当前位置: 仪器信息网 > 行业主题 > >

粒度电量仪

仪器信息网粒度电量仪专题为您提供2024年最新粒度电量仪价格报价、厂家品牌的相关信息, 包括粒度电量仪参数、型号等,不管是国产,还是进口品牌的粒度电量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粒度电量仪相关的耗材配件、试剂标物,还有粒度电量仪相关的最新资讯、资料,以及粒度电量仪相关的解决方案。

粒度电量仪相关的资讯

  • 安东帕纳米粒度仪动态分享
    安东帕收购CILAS公司PSA业务: 日前,安东帕宣布收购法国激光粒度仪器制造商CILAS公司PSA业务以扩大公司颗粒表征的产品组合。 PSA系列仪器扩展了基于动态光散射的当前粒度测量仪器组合,是LitesizerTM系列仪器的极佳补充。该系列仪器基于激光衍射原理,扩展了可用尺寸测量范围,并将图像分析技术添加到了安东帕的产品系列。安东帕发明测试zeta电位的独特毛细管样品池: 安东帕发明用于zeta电位测试的样品池由聚碳酸酯制成,具有优秀的化学稳定性、抗磨损和抗划伤性能。安东帕Ω样品池的特征是毛细管的形状,类似于一个倒置的Omega(Ω)形状。与标准的U形毛细管相比,Ω形避免测量颗粒速度部分的毛细管电场形成梯度。 因此,安东帕Ω样品池测试不受测量位置的影响,结果高度稳定而具有重复性。新品发布 LitesizerTM500的自动滴定系统: 安东帕Litesizer500TM纳米粒度及zeta电位分析仪推出自动滴定系统,它是直接自动调节样品池中样品pH值的一种基本配件。现在,快速而准确地分析zeta电位和颗粒度随着pH值的变化成为可能。 悬浮液中颗粒的zeta电位是衡量悬浮液稳定性的指标,受pH值影响很大。因此,通常需要确定悬浮液的等电点,与之对应的是zeta电位等于0、颗粒不带电荷的pH值。这套自动滴定系统不仅可以避免手动调节pH值的繁琐过程节省时间和精力,更为重要的是减少人为误差的可能性。
  • 我们一直在路上--智能化激光粒度仪LS-609上市
    2015年6月2日,欧美克倾力打造的全新产品线再添一位重量级成员:智能化全自动激光粒度仪LS-609正式上市。 LS-609型激光粒度分析仪是基于LS-POP(9)平台升级开发的一款智能化全自动激光粒度分析仪。主机装载了进口He-Ne激光发射器,预热时间短,激光功率稳定。结合现代化智能测量控制分析软件和全自动循环进样系统SCF-105B,使得粒度测试流程简洁高效、测试结果稳定可靠,粒度测试报告直观明了,用户操作体验得到前所未有的提升。 2015年3月,政府在“新型工业化、城镇化、信息化、农业现代化”之外,又加入了“绿色化”,它是一种新的生产方式,对我们粉体行业可持续发展也提出了更高要求。粉体行业的绿色化发展离不开精密测量仪器加入,而在粉体行业粒度检测与控制领域也需要全新的测量仪器,能更好的适应行业的发展需求。 珠海欧美克仪器公司因应市场需求,借助英国思百吉集团先进的研发管理经验,在粒度测量领域推陈出新:从代表国内高端设备的TopSizer激光粒度仪,到传承了LS-POP6精髓高性价比的LS-POP9,再到目前的智能化激光粒度仪LS-609,欧美克一直致力于粉体行业粒度检测与控制技术的专业化、精细化。为客户提供高端先进的粒度测量仪器、为了粉体行业的可持续绿色化发展,我们一直在路上! LS-609型激光粒度分析仪详细产品信息请点击以下网址: http://www.omec-instruments.com/productShow.asp?ArtID=579
  • 岛津推出激光粒度分析仪应用数据集册
    颗粒的粒度粒形是决定物料性能的重要参数之一,食品、医药、化工和电池等众多行业对颗粒的粒度粒形都有严格要求。有效地测量与控制颗粒粒度及其分布,对提高产品质量、降低能源消耗、控制环境污染、保护人类的健康等具有重要意义。激光粒度分析仪,是指以激光作为探测光源的粒度分析仪器,通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小,已成为当今最流行的粒度测量仪器之一。 近年来,各种原辅料颗粒的粒度粒形也逐渐成为生产工艺过程中关注的重要参数之一,颗粒的粒径会直接或间接影响成品的质量和性能。有效准确地测量与控制颗粒粒度及其分布,对提高产品质量、降低能源消耗、控制环境污染、保护人类的健康等具有重要意义。目前国内外的使用激光粒度仪测试粒径分布的方法标准相对较少,当前的主要方法标准有: 岛津公司针对近年来激光粒度仪需求量日益增加的市场趋势,使用岛津不同型号激光粒度仪分别开展了粉体材料,医药研发和食品安全等相关领域的应用方法开发,并精心汇编了《岛津激光粒度分析仪应用数据集册》,应用报告题目如下: 1.岛津激光粒度仪系列产品介绍2.激光粒度仪在粉体材料中的应用 激光粒度测试中折射率的选择技巧SALD测定金属硅粉的粒径分布SALD测定磷酸铁锂的粒径分布SALD-2300测定二氧化钛粉末样品的粒径分布SALD-2300测定聚苯乙烯粉末树脂的粒径分布SALD-2300测定氧化铝浆料样品的粒径分布SALD-2300测定氧化锌固废粉末的粒径分布SALD-2300测定环氧树脂粉末的粒径分布激光粒度仪在涂料行业中的应用激光粒度仪在卫生陶瓷洁具行业的应用3.激光粒度仪在医药研发中的应用 干法激光粒度在制药行业的应用干法激光粒度仪在注射剂一致性评价中的应用SALD-2300测定原料药盐酸万古霉素样品的粒径分布SALD-2300测定药用辅料药吡哌酸样品的粒径分布Aggregates Sizer在疫苗聚集体评价系统中的应用4.激光粒度仪在食品安全中的应用 干法激光粒度在乳制品行业中的应用SALD-2300测定牛乳样品的粒径分布
  • 厚积薄发荣耀绽放 莱驰科技粒度及粒形分析仪点亮IPB 2018
    金秋十月,丹桂飘香,五谷丰登。全球粒度分析知名企业德国莱驰科技也尝到了丰收的喜悦。IPB2018期间,10月17日,由中国颗粒学会与纽伦堡会展(上海)有限公司合作颁发的首届智能绿色安全奖(IGSA)隆重颁布。莱驰科技干湿两用多功能粒径及形态分析仪CAMSIZER X2靳获殊荣,引起业内热烈关注。??? 莱驰科技展位现场仪器仪表行业作为工业中的高端精密行业,“粒度分析”对其重要性不言而喻,往往也是打开核心技术之门的钥匙之一。随着医疗、新能源、增材制造、食品、化妆品和化工等领域的飞速发展,颗粒表征逐渐成为微米、纳米材料研发等应用领域不可或缺的技术手段。在此背景下,粒度仪市场发展一片向好!在资本竞相追逐的新风口下,打造行业风向标就显得尤为重要。为促进颗粒与粉体行业向自动智能、绿色环保和规范安全等方向发展,打造行业标杆企业,智能绿色安全奖(IGSA)由此设立。经过重重“考核”,首届智能绿色安全奖(IGSA)最终由7家粉体仪器与设备企业成功“摘得”。莱驰科技不负众望,名列榜中。莱驰科技Camsizer X2荣获智能绿色安全奖(IGSA)莱驰科技当之无愧荣获智能绿色安全奖(IGSA)。莱驰科技是全球最大的生产实验室固体样品前处理仪器暨研磨、粉碎与筛分设备品牌德国莱驰的姊妹公司,专业致力于粒度及粒形分析仪器的研发和生产,在业内具有举足轻重的领先地位。熙来攘往的展会现场,这家行业翘楚吸引了众多与会者的目光。?? Camsizer X2粒度及粒形分析仪样品大小和形态是粉体质量控制的一部分。据悉,莱驰科技本次获奖产品Camsizer X2是基于初代Camsizer推出的最新一款粒度及粒形分析仪,采用了更高分辨率的光学系统,提供更多的分析模块可选。相比于其他粒度分析仪器,Camsizer X2分析速度快,测量更精确,形态信息更完整,维护成本低。基于独特的性能优势,主要应用于药粉及药品颗粒、细粉及研磨后的食品颗粒、金属粉末、矿粉、地质、海洋、环境等众多领域。    Camsizer X2粒度及粒形分析仪技术交流会现场莱驰科技做产品,是以客户需求导向。如今,单一的产品线已然不能满足市场用户群体的多样化需求。为此,莱驰科技与弗尔德仪器事业部其他品牌各司其职,融合发展。从固体样品的前处理到后续分析和表征的“一站式”服务,莱驰和莱驰科技满足金属、地质、食品、制药多领域的客户要求。同时,四个子品牌采取不同的市场定位,采用不同的市场营销策略,发展成效显著。高质量发展时代下,离不开“新”营销。除技术研发之外,莱驰科技也十分注重品牌影响力的塑造。近日,在全国颗粒表征与分析及筛网标准化技术委员会召开之际,作为东道主,弗尔德仪器携四大子品牌赞助黄浦江游轮晚宴,为颗粒表征业内精英人才的深入交流创造空间,一定程度上推动了颗粒表征与分析行业的发展。仪器行业风起云涌,针对多元化复杂的商业环境挑战,莱驰科技不忘加大技术研发投入,相信莱驰科技在中国市场将会得到更稳健的发展!
