择和技术竞争的一个焦点。   一些专家曾经估计,全球能源矿产资源仅够支撑不到100年 而我国的石油只能支撑国内消耗30年,煤炭最多能支撑100年。目前,我国每年有85%的汽油和20%的柴油被汽车烧掉,汽车无疑成为了能源消耗大户,能源紧张与汽车行业发展的关系十分密切。如果中国的人均汽车拥有量追上美国,中国的道路上就会奔跑着6亿多辆小汽车,这一数字将超过世界其他国家小汽车数量的总和,对能源的需求将不言而喻,中国必将成为第一大油耗和石油进口国。   国人不会忘记,当年铁人王进喜在首都北京看到汽车背着的“大包袱”,缺石油,被人瞧不起啊!   到了今天,汽车背的“大包袱”没有了,可城市却背上了“大包袱”。从地上看天,见不到蓝天白云,从空中往下看,灰蒙蒙的,不见城市的倩影。说重了,是民族的耻辱!   从能源、环境的角度审视,发展新能源汽车,是我国的必然选择。而且从技术的角度看,我国有自身的优势。   据相关资料显示:我国虽然在传统汽车领域落后于发达国家近二三十年,但在电动汽车领域,我国与国外的技术水平和产业化程度差距相对较小,并有机会在该领域获得重要席位。这也为我国汽车工业技术实现跨越发展提供了一次历史性的机遇,更重要的是我国还有后发优势。目前,我国电动汽车的研发已具备一定的基础,一些企业在20世纪90年代中期就推出了电动汽车样车。   我国“八五”以来电动汽车被正式列入国家攻关项目,对电动汽车的投入显著增加。我国的汽车企业和高校、科研院所等200多家单位投入了大量的人力、财力和物力研发电动汽车,并取得了一系列科研成果。“九五”期间,电动汽车被列入863计划12个重大专项之一,全国汽车标准化技术委员会于1998年新组建了电动汽车车辆标准化分技术委员会。科技部又于2001年启动了电动汽车重大科技专项,使我国电动汽车技术水平和产业化程度与国外处在同一起跑线上。     现代电动汽车一般可分为三类:纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)。但是近几年在传统混合动力汽车的基础上,又派生出一种外接充电式(Plug-In)混合动力汽车,简称PHEV。目前在全世界,电动汽车一直是各大汽车集团花费巨资研发的新兴领域。   然而,制约电动汽车发展的瓶颈,还就是电池。世界电动车协会主席陈清泉在2011中国长春国际汽车论坛上表示,当前我国电动汽车电池技术存在两个明显缺点:第一个缺点就是缺乏深层次技术。比如电池的化学问题、物理问题、温度问题、结构问题等,在这些方面我们研发还不够,没有能够建立数学模型把这些问题搞清楚 另一个缺点是缺乏评价体系。比如电池的安全性怎么样,在高温、低温环境下能不能正常工作,这些都没有一个好的评价。   有资料介绍,电动汽车对电池的要求比较高,电池要具备高比能、高比功率、快速充电和具有深度放电功能,循环和使用寿命要长。铅酸电池,虽然其比能量、比功率和能量密度都比较低,但是高的性价比使其应用广泛,然而带来的是严重的环境问题。镍镉电池和镍氢电池虽然性能好于铅酸电池,但是其性价比不高,含重金属,用完后回收处理难,若遗弃会对环境造成严重污染。   目前,越来越多的研究人员选用锂离子电池作为电动汽车的动力电池,但这种电池的缺陷十分明显,前面已叙。   “针对目前各种电池的缺陷,我们开发了超级电容器。”周国泰顿了一下,说,这种电容器的技术优势前面说了。所以,很顺利地通过了天津市科委组织的成果鉴定。   高能镍碳超级电容器,老百姓也用得起   有专家说,目前,几乎所有的人都认为电动汽车是未来的发展趋势,但种种迹象表明,电动汽车离我们还是比较遥远。但电动自行车风靡全国,每天提几公斤的电池上下楼,在居民小区并不鲜见。电动汽车怎么办?   为此,有学者发表文章,对电动汽车提出种种担忧和质疑。有说电动汽车在电池上不成熟的,有说原子电池、聚合物电池、燃料电池、锂离子电池等任何电池都不环保的,各种议论不绝于耳。   有各种质疑和担心,也属正常。科技创新,正是在质疑中前行、在争论中创新的。说着,周国泰从沙发上站起来:“在发展电动汽车的过程中,有各种担心,是可以理解的。电池的问题卡住了电动汽车的脖子,这也是事实。”他扳着手指头,就说公交车吧,一辆公交车,走100公里,若用油30升,按8元1升算,要240元 而用电,走100公里。用电70度,每度电平均按6毛钱算,是42元钱。还是用电省吧。因此,发展电动车,不应动摇!   还以锂离子电池为例,与超级电容器比,锂离子电池成本7万元,充电2000次,每充电1次按行驶100公里算,20万公里就要更换电池 超级电容器,也按充电1次行驶100公里算,可充电5万次,甚至可达10万次、50万次,超级电容器的价格不高于锂离子电池。超级电容器回收后,对材料再激活处理后还可以使用。计算一下,综合成本有多低!这样,老百姓是不是就能用得起了?   超级电容器的生产是环保的,你可以到淄博年产100万只的生产基地去看,生产车间,只有一个地漏,那是用来打扫卫生冲水用的,整个生产过程,不产生废水、废气,没有污染排放。还用担心环保问题吗?   高能镍碳超级电容器,“协同会战”的结果   话题回到采访周国泰院士的开头。他还是坚持说那句话,超级电容器的研发,是多方支持,多领域、多学科专家协同攻关的成果。   “周院士说的是事实!”原海军后勤部技术装备研究所研究员陈同柱讲起了周国泰。   周院士是一位军人科学家。多年来,他创建了我们国家的军事科研的新模式和新路子。他作为领军专家,坚持军民融合发展,他把军内外有关专家,战略研究的,军事需求的,科研管理的专家都联合起来,充分集成地方的科研力量、技术成果,甚至地方的资金资源,高效组合起来,形成优势。这就是他的“小核心大联合”的科研创新模式。   陈同柱说,就说超级电容器这个新能源项目,看起来是解决电动汽车动力问题,最终是军民两用,可能在潜艇、航天,包括新型飞机、导弹都可应用,解决国防军事急需的新能源,花了最少的钱,取得了大成果。现在,导弹、飞机、航天火箭,液体燃料的推力远远不够用了,他的科研找到了路子,很可能要在这方面突破。这就是军民融合。   回顾周国泰的科研历程,他倡导“大科研”的思路清晰可见。   多年来,他打破研究所的“高大院墙”,广泛合作,先后有十几名院士和知名专家给他当顾问,直接参与课题研究。他把研究室主任带到训练场上去,带到船上去,干什么?上去找科研课题。他说,你研究的防寒服装,要自己穿上到寒区部队去和战士一块体验。比如,研究出舰船食品,就到船上去,风浪颠簸后看自己能不能吃。   他说:“好舵手会用八面风!科研,要兼容式、融合式,广泛联合、协作,充分发挥各方面的力量,发扬‘两弹一星’精神!”正是这样,在“九五”期间,周国泰创造了一个不足百人的研究所获得11项全军科研重大贡献奖,而有几千人的一个研究院才获9项。   关于获得多方面支持和合作,周国泰讲了一个故事。   一次,周国泰向一位中央领导同志汇报,说超级电容器用在电动汽车上,从起步,上坡,提速,包括充电速度如何快等等,讲得头头是道。这位领导同志说,我不听你讲,把车开来看看。   果然,周国泰把车开来了,领导坐了一圈,给予肯定:好!并详细过问还有什么困难。这件事发生在2010年。   超级电容器研发,像许多创新成果一样,最初从实验室做起,始于2008年。   怎么想到了研发超级电容器呢?   先看看这一年有关电动汽车的信息,各种电池技术及生产的消息,铺天盖地。人们的胃口吊起来了,期待着大街上有更多的电动汽车在跑。同时,业界在电动汽车电池技术上,也有不少争论。有人认为,电动汽车电池技术上解决了,只是成本高,国家出台补贴政策,就能推进电动汽车产业的发展。也有人提出,靠国家补贴,不是长久之计,有人在借机圈钱,电池技术还没有真正“过关”。   在这样的氛围下,周国泰组织创新团队攻关。他注意到,有人在传统电池上做文章,力求技术新突破。传统电池,是电能变成化学能,再转变成电能。而传统电容,是做大比表面积,通过研发各种物质材料,用增加比表面积的办法,来提高电容的性能。