  • 《颗粒 激光衍射粒度分析仪 通用技术要求》国标启动会成功召开
    一年之计在于春,2月3日立春之际,《颗粒 激光衍射粒度分析仪 通用技术要求》国家标准(计划号20204883-T-469)启动会于云端成功召开。标准起草单位及国内外主流激光粒度仪生产厂商的近40位代表出席了活动。会议由全国颗粒标准化分技术委员会秘书长李兆军主持,项目负责人、中国计量科学研究院张文阁详细介绍了该标准立项的背景、意义及过程,并对接下来的工作安排与分工进行了部署。激光粒度分析仪是用于测量颗粒材料粒度大小和分布的仪器。激光(衍射)粒度分析仪与其它粒度测量仪器相比,具有准确可靠、测试速度快、重复性好、操作简便、适用领域广泛等突出特点。目前,国内外激光粒度仪生产厂家众多,我国市场存量达数万台。在激光衍射粒度仪的生产和使用过程中,仪器技术指标及试验验证方法更受厂商及用户关注,而现有标准和技术规范对此基本没有涉及,亟需相关标准的修订。基于此,中国计量科学研究院等单位通过中国颗粒学会测试专业委员会联合相关单位的科研与技术人员,于2019年初组建了标准起草工作组(以下简称“工作组”),工作组以JJF1211-2008、IS013320等相关标准为基础,经过多次讨论、反复修改完成了《颗粒 激光衍射粒度分析仪 通用技术要求》草案,于2019年10月在全国颗粒标准化分技术委员会年会上讨论通过,之后通过国标委组织的专家答辩,于2020年12月28日正式批准立项。《颗粒 激光衍射粒度分析仪 通用技术要求》国家标准拟对激光衍射粒度分析仪的技术指标、试验项目、试验方法和仪器测量结果的不确定度评定方法进行规定,适用于静态激光衍射粒度分析仪的通用技术要求和性能评价。新标准的发布可进一步保障激光粒度仪的重复性、准确性、分辨率、测试范围,为用户提供更可靠的测试结果。项目启动后,工作组将汇总各相关单位的意见和建议,经充分讨论后形成标准征求意见稿,预计今年11月在全国颗粒标准化分技术委员会年会上对标准送审稿进行审查。仪器信息网将持续关注本标准项目进展情况并报道。
  • 安东帕在颗粒度测量领域的完美解决方案
    安东帕在颗粒度领域不断提高市场知名度,即去年的Litesizer 500系列上市到今年PSA系列激光粒度仪的上市,原子力显微镜的上市,在颗粒测量领域更具有竞争度。近期第十一届全国颗粒测试学术会议暨2017全国粉体测试技术应用研讨会在广州举办,安东帕的展台也获得关注,并在大会上做了专题报告。报告题目:安东帕Litesizer TM系列和90系列激光粒度仪的介绍 安东帕应用工程师在颗粒测试学术会议上做报告,主要介绍了安东帕LitesizerTM系列和90系列两个激光粒度仪产品,其中LitesizerTM系列包含Litesizer TM500和Litesizer TM100,该系列采用了专利的cmPALS技术,可实现更短测量时间,更低施加电场降低样品和电极的影响、污染。90系列即990/1090/1190系列,于2017年上市,源于法国Cilas公司,具有湿法条件下粒度大小和形态可同时测定等特点。 安东帕MCR模块化智能型高级流变仪和litesizer 500纳米粒度分析仪形成互相补充的测试技术,最完美得匹配。使用Litezizer粒度仪获得有价值的颗粒度和胶体稳定性观察,现在你可以改进你的流变性能测试。了解颗粒度可以帮助你选择正确的测试系统,zeta电位表征你样品在更高剪切速率的稳定性。-更加专业的流变性能测试-对结果的更进步评估-对样品的更全面理解为进一步扩大公司颗粒表征的产品线,安东帕收购法国CILAS公司PSA业务。PSA系列激光粒度仪是在今年9月份推出的新品。 该系列产品包括PAS 990、PSA 1090和PSA 1190这三个型号。 PSA系列仪器扩展了基于动态光散射的当前粒度测量仪器组合,是LitesizerTM系列仪器的极佳补充。 PSA系列激光粒度仪最大的特点在于可一键切换干湿法,用户无需进行硬件的切换,只需一键点击鼠标便可轻松切换,无需重新验证或重新调准灵敏的光学器件。本次讲座将对PSA990/1090/1190基本应用情况,特点进行阐述。 化繁为简,为真正的工业AFM开辟道路安东帕进入原子力显微镜市场,推出一款专为工业用户设计、满足各种需求的 AFM 产品 Tosca™ 400。它独一无二地将先进技术与简单易用的操作完美结合,使得这款 AFM 既适合工业用户,也适合科学工作者。自动化和工作流导向的控制分析软件植入到机器的每个操作层级,进一步提高了效率并简化AFM测量操作。
  • 安东帕全新Litesizer TM 500纳米激光粒度仪产品宣讲会
    第十六届世界制药原料中国展(简称“CPHI China 2016”)将于2016年6月21至23日 在上海新国际博览中心(浦东新区龙阳路2345号)拉开帷幕。展会同期在新国际展览中心N1馆将有一个名为Innolab的主题活动,安东帕将举办2016年全新上市的LitesizerTM 500纳米激光粒度仪的产品宣讲会。届时,安东帕将为大家呈现激光粒度仪的用途,竞争优势,参数以及应用,欢迎大家莅临现场。宣讲会时间:6月23日(周四)上午 10:00-10:20宣讲会地点:Innolab会议活动区 N1A96凡是6月23日上午10点参加LitesizerTM500新品宣讲会(N1馆A96)的客户,在宣讲会结束后可以领取精美礼品一份。创新是安东帕公司最核心的价值所在,聚焦于专业市场,继材料表征、表面力学测试之后,安东帕又研发出了一款精确而巧妙的测量仪器。2016年4月,安东帕纳米粒度及Zeta电位分析仪,LitesizerTM500全新上市——只需按下按钮即可进行颗粒分析。LitesizerTM500是用于表征溶液中分散的纳米颗粒以及亚微米颗粒的仪器。它可通过测量动态光散射 (DLS)、电泳光散射 (ELS) 和静态光散射 (SLS) 来测定颗粒尺寸、zeta 电位和分子量。LitesizerTM500采用先进算法及尖端zeta电位测量专利技术连续测量透光率以选择最佳样品测试参数静态光散射(SLS)测量分子量,快速无损DLS颗粒分析法–在单一悬浮液中不同颗粒尺寸的测量问题可轻松解决 ELS专利技术:cmPALS,采用新型专利(欧洲专利 2 735 870)cmPALS技术,zeta电位测量的准确性达到最高,所需时间降到最少一页式的工作流程,为您减轻实验室负担:LitesizerTM500的一大亮点是其简单而巧妙的软件。我们已创建了可将输入参数、结果和分析集中到单个页面上的一页式工作流程:您可以在数秒内完成试验设置,只需简单按键即可得出所需的分析结果和报告。不断的创新为使用者提供最佳的分析解决方案,可广泛应用于实验室质量控制、质量控制部门以及其他粒度分析领域。
  • 安东帕携激光粒度仪首次亮相IPB 2016上海粉体展
    2016年10月19日-21日,第十四届上海国际粉体加工/散料输送展览会(IPB)在上海举行,安东帕在十周年之际,聚焦于专业市场,在材料表征、表面力学测试之后,又研发出了一款精确而巧妙的测量仪器。2016年4月,安东帕激光粒度分析仪Litesizer™ 500全新上市——只需按下按钮即可进行颗粒分析。此次是首次携带激光粒度仪亮相IPB,给国内用户留下惊艳的印象。Litesizer™ 500是用于表征溶液中分散的纳米颗粒以及亚微米颗粒的仪器。它可通过测量动态光散射 (DLS)、电泳光散射 (ELS) 和静态光散射 (SLS) 来测定颗粒尺寸、zeta 电位和分子量,在化工、制药、食品、粉末涂料、金属、制造业等得到了广泛应用.此次参展旨在通过现场产品展示,增加企业与观众粘合度,更好的为企业和观众提供实际解决方案和参考案例,希望与用户一起探讨粉体表征方面的难题。感谢所有安东帕长期以来对安东帕产品的信任,我们将竭尽所能为所有客户提供优质的服务以及可靠的技术支持。用户可以关注安东帕中国在网络、微信上的更多最新动态,与我们分享10年来的点滴足迹。
  • 磷酸铁锂迎发展“第二春”,欧美克高性能激光粒度仪需求强劲
    近日,在北京召开的第七届中国电动汽车百人会论坛(2021)上,比亚迪股份有限公司董事长王传福表示,“按照规划,到2025年,我国新能源汽车新车销售量将达到汽车新车销售总量的20%左右。”这意味着接下来5年,新能源汽车行业年复合增长率将达37%以上。结合前期“特斯拉Model Y低价发售”、“宁德时代逼近万亿股价”、“蔚来包下宁德时代磷酸铁锂电池生产线!”等新闻发酵,不难发现随着磷酸铁锂电池以其低成本高安全性的优势在中低端市场不断渗透,特别是相关技术的进步也助推磷酸铁锂电池自2020年起重新扩展市场空间,其需求快速反转向上。中国汽车动力电池产业创新联盟日前发布的数据显示,2020年我国动力电池累计销量达65.9GWh,同比累计下降12.9%。其中,三元锂电池累计销售34.8GWh,同比累计下降34.4%;磷酸铁锂电池累计销售30.8GWh,同比累计增长49.2%,是唯一实现同比正增长产品。中信证券指出,目前,特斯拉、戴姆勒等海外新能源汽车主流企业均明确了磷酸铁锂电池技术路线,预计宝马、大众等其他海外车企也将在其动力电池技术路线中选择磷酸铁锂方案。而国内无论是宁德时代的CTP电池管理控制技术还是比亚迪的“刀片电池”,磷酸铁锂的高安全性助力了其在乘用车领域的回暖,都让磷酸铁锂电池开始经历第二春!伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂第二春的帷幕已然拉开,大规模的量产也必将刺激高性能激光粒度仪的市场需求。众所周知,激光粒度分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、导电剂、隔膜涂覆用氧化铝等材料的粒度测试。从大量的制浆经验以及行业交流反馈来看,诸如钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)、镍钴锰酸锂(LiNiCoMnO2)和磷酸铁锂(LiFePO4)等多种不同的正极材料,通常采用中值粒径D50、代表大颗粒的D90作为关键质控指标。不同材料不同工艺的产品对原材料的粒径要求也不尽相同,以分布在1-20μm范围内居多。负极材料以石墨为例,当其平均粒径为16-18μm,且粒度分布较为集中时,电池有较好的初放容量及首次效率。此外,随着电池隔膜的厚度要求不断提高,对其中添加阻燃材料的粒径要求也随之不断提高,常使用的隔膜氧化铝粒径从微米级逐渐发展到亚微米甚至是纳米级。随着电池性能提高对原材料的粒度要求不断提高,激光粒度仪发挥着不可替代的作用,同时对粒度测量仪器的重复性、重现性、分辨能力提出了更高的要求。锂离子电池正、负极材料标准中的粒度分布要求激光粒度仪的高分辨能力在电池材料的检验中,对测试样本中少量的大颗粒或小颗粒的准确识别有着重要的意义。比如说在电池材料活性物质中如果存在少量的大颗粒,可能会对涂布、滚压造成负面影响。如果在原材料检测时就发现,则可以避免后续不良品的产生。另一个典型的例子是粒径过小的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外颗粒直径太小,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行粒度测试,在一定程度上有助于预判后续产品性能、防范风险… … 可见,电池性能的诸多方面都与正负极材料和隔膜材料等的粒径息息相关。欧美克Topsizer激光粒度分析仪对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高品质高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光信号都精确地聚焦获取,通过精准的独立探测器焦点曲面排布设计和一致性定位工装提高粒度仪分辨能力和仪器之间的重现性。欧美克Topsizer激光粒度分析仪和Topsizer Plus激光粒分析仪是在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克LS-609激光粒度分析仪而欧美克LS-609激光粒度分析仪就采用了先进的激光粒度仪散射光能探测的设计,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式精确放置于与其散射角相对应的傅立叶透镜焦点位置,以保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。我们以具体的电池材料样品来看欧美克激光粒度分析仪的测试性能对材料准确表征的案例。1. 欧美克Topsizer激光粒度仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于最终下游应用中电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常巨大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。2. 下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。由此可见高分辨能力和重现性的激光粒度分析仪在电池原材料粒度检测领域能带来更好的质控效益。正如中国科学院院士、中国电动汽车百人会副理事长欧阳明高所说,中国动力电池技术创新模式已经从政府主导向市场驱动转型,目前中国电池材料研究处于国际先进行列。而在中国动力电池的快速创新发展必然也离不开高分辨能力和重现性的激光粒度分析仪作为质控的好帮手。通过给动力电池行业提供更专业优化的粒度检测方案,欧美克激光粒度仪的行业销售也在持续高速增长。欧美克必将一如既往不断探索,与中国动力电池行业并行快速发展,携手创造中国奇迹,助力新能源引领世界美好未来!参考资料:1. 沈兴志,珠海欧美克仪器有限公司,《高性能激光粒度分析仪在电池材料测试中的应用》2. 经济日报,《第七届中国电动汽车百人会论坛举办》3. 腾讯网,《磷酸铁锂厂家齐涨价,2021年将回潮迎来“第二春”?》4. 中国证券报,《磷酸铁锂电池迎来发展“第二春” 2020年累计销售同比增长近
  • 新能源汽车产销两旺,高端激光粒度分析仪持续爆发增长