比表面积最大的材料,是活性碳。周国泰,在传统电池和传统电容之间,选择了一条科研的“中间路线”,集成电池和电容的优点于一身。   科技创新,往往是在不经意间,又往往以科研思路正确取胜。有成就的科学家,首先是在科研思路和方法上与众不同,从而获得科学突破。周国泰就是这样的科学家。在近4年的时间里,他领着科研团队,日夜苦干。他像当年研究石油工人防护服那样,从实验室到油田,身背大包服装搞试验,四处奔波 他像当年研究作战防护服、防弹头盔那样,上靶场,进深山,钻猫耳洞。研发超级电容器,还是那样“拼命三郎”。为此,4年间,周国泰病倒两次住院。   这里难以记述周国泰和研发团队更多的创新故事。不过,在近4年的时间里,他和研发团队终于获得了新成果:高能镍碳超级电容器。在天津市科委组织的成果鉴定会上,获得很高的评价。   采访周国泰院士,他不愿讲自己“过五关、斩六将”的故事,而是不间断地谈超级电容器研发获得的方方面面的大力支持和研发中的大团队协同。   他说,这是事实啊!从中央领导,到国家发改委、科技部等多个部委、天津市、天津市科委、张家港市、淄博市等,各级领导重视、关心、支持,涉及汽车等多领域、多学科专家密切合作,步调一致,协同攻关。不如此,这个超级电容器搞不出来,更不能成功用在汽车上。   举个例子吧。发改委的有关领导多忙啊!可是,领导多次表示:“周院士来谈项目,随时可见。”   做实验,急需一笔资金,张家港市委书记黄钦、市长徐美健得知后,当即拍板:“资金一周内到位。” 徐美健说:“这是国家的大事、民族的大事,即使失败了,我们张家港也愿意交这个学费!”   超级电容器中试,需要投入一笔资金,建中试生产线,淄博市委书记刘慧晏、市长周清利也还是当即决定:“中试生产线建在淄博,年产100万块,投资一周内到位。”周清利说:“实现零排放,还百姓一片蓝天是我们共产党人的责任,我豁出老命也要一干到底。”不仅如此,市科技局局长周元军就住在厂里,中试生产线高质量、高标准,以最快的速度建成。   周国泰还讲了几件他难忘的事。   超级电容器要在汽车上做试验。那是一个大冬天,北京那天出奇的冷。淄博市科技局局长周元军带着汽车,大汽车上驮着小汽车,一路从淄博赶到北京,下了车双手冰凉,身体发抖。再看几位穿工作服的随行,装车、卸车。旁人不知道,这几位是山东理工大学领军级的教授啊!   超级电容器做汽车发动机试验,涉及到天津军交实验室、天津无线电18所、汽研中心等多家单位、多位科研人员,大家一呼百应,一项试验要求5天完成,天津军交学院院长犹如战场下命令:“5天完成,只能提前。”   尤其是天津市,张高丽书记在不到一年的时间5次亲自召开会议协调和讨论此项目,并做多次批示。分管工业的副市长王治平召开20余次专门会议协调政府有关部门。天津市有关企业联合攻关,科委领导多次来试验室,具体指导项目的进程。他们心中装的是环境,装的是百姓,装的是那一片蔚蓝的天!   周国泰说:“我不是搞汽车的。超级电容要用在汽车上,如果没有这样的大力支持、协同攻关、良好的合作,是根本不可能的!协同,使每个人的创新潜能充分释放出来,整合起来。”   又说起为研发超级电容器项目,周国泰不到4年两次住院。院士也当了,将军的衔也授了,功成名就了,何必再“拼命”呢?!   周国泰说:“节能减排,哥本哈根会议上,温总理有承诺。还老百姓一片蓝天,作为科技工作者,我有一份责任!”   走出周国泰院士工作室,记者还回味着这句话。
  • 超级电容器用电极片首个国际标准发布
    近日,中科院山西煤炭化学研究所(以下简称山西煤化所)主持制定的国际标准IEC/TS 62565-5-2 (超级电容器电极片—空白详细规范)由国际电工委员会纳米电工产品与系统技术委员会(IEC/TC 113)对外正式发布。  该标准是超级电容器用电极片的首个国际空白详细规范,详细梳理了电极片影响器件性能的化学、物理、结构和电化学关键控制特性及其相应测试方法。  电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛应用于电动汽车、高速列车、飞机、光伏、风电和电子等领域。山西煤化所开展超级电容器研究以来,打通了“原料—材料—器件—应用”产业创新链,建立了超级电容器中试平台,用于评估电容炭的电化学性能,进一步反馈指导材料研发、生产和质量控制。该所科研人员发现,对超级电容器电极片的关键控制特性进行准确表征,并阐明“电容炭—电极片—电容器”之间的构效关系,对整个产业链的基础科学研究和技术开发十分重要。  2018年,山西煤化所提出制定电极片空白材料规范的设想。2020年,该标准项目正式立项。  该标准的发布,将为超级电容器电极片统一术语概念、规范生产流程、建立产品规范提供指导,为促进相关领域行业技术交流、技术合作及消除贸易壁垒提供支持。同时,该标准是超级电容器用电极片的首个国际标准,填补了国际标准化的空白,也为IEC/TC 113引入了超级电容器及其材料的概念,开启了IEC/TC 113在超级电容器用炭纳米结构材料领域的国际标准化制定工作,提升了我国在相关领域的国际影响力和话语权。
  • 超级电容又添新材料,稳定性大幅度提高
    p   多年来,能装在芯片上的微小超级电容一直广受科学家追捧,决定电容器性能的关键是其电极材料,有潜力的“选手”包括石墨烯、碳化钛和多孔碳等。据德国《光谱》杂志网站近日报道,芬兰国家技术研究中心(VTT)研究团队最近把目光转向了一种“不可能”的弱电材料——多孔硅,为了把它变成强大的电容器,团队创新性地在其表面涂了一层几纳米厚的氮化钛涂层,使其性质得以改变。 /p p   该团队负责人麦卡· 普伦尼拉解释说,因化学反应导致的不稳定性和高电阻导致的低功率,不带涂层的多孔硅本是一种极差的电容器电极材料。涂上氮化钛的能提供化学惰性和高导电性,带来了高度稳定性和高功率,且多孔硅有很大的表面积矩阵。 /p p   根据荷兰爱思唯尔出版集团《纳米能源》杂志在线发表的论文,新电极装置经13000次充放电循环而没有明显的电容减弱。普伦尼拉说,报告数据受检测时间的限制,而并非电极真实性能。他们继续对其进行充放电循环,至今已达到5万次,甚至在循环中让电极干燥,也没有出现物理损坏或电学性能衰减问题。“超级电容要求稳定地达到10万次循环。目前用多孔硅—氮化钛(Si-TiN)做电极的电容装置能完全稳定地通过5万次测试。” /p p   在功率密度和能量密度方面,新电极装置比得上目前最先进的超级电容器。目前由氧化石墨烯/还原氧化石墨烯制造的芯片微电容器功率密度为200瓦/立方厘米,能量密度为2毫瓦时/立方厘米,而新电极装置功率密度达到214瓦/立方厘米,能量密度为1.3毫瓦时/立方厘米。普伦尼拉说,这些数字标志着硅基材料首次达到了碳基和石墨烯基电极方案的标准。 /p p   从电子产品的功率稳定器到局部能量采集存储器,芯片超级电容器有着广泛的应用。普伦尼拉说,他们在整体设计中还存在一些难题,每单位面积电容仍需提高,要达到技术许可的最高水平,他们还需进一步研究。 /p p   总编辑圈点 /p p   日本厨师发现将牛油果加上芥末竟然有了三文鱼的味道。如今,芬兰科学家也玩起了这样混搭的“戏法”——他们给多孔硅穿上一层氮化钛的外衣,尽管这层薄薄的外衣只有几纳米那么厚,却足以改变多孔硅电极的性能。这样的想象力让超级电容器的电极材料又多了一位优质成员,且它给人们的生活带来的改变也许远比一道日本料理大得多!随着芯片技术的广泛应用,希望科学家尽快解决多孔硅电极材料在超小型超级电容器上的设计问题,让这样巧思的发明早日造福人类。 /p p br/ /p
  • 高性能石墨烯基锂离子电容器研究获进展
    近日,电工研究所马衍伟团队联合大连化学物理研究所研究员吴忠帅在高性能石墨烯复合材料制备、石墨烯基锂离子电容器研制方面取得进展。相关研究成果以2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling High-Performance Flexible Solid-state Lithium-Ion Capacitors为题,发表在《先进功能材料》(Adv. Funct. Mater., 2022, 2202342)上。 锂离子电容器作为一种有效结合锂离子电池与超级电容器的新型电化学储能器件,具有高功率密度、高能量密度以及长循环寿命,有效弥补了锂离子电池和超级电容器之间的性能差异。电极材料作为锂离子电容器的重要组成部分,是影响锂离子电容器性能的关键因素。 精细的结构设计工程被认为是提高电极材料电化学性能的有效方式之一。马衍伟团队提出了一种通用静电自组装策略,在还原氧化石墨烯上原位生长了具有卷心菜结构的MnO复合纳米材料(rGO/MnO)。通过深入的原位实验表征以及理论计算,证实了rGO/MnO异质结构具有较强的界面作用和良好的储锂动力学。由于rGO/MnO复合纳米材料具有高电荷转移速率、丰富的反应位点以及稳定的异质结构,基于rGO/MnO复合纳米材料制备的电极具有高比容量(0.1 A/g电流密度下比容量为860 mAh/g)、优异的倍率性能(10 A/g下比容量为211 mAh/g)以及长循环稳定性。因此rGO/MnO复合纳米材料可作为高性能锂离子电容器理想的负极材料。 通过将这种高性能石墨烯基复合材料作为负极与活性炭正极进行组装,马衍伟团队成功制备出柔性固态锂离子电容器(AC//rGO/MnO)。经测试,这一电容器基于电极活性材料总质量的能量密度最高达到194 Wh/kg,功率密度最高可达40.7 kW/kg。这是迄今为止报道柔性固态锂离子电容器能量密度和功率密度的最高值。此外,在10000次充放电循环后,AC//rGO/MnO电容器的容量保持率可达77.8%,并且安全性能高。 科研团队表示,这一研究提出的金属氧化物/石墨烯复合材料设计策略在高能量密度和高功率密度的柔性锂离子电容器中具有很好的应用前景。 该研究工作得到国家自然科学基金、中科院大连洁净能源研究院合作基金、中科院青年促进会等的支持。 论文链接: https://doi.org/10.1002/adfm.202202342 石墨烯复合材料结构示意图和锂离子电容器原理性能图
  • 牛津仪器携扫描电容显微镜(SCM)亮相SEMICON CHINA 2021
    仪器信息网讯 自1988年首次在上海举办以来,SEMICON CHINA 已成为中国首要的半导体行业盛事之一,它囊括当今世界上半导体制造领域主要的设备和材料厂商,也见证了中国半导体制造业的快速成长。 2021 年3月17日,SEMICON CHINA 2021在上海新国际博览中心隆重召开。牛津仪器也携其半导体解决方案亮相SEMICON CHINA 2021。牛津仪器展台牛津仪器1959年创建于英国牛津,是英国伦敦证交所的上市公司,生产分析仪器、半导体设备、超导磁体、超低温设备等高技术产品。在五十多年的发展过程中,牛津仪器公司凭借自身的科研优势,凭借出色的技术管理和产品服务为全球的科技发展做出了贡献。牛津仪器现已成为科学仪器领域的跨国集团公司,生产基地、销售和服务网络,客户遍及一百多个国家和地区。在此次牛津仪器参展的产品中,牛津仪器展示了全新推出的高频扫描电容显微镜(SCM)和大样品台原子力显微镜Jupiter XR,该款仪器是专门为半导体行业和分析测试平台设计的最新一代快速扫描原子力显微镜。对已知掺杂浓度阶梯状样品,全新一代高频扫描电容显微镜(SCM)分辨掺杂类型和提供线性的电容信号响应据了解,在扫描电容显微镜(SCM)诞生之前,研究人员、半导体芯片制造商和失效分析工程师对掺杂水平、掩模和注入物对齐以及由于这些误差导致的器件失效等细微变化和误差视而不见。SCM的发明让工程师能够在亚微米尺度上探测器件,相比于上一代设计,牛津仪器全新的高频SCM设计可以在器件制造和故障分析中发现问题所在。SCM的核心是一种纳米级的电学AFM成像技术。它利用微波射频信号探测样品的局部电学性能,测量自由载流子浓度和类型。SCM可以直接检测电容变化,分辨率可达1 aF。由于采用了测反射信号(S11)的振幅和相位变化的方法,其相比于传统的SCM只能测定相对值来说,牛津仪器全新推出的高频SCM可以直接测量电容真实值。其更高的灵敏度也允许探测金属和绝缘体,以及传统半导体器件以外的非线性材料——包括那些不形成自然氧化物层的材料。Jupiter XR原子力显微镜全新一代的高频SCM可以在牛津仪器的原子力显微镜Jupiter XR AFM 平台上实现自动化智能扫描,一键成像。Jupiter XR原子力显微镜与大多数原子力显微镜相比,同等成像质量下扫描速度快数十倍,同时其高度自动化的操作让检测效率大大提高,高精度分辨率可达分子级别,并且在粗糙度测量方面实现了皮米级的分辨率和超过1000次连续扫描粗糙度差别小于1%的高重复性,可以用于半导体工厂生产中的宽禁带半导体材料测试、外延生产、半导体失效分析、平台质检QC、QA、FA等领域。Ultim Extreme EDS此外,牛津仪器还展示了一款EDS能谱仪。Ultim® Extreme 是Ultim Max系列中的一款无窗能谱,晶体面积100mm2,经优化设计来尽可能提高灵敏度和空间分辨率。它采用跑道型结构设计,优化高分辨率场发射扫描电镜在低加速电压和短工作距离下工作时的成像和EDS性能,使用Ultim Extreme,EDS的空间分辨率接近扫描电镜的分辨率。
  • 山西煤化所主持的一项超级电容器用材料领域国际标准正式发布
    近日,由山西煤化所主持制定的国际电工委员会(IEC)国际标准IEC/TS 62565-5-2 《Nanomanufacturing – Material Specifications – Part 5-2: Nano-enabled electrodes of electrochemical capacitor – Blank detail specification》正式发布。该标准提案于2018年提出,2020年5月立项,山西煤化所王振兵和陈成猛担任项目组组长,黄显虹作为执行负责人,项目组由来自中国、加拿大、韩国、德国、俄罗斯的十名专家组成,制定过程广泛采纳征求IEC成员国意见,为标准的高适用性和广泛采用奠定了基础。 电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛应用于电动汽车、高速列车、飞机、光伏、风电和电子等领域。山西煤化所开展超级电容器研究十余年,打通“材料-器件-应用”产业创新链,在国产化超级电容器用纳米孔结构活性炭材料技术攻关过程中,建立了超级电容器中试平台,用于评估材料的电化学性能,进一步反馈指导材料的研发、生产和质量控制。山西煤化所科研人员发现,超级电容器电极片的制备工艺和理化关键控制特性,不仅能反映原材料的特性,而且直接决定器件的性能,是原材料和器件之间的关键桥梁,因此超级电容器电极片的准确表征对整个产业链的高质量发展十分重要。 目前,国际国内对于超级电容器电极片的标准化仍是空白,亟需标准化的规范引领指导。山西煤化所科研人员基于行业需求,通过研发积累、与产业界广泛深入交流以及对科学文献和标准方法进行系统调研,提出了超级电容器电极片的首个材料规范标准,该标准详细梳理了电极片影响器件性能的化学、物理、结构和电化学关键控制特性及相应测试方法。 该标准的发布,将为超级电容器电极片统一术语概念、规范生产流程、建立产品规范提供指导,促进相关领域行业技术交流、技术合作,并为消除贸易壁垒提供标准支持。同时,该标准是超级电容器电极片的首个国际标准,填补了国际标准化的空白,也为IEC/TC113(国际电工委员会纳米电工产品与系统技术委员会)引入了超级电容器的概念,开启了国际电工委在该领域的标准化制定工作,提升了我国在超级电容器用材料领域的国际影响力。
  • 一种光电容积脉搏波测量方式有望实现指夹式血压测量