    近日,中国汽车工业协会发布了2021年新能源汽车行业经济运行指标,前十个月累计生产新能源汽车256.6万辆,同比累计增长175.3%;累计销售新能源汽车254.2万辆,同比累计增长176.6% 。产、销数量均创历史新高,下面来看具体数据: (图片来源: 中国汽车工业协会网站) 从汽车种类来看,新能源乘用车是增长的主要来源,说明随着新能源汽车性能、价格的优化及充电设施的完善,新能源汽车得到了越来越多的老百姓的认可,从而促使新能源乘用车走进千家万户,产销出现跳跃式上涨。其中,纯电动乘用车产、销同比累计增长分别达到205.2%和201.0%, 插电式混合动力乘用车产、销同比累计增长分别达到124.6%和144.5%。回顾新能源汽车行业近三年波澜壮阔的发展历程,有助于新能源汽车行业的广大从业者更深刻地认识到央妈断奶的智慧与果敢:“扶优扶强”让一大批有技术、善管理、懂市场的企业脱颖而出,在退补、疫情、原材料价格上涨、芯片供应紧张、限电等多重困难夹击下,整个新能源汽车行业在短暂的调整后再次迎来了快速增长。原本2019年6月份开始的新能汽车补贴大幅退坡让新能源汽车行业首次出现负增长,2020年初爆发地新冠疫情叠加影响更让新能源汽车行业雪上加霜。据中国汽车工业协会公布数据显示,2020年第1季度国内新能源汽车产、销量同比下滑60.2%和56.4%。但仅仅半年之后,自2020年7月开始,新能源汽车产、销均超过上年同期,并一直持续爆发增长到今天的水平。图片来源: 中国汽车工业协会网站从新能源汽车行业整体来看,从今年3月份起,新能源汽车月度销量均超过了20万辆,从8月份开始月度销量均超过30万辆,即使剩下的11、12月份产销出现一定波动,新能源汽车全年产销突破300万辆也是大概率事件。新能源汽车的产、销两旺必然拉动动力电池快速增长,据高工锂电(GGII)统计,2021年前9个月,国内动力电池装机电量累计92GWh,同比累计上升169.1%,其中三元电池装车量累计47.1GWh,占总装车量51.2%,同比累计上升99.5%;LFP电池装车量累计44.8GWh,占总装车量48.7%,同比累计上升332%。同时,据高工锂电不完全统计,今年以来,国内动力及储能电池投扩产项目总投资超过5000亿元,粗略估算扩产规划超1.4TWh。随着磷酸铁锂电池的成功逆袭,在德方纳米、邦普、富临精工、湖北万润等磷酸铁锂专业生产厂家纷纷扩大产能的同时,还不断向磷酸铁锂原材料产业延伸;同时,万华化学、新洋丰、川金诺、川发龙蟒、川恒股份、龙佰集团、中核钛白、安纳达、司尔特、湖北宜化等一大批传统化工企业纷纷跨界强势涌入磷酸铁锂产业。据高工锂电统计数据显示,2021年前三季度中国磷酸铁锂正极材料出货量达到30.8万吨,同比增长302.6%,据不完全统计,前三季度国内合计新扩增磷酸铁锂材料超过250万吨。而这些正在或即将扩产的锂电及材料项目已经带来了强劲的激光粒度分析仪市场需求,并且有望持续爆发增长。电池材料的粒度分布是锂电行业的一项重要质控指标,它影响锂离子电池的能量密度、充放电性能、循环性能、安全性能以及生产工艺等,因此,电池材料及电芯生产企业普遍选用高效的激光粒度分析仪作为电池材料粒度分布检测工具。但什么样的激光粒度分析仪才能真正得到锂电行业市场的青睐呢?根据近几年锂电行业激光粒度分析仪购买需求的统计分析,高端激光粒度分析仪越来越得到行业的青睐。锂电行业经过近二十年的发展,行业资源逐步向头部企业倾斜,新增产能大多数来自宁德时代、比亚迪、国轩高科、力神、中航锂电、亿纬锂能等头部企业,这些新增产能在选择检测分析仪器往往参考原厂配置,甚至选择更高端配置,所以,高端激光粒度分析仪将在这些新增产能中获得更多市场机遇。而一款好的激光粒度分析仪不仅应该具有宽广的测试范围和良好的易操作性,还应保证测试结果具有良好的真实性、重现性和对细微的粒度差异具有足够的分辨能力。从欧美克仪器近几年的市场销售情况来看,大多电芯及材料企业选择了欧美克的Topsizer和TopsizerPlus两款高端仪器。这两款仪器不仅具有宽广的测试范围和全测试范围内高灵敏度,而且具有很高的自动化程度,大大降低了测试结果对人为因素的依赖程度。Topsizer激光粒度分析仪Topsizer Plus激光粒度分析仪在锂电行业,需要检测粒度分布电池材料包括正极材料、前驱体材料、负极材料、导电添加剂、隔膜材料、电解质等等,种类繁多,粒度分布范围比较宽,小到纳米级,大到毫米级,因此,理想的测试范围应当尽量覆盖所有电池材料的整个测试粒径分布范围。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管不规则颗粒的粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行基本可靠的评价,有利于对连续生产或同一规格的不同产品的质量一致性进行把控。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。具备高分辨能力的仪器才能准确识别测试样品及其各组分的细微粒径变化,对于电池材料中异常的少量大颗粒,及少量的离群细颗粒的准确测量和定量尤其重要。Topsizer对含有极少量细颗粒的负极材料样品的检测激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养等。如果仪器的易操作性不高,不同人员对同一样品测试得出不同的结果,那么,即使有良好的测试性能,也不能高效满足用户的测试需求。作为深耕新能源行业的粒度检测与控制技术专家,欧美克仪器秉承思百吉集团“赢之有道”的核心价值观,始终坚持为行业用户提供高效的粒度解决方案,不断满足行业创新发展需求,助力中国新能源高速发展! 参考文献【1】中国汽车工业协会,2021年10月汽车工业经济运行情况。【2】沈兴志,珠海欧美克仪器有限公司,高性能激光粒度分析仪在电池材料测试中的应用。【3】珠海欧美克仪器有限公司,激光粒度分析仪在锂离子电池行业中的应用。【4】高工锂电,2021高工年会聚焦(14):动力电池产业2021“战局”。
  • 美国Microtrac粒度仪亮相中国化学会第30届学术年会
    7月4日,为期4天的中国化学会第30届学术年会在大连理工大学落下帷幕。本届年会以“转型中的中国化学”为主题,包含学术分会及专题论坛等形式,并设立系列科普活动及新技术、新产品与新仪器成果展览,会议共吸引化学同仁1万余人,创历届年会参会人数之最。本次化学年会为各领域的化学工作者搭建了更加精确和深入交流的平台,也为实验室仪器设备展商提供了寻找到合作研究的契机。大昌华嘉作为中国化学会的合作伙伴,携手公司明星产品美国Microtrac激光粒度仪亮相本次会议,应用技术人员与参会者就产品的应用技术及领域相互沟通,增进了解,达到了相互交流技术的目的。美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。会议现场回顾大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 激光粒度分析仪/颗粒图像分析仪--美国麦奇克(Microtrac)公司比表面及孔隙度分析仪/化学吸附仪--日本麦奇克拜尔(MicrotracBEL)公司视频光学接触角测量仪、表面/界面张力仪--瑞典百欧林(Biolin)公司堆密度计--英国康普利(Copley)公司密度计/旋光仪/折光仪/糖度仪--美国鲁道夫(Rudolph)公司全自动氨基酸分析仪--英国百康(Biochrom)公司元素分析仪、TOC总有机碳分析仪、快速氮测定仪--德国Elementar公司薄层色谱扫描仪、点样仪--德国Biostep公司水份活度仪--瑞士Novasina公司火焰光度计/氯离子分析仪--英国Sherwood公司X射线荧光光谱仪-荷兰帕纳科(PANalytical)公司凯氏定氮仪--德国贝尔(Behr)公司全自动化学反应器/量热仪--瑞士Systag公司 大昌华嘉商业(中国)有限公司服务电话:4008210778邮箱地址:ins.cn@dksh.com大昌华嘉网站:www.dksh-instrument.cn 扫描关注“大昌华嘉科学仪器部”公众号
  • 【2022培训课程】X射线、激光粒度、纳米粒度、GPC、微量热培训下半年课程安排及报名通道
    01课程介绍及时间安排XRD 基础课程XRD Basic了解粉末衍射的基本理论和光路几何,进一步掌握针对各种样品的测试如何选择仪器配置寄设置扫描参数,深入学习HighScore (Plus) 物相分析软件。D1:X射线的产生,晶体学基础及粉末衍射聚焦光路 D2:平行光路几何,上机操作 D3:物相定性分析,晶粒尺寸分析,结晶度分析 D4:结构精修,无标定量分析 D5:衍射仪维护保养,上机操作,自由讨论 波长色散 XRF 基础课程WD-XRF Basic了解X射线荧光工作原理,掌握样品的制备,了解波长色散型荧光光谱仪主要光学部件组成和软件功能,掌握建立定量分析方法的步骤和Omnian无标定量分析软件的基本功能。课程时长5天。D1: X射线荧光原理介绍,样品制备分析,软件简介 D2: 详细介绍定量分析方法的建立 D3: Omnian无标定量分析软件的基本功能 D4: 上机操作,自由讨论 D5: 荧光光谱仪的维护和保养 能量色散 XRF 基础课程ED-XRF Basic了解X射线荧光工作原理,掌握样品的制备,了解Epsilon系列能量色散型荧光光谱仪主要光学部件组成和软件功能,掌握建立定量分析方法的步骤。课程时长4天。D1: X射线荧光原理介绍,样品制备分析,软件简介 D2: 详细介绍定量分析方法的建立 D3: 上机操作,自由讨论 D4: 荧光光谱仪的维护和保养 激光粒度课程Mastersizer 3000了解激光衍射基本理论、原理,掌握样品制备和测量方法,数据解析及误差原因分析。课程时长2天。通用课程:D1:激光衍射基本理论, 测量原理;影响测量结果的因素分析, 结果可靠性的判别及最优化样品分散方法的建立。 D2:软件功能培训;典型样品分散及测量实例,上机实践,疑难问题解答及仪器的维护保养。纳米粒度及电位课程Zetasizer了解动态光散射、zeta电位基本理论、原理,掌握样品制备和测量方法,数据解析及软件应用。课程时长2天。通用课程:D1: 动态光散射(DLS)基本理论,测量原理,样品分散要点,测量结果及参数分析, 典型样品测量及问题解答。D2: Zeta 电位理论基础及测量原理,样品制备原则及应用指导,上机实践, 疑难问题解答及仪器的维护保养规程。纳米粒度跟踪课程NTA(Nanosight)了解纳米颗粒跟踪分析技术理论原理,学习测量与分析方法。课程时长1天。D1:纳米颗粒跟踪分析技术(NTA)基本理论,测量原理,应用案例分析,上机实践,疑难问题解答及仪器维护保养。GPC课程GPC(Omnisec)了解凝胶渗透色谱技术理论原理,掌握溶剂配制原则和样品制备方式,掌握检测条件和信号读取的设置,并理解其意义。课程时长3天。D1:凝胶渗透色谱分离原理及检测器原理,流动相要求及样品制备方式。D2:检测条件设置,信号读取,窄分布和宽分布样品的检测及其意义。D3:实际操作培训。 微量热技术课程ITC&DSC (MicroCal ITC & DSC)等温滴定量热仪(PEAQ-ITC)是如何工作的?它能解决我们科研工作中的哪些问题?如何设计一个合理的ITC实验,如何获取可靠的ITC数据?面对实验中出现的一些奇怪的图谱,我们应该如何判断、分析和改进?马尔文全新一代的PEAQ-ITC提供了哪些方便的选项?课程时长1天至1天半。D1:PEAQ-ITC的原理及应用介绍,仪器讲解及实验操作、软件讲解及仪器维护等。微量热差式扫描量热仪(PEAQ-DSC)是如何工作的?如何正确的设计一个DSC实验?如何准备DSC样品?如何获取可靠的DSC数据?马尔文全新一代的PEAQ-DSC automated又提供了哪些方便的选项?课程时长1天至1天半。D1:微量热差式扫描量热仪原理及应用介绍;仪器讲解及上机演示;软件讲解及仪器维护等。马尔文帕纳科2022年度下半年培训课程一览培训地点:上海时间课程报名截止时间7月18-22日GPC(Omnisec)7月11日7月28-29日激光粒度(MS 3000 ) 7月18日8月1-5日WDXRF基础(Zetium) 7月25日8月15-18日XRD基础(Aeris) 8月8日9月5-9日WDXRF基础(Zetium) 8月29日9月26-29日EDXRF基础 9月19日10月11-12日微量热技术(PEAQ DSC)10月3日10月13日微量热技术(PEAQ ITC)10月3日10月17-21日WDXRF(基础)(Axios)10月10日10月27日纳米粒度及电位(Zetasizer)10月20日10月31日-11月4日XRD基础10月24日11月24-25日激光粒度(MS 3000 )11月14日11月28日-12月2日WDXRF基础(Zetium)11月21日培训地点:北京时间课程报名截止时间8月25日纳米粒度跟踪(Nanosight)8月16日9月1日纳米粒度及电位(Zetasizer)8月22日9月22-23日激光粒度(MS 3000 )9月12日* 培训费为RMB2303元/人天,每台仪器的新用户可提供两个免费培训名额,不包含食宿和交通费用,每场培训报名人数达到6人即可开班,培训人数上限为16人,报满截止,报名确认后会于培训前发培训通知。02咨询及付费信息以上课程安排可能会因不可抗因素进行调整,实际开课日期请参考报名表单中实时更新的选项。如您有任何疑问请联系咨询马尔文帕纳科亚太卓越应用中心X射线分析仪器负责人:万益娟 女士电话:135 6429 0063邮箱:yijuan.wan@panalytical.com物性测量仪器培训负责人:黎小宇 女士电话:139 1861 1071邮箱:Sherry.li@malvern.com.cn或北京实验室负责人:张瑞玲 女士电话:010-5323 6737邮箱:rain.zhang@malvern.com.cn培训费付费方式:培训费由公司转账到上海思百吉仪器系统有限公司(账号信息如下)公司名称:上海思百吉仪器系统有限公司公司地址:上海市闵行区元山路88弄9号公司电话:021-61133688开户行:中国银行闵行支行账号:445559221333税号:91310000772121566L点击报名培训课程下半年课程已开放申请,点击按钮即可报名亚太卓越应用中心地址马尔文帕纳科亚太卓越应用中心地址:上海市闵行区中春路1288号金地威新闵行科创园区24号楼3A层访问热线: +86 400 630 6902北京应用实验室地址马尔文帕纳科北京应用实验室地址:北京市石景山区鲁谷路74号瑞达大厦F906咨询电话:010-5323673703公司使命目标马尔文帕纳科的使命是通过对材料进行化学、物理和结构分析,打造出客户导向型创新解决方案和服务,从而提高效率和产生切实的经济影响。通过利用包括人工智能和预测分析在内的最新技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品及帮助产品更快速地上市。联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902邮箱:info@malvern.com.cn网址:www.malvernpanalytical.com.cn
  • 3D打印粉体材料粒度粒形分析的“黄金CP”