    近年来,生物传感设备的深入研究和进步大大提升了人类监测各项生命体征的手段,可以帮助医生更快速、便利、准确地了解患者的健康状况,但是,因血压的准确性可能受到紧张情绪的影响(如“白大衣性高血压”等),所以快速、便捷、轻松的血压测量和持续的血压监测技术仍存在较大需求和开发空间。  近日,来自密苏里大学的研究团队通过光电容积脉搏波传感器测量脉搏波速度,实现了对血压的测量,有望为开发一种新型的指夹式血压测量工具提供了理论基础。相关研究成果发表在《IEEE Sensors Journal》上,题为“Toward Robust Blood Pressure Estimation from Pulse Wave Velocity Measured by Photoplethysmography Sensors”。  科学家们设计了一种基于两个光电容积脉搏波 (PPG) 传感器开发的血压测量单元,从中可以得出血流的脉搏波速度 (PWV),在两次心跳之间收集的后续的 PPG 波形稳定时间差用于计算PWV,一旦收集到PWV的数据,信息就会自动无线传输到计算机中,以通过机器学习算法进行信号处理和血压计算。  这项研究取得了较为理想的通过非侵入性血压测量设备测量血压的准确率,并同时可以测量心率、血氧饱和度、体温和呼吸频率等生命体征,该项研究仍需要更大样本量的数据验证最终的准确性,这为未来开发一种指夹式生命体征监测便携设备提供了一定的设计构想和理论基础。  论文链接:  https://ieeexplore.ieee.org/document/9646921/metrics#metrics  注:此研究成果摘自《Ieee Sensors Journa》,文章内容不代表本网站观点和立场,仅供参考。
  • AEM:高储钠性能超级电容器研究分享
    北京化工大学杨志宇教授AEM:高储钠性能超级电容器研究分享超级电容器因其良好倍率性能、循环性能的可再生能源存储设备,已成为热门的电化学可再生设备。然而,超级电容器的实际应用仍面临能力密度低、性能提升依赖于先进电极材料开发等困难。目前常采用法拉第电极材料,包括过渡金属氧化物、过渡金属氮化物和过渡金属二硫化物等提高超级电容器的能量密度。其中,过渡金属氧化物因具有高理论电容,低成本,环境友好等优势,作为潜力巨大的电极材料应用在超级电容器中。然而半导体性质的过渡金属氧化物仍有固有电子电导率低,充放电过程中容量和倍率性较差等不足,因此如何设计良好的电子结构对于优化过渡金属氧化物的电化学性能至关重要。北京化工大学杨志宇研究员及团队在知名期刊Advanced Energy Materials上发表了题为“Elevating the Orbital Energy Level of dxy in MnO6 via d–π Conjugation Enables Exceptional Sodium-Storage Performance”的文章。过渡金属氧化物 (TMO) 具有固有的低电子电导率,而原子轨道相关的调节对于促进储能应用中的电子转移动力学至关重要。该研究利用 d-π 共轭策略来提高 TMO 的电子电导率。选择具有大共轭体系的酞菁 (Pc) 分子来修饰过渡金属氧化物 (δ-MnO2)。通过密度泛函理论(DFT)模拟,验证MnO2和Pc之间的强d-π共轭可以提高MnO6单元中低能轨道(dxy)的轨道能级,进而提高dxy的氧化还原活性,从而显著提高电化学钠存储性能。结果与讨论作者采用扫描电镜和透射电镜等设备分析材料的形貌结构,X射线能谱分析样品的电子结构和成分信息,紫外可见吸收光谱检测材料在250-800nm波长范围带隙,采用X射线吸收光谱展现材料的边缘结构和精细结构。使用北京卓立汉光仪器有限公司自主研发的Finder Viseta激光显微共聚焦拉曼光谱仪检测原位拉曼光谱,用于揭示其充放电循环过程中结构变化。图1 a)MnO2-Pc合成示意图;b)XRD谱图;c)FTIR光谱图;d)能量损失图;e) TEM图像;f)选定区域电子烟摄图;g)高分辨率TEM图像;h-l)元素映射图图2:a)CV曲线,MnO2-Pc 和MnO2 在20 mV s&minus 1;b)GCD曲线,MnO2-Pc 和MnO2 在 1 Ag&minus 1;c)GCD曲线,MnO2-Pc在不同电流密度下;d)比容量 ,MnO2-Pc和MnO2在不同电流密度下;e)Nyquist图,MnO2-Pc and MnO2;f) CV曲线,MnO2-Pc在不同扫描速率下;g)拟合曲线 h)电流贡献值 i)三次充放电过程中原位拉曼光谱图图3 a-c)pDOS(投影状态密度)曲线;d)轨道能级图;e-f)计算 ELF的DFT切片;g)轨道能级提升和加速电子转移特征示意图。图4 a) MnO2-Pc(阴极)// AC(阳极)ASC原理图。b) 1.0 m Na2SO4溶液中MnO2-Pc和AC的CV曲线。c) 100 mV s&minus 1时不同电位范围的CV曲线。d)不同扫描速率下CV曲线;e) GCD曲线(不同电流密度)。f)本工作中ASC的Ragone图与报道结果进行比较。结论:本文用 Pc 修饰 MnO2 以调节低能轨道 dxy 的轨道能级,并获得了更高的 MnO2-Pc 电化学储能性能。DFT 研究表明,轨道杂化引起的强 d-π 共轭提高了 dxy 的轨道能级并扩展了轨道能量分布,从而促进了电子转移动力学并激活了 dxy 的氧化还原活性。轨道能级提升策略有效地提高了 MnO2-Pc 的电化学 Na+ 存储能力。获得的 MnO2-Pc在 1 A g-1 时显示出 310.0 F g-1 的高比电容,在 20 A g-1 时显示出 211.6 F g-1 的优异倍率容量。这项工作为改进 过渡金属氧化物的电化学 Na+ 存储提供了轨道能级提升策略的机理见解,这种有效的策略可以扩展到储能应用中其他先进电极材料的设计。原文链接:https://doi.org/10.1002/aenm.202300384相关产品推荐本研究的拉曼光谱采用Finder系列拉曼光谱仪检测,该系统全新升级为930全自动化拉曼光谱分析系统,如需了解该产品,欢迎咨询。产品链接:https://www.zolix.com.cn/Product_desc/1105_1562.html 作者简介杨志宇,北京化工大学研究员。北京理工大学博士学位,清华大学博士后。主要研究方向为电化学领域。目前的研究方向是 (i)电化学储能,(ii)电催化CO2还原,电催化甲酸氧化和电催化氮还原 (iii)电容除盐。已发表一作、通讯SCI论文60余篇,包括JACS、AEM、AFM、Nano Energy、JEC、Small、CEJ、JMCA、JPS,申请专利7项,授权5项。免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确,如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
  • 半导体电容器组件三合一检测关键技术通过评价
    3月7日,中国机电一体化技术应用协会在广州组织并主持召开了“半导体电容器组件三合一检测关键技术研究及应用”项目科技成果评价会议。此次成果评价会议以线上线下相结合的形式进行,经专家评价,该项目整体技术水平达到国际先进水平。该项目由广州诺顶智能科技有限公司、华南理工大学、广州天极电子科技股份有限公司共同完成,特邀中国工程院院士、浙江大学求是特聘教授谭建荣担任专家组组长,广东省科学院智能制造研究所教授级高工程韬波为副组长,评价会议由中国机电一体化技术应用协会科技质量部主任、专家委秘书长刘明雷主持。针对微小半导体电容器组件的外观检测、电性能检测、分选三合一高速高精度集成测试难题,该项目研发了光度立体成像技术与互补融合视觉检测算法、电容充电及测量快速精准切换控制技术、首创微小电容器组件三合一无损吸附测试技术等,研制出半导体电容器组件三合一智能检测设备。该设备集成了外观检测、电性能检测、分选等功能,具备兼容性好、测量精度高、智能化程度和分选效率高等特点,填补了微小半导体电容器组件的外观检测、电性能检测、分选三合一检测集成装备的空白,实现了进口替代。项目产品经广东产品质量监督检验研究院检测,所检项目符合相关要求。来自浙江大学、广东省科学院智能制造研究所、广州机械科学研究院有限公司、广东产品质量监督检验研究院、广东省机械研究所等单位的7位专家组成的评价委员会,认真听取了项目完成单位的报告,审查了相关资料。经质询和讨论,他们一致认为,该项目成果具有创新性,整体技术水平达到国际先进水平。此次成果评价会议得到多方资源的支持,受到中国机电一体化技术应用协会的高度重视及聚智诚团队专业的科技成果评价指导。据悉,广州诺顶智能科技有限公司自主研发的设备覆盖芯片、元器件、通信、汽车电子、新能源等领域。2020年,该公司在芯片半导体微小器件领域投入大量研发后,成功研发出01005级别微小器件封测技术。科技成果评价会议现场。中国工程院院士谭建荣以线上方式参加评价会议。评价专家与项目团队合影。项目产品(局部)。本文图片由朱汉斌拍摄
  • 工信部:推动电子元器件和电子专用设备及测量仪器等产业协作
    9月20日,工信部举行“新时代工业和信息化发展”系列主题新闻发布会。工信部电子信息司司长乔跃山在会上表示,新一代信息技术产业是国民经济的战略性、基础性和先导性产业。十年来,我国新一代信息技术产业规模效益稳步增长,创新能力持续增强,企业实力不断提升,行业应用持续深入,为经济社会发展提供了重要保障。其中,我国电子信息制造业增加值十年来年均增速达11.6%,营业收入从2012年的7万亿元增长至2021年的14.1万亿元,在工业中的营业收入占比已连续九年保持第一,2021年利润总额达8283亿元;软件和信息技术服务业业务收入从2012年的2.5万亿元增长至9.5万亿元,年均增速达16%,2021年利润总额达1.2万亿元,较2015年翻一番。创新能力持续提升乔跃山表示,十年来,我国新一代信息技术产业创新能力持续提升。集成电路、新型显示、第五代移动通信等领域技术创新密集涌现,超高清视频、虚拟现实、先进计算等领域发展步伐进一步加快。基础软件、工业软件、新兴平台软件等产品创新迭代不断加快,供给能力持续增强。全国软件著作权登记量从2012年的14万件增长至2021年的228万件,年均增长率达36%。同时,我国新一代信息技术产业结构不断优化。乔跃山介绍,2021年,14家中国软件名城软件和信息技术服务业业务收入占全国软件业比重达78.4%,产业集聚效应凸显。手机、彩电、计算机、可穿戴设备等智能终端产品供给能力稳步增长,内需升级趋势明显。如4K电视机加快普及,2021年我国4K电视机出货占比达到72%。国内多条全球最高世代液晶面板生产线投产,全柔性AMOLED面板生产线批量出货,8K超高清、窄边框、全面屏、折叠屏、透明屏等多款创新产品全球首发。此外,十年来,我国新一代信息技术产业赋能、赋值、赋智作用深入显现。“在新冠肺炎疫情期间,健康码、远程办公、协同研发等软件创新应用,有力支撑疫情防控和复工复产。”乔跃山说。集成电路销售额首次突破万亿元集成电路产业是信息产业的核心。乔跃山表示,近年来,在内外资企业的共同努力下,中国集成电路产业规模不断壮大。2021年国内集成电路全行业销售额首次突破万亿元,2018-2021年复合增长率为17%,是同期全球增速的3倍多。产业技术创新能力不断增强,芯片产品水平持续提升,较好地满足了新一代信息技术领域发展需要以及行业应用需求。不过,他坦言,我国集成电路产业仍面临产业基础薄弱、高端芯片供给不足等问题。下一步,工信部将做好《新时期促进集成电路产业和软件产业高质量发展的若干政策》落实工作,坚持融合创新,不断为产业发展注入活力,推动产业链各环节的创新发展,做大做强市场;坚持市场导向,充分发挥市场配置资源的决定性作用,努力营造良好产业生态;坚持政策协同,协调落实现有支持政策,加强知识产权保护与运用,持续优化产业发展环境;坚持开放共享,进一步加大开放力度,提升国际合作层次与水平,共同抢抓市场发展机遇,推动集成电路产业实现高质量发展。除了集成电路,种类繁多、应用广泛的电子元器件则是支撑信息技术产业发展的基石,也是保障产业链供应链安全稳定的关键。乔跃山介绍,以多层片式陶瓷电容器(MLCC)为例,每台智能手机平均使用数量超过1000只、每辆新能源汽车使用量超过10000只。他表示,我国电子元器件产业发展成绩斐然,已经形成世界上产销规模最大、门类较为齐全、产业链基本完整的电子元器件工业体系,我国电声器件、磁性材料元件、光电线缆等多个门类电子元器件的产量全球第一,电子元器件产业整体规模已突破2万亿元,在部分领域达到国际先进水平。下一步工信部将继续深入实施《基础电子元器件产业发展行动计划(2021-2023年)》,并与“十四五”制造业有关规划政策加强衔接,充分发挥协调机制作用,共同推动产业高质量发展。尤其是提升高端供给能力,推动骨干企业加快攻关突破,面向5G通信、新能源等领域,加快关键技术研发及产业化。此外,推动电子元器件和电子材料、电子专用设备及测量仪器等加强协作,引导基础电子产业升级。工业软件供给能力提升软件是新一代信息技术的灵魂,是数字经济发展的基础,尤其是国产操作系统的发展情况备受市场关注。在回答中国证券报记者有关国产操作系统问题时,工信部信息技术发展司副司长王建伟表示,在桌面操作系统方面,推动桌面操作系统与国际主流芯片架构和应用软件的兼容适配,加快提升产品功能性能,深化推广应用;在服务器操作系统方面,推动服务器操作系统与主流CPU、数据库、中间件等软硬件的兼容适配,加快提高产品国际竞争力,欧拉操作系统终端部署量超170万套;在移动操作系统方面,支持骨干企业开展核心技术攻关,加快移动操作系统应用推广和生态建设,鸿蒙操作系统装机量已超3亿台。王建伟称,下一步,工信部将深入落实国家软件发展战略,持续加大对操作系统的支持力度,顺应开源发展趋势,强化核心技术突破,培育壮大应用生态,更大力度汇聚产学研用各方力量,推动操作系统创新发展。工业软件在推动制造业数字化转型、赋能实体经济变革中发挥着重要作用。王建伟介绍,近三年,我国工业软件市场规模稳步壮大,供给能力有效提升。全国工业软件产品收入由2019年的1720亿元增长至2021年的2414亿元,年均复合增长率达18.5%。今年1-7月份,我国工业软件产品收入达1219亿元,同比增长8.7%,持续保持增长态势。
  • 比奥罗杰参展2016年超级电容器关键材料与技术专题会议
    为发展超级电容器器件及关键材料,促进解决关键科学问题,突破应用瓶颈,进一步推动超级电容器关键材料及技术的发展,促进我国超级电容器行业的健康有序融合与发展,由中国化工学会储能工程专业委员会主办,燕山大学环境与化学工程学院承办的“2016超级电容器关键材料与技术专题会议”于2016年8月25-27日在秦皇岛召开。比奥罗杰携SP-300系列高性能电化学工作站参展了本次会议, SP-300电化学工作站现场测试超级电容器样品表现出的稳定性及精确性让参会的超级电容器科研老师对bio-logic系列电化学工作站表现出浓厚的兴趣,并非常欣赏EC-LAB电化学软件在超级电容器应用上的优化。第一分会场报告实况 Bio-Logic仪器展示 晚宴黄晟副校长致辞 报到大厅
  • 第八届超级电容器及关键材料学术会议顺利召开
    为推动超级电容器器件、关键材料及相关技术的发展,解决瓶颈性问题,促进我国超级电容器行业的持续发展及有序融合,2023第八届超级电容器及关键材料学术会议于2023年7月21-23日在天津滨海丽呈酒店顺利召开。华洋科仪作为大会主要赞助商之一,携法国BioLogic最新系列电化学工作站产品出席了此次会议,吸引了众多参会者纷纷驻足咨询交流,了解最新的技术应用。随着能源危机与环境问题不断加剧,如何开发新的绿色能源已经成为全球关注的大事。超级电容器作为新一代绿色能源技术之一,近年来备受关注。华洋科仪一直致力于为我国各学科领域的前沿科学技术发展贡献一份力量,我司总代理的法国BioLogic电化学工作站及电池测试系统,能够为超级电容器器件及关键材料的科学研究提供完整的解决方案,满足不同用户的需求。华洋科仪报导2023年7月23日