    3D打印技术对多数普通人来说还属于“只闻其声未见其人”的技术。它是一项不同于以往的新型制造技术。3D打印是一种主要用于构建复杂结构三维物体的增材制造技术。主要优势在于制造复杂结构、个性化定制产品。目前在汽车工业、航天航空、医疗领域里的一些复杂结构体,均有望通过3D打印轻松实现。3D打印技术期望在制造业普及程度提高,核心要素之一是新兴材料的发展。3D打印材料的技术水平和产品多样性支撑着整个产业的发展。目前,市场上使用比较普及的3D打印材料主要包括:塑料(ABS、PLA、尼龙、光聚合物等),金属(钢、银、金、钛、铝等单质或者合金)两大类,其形态一般有粉末状、丝状、层片状、液体状等。就目前的市场来看,塑料类材料在消费级产品制造中是主流。其生产材料主要是ABS、PLA、尼龙和光聚合物这四种。但如果从市场需求和大工业、高科技产业角度来看,金属类材料3D打印制作的产品更具有广阔前景。尤其是在航空航天、军工、汽车、医疗等行业的运用上具备很大的发展空间。目前全球3D 打印耗材市场的年增长率超过了20%,其中金属粉末的需求量的增长速率远高于塑料材料。尽管目前塑料3D 打印材料扔占据整个市场接近50%的份额,但是以钛合金粉末为代表的金属粉末,将在未来几年里全面赶超塑料3D 打印耗材。1、金属3D打印技术基本原理:首先在计算机中用CAD设计软件创建出三维模型并导出STL文件,然后将模型横向分割成多层。3D打印机使用生成的数字三维数据,控制高能激光束或电子束逐层熔化金属粉末,形成立体复杂工件。根据加工过程金属粉末材料的使用工艺差异,金属3D打印技术常见的有以下几类:1)激光选区熔化(SLM)技术。采用高能激光束照射熔融预先铺展好的金属粉末原料,逐层“打印”出工件。2)激光近净成型(LENS)技术。其原理是在用高能激光按预先编制的打印轨迹熔化同步供给的金属粉末适用于不锈钢、钛及钛合金、Co-Cr-Mo合金等金属粉末的3D打印制造。3)电子束选区熔化(EBSM)是采用电子束照射预先铺展好的金属粉末原料,形式上跟SLM技术相似。4)纳米颗粒喷射金属成型(NPJ)。这种技术采用的是高温液态“铁水”(内含纳米合金颗粒)。这些金属以液体的状态进入3D打印机,打印机用含有金属纳米颗粒的“铁水”喷射成型。2、3D打印金属粉体材料金属粉体材料是金属3D打印工艺的原材料,其基本性能对成型的制品品质有着很大的关系。金属3D打印对于粉体的要求主要在于化学成分、颗粒形貌、粒度分布、流动性等方面。当前主流的3D 打印金属粉末制备方法包括:气雾化法(GA)、等离子旋转电极法(PREP)、等离子雾化法(PA),以及射频等离子球化法(PS)等等。气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。采用气雾化法所得粉末粒度分布宽,平均粒径小,杂质易于控制。但生产出的粉末由于工艺特性导致颗粒内部易产生气泡,粉末形状不均匀以及出现行星球等问题。 左图:粉体理想状态 ;右图:A卫星球 B不规则、内部气泡(缺陷)等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成,制备的粉末球形度可达99.5%以上。但是这种工艺制造的粉末粒径分布较窄,主要介于50~150μm,存在平均粒径偏大的问题。射频等离子球化工艺是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子。例用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。该工艺得到的粉末粒度范围可以达到20~50μm。国内一些知名企业有成熟的工艺应用。应用该工艺生产的AlSi9Cu3打印粉具有较好的耐高温、耐腐蚀性能。经验证的打印力学性能(SLM工艺,打印态)抗拉强度可达480MPa,屈服强度可达300MPa。综上所述,3D打印金属粉末的性能跟粉末的粒度分布、颗粒形貌息息相关。同时,现有的各种生产工艺生产的粉体都存在粒形、粒径相关问题。这使得粒型、粒度分布检测和生产工艺过程控制成为3D打印技术中的重要环节。引入先进的粒度、形貌检测设备,为工艺改进、生产控制、产品质检提供科学数据是势在必行的。3、金属粉体粒度分析仪器原理及特点在粒度分析领域,存在多种不同测量原理、集多门现代科学技术为一体的粒度测量仪器。例如:激光粒度分析仪、库尔特计数器、颗粒图像处理仪、离心沉降仪等等。激光粒度分析仪是现今广为流行的粒度测试仪器,它具有量程大、测量动态范围宽等诸多优点,被广泛的运用到粉体的生产、科研领域。3.1 激光粒度仪原理激光粒度仪3D结构图激光粒度仪光学原理简图(GB/T 19077-2016)光是一种电磁波。它在传播过程中遇到颗粒时,将与之相互作用,其中的一部分将偏离原来的行进方向,这种物理现象称之为光的散射(衍射)。一束平行光在传播过程中遇到障碍物颗粒,光波发生偏转,偏转的角度跟颗粒的大小相关。颗粒粒径越大,光波偏转的角度越小;颗粒粒径越小,光波偏转角度越大。激光粒度分析仪就是根据这种光波的物理特性进行粒度分析的。TOPSIZER参数:量程:0.01-2000μm ,红、蓝激光双光源技术激光粒度分析仪是目前使用领域较广的粒度分析仪,这是由于激光粒度分析仪的内在技术优势决定的。激光粒度分析仪测试量程大,通常可以达到0.1μm到750μm以上。而且不需要任何形式的软件、硬件换挡操作即可实现全量程范围内的样品测试(这种特性通常被称为仪器的动态测量范围)。仪器动态测量范围大,则使用的局限性小,测试宽分布样品的能力强。激光粒度分析仪测试重复性精度高、测试速度很快,一个样品的测试过程一般只需2~3分钟,测试标准粒子重复性精度可达到0.5%以内。3.2 颗粒图像处理仪原理颗粒图像处理仪将电子图像捕捉分析技术与光学成像设备相结合,用数字摄像机拍摄经过光学设备放大、成像的颗粒图像,由计算机自动的对颗粒的形貌特征和粒度进行分析和计算。PIP9.1 量程0.5-3000μm颗粒图像处理仪适用于粉末颗粒的粒度测量、形貌观察和圆度分析,能给出不同等效原理(如等面积圆、等效短径等)的粒度分布,能直接观察颗粒分散、形貌状况。PIP9.1颗粒图像处理使用生物显微镜加工业级高清数码摄像机的硬件组合,有效满足了5-1000μm范围内的粉体颗粒形貌分析需求。该形貌分析范围覆盖了大多数3D金属打印粉体的粒径分布区间。这样的硬件组合在满足技术需求的前提下,具有高性价比。3.3 图像法粒度分析仪、激光粒度分析仪的优缺点一图简述优缺点可以说,激光粒度仪加颗粒图像处理仪是3D打印粉体材料粒度粒形分析的黄金搭档检测设备。通过这两种仪器,能够有效分析粉末耗材的粒度分布及颗粒形貌是否到达理想状态。为进一步优化粉末生产工艺,提供科学数据支持。同时,仪器还能够作为生产企业的粉体产品物性参数检测仪器,为产品质量提供保障。参考资料:1.中国粉体网,曲选辉,《金属3D打印对粉末有何要求,有哪些新工艺,听听专家怎么说》2.材料导报,程玉婉、关航健、李博、肖志瑜,《金属3D打印技术及其专用粉末特征与应用》
  • 思百吉1500万英镑收购粒度仪制造商NanoSight
    2013年9月30日,思百吉宣布,它已签署了一项协议收购粒度测量仪器领先制造商NanoSight公司,收购金额为债务加现金1500万英镑。   收购NanoSight与思百吉既定的通过收购互补业务获得成长的战略一致。 NanoSight将成为思百吉材料分析部门的一部分,被整合到马尔文仪器。   思百吉业务集团董事Jim Webster评论:&ldquo NanoSight的创新纳米粒子跟踪分析技术可以对纳米材料进行高分辨率定量分析,这与马尔文现有的测量能力具有很强的互补性。&rdquo   &ldquo 我们相信,我们的生命科学和工业客户将大大受益于这些从马尔文获得的额外产品的可用性。此外,收购NanoSight,通过两家公司技术、客户支持和分销渠道的结合可以提供新的机会。&rdquo   &ldquo 此次收购,再加上我们在研发上的额外投资,可以刺激有机增长,我们的材料分析部门未来会有很好的增长。 &rdquo   NanoSight董事长兼Bob Carr,创始人John Knowles说:&ldquo 我们对思百吉和马尔文仪器心仪已久,我们非常高兴的是John Knowles找到这样一个合适的&lsquo 家&rsquo 。NanoSight团队期待成为马尔文的一部分,将我们的技术带给到更广泛的客户。 &rdquo   NanoSight是一家私营公司,总部设在英国,服务于制药、化工和学术部门等客户。(编译:杨娟)
  • 我国成功研制系列高准确度宽带大电流计量仪器
    近日,由中国计量科学研究院(以下简称“中国计量院”)牵头承担的国家重大科学仪器设备开发专项“宽带大电流测量仪开发与应用”(2016YFF0102400)项目顺利通科技部高技术发展研究中心组织的项目综合绩效评价。光纤宽带大电流测量仪宽带标准电流传感器及测量分析系统 大电流计量技术在冶金、电力、高端制造、大科学装置前沿研究等领域应用广泛。由于生产连续运行,设备庞大,拆装不便,运行环境等特殊条件,现场大电流测量控制和监测设备一般无法到计量实验室校准,实验室的计量标准也很难下沉至现场,量值传递难以实现。   该项目研制的超大和高频电流校准装置,形成了产品化的标准工艺流程和质量体系,为产品的技术就绪度和可靠性提供了支撑保障。项目相关成果通过了第三方测试,测量准确度、线性度、带宽、噪声和环境适应性等技术指标实现了与国际先进产品的并跑或局部领跑,并且使我国大电流核心校准和测量能力(CMC)通过了国际同行评审,进入国际计量局等效互认数据库。   项目编制了一系列国家、行业和地方标准和计量技术规范,培养了一批高水平的研究和研发人员,帮助了承担工程化计量仪器仪表企业的发展壮大。   项目研究成果应用于EAST(全超导托卡马克装置)、ITER(国际热核聚变实验堆)大科学装置、电解铝、高压直流输电、电气设备性能检测、大型航空航天设备焊接制造、仪器仪表计量检测等领域,解决了行业用户关注的产品价格高、核心部件依赖进口,工业用不起或用不了的痛点和难点问题,以及长期未能解决的宽带大电流在线校准难题,取得了显著的经济和社会效益。   据悉,该项目自2016年立项,历时5年,由中国计量院联合国内10家单位共同攻关。项目基于Faraday磁光、电磁效应,突破了椭圆双折射传感光纤、小型化直波导相位调制器关键工艺,攻克了宽带高线性光纤电流传感,容性误差补偿、组合电磁屏蔽、分布阻抗消振、高频分流器校准方法、宽频矢量电量正交积分算法等关键技术,成功研制了最大电流450 kA,带宽高于100 kHz的柔性光纤宽带大电流测量仪和最大电流2000 A,最高频率1 MHz的宽带电磁式电流传感器及自动测量分析系统,实现了工程化。
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 张福根专栏|激光粒度仪导论之性能特点篇
    p strong span style=" font-family:宋体" & nbsp & nbsp 编者按: /span /strong span style=" font-family:宋体" 在 /span 8 span style=" font-family:宋体" 月初,张福根博士的激光粒度仪导论从原理、结构、报告解读、参数拾遗四个维度对激光粒度仪进行了条分缕析,仪器信息网特设专栏刊登了张福根博士的四篇论述文章。好文如佳酿,兴难尽而回味长,幸而大家手笔未歇,从今日起,激光粒度仪应用导论的后续珠玉,将继续晦养读者的头脑,本文飨食读者的,是激光粒度仪导论之性能特点篇 /span ~ /p p style=" text-align:center" strong span style=" font-family:宋体" 激光粒度仪导论之性能特点篇 /span /strong /p p span style=" font-family:宋体" & nbsp & nbsp & nbsp /span span style=" font-family:宋体" 这里所谓的“性能特点”,是激光粒度仪相对于其他原理的粒度测量仪器而言的。除激光粒度仪外,当前市面上主流的粒度仪还有:(1)颗粒图像仪,分为动态和静态两类;(2)电阻法(Electric sensing zone 或 Electric resistance)颗粒计数器;(3)沉降法粒度仪,按照沉降力的来源分为重力沉降和离心沉降两类;按照沉降速度的测量方法分为光透沉降、X-线沉降、沉降管和沉降天平等多种;(4)动态光散射(Dynamic light scattering)粒度仪。鉴于动态光散射仪器只测量纳米和亚微米颗粒,与激光粒度仪的测量范围重叠部分很少,不应放在一起比较。本文讨论的激光粒度仪性能特点是相较于以上前3类仪器而言的 /span span style=" font-family:宋体" 。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 动态范围大 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 所谓动态范围是指仪器在一个量程内能测量的最大粒径与最小粒径之比。现在大部分品牌的激光粒度仪都无需调整量程(通过更换傅里叶透镜或调节测量池位置实现),所以仪器的测量范围就是仪器的动态范围。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪的动态范围是由仪器同时能测量的最大散射角和最小散射角决定的。从原理分析,如果只测量前向散射光,测量下限能达到0.3µ m左右;如果光的探测角度范围扩展到后向,那么测量下限可达到0.1µ m。测量上限则由仪器的等效焦距和探测器最小单元的扇形平均半径决定(参考文献:胡华, 张福根等. 激光粒度仪的测量上限. 光学学报, 2018, 38(4): 0429001)。大多数品牌都能轻松测到1000µ m。可见激光粒度仪的动态范围能达到3300:1(无后向散射)或10000:1。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 需要说明的是,大多激光粒度仪厂商都把自己产品的测量下限宣传得很小,例如0.01微米(即10纳米),而把上限说得很大。有些是缺乏科学基础的。用户采信时要谨慎。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 不管怎样,其他3类粒度仪的动态范围都在 /span span style=" font-family:宋体" 100 /span span style=" font-family:宋体" 左右或者更小。可见激光粒度仪的动态范围远大于其他原理的仪器,这给用户使用带来极大的方便。 /span /p p class=" MsoListParagraph" style=" margin-left:24px" strong span style=" font-family:宋体" 测量速度快 /span /strong /p p & nbsp & nbsp & nbsp span style=" font-family:宋体" 激光粒度仪的测量过程主要包括背景测量、投样和搅拌循环、散射光测量、数据反演计算以及报告显示等。整个过程大约需要1分钟左右。当然这里不包括前期的样品制备过程。对难分散样品,在投入仪器的分散槽之前,需用外置的高功率超声分散器进行预处理,这个过程从数秒到几分钟,视样品不同而异。不过难分散样品的预分散对任何仪器都是必须要做的。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 预处理后的测量时间,电阻法仪器也很快,整个过程也在1分钟左右。沉降法仪器每次测量都要等整个沉降过程完成,同时为了满足斯托克斯定律要求的层流条件,沉降速度还不能太快。这样就造成测量过程需要30分钟甚至更长。静态图像法需要一幅一幅地处理图像,还需要人工干预,测一个样需要30分钟或更长。动态图像仪需要数分钟。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 综上所述,激光粒度仪的测量速度是所有现存的粒度仪中最快的仪器之一。 /span /p p class=" MsoListParagraph" style=" margin-left:24px" strong span style=" font-family:宋体" 重复性和再现性好 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 重复性是指将制备好的颗粒样品输送到测量池后,让仪器进行多次测量,不同次测量结果之间的一致性。重复性又称“测量精度”。重复性通常用多次测量结果的相对均方差或标准差来表示。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 有必要提醒的是,同一台仪器,量程的中段往往测量精度高,两端的测量精度低。在不加说明的情况下,都是指量程中段的精度。另外对粒度测量,重复性还跟样品的特性有关。首先是粒度分布宽度的影响。宽度越宽,重复性越低。其次跟样品在介质中的分散难易有关,容易团聚的样品,重复性低。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪比较典型的精度指标是:对单分散(即理论上认为所有颗粒有相同的粒径)样品,D50重复性误差小于 /span span style=" font-family:宋体" 0.5% /span span style=" font-family:宋体" ,甚至 /span span style=" font-family:宋体" 0.2% /span span style=" font-family:宋体" 。对一般的多分散样品(最大最小颗粒之比 /span span style=" font-family:宋体" 10 /span span style=" font-family:宋体" 到 /span span style=" font-family:宋体" 20 /span span style=" font-family:宋体" 倍),国际标准 /span span style=" font-family:宋体" ISO13320 /span span style=" font-family:宋体" ( /span span style=" font-family:宋体" 2009 /span span style=" font-family:宋体" 版)的要求是:” /span span style=" font-family:宋体" D50 /span span style=" font-family:宋体" 重复误差小于 /span span style=" font-family:宋体" 3% /span span style=" font-family:宋体" , /span span style=" font-family:宋体" D10 /span span style=" font-family:宋体" 和 /span span style=" font-family:宋体" D90 /span span style=" font-family:宋体" 重复误差小于 /span span style=" font-family:宋体" 5% /span span style=" font-family:宋体" 。如果粒径小于 /span span style=" font-family:宋体" 10 /span span style=" font-family:宋体" 微米,相对误差可以翻倍”。现行的商品化激光粒度仪, /span span style=" font-family:宋体" 重复性误差大多远小于国际标准的要求 /span span style=" font-family:宋体" 。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 再现性是指不同的人对同一样品进行测量(有时为了简便,也有同一个操作者,对同一样品多次取样再测量),得到的结果之间的一致性。显然,重复性是再现性的基础。由于受取样的代表性、样品制备方法(比如分散,移样的手法等)的差异的影响,再现性误差总是大于重复性误差。不过由于激光粒度仪有很高的重复精度,并且取样量比其他测量方法大,因此再现性也可以做到很高。 /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 不论是重复性误差还是再现性误差,一般都是用相对或绝对均方差来表示的。我们了解到有的用户对粒度测量误差的物理意义不甚了解或不甚准确,在此特意再解释一下: /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 我们首先要弄清楚,不论是平均粒径、边界粒径或者用户特别感兴趣的其他测量值,每一次的测量值跟上一次都不可能完全一样,因此每一个量的测量都存在误差。现在假设某一个量(例如D50)在n 次测量中,得到的数值分别为a sub 1 /sub ,a sub 2 /sub ,?,a sub n。 /sub /span /p p style=" text-indent:29px" span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " img src=" https://img1.17img.cn/17img/images/201808/insimg/06638399-24f9-44c5-9f0f-6f0309d6149d.jpg" title=" 专栏5图1.png" / /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 举个例子:设我们对一个颗粒样品进行了10次测量,每次的测量值见表2。其平均值和标准差分别为14.139微米和0.021微米。所以 /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a +S=14.139+0.021=14.160 /span span style=" font-family: 宋体" (微米),把测量值和这个上边界值对比,可以发现第4、第5共2个测量值超出; /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a -S=14.139-0.021=14.118 /span span style=" font-family: 宋体" (微米),把测量值和这个下边界对比,可以发现第6、第10共2个测量值超出;总共有4个测量值超出 /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a-S, /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a+S /span span style=" font-family: 宋体" 的区间,占测量值个数的40%,换言之,有60%的测量值在这个区间内。 /span /p p style=" text-align:center text-indent:29px" span style=" font-family: 宋体" 表2 测量误差的含义举例 /span /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 547" tbody tr style=" height:25px" class=" firstRow" td width=" 113" nowrap=" " rowspan=" 2" style=" border-style: solid border-color: windowtext windowtext black border-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 序号 /span /p /td td width=" 95" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 单次测量值(微米) /span /p /td td width=" 94" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 测量值与上边界的差 /span /p /td td width=" 80" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 正值表示超出 /span /p /td td width=" 91" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 测量值与下边界的差 /span /p /td td width=" 50" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 负值表示超出 /span /p /td td style=" border: none " width=" 0" height=" 25" br/ /td /tr tr style=" height:30px" td style=" border: none " width=" 0" height=" 30" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 1 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.149 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.011 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.031 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 2 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.152 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.008 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.034 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 3 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.138 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.022 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.02 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 4 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.174 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.014 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.056 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 5 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.161 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.001 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.043 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 6 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.108 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.052 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.01 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 7 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.125 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.035 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.007 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 8 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.127 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.033 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.009 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 9 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.139 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.021 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.021 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 10 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.115 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.045 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.003 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:21px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 均值 /span span style=" font-family: 宋体" ( /span span style=" font-family: 宋体" 微米 /span span style=" font-family: 宋体" )& nbsp /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 14.139 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td style=" border: none " width=" 0" height=" 21" br/ /td /tr tr style=" height:21px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" & nbsp /span span style=" font-family: 宋体" 标准差 (微米)& nbsp /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 0.021 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td style=" border: none " width=" 0" height=" 21" br/ /td /tr /tbody /table p span style=" font-family: 宋体" & nbsp /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 【 strong 进阶知识6 /strong 】粒度测量误差的表述及误差的统计理论。