  • 规模化制备高度集成微型超级电容器研究获进展
    p   近日,中国科学院大连化学物理研究所二维材料与能源器件研究组研究员吴忠帅团队与中科院院士包信和团队,以及中科院金属研究所成会明、任文才团队合作,采用丝网印刷方法规模化制备出高度集成化、柔性化、高电压输出的石墨烯基平面微型超级电容器,相关成果发表在《能源与环境科学》(Energy Environ. Sci.)上。 /p p   微型化、柔性化电子器件的快速发展,让人们对与之匹配的微型储能器件的需求越来越大。然而,单个微型储能器件的输出电压和电流有限,难以满足需要高电压、大电流驱动的电子器件的应用需求,在实际中通常需要将多个储能器件进行串联和(或)并联集成来提高电压和(或)电流。目前集成化储能器件一般需要借助金属连接体,导致器件一体性、机械柔韧性差,加工过程复杂,以及性能难以定制。因此,急需发展新的规模化技术来批量化制备高度集成、性能可定制的微型储能器件。 /p p   在该工作中,研究人员首先发展了一种具有优异流变学和电化学性能的石墨烯导电油墨,然后采用丝网印刷的方法,利用一步法实现了平面型及集成化微型超级电容器的集流体、图案化微电极和器件间导电连接体的制备,大大简化了制作流程,显著提高了集成器件的整体性和机械柔韧性。根据不同的实际应用需求,科研人员不仅可以对集成化微型超级电容器的形状和大小进行有效调控,而且能够实现任意数量平面微型超级电容器的串并联集成,进而有效定制输出电压(几伏至几百伏)和电流(纳安至毫安)。例如,由130个单器件串联得到的微型超级电容器模块,其输出电压可达到100V以上。该工作证明了石墨烯导电油墨可以同时作为集流体、导电连接体,以及高容量电极材料,丝网印刷技术可以高效、规模化地制备出高度集成化、一体化、高电压输出的平面微型超级电容器,获得的模块化器件具有出色的良品率、性能一致性、高电压输出等特征,具有广阔的应用前景。 /p p   上述工作得到国家自然科学基金、国家重点研发计划、大连化物所科研创新基金等的资助。) /p p style=" text-align: center " img title=" W020181210353843556910.jpg" alt=" W020181210353843556910.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/01dbcb67-90ca-4395-a863-2e1d7866840e.jpg" / /p p style=" text-align: center " 规模化制备高度集成微型超级电容器研究获进展 /p
  • 全球首款手机用石墨烯电容触摸屏研制成功
    最新发现与创新   1月8日,江南石墨烯研究院对外发布,全球首款手机用石墨烯电容触摸屏在常州研制成功。该成果经上海科学技术情报研究所和厦门大学查新,显示为国内首创,国外尚处于研发和概念机阶段。   现有手机触摸屏的工作层中不可缺少的材料为陶瓷材料氧化铟锡。氧化铟锡的价格高、用量大、易碎、有毒性(与铅的毒性可比)。而石墨烯触摸屏合成对环境无害,需要资源少,并且随着生产工艺的不断改进,生产成本有望大大低于传统氧化铟锡触摸屏。   由江南石墨烯研究院、常州二维碳素科技有限公司联合无锡丽格光电科技有限公司和深圳力合光电传感器技术有限公司共同研发的手机用石墨烯电容触摸屏项目,完成了基于石墨烯薄膜的手机触摸屏模组的工艺流程调试,成功制成电容触摸屏手机样机,并完成了功能测试,推出了可以实现基本功能的石墨烯电容触摸屏手机。电容屏传感器整个触摸区域可以识别单指和双指触摸及进行画线动作,实现图片单指手势左右拖动及双指手势放大和旋转。   据常州二维碳素科技有限公司于庆凯博士介绍,该成果与传统氧化铟锡触摸屏相比,除能实现功能替代外,更为重要的是具有优异的柔韧性。从技术层面上讲,该成果的问世缩短了产业界对石墨烯材料8—10年产业化的时间预期。今年,该成果可为手机商提供10万片触摸屏,成本比现用材料降低30%。   中科院院士、清华大学教授、江南石墨烯研究院名誉院长薛其坤认为,该项目攻克了能满足手机用触摸屏工艺要求的石墨烯薄膜制备技术难题,实现了大尺寸、高均匀、高导电、高透光的石墨烯薄膜的连续制备 展示了石墨烯薄膜透明电极材料所独特的性能优势,良好的商业价值和广阔的市场前景 石墨烯薄膜的使用,拓宽了未来柔性电子显示器件和柔性太阳能电池等产品开发的商业化空间。
  • 大连化物所研制出二维赝电容多电子反应储锂新材料
    近日,大连化物所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队在构筑高性能二维赝电容多电子反应储锂材料方面取得新进展,设计并制备出一种超薄二维VOPO4赝电容正极新材料,显著提升了多电子反应的动力学,构筑出高能量密度和高功率密度固态锂金属电池。   “多电子反应”通常被定义为每个活性材料分子转移一个以上电子的反应。作为一类典型的具有V4+/V5+和V3+/V4+多重氧化还原电对的多电子反应正极材料,VOPO4由于其负电性(PO4)3-阴离子具有较高的电势(3.55至3.95 V),可提供更高的能量密度。然而,VOPO4由于体积扩散过程和低本征电导率(10-8S/cm),其反应动力学缓慢。本工作中,团队通过调控VOPO4中的V4+缺陷,实现了高倍率多电子反应化学赝电容正极。团队制备的二维VOPO4/石墨烯纳米片,不仅具有超薄纳米片结构(2.8nm)以提高电子和离子电导率,而且通过控制V4+缺陷的含量,有效调节了多电子反应均匀性和反应动力学,降低了电极极化。该赝电容多电子反应正极在0.1C时的容量达313mAh/g,在50C的超快速率下保持了116mAh/g。进一步,团队提出了一种新型紫外光固化固态电解质(ETPTA-LiClO4-SSE),室温离子电导率可达0.99mS/cm,明显高于聚环氧乙烷固态电解质(约10-6S/cm)。团队组装的Li||ETPTA-LiClO4-SSE||VOPO4固态锂金属电池实现了85.4Wh/kg的高能量密度和2.3kW/kg的高功率密度,同时软包电池显示出出色的机械柔性和安全性。该工作为开发用于高比能高功率锂金属电池的多电子化学二维赝电容快充正极材料提供了一条新途径。   相关研究成果以“2D VOPO4 pseudocapacitive ultrafast-charging cathode with multi-electron chemistry for high-energy and high-power solid-state lithium metal batteries”为题,于近日发表在Advanced Energy Materials上。该工作的第一作者是我所508组博士研究生邢菲菲。上述工作得到了国家自然科学基金、我所创新基金等项目的资助。
  • 哈工大(深圳)魏军团队 AFM综述:3D打印超级电容器 - 技术、材料、设计及应用
    便携式、柔性和可穿戴电子设备的发展促进了高性能的电化学储能设备的快速发展。与电池和燃料电池相比,超级电容器表现出显著的优势,具有优异的倍率性能、杰出的循环寿命和卓越的安全性。然而,超级电容器的能量密度相对较低,不足以为电子设备提供连续且稳定的电源。为了提高能量密度,厚电极设计是有效的手段。而在传统的三明治结构的超级电容器中,平面电极的活性材料质量负载是相当有限的。设计三维多孔电极可以有效地提高活性物质的质量负载,同时保持较短的离子/电子传输距离和快速的反应动力学。但传统的制备三维多孔电极的方法通常复杂、昂贵、耗时,并且很难精确控制电极的结构。3D打印技术,通过计算机辅助设计/制造模型,对预定义的3D模型进行数字化控制,使得在短时间内精确控制和制造复杂结构成为可能。区别于传统的等材和减材制造技术, 3D打印技术可以实现几乎任何所需的立体几何形状,不需要所谓的模具或光刻掩模。这使得打印的超级电容器具有可调整的几何结构、高度集成、节省时间和低成本、以及卓越的功率和能量密度。为了总结这一领域的最新进展并为未来的研究提供设想,来自哈尔滨工业大学(深圳)的魏军教授团队,在Advanced Functional Materials上发表题为“3D Printed Supercapacitor: Techniques, Materials, Designs and Applications”的综述文章,回顾了3D打印超级电容器的最新进展,如图1所示。 图1. 3D打印超级电容器研究进展首先,介绍了用于制备超级电容器的代表性的3D打印技术,不同技术的原理图和特点如图2所示。 图2. 制备超级电容器的各种3D打印技术的原理图和特点接下来,文章重点介绍了超级电容器的可打印模块,包括电极、电解液和集流体,如图3所示。 图3. 用于3D打印超级电容器的材料在研究合适的可打印材料的同时,制造中的打印设计对于优化超级电容器的性能也是重要的。因此,文章总结了电极的设计(图4)、打印电极的后处理,并概括了3D打印超级电容器的不同构型(图5)。图4. 3D打印电极的不同结构设计 图5. 3D打印超级电容器的构型此外,还总结了3D打印超级电容器的各种应用,包括柔性可穿戴电子设备(图6)、自供电集成电子设备和传感系统(图7)。 图6. 不同类型的智能响应型超级电容器 图7. 3D打印的自供电集成系统,和超级电容器驱动的传感器系统。如图8可知,目前制备的3D打印超级电容器的能量密度与铅酸、镍氢电池和锂电池相当,有的甚至更高。 图8. 3D打印超级电容器的 (a)质量Ragone图, (b) 面积Ragone图最后,总结了目前3D打印技术的局限性和未来3D打印超级电容器的研究面临的挑战,并提出了一些可能的研究方向。 图9. 3D打印超级电容器的未来展望文章信息:Mengrui Li, Shiqiang Zhou, Lukuan Cheng, Funian Mo, Lina Chen,* Suzhu Yu,* Jun Wei,* 3D Printed Supercapacitor: Techniques, Materials, Designs and Applications, Advanced Functional Materials, 2022, 202208034.原文链接:https://doi.org/10.1002/adfm.202208034
  • 国家气体流量仪表质检中心通过验收
    近日,国家气体流量仪表质检中心顺利通过国家质检总局组织的能力建设现场验收。   2009年8月,国家气体流量仪表质量监督检验中心经国家质检总局批准,依托安徽省计量科学研究院筹建。   2011年9月,该中心12种产品,129个检验项目一次性通过国家认可委组织的计量认证、审查认可和实验室认可的“三合一”评审。   该中心拥有实验室面积约4500平方米,固定资产总值2295万元,其中大型、关键仪器设备20余台(套)。   该中心现有49人,技术人员占34人,其中博士研究生1人,硕士研究生11人,本科27人,专科及以下10人 高级工程师16人(其中正高级工程师1人),工程师14人,助理工程师及以下19人。   该中心有燃气表、气体小流量、气体大流量、二次仪表、耐压试验、性能试验、电磁兼容等7个实验室。可承担有关气体流量仪表的质量监督检验、质量仲裁检验、投产前的质量鉴定检验、产品质量认证检验以及客户委托的产(商)品检验 开展检验技术和检测方法的研究,开发新的检验技术、检测方法和设备 承担部分标准的起草和验证工作。   专家组通过召开会议、参观现场、查阅相关资料、进行盲样试验、开展座谈及现场考核人员等方式,从技术能力、团队建设、科研能力、运行状况、影响力和权威性、地方性政府支持6个方面,严格按照评估指南对国家气体流量仪表质检中心能力建设进行验收考核、评估。专家组一致认为,该中心实验环境良好,检测设备完善,人员结构合理,科研能力较强,获得地方政府较大力度的支持。中心的建成填补了国内专业气体流量仪表产品检验的空白,为节能减排提供技术保障,促进了气体流量仪表产业和区域经济发展。依托专业优势,国家气体流量仪表质检中心积极为相关产业开展相应的技术性服务,综合能力达到国内先进水平。经考核、评估,专家组一致同意该中心通过现场验收。
  • 大连化物所发表可降解聚合物基超级电容器的综述论文
    近日,我所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队发表了有关可降解聚合物基超级电容器的综述文章,系统总结了生物可降解聚合物在超级电容器中的应用现状,并对该领域存在的挑战和机遇进行了展望。   超级电容器在未来可穿戴和可植入电子设备领域具有应用潜力,但用于超级电容器的传统材料往往不可降解,随着其推广应用,将产生大量的电子垃圾,无法满足当今社会日益增长的环保要求。生物可降解聚合物包括天然生物可降解聚合物和合成生物可降解聚合物,它们在自然条件下可以被分解为无害的小分子,而且优异的生物相容性使其避免了对环境的污染和生物的危害,这些独特的性质若能应用于超级电容器,将对其环境无害化处理产生重要影响。该文章系统地综述了现有生物可降解聚合物的分类、典型结构、性能和制备工艺,并从制备策略和改性方法方面概括了生物可降解聚合物基超级电容器的最新研究进展。在此基础上,文章指出了目前可降解超级电容器发展中亟需解决的问题。该综述对生物可降解聚合物在超级电容器甚至是储能领域的进一步应用有一定的指导作用。   该综述以“Recent Advancements and Perspectives of Biodegradable Polymers for Supercapacitors”为题,发表在《先进功能材料》(Advanced Functional Materials)上,该工作的第一作者是我所508组博士后吴鲁和师晓宇。上述工作得到国家自然科学基金、中国博士后科学基金、我所创新基金等项目的资助。
  • 科众精密-分享接触角测量仪在材料科学中的应用
    科众精密是一家专业生产接触角测量仪的公司。在材料科学领域中,接触角测量仪具有非常广泛的应用,下面我们来介绍一下接触角测量仪在材料科学中的应用。接触角是指液体和固体接触面上的夹角,是表征液体在固体表面上的吸附、润湿、渗透和浸润特性的重要指标。接触角测量仪通过测量液滴在固体表面上的接触角来研究固体表面的性质和液体在固体表面上的相互作用。具体应用如下:表面能测量:接触角测量仪可以测量固体表面的表面能,即表面自由能。表面自由能是表征固体表面化学性质的重要参数,它可以用来预测液体在固体表面上的吸附、润湿、渗透和浸润等特性。表面改性:接触角测量仪可以研究表面改性技术对固体表面的影响。例如,通过在固体表面引入特定化学官能团,可以改善其润湿性能和耐水性能,从而改善其在液体介质中的应用性能。涂层材料研究:接触角测量仪可以用来研究涂层材料的润湿性能和耐腐蚀性能。例如,通过测量涂层表面的接触角,可以评估其抗水、抗油和抗化学腐蚀性能。纳米材料研究:接触角测量仪可以用来研究纳米材料的润湿性能和表面性质。由于纳米材料表面积大,表面性质较为特殊,因此接触角测量仪可以提供非常有价值的研究数据。界面现象研究:接触角测量仪可以用来研究液体和固体界面上的各种现象,例如界面张力、表面扩散和相互作用力等。这些研究数据对于理解物质的分子结构和表面性质具有非常重要的意义。综上所述,接触角测量仪在材料科学中具有非常广泛。
  • 大连化物所研制高系统性能和高集成度的微型超级电容器模块