人们都希望测量误差越小越好,但是误差却不可避免。误差可分为三类:一是系统误差,二是随机误差,三是疏忽误差。系统误差是指测量系统(包括测量设备和操作者)对一个物理量的进行多次测量得到的平均值与该物理量真值之间的偏离。随机误差是多次测量中的某一次测量值对多次测量平均值的偏离。系统误差反映测量系统的准确性( /span strong span style=" font-family:宋体 color:#0070C0" Accurac /span /strong strong span style=" font-family:宋体 color:#0070C0" y /span /strong span style=" font-family: 宋体 color:#0070C0" ),随机误差反映测量系统的精度( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Precision /span /strong span style=" font-family:宋体 color:#0070C0" )或重复性。在实际操作中,误差一方面来源于测量仪器本身,另一方面来源于操作,包括取样误差,操作失误等等。在颗粒仪器行业,为了客观地考察仪器,尽量避免人为影响,一般采用一次投样,重复测量,考察每次测量结果相对于多次测量的平均值之间的误差来评估仪器精度或重复性。 /span span style=" font-family:宋体 color:#0070C0" 而把不同次取样甚至不同操作者测量同一个样品得到的结果之间的相对误差,叫做再现性 /span span style=" font-family:宋体 color:#0070C0" ( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Reproductivity /span /strong span style=" font-family:宋体 color:#0070C0" )。重复性和再现性都反应随机误差的大小。疏忽误差是指测量仪器处于不正常状态或者操作者操作错误得到的测量结果与真值之间的偏差。这里不讨论此类误差。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 粒度测量与其他物理量的测量相比有两个特殊性:一是大多数情况下,粒度不存在或者难以确定真值。这是因为多数情况下颗粒的形状是不规则的,客观上不存在一个真实的“直径”。所谓的颗粒直径都是等效的圆球直径。等效的原理不同,结果也不同;甚至等效的原理相同,数据处理的方法不同,也会造成结果的差异,此其一(关于激光粒度仪的等效粒径,作者曾进行过初步研究,有兴趣的读者可参考“张福根等.棒状和片状颗粒在激光粒度仪中的等效粒径(一)、(二).中国颗粒学会首届年会论文集,1997,267-278”)。其二,即使颗粒是圆球形的,但是粗细不均,客观上也难以用绝对方法(指更可靠、更高精度的方法,比如显微镜)测定足够多的颗粒,最终给出在计量学上有说服力的真值。粒度只有在一种很特殊的情况下才能在一定误差范围内获得真值,这就是粒度分布很窄(称为“单分散”)的圆球形颗粒。现在都用这样的颗粒制作微粒标准物质( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Reference Material /span /strong span style=" font-family:宋体 color:#0070C0" )。所以颗粒测量仪器声称的“准确性”,都是相对于单分散的标准物质来说的。用户需要注意的是,两台不同的粒度仪测标准样时都足够准确,但测量实际样品却可能得出不一样的结果。这是许多用户很费解的事。原因就在于颗粒形状的不规则、大小的不均匀和数据反演算法的差异。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 第二个特殊性是,粒度测量结果的完整表述是由一组数(往往达到几十个)组成的粒度分布,而不是一个数,因此就存在用哪个数或哪几个数来衡量测量误差的问题。通常用平均粒径(如D[4,3]、D[3,2]或者D50,以及上下边界(累积)粒径D10、D90的测量误差来衡量。用户如果有特别关注的某个测量值,比如说碳酸该行业的2µ m以细的含量,也可以用这个测量值的误差来衡量仪器误差。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 下面再谈误差的表达的问题。用标准误差表达重复性或者再现性已经在正文做过简单介绍。这里再补充几点: /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (1)置信度和置信区间 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 正文已经谈到,单次测量值落在 /span span style=" font-family:Symbol color:#0070C0" ` /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" a-S, /span span style=" font-family:Symbol color:#0070C0" ` /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" a+S /span span style=" font-family:宋体 color:#0070C0" 区间内的概率是 /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" 68.3% /span span style=" font-family:宋体 color:#0070C0" 。这个区间又叫置信区间, /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" 68.3% /span span style=" font-family:宋体 color:#0070C0" 叫做置信度。这里假设了误差的分布满足正态分布规律(注意,这是误差分布,不是粒度分布)。根据概率论中的中心极限定律,如果测量误差是由多个相互独立的因素引起的,只要因素的数量足够多,那么误差的概率分布就满足正态规律。正态分布曲线见下图 /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" , /span span style=" font-family:宋体 color:#0070C0" 一定区间范围内曲线以下的阴影面积就代表发生在该区间内的测量值的概率。 /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 由此我们可以推断出,测量值落在μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -2σ,μ+2σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 区间内的概率是 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 95.4% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " ,μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -3σ,μ+3σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 的概率是 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 99.7% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 。μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -σ,μ+σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 、μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -2σ,μ+2σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 或μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -3σ,μ+3σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 叫做测量值的置信区间,对应的 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 68.3% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 、 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 95.4% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 和 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 99.7% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 称为相应的置信区间内的置信度。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/a45cdca6-a484-4a8d-83ee-30adc265602d.jpg" title=" 专栏5图2.jpg" / /p p style=" text-align:center" span style=" font-family:宋体 color:#0070C0" 随机误差的概率分布 /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (2)方均根误差与标准误差 /span /p p style=" margin-left: 29px text-align: center " span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " img src=" https://img1.17img.cn/17img/images/201808/insimg/18f3b470-d0b2-49f0-b9b5-22caa8d02452.jpg" title=" 专栏5图3.png" / /span /p p style=" margin-left:29px" span style=" color: rgb(0, 112, 192) font-family: 宋体 font-size: 16px " 显然,标准误差大于均方根误差。当n趋于无穷时,二者趋于一致。 /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (3)t分布 /span /p p span style=" font-family:宋体 color:#0070C0" & nbsp & nbsp & nbsp /span span style=" font-family:宋体 color:#0070C0" 可以想象,如果我们用n次测量的平均值 /span span style=" font-family: 宋体" a /span span style=" font-family: PMingLiU, serif" ? /span span style=" font-family:宋体 color:#0070C0" 作为测量的报告值,那么一般而言随机误差会减少。具体会减小多少?或者说置信区间和置信度会发生什么变化?需要用到概率论的t分布函数,有兴趣的读者可以自行参考有关书籍。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 适用多种类型的分散介质 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 绝大部分粒度仪都需要把待测颗粒分散在介质中才能测量。具体选择什么介质,首先取决于颗粒本身的特性,比如颗粒与介质不能发生化学反应,能在介质中良好分散等等。其次是介质的使用成本,越低越好。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪测量颗粒时,既可用液体介质(称为“湿法分散”)也可用气体介质(称为“干法分散”),其中液体介质可以是最常见的水,也可以是各种有机溶剂。从而为用户选择适用且经济的介质提供便利。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 操作方便 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 不论使用什么类型的仪器,粒度测量都需要操作者认真仔细地进行,否则就可能引入人为误差。相对而言,激光粒度仪相较于其他粒度仪,操作起来要方便得多。主要表现在: /span /p p span style=" font-family:宋体" & nbsp & nbsp /span span style=" font-family:宋体" (1)对大多数激光粒度仪而言,不需要调整仪器量程。