    近日,大连化物所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队与单细胞分析研究组(1820组)陆瑶研究员团队,以及中国科学院深圳理工大学、中国科学院金属研究所成会明院士等合作,开发了高精度的光刻、自动喷涂和3D打印技术,研制出具有高系统性能和高集成度的小型单片集成微型超级电容器。   为适应小型化、可穿戴、可植入微电子设备的快速发展,需要发展具有小体积、高集成度、高性能和高兼容度的微型储能器件。平面微型超级电容器由于无需隔膜和外部金属连接线的特殊结构,同时具有可靠的电化学性能和易于调控的连接方式,在微电子领域有着重要的发展潜力。然而,由于缺少可靠的高精度微电极阵列制备和高效的电解液精确沉积技术,大规模制备高集成度、高性能的微型超级电容器仍具挑战。因此,急需发展创新性的微加工技术,来实现规模化、稳定性地制备高度集成、高性能、可定制的微型超级电容器。本工作中,合作团队发展了一种结合高精度的光刻、自动喷涂和3D打印技术的通用可靠策略,实现了高精度微电极阵列的大规模制备和凝胶电解质精确快速添加,研制出具有高面积数密度、高输出电压、性能稳定的集成化微型超级电容器模块。团队首先采用高精度光刻加工技术和高稳定性自动喷涂技术,制备出超小型集成化微型超级电容器,单个器件的面积仅为0.018cm2,器件间距为600μm,实现了面积器件数密度为每平方厘米28个,即3.5×4.1cm2区域内包含400个器件。随后,团队设计并发展了具有优异流变特性的凝胶电解质墨水,采用精确可控的3D打印技术,实现了极小区域内电解质的精确均匀添加,使得相邻单元微器件之间形成良好的电化学隔离,所得集成化微型超级电容器可以稳定输出200V的高电压,单位面积工作电压达75.6V/cm2,是目前已有报到工作的最高值。此外,该微型超级电容器模块在162V的极端工作电压下,循环4000次后,仍然保持92%的初始容量。该工作为超小体积、高电压微型功率源的发展奠定了一定的科学基础。   相关研究成果以“Monolithic integrated micro-supercapacitors with ultrahigh systemic volumetric performance and areal output voltage”为题,于近日发表在《国家科学评论》(National Science Review)上。该工作的共同第一作者是我所508组博士后王森和1820组博士后李林梅。上述工作得到国家自然科学基金、中科院A类先导专项“变革性洁净能源关键技术与示范”、大连市高层次人才创新支持计划、中国博士后科学基金等项目的资助。
  • 金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展
    多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚不清晰。因此,解析限域双电层结构对探讨这类材料的电化学电容存储机理和优化电化学电容器件的性能具有重要意义。中国科学院金属研究所沈阳材料科学国家研究中心项目研究员黄楠团队与比利时哈塞尔特大学教授杨年俊合作,设计并制备了具有规则有序0.7 nm层状亚纳米通道的膨胀垂直石墨烯/金刚石复合薄膜电极。其中,金刚石与垂直膨胀石墨烯纳米片共价连接,作为机械增强相为构筑层状限域结构起到支撑作用。进一步,研究发现,该电极表现出离子筛分效应,离子部分脱溶等典型的限域电化学电容行为,是研究限域双电层的理想电极材料。基于该材料,科研人员利用原位电化学拉曼光谱和电化学石英晶体微天平技术分别监测充放电过程中电极材料一侧的响应行为和电解液一侧的离子通量发现,在阴极扫描过程中,电极材料一侧出现拉曼光谱   峰劈裂现象,溶液一侧为部分脱溶剂化阳离子主导的吸附过程。该研究综合以上实验结果并利用三维参考相互作用位点隐式溶剂模型的第一性原理计算方法,在原子尺度上评估了限域双电层中离子-碳宿主相互作用,揭示了在限域环境中增强的离子-碳宿主相互作用会诱导电极材料表面产生高密度的局域化图像电荷。该工作完善了限域双电层电容的电荷储存机理,为进一步探讨纳米多孔或层状材料在电化学储能中的功能奠定了基础。   8月9日,相关研究成果以Highly localized charges of confined electrical double-layers inside 0.7-nm layered channels为题,在线发表在《先进能源材料》(Advanced Energy Materials)上。研究工作得到国家自然科学基金和德国研究联合会基金的支持。图1. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的制备和表征:(A)制备流程示意图;(B)石墨插层化合物的拉曼光谱;(C-D)XRD图谱;(E)SEM和TEM图像。图2. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的电化学行为:(A)CV曲线;(B)微分电容-电极电势关系;(C)离子筛分效应;(D)EIS图谱;(E-F)动力学分析。图3. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的原位电化学拉曼光谱:(A-D)原位电化学拉曼光谱;(E-F)拉曼特征演变幅度分析。图4. 层状限域双电层电容的储能机理分析:(A)拉曼光谱中的G峰劈裂;(B)电化学石英晶体微天平分析;(C)电极质量变化和拉曼特征变化的关联性;(D)DFT-RISM计算获得的图像电荷分布。
  • 新材料领域:物联无线微功耗电容感应触摸开关
    研究人员利用新型印刷技术制备了平面型薄膜电容感应芯片,并基于迷你单片机及低功耗蓝牙无线通讯技术,开发了一种低成本的新型物联无线微功耗电容感应触摸开关技术,其可以实现远程无线触摸控制开关,无须与墙面接触,使用十分方便, 本产品应用广泛,除了常见的智能家居系统,还可以在智能建筑、智能医院、智慧旅店、智慧养殖等系统中使用。主要技术指标(或参数):   1、功耗:50-100mW;   2、最大无线操作距离:100m;   3、无线通讯设备类型:蓝牙;   4、使用寿命:大于10万次;   5、工作温度:-10℃~60℃;   6、工作湿度: 10~95%RH;   7、符合人体工学设计;   8、外观精致时尚;   9、安装方便。   应用领域:   智能家居、智能建筑、智能医院、智慧旅店、智慧养殖等系统中使用的远程无线触摸控制开关。   市场前景:   现代生活需要人性化的电工开关产品。电工开关是每个人每天都要亲密接触的,操控次数远超过其它电器。传统的机械式电工开关,从发明灯泡到现在一直都在使用,它满足了人们的基本控制需求。然而在各种智能电子设备早已实现了触摸操控功能的今天,传统机械式操控的墙壁电工开关已经远远落后时代的需求。   此外,电工开关企业竞争需要产品升级换代。当前,电工企业处在一个转型期,低端产品已经无利可图。据有关部门统计,目前国内生产传统开关(插座)的电工企业大约有2800余家,具备生产许可资格的约有1500余家。加上西蒙电气、罗格朗等一大批外资企业凭借资本、技术、品牌等优势纷纷抢滩中国,国内电工市场竞争空前激烈。目前主要集中在品牌、价格、外观、材质上恶性竞争,传统开关(插座)利润的赢利空间大幅度下滑。业内人士普遍认为,相对于几年前,现有各类开关(插座)产品利润下降了10%-18%,产品为微利经营状态。所以,整个电工行业需要提升产品档次,企业需要新的经济增长点。   拟转化的方式(或合作模式):   可采用研究所与企业通过成果转让或技术入股等方式,共同推进该成果的产业化。   相关图片:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制