由于动态范围大,0.1微米至1000微米的任何样品都可以在仪器固有的量程范围内完成,无需预先估计样品的粒度分布范围,然后设置好仪器的量程才能测量(目前个别品牌的激光粒度仪还需要选量程,但大多数不需要)。作为对比,电阻法仪器、图像法仪器、沉降法仪器等等,都需要选择量程。 /span /p p & nbsp & nbsp & nbsp span style=" font-family:宋体" ( /span 2 span style=" font-family:宋体" )对分散介质的纯度没有太高要求。这是因为激光粒度仪在测量中有一个“减背景“的操作,杂质颗粒形成的散射光的影响在一定范围内可以通过这个操作消除掉。 /span /p p style=" text-indent:21px" span style=" font-family:宋体" ( /span 3 span style=" font-family:宋体" )一次测量所用的样品量较大,代表性好。另外样品浓度对测量结果的影响也较小。 /span /p p & nbsp & nbsp span style=" font-family:宋体" ( /span 4 span style=" font-family:宋体" )大多产品都具有 /span SOP span style=" font-family:宋体" 功能,进一步降低了操作人员和操作手法不一致带来的测量结果差异。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 局限性 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 上面介绍了激光粒度仪的诸多优点。凡事有优点必然就有缺点。以下是激光粒度仪的缺点: /span /p p style=" text-indent:29px" span style=" font-family:宋体" (1)分辨率低:所谓分辨率是指仪器分辨两个不同粒径的单分散样品的能力。行业一般认为激光粒度仪只能区分粒径相差 /span span style=" font-family:宋体" 3 /span span style=" font-family:宋体" 倍的两个单分散样品。比如把一个 /span span style=" font-family:宋体" 5 /span span style=" font-family:宋体" 微米的样品和 /span span style=" font-family:宋体" 15 /span span style=" font-family:宋体" 微米的样品混合起来,仪器可以测出两个分布的峰。分辨率优异的品牌能够做到 /span span style=" font-family:宋体" 1.5 /span span style=" font-family:宋体" 倍左右。在实用中,需要去区分两个粒径相近的单分散样品的情况很少见,但是分辨率低意味着仪器对样品分布宽度的变化不敏感。有些对粒度均匀性要求很高的样品(比如单分散的标准微球、激光打印机用的碳粉等等)就不适合用激光粒度仪测量了。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" (2)对处在样品的粒度分布范围两端的颗粒不敏感。这是因为激光粒度仪直接测量的是所有颗粒散射光分布叠加在一起的结果,处在粒度分布两端的颗粒占总颗粒的比例很低,例如0.1%,对总光能的贡献很小,容易被噪声淹没。因此用户如果很关注Dmax和Dmin,那么就要注意,激光粒度仪给出的这两个数值是不可靠的。 /span /p p & nbsp & nbsp strong 编者结: /strong span style=" font-family:宋体" 在本文中,张福根博士一根妙笔对激光粒度仪的优势和局限娓娓道来。在下篇系列文章中,张福根博士就激光粒度仪研究界的几个前沿技术问题与大家深度剖析,精彩不容错过! /span /p p style=" text-align: right " span style=" font-family:宋体" (作者:张福根) /span /p
  • 【好书推荐】《颗粒粒度测量技术及应用》(第2版)出版
    自然界中很多物质属于颗粒,例如黏土、沙子和灰尘;人类的食物也往往是颗粒,例如谷粒、豆子、盐和蔗糖;很多加工物,例如煤炭、催化剂、水泥、化肥、颜料、药物和炸药也大多属于粉体或颗粒。颗粒学是一门多交叉学科,由多基础科学和大量相关的应用技术组成,涉及化学、物理、数学、生物、医学、材料等若干基础科学,与工艺、工程应用技术密切相关。颗粒(包括固体颗粒、液滴、气泡)与能源、 动力、环境、机械、医药、化工、轻工、冶金、材料、食品、集成电路、气象等行业密切相关,同时也会影响到人们的日常生活。据文献介绍,70% 以上的工业产品都涉及颗粒,近年来经常出现的沙尘暴、冬季大范围的浓雾等都与空气中的颗粒物有关。颗粒粒径和形貌是颗粒的最重要参数。上海理工大学颗粒与两相流测量研究所所长蔡小舒教授及课题组成员长期从事颗粒粒度测量方面的研究和教学工作,先后得到国家自然科学基金重点项目和面上项目、国家 863计划项目、国家 973计划项目、上海市“科技创新行动计划”纳米科技项目等多个项目的支持,开展光散射理论、基于光散射原理的多种颗粒测量方法、基于超声的多种颗粒测量方法、纳米颗粒测量方法、图像法、颗粒在线测量等方面的研究,在颗粒测量基础理论和测量方法及技术方面取得多项成果。《颗粒粒度测量技术及应用》(第一版)左图:蔡小舒教授;右图:《颗粒粒度测量技术及应用》(第一版)《颗粒粒度测量技术及应用》(第一版)是蔡小舒教授等从 20 世纪 80 年代到 2010 年二十多年在颗粒测量理论、方法、技术和应用研究的总结,反映了我国和国际上当时颗粒测量的技术水平。第一版系统介绍了颗粒的基础知识以及颗粒粒径分布的表征方法,全面系统地讨论了有关光散射颗粒粒径测量方面的基础知识,归纳总结基于散射光能测量和透射光能测量的多种颗粒测量方法、纳米颗粒粒度的测量方法以及蔡小舒教授等开展在线颗粒测量应用研究的具体例子。成为从事颗粒测量技术研究和仪器开发的研究人员和工程技术人员的最主要参考书,也是众多涉及颗粒制备与应用的科技人员的重要参考书。时任中国颗粒学会名誉理事长的郭慕孙院士对该书的出版表示肯定,并为该书作序,推荐给从事颗粒研究、加工、应用的科技人员。随着科技的发展,颗粒测量技术也在不断迎来新的挑战、迈向新的高度。颗粒测量方法、技术和仪器有了很大的发展进步,出现了不少新的技术和仪器,远心镜头、液体变焦镜头、各种新型激光光源和发光二极管(LED)光源等光电子技术和计算机技术等硬件技术的发展,以及金属氧化物半导体器件(CMOS)技术的发展推动了各种数字相机技术的飞速发展。颗粒粒度涉及的范围也越来越广泛:▪ 大气环境污染,雾霾使得 PM2.5 成为家喻户晓的名词,新冠病毒的传播更使气溶胶这样的专业词汇得到普及。▪ 纳米颗粒、生物颗粒、微泡、药物颗粒、能源颗粒等新的颗粒应用以及越来越广泛的在线测试需求促进了颗粒测试技术的快速发展。高浓度纳米颗粒粒度测量探针▪ 大数据分析、人工智能算法等手段被引入到测量数据的处理中。众多领域对颗粒测试的需求、软硬件技术的发展等诸多因素,催生出许多新的颗粒测量方法和技术手段。例如,图像测量方法不再局限于对微米级以上颗粒的成像测量,也应用于纳米颗粒的粒度测试;又如,将图像测量方法与光散射等其他方法融合,形成了多种包括气溶胶等在内的在线颗粒测量新方法。纳米颗粒粒度仪 很显然,颗粒测量技术的飞速发展使得 2010 年出版的《颗粒粒度测量技术及应用》一书已不能满足当前颗粒研究者的需要,内容亟需更新。经典再版 全面更新为此,在化学工业出版社的支持下和国家科学技术学术著作出版基金的再次资助下,第二版图书于2023年1月正式出版了。第二版图书在保持上一版结构框架的基础上,对图书内容进行了重新撰写,主要体现在以下几方面:▪ 对部分章节结构作了调整,如将原第 7 章“纳米颗粒的测量”中,有关动态光散射原理的纳米颗粒测量内容并入第 5 章“动态光散射法纳米颗粒测量技术”,有关超声纳米颗粒测量的内容并入第 6 章“超声法颗粒测量技术”,将第 7 章改写成“图像法颗粒粒度测量技术”。▪ 补充了作者团队自第一版出版后 12 年来在光散射理论及测量、超声理论及测量、图像法测量、纳米颗粒测量、多方法融合测量、在线测量等技术及应用的研究成果。▪ 补充修订了与颗粒测量相关的国际标准和国家标准目录等内容。▪ 本书不仅可作为从事颗粒相关研究和应用的科研与工程技术人员的主要参考书,也可供相关专业研究生学习和参考。本书作者深深感谢郭慕孙先生生前的支持和鼓励,谨以本书第二版出版纪念郭慕孙先生逝世10周年。《颗粒粒度测量技术及应用》(第二版)「聚焦颗粒测量技术」「注重技术发展与应用」蔡小舒 苏明旭 沈建琪 等著责任编辑:李晓红书号:978-7-122-42009-1定价:198.00元▲ 长按识别 即可优惠购买本书图书分为四部分。第一部分介绍了颗粒粒度的基本知识;第二部分系统介绍了光散射理论、超声散射理论和图像处理理论等,以及基于上述理论发展的各种颗粒测量技术,其粒度测量范围覆盖了在科学研究及各领域和行业应用涉及的从纳米到毫米粒度范围;第三部分介绍了颗粒粒度测量仪器和应用,并引入其它颗粒测量技术作为补充;第四部分为作者多年来收集的大量物质的折射率和其它物性参数,以及国际和国内有关颗粒测量的标准等资料。本书适合从事颗粒科学研究与应用的科研人员和工程技术人员参考,也可作为高等学校相关学科教师和研究生的教材或参考书。# 目录预览 #第1章 颗粒基本知识 / 0011.1 概述 / 0011.2 颗粒的几何特性 / 0021.2.1 颗粒的形状 / 0021.2.2 颗粒的比表面积 / 0031.2.3 颗粒的密度 / 0031.3 颗粒粒度及粒度分布 / 0041.3.1 单个颗粒的粒度 / 0041.3.2 颗粒群的粒径分布 / 0061.3.3 颗粒群的平均粒度 / 0111.4 标准颗粒和颗粒测量标准 / 0131.4.1 标准颗粒 / 0131.4.2 颗粒测量标准 / 0171.5 颗粒测量中的样品分散与制备 / 0171.5.1 颗粒分散方法 / 0171.5.2 颗粒样品制备 / 0191.5.3 常见测量问题讨论 / 020参考文献 / 022第2章 光散射理论基础 / 0232.1 衍射散射基本理论 / 0232.1.1 惠更斯-菲涅耳原理 / 0232.1.2 巴比涅原理 / 0252.1.3 衍射的分类 / 0262.1.4 夫琅和费单缝衍射 / 0262.1.5 夫琅和费圆孔衍射 / 0282.2 光散射基本理论 / 0302.2.1 光散射概述 / 0302.2.2 光散射基本知识 / 0322.2.3 经典Mie光散射理论 / 0352.2.4 Mie散射的德拜级数展开 / 0522.3 几何光学对散射的描述 / 0562.3.1 概述 / 0562.3.2 几何光学近似方法 / 0572.4 非平面波的散射理论 / 0642.4.1 广义Mie理论 / 0642.4.2 波束因子的区域近似计算 / 0692.4.3 高斯波束照射 / 0702.4.4 角谱展开法 / 071参考文献 / 076第3章 散射光能颗粒测量技术 / 0813.1 概述 / 0813.2 基于衍射理论的激光粒度仪 / 0843.2.1 衍射散射式激光粒度仪的基本原理 / 0843.2.2 多元光电探测器各环的光能分布 / 0863.2.3 衍射散射法的数据处理方法 / 0893.3 基于Mie散射理论的激光粒度仪 / 0933.3.1 基于Mie理论激光粒度仪的基本原理 / 0933.3.2 粒径与光能变化关系的反常现象 / 0963.4 影响激光粒度仪测量精度的几个因素 / 0993.4.1 接收透镜焦距的合理选择 / 0993.4.2 被测试样的浓度 / 1003.4.3 被测试样轴向位置的影响 / 1023.4.4 被测试样折射率的影响 / 1043.4.5 光电探测器对中不良的影响 / 1043.4.6 非球形颗粒的测量 / 1063.4.7 仪器的检验 / 1063.5 激光粒度仪测量下限的延伸 / 1063.5.1 倒置傅里叶变换光学系统 / 1083.5.2 双镜头技术 / 1093.5.3 双光源技术 / 1103.5.4 偏振光散射强度差(PIDS)技术 / 1113.5.5 全方位多角度技术 / 1123.5.6 激光粒度仪的测量上限 / 1143.5.7 国产激光粒度仪的新发展 / 1153.6 角散射颗粒测量技术 / 1203.6.1 角散射式颗粒计数器的工作原理 / 1213.6.2 角散射式颗粒计数器的散射光能与粒径曲线 / 1223.6.3 角散射式颗粒计数器F-D曲线的讨论 / 1243.6.4 角散射式颗粒计数器的测量区及其定义 / 1283.6.5 角散射式颗粒计数器的计数效率 / 1323.6.6 角散射式颗粒计数器的主要技术性能指标 / 1323.7 彩虹测量技术 / 1353.7.1 彩虹技术的原理 / 1363.7.2 彩虹法液滴测量 / 1373.8 干涉粒子成像技术 / 1413.8.1 干涉粒子成像技术介绍 / 1413.8.2 干涉粒子成像法颗粒测量 / 1423.9 数字全息技术及其应用 / 1443.9.1 数字全息技术介绍 / 1443.9.2 数字全息技术的应用 / 146参考文献 / 151第4章 透射光能颗粒测量技术 / 1584.1 消光法 / 1584.1.1 概述 / 1584.1.2 消光法测量原理 / 1584.1.3 消光系数 / 1604.1.4 消光法数据处理方法 / 1634.1.5 消光法颗粒浓度测量 / 1704.1.6 消光法粒径测量范围及影响测量精度的因素 / 1704.1.7 消光法颗粒测量装置和仪器 / 1724.2 光脉动法颗粒测量技术 / 1744.2.1 光脉动法的基本原理 / 1754.2.2 光脉动法测量颗粒粒径分布 / 1784.2.3 光脉动法测量的影响因素 / 1834.3 消光起伏频谱法 / 1854.3.1 数学模型 / 1854.3.2 测量方法和测量原理 / 1884.3.3 消光起伏频谱法的发展现状 / 197参考文献 / 198第5章 动态光散射法纳米颗粒测量技术 / 2025.1 概述 / 2025.2 纳米颗粒动态光散射测量基本原理 / 2045.2.1 动态光散射基本原理 / 2045.2.2 动态光散射纳米颗粒粒度测量技术的基本概念和关系式 / 2075.2.3 动态光散射纳米颗粒测量典型装置 / 2115.2.4 数据处理方法 / 2135.3 图像动态光散射测量 / 2205.3.1 图像动态光散射测量方法(IDLS) / 2205.3.2 超快图像动态光散射测量方法(UIDLS) / 2225.3.3 偏振图像动态光散射法测量非球形纳米颗粒 / 2245.4 纳米颗粒跟踪测量法(PTA) / 2295.5 高浓度纳米颗粒测量 / 231参考文献 / 234第6章 超声法颗粒测量技术 / 2376.1 声和超声 / 2376.1.1 声和超声的产生 / 2376.1.2 超声波特征量 / 2386.2 超声法颗粒测量基本概念 / 2426.2.1 声衰减、声速及声阻抗测量 / 2446.2.2 能量损失机理 / 2486.3 超声法颗粒测量理论 / 2506.3.1 ECAH 理论模型 / 2516.3.2 ECAH理论模型的拓展和简化 / 2626.3.3 耦合相模型 / 2776.3.4 蒙特卡罗方法 / 2836.4 超声法颗粒测量过程和应用 / 2886.4.1 颗粒粒径及分布测量过程 / 2886.4.2 在线测量 / 2986.4.3 基于电声学理论的Zeta电势测量 / 2996.5 超声法颗粒检测技术注意事项 / 3006.6 总结 / 301参考文献 / 301第7章 图像法颗粒粒度测量技术 / 3047.1 图像法概述 / 3047.2 成像系统 / 3057.2.1 光学镜头 / 3057.2.2 图像传感器 / 3087.2.3 照明光源 / 3107.3 显微镜 / 3117.4 动态颗粒图像测量 / 3177.5 颗粒图像处理与分析 / 3187.5.1 图像类型及转换 / 3187.5.2 常用的几种图像处理方法 / 3207.5.3 颗粒图像分析处理流程 / 3237.5.4 颗粒粒径分析结果表示 / 3237.6 图像法与光散射结合的颗粒测量技术 / 3277.6.1 侧向散射成像法颗粒测量 / 3277.6.2 后向散射成像法颗粒测量 / 3307.6.3 多波段消光成像法颗粒测量 / 3317.7 彩色颗粒图像的识别 /3347.7.1 彩色图像的色彩空间及变换 / 3347.7.2 彩色颗粒图像的分割 / 3367.8 总结 / 338参考文献 / 339第8章 反演算法 / 3418.1 反演问题的积分方程离散化 / 3418.2 约束算法 / 3438.2.1 颗粒粒径求解的一般讨论 / 3438.2.2 约束算法在光散射颗粒测量中的应用 / 3458.2.3 约束算法在超声颗粒测量中的应用 / 3548.3 非约束算法 / 3628.3.1 非约束算法的一般讨论 / 3628.3.2 Chahine算法及其改进 / 3658.3.3 投影算法 / 3678.3.4 松弛算法 / 3688.3.5 Chahine算法和松弛算法计算实例 / 371参考文献 / 372第9章 电感应法(库尔特法)和沉降法颗粒测量技术 / 3759.1 电感应法(库尔特法) / 3759.1.1 电感应法的基本原理 / 3769.1.2 仪器的配置与使用 / 3779.1.3 测量误差 / 3809.1.4 小结 / 3839.2 沉降法 / 3849.2.1 颗粒在液体中沉降的Stokes公式 / 3849.2.2 颗粒达到最终沉降速度所需的时间 / 3869.2.3 临界直径及测量上限 / 3879.2.4 布朗运动及测量下限 / 3889.2.5 Stokes公式的其它影响因素 / 3899.2.6 测量方法及仪器类型 / 3919.2.7 沉降天平 / 3949.2.8 光透沉降法 / 396参考文献 / 399第10章 工业应用及在线测量 / 40110.1 喷雾液滴在线测量 / 40110.1.1 激光前向散射法测量 / 40210.1.2 消光起伏频谱法测量 / 40410.1.3 图像法测量 / 40510.1.4 彩虹法测量 / 40610.1.5 其它散射法测量 / 40810.2 乳浊液中液体颗粒大小的测量 / 41010.3 汽轮机湿蒸汽在线测量 / 41110.4 烟气轮机入口颗粒在线测量 / 41410.5 烟雾在线测量探针 / 41510.6 动态图像法测量快速流动颗粒 / 41710.7 粉体颗粒粒度、浓度和速度在线测量 / 41910.7.1 电厂气力输送煤粉粒径、浓度和速度在线测量 / 41910.7.2 水泥在线测量 / 42110.8 超细颗粒折射率测量 / 42310.9 超声测量高浓度水煤浆 / 42410.10 结晶过程颗粒超声在线测量 / 42510.11 含气泡气液两相流超声测量 / 42610.12 排放和环境颗粒测量 / 42810.12.1 PM2.5测量 / 42810.12.2 图像后向散射法无组织排放烟尘浓度遥测 / 43010.12.3 图像侧向散射法餐饮油烟排放监测 / 43210.13 图像动态光散射测量纳米颗粒 / 43510.13.1 纳米颗粒合成制备过程原位在线测量 / 43510.13.2 非球形纳米颗粒形貌拟球形度Ω测量 / 43810.13.3 纳米气泡测量 / 439参考文献 / 440附录 / 443附录1 国内外主要颗粒仪器生产厂商 / 443附录2 颗粒表征国家标准和国际标准 / 445附录3 国内外标准颗粒主要生产厂商 / 453附录4 液体的黏度和折射率 / 455附录5 固体化合物的折射率 / 458附录6 分散剂类别 / 473
  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • 法国Cordouan发布Vasco Kin原位时间分辨纳米粒度分析仪新品
    Vasco Kin原位时间分辨纳米粒度分析是新一代动态光散射纳米粒度分析仪,通过远程光学探头,进行原位非接触测量和反应动力学,用于监测纳米颗粒的合成、团聚或悬浮液稳定性的研究或监测。常用于实时纳米颗粒合成过程监控, 核反应堆内现场测量,与其它粒度特性测量仪器联用(如光谱仪、SAXS等)。粒度测量范围 : 0.5nm 到 10μm背向动态光散射原理,实时远程非接触测量监测纳米颗粒合成过程;监测整个过程的粒度变化情况,有助于稳定性研究全自动非接触测量:能穿透玻璃和塑料针管,测定包装物及反应釜中的粒度分布和随时间的变化适用样品浓度:0.1ppm-40%(w/v)时间分辨: DLS的分辨率为0.2s,用于动力学监测随时间变化的粒度分布彩色地形图“时间切片”功能:用户对测试后数据可进行任意时间段内的粒度分析样品前处理:无需样品前处理,直接测试硬件规格(核心单元):1. 激光源: 高稳定性激光二极管(可选蓝光和绿光)2. 探测器: 无伪影雪崩光电二极管(APD)3. 计算设备: 内嵌专用电脑4. 数据处理: NanoKin® 相关和分析软件5. 典型测量时间:最快200ms。测量时间由样品和测量设置决定6. 操作条件/存储条件:15℃ ~ 40℃ / -10℃ ~ 50℃ – 非冷凝相对湿度 70% 7. 尺寸/重量: 220 x 220 x 64 mm (上半部分) / 2.5 kg 220 x 220 x 48 mm (下半部分) / 2.8 kgNano Kin™ 软件的主要特点: - 三个层级登录配置文件:管理员、专家、操作员 - 运行模式:包括测量、模拟、后分析(导入) - 直观导航(顺序) - 时间切片和动力学模式:独特的技术,允许监测快速动力学和/或准确的再现性测量(时间分辨率高达200毫秒)。 - 可读数据和绘图: - 动态导出数据/绘图(右键单击到剪贴板) - 报告文件格式:.pdf或.rtf(兼容writer软件) - 反转算法:- CUMULANTS 累积量算法:用于具有单分散趋势的单峰样品 - PADE-LAPLACE算法(专有):多峰样品的离散数学方法。 - 稀疏贝叶斯学习算法(SBL;专有):多峰样品的连续分布数学方法。对于所期望的分布斜率不需要先验知识,正则化参数自学习概率计算模块。创新点:VASCO 原位在线纳米粒度分析仪是基于光纤动态光散射(DLS)技术的纳米级悬浮和胶体特性的独特表征仪器。监测纳米颗粒合成,团聚或悬浮体系稳定性研究,帮助您实时分析样品动力学。 独特的“时间切片” 功能允许VASCO KinTM 用户对测试后的数据进行任意时间段内的粒径分析。用户可以获得所选时间尺度的相应的相关图和粒度分布。 稳频激光光源,雪崩光电二极管(APD)探测器;可直接测量亚纳米样品(如蛋白质),无需稀释,测量精度高 。 Vasco Kin原位时间分辨纳米粒度分析仪
  • 青岛拍一拍你,欧美克高性能激光粒度仪亮相国际药机展
    5月10日,由中国制药装备行业协会主办的第60届全国制药机械博览会暨2021(春季)中国国际制药机械博览会在青岛世界博览城盛大启幕!作为国内的颗粒测量仪器制造商,珠海欧美克仪器有限公司(以下简称“欧美克”)携高性能激光粒度分析仪Topsizer亮相展会现场,与国内外药机企业共同探讨行业“质造”解决方案。作为国内药机行业具影响力的盛会之一,本届博览会展出面积超过13.5万平方米,来自25个国家和地区共计1484个国内外展商携产品汇集于此,展出设备涵盖原料药机械、制剂机械、制药用水、气设备、药用粉碎设备、饮片机械、药品包装机械、检测及实验室、工程、净化与环保设备、其他制药机械及设备9大类近万台(套),2场高质量的平行论坛和80余场技术交流会线上线下展播,聚焦行业关注话题,吸引了近6000人次的专业观众积极参与。随着中国制药装备产业在全球产业链的地位越发举足轻重,粒度控制的重要性已经是业内共识。2015、2020版《中国药典》采纳了激光衍射法,明确将激光粒度仪检测作为原料药辅药的要求方法。激光衍射法以其适用范围广(适用于固体粉末、悬液、乳剂颗粒检测)、测量范围宽(纳米级到毫米级)、准确性高、重现性好、操作简单、测试快速等优点,在制药行业获得广泛应用,需求增长明显。自2010年加入英国思百吉集团,欧美克仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,为行业客户提供物超所值的产品、服务及整体解决方案本次展会上,欧美克携主力产品Topsizer激光粒度分析仪亮相本次展会。Topsizer具有宽测量范围、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,更好地应用于日益精细化的制药行业领域。Topsizer激光粒度分析仪测试范围:0.02-2000um(湿法)0.1-2000um(干法)重复性:优于0.5%准确性:优于1%Topsizer激光粒度分析仪自面市以来,一直是广受客户欢迎的国产高性能激光粒度分析仪,其湿法测试范围0.02-2000um,干法测试范围0.1-2000um,对毫米级、亚微米等颗粒具有超强识别能力,同时还满足GMP认证对于药品检测的需求。最重要的是,Topsizer采用国际引进的红蓝光双色光源技术,高精度、耐用性的光学平台设计,保证了测试结果和分析能力与国内外、行业上下游黄金标准保持一致,这不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可避免粒径检测不准带来的经济损失和风险,无论在研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克医药行业主营产品此外,欧美克针对医药行业还推出了多款粉体特性测试仪,形成激光粒度分析仪、纳米粒度分析仪、粉体流动性测试仪、粉体振实密度测试仪、近红外光谱仪等六大产品矩阵,在追求精益生产的当下,为制药企业客户提供专业、先进、高效的粉体检测解决方案,共同探讨制药行业新一轮的“质造”变革!
  • 采用软硬一体化设计,贝拓科学展示表界面张力仪、纳米粒度仪、显微拉曼光谱仪等产品
    仪器信息网讯 2021年9月27日-29日,第十九届北京分析测试学术报告会暨展览会(BCEIA 2021)在北京中国国际展览中心(天竺新馆)召开。作为一家国家高新技术企业和广州科技小巨人企业,本次展会广州贝拓科学技术有限公司携多款特色产品精彩亮相。仪器信息网特别采访了广州贝拓科学技术有限公司总经理梁世健,请他就参展仪器特点、公司当前发展情况及未来发展规划等方面作了详细介绍。本届展会,贝拓科学向业界推介展示了全自动表界面张力仪、DLS90纳米粒度仪和CVRam Edu显微拉曼光谱仪等产品。据介绍,全自动表界面张力仪有多个精度范围可供用户选择,最高精度范围可达0.001mN/m;还可以进行超高温下的表面张力测量,最高可在300℃下进行表面张力测量;通过编程软件还能实现全自动测量。DLS90纳米粒度仪,也叫动态光散射分析仪,主要测量纳米颗粒的粒径分布,可以在1nm到10μm的测量范围内中实现全自动测量。该仪器的软件进行了SOP设计,基本实现了一键式测量,还能自定义导出检测报告。CVRam Edu显微拉曼光谱仪通过对拉曼和白光成像的光路进行一体化设计和集成,可以与多种型号显微镜耦合,同时进行拉曼光谱和白光成像。谈到今年的业绩表现时,梁世健透露,今年前三季度的业绩表现非常不错,第四季度由于面临年底的高校采购高峰,贝拓还将参加一些学术活动。采访中,梁世健还谈了对参展仪器的市场和对国产仪器发展等方面的看法。更多内容请观看采访视频:关于贝拓科学广州贝拓科学技术有限公司成立于2010年8月,是国家高新技术企业,广州科技小巨人企业,并在广东股权交易中心成功挂牌(股权代码:892081),通过ISO9001-2015质量体系认证和知识产权贯标认定体系,拥有近20项国家专利。贝拓科学一直从事高端光谱分析仪器领域,自主研发仪器有光学接触角测量仪,显微拉曼光谱仪,表界面张力仪,白光干涉膜厚分析仪,阵列式紫外可见分光光度计,积分球式透反射率测试仪等。具备光学设计、机械设计、软件编写和算法编写。
  • 激光粒度仪在粒度检测中的应用浅谈
    p style=" text-indent: 2em " 编者按:谈到粒度,激光粒度仪怎能缺席?目前,在各行各业的粒度检测领域,激光粒度仪应用广泛。从传统的石油化工、建材家居,到制药、食品、环保,甚至在新兴的锂电、半导体、石墨烯等行业,都能看到激光粒度仪活跃的身影。 /p p style=" text-indent: 2em " 那么激光粒度仪在粒度检测中到底是怎样应用的呢?我国颗粒学泰斗专家周素红研究员的论述,无疑将给我们带来启示…… /p p style=" text-indent: 2em " strong 专家观点: /strong /p p style=" text-indent: 2em " 激光粒度分析方法是近年来发展较快的一种测试方法,其主要特点是: /p p style=" text-indent: 2em " 1)测量的粒径范围广, 可进行从纳米到微米量级如此宽范围的粒度分布。约为 :20nm ~ 2000μm , 某些情况下上限可达 3500μm /p p style=" text-indent: 2em " 2)适用范围广泛 , 不仅能测量固体颗粒 , 还能测量液体中的粒子 /p p style=" text-indent: 2em " 3)重现性好 ,与传统方法相比 ,激光粒度分析仪能给出准确可靠的测量结果 /p p style=" text-indent: 2em " 4)测量时间快,整个测量过程1-2分钟即可, 某些仪器已实现了实时检测和实时显示 ,可以让用户在整个测量过程中观察并监视样品。 /p p style=" text-indent: 2em " 激光粒度分析不仅在先进的材料工程 、国防工业、军事科学、而且在众多传统产业中都有广泛的应用前景。特别是高新材料科学的研究与开发 ,产品的质量控制等 , 如 :陶瓷、粉末冶金、稀土 、电池、制药 、食品、饮料 、水泥 、涂料 、粘合剂 、颜料、塑料、保健及化妆品 。由于颗粒粒子的特异性能在于它的粒径十分细小,粒径大小是表征颗粒性能的一个重要参数, 因此 ,对颗粒粒径进行测量是开展材料检测、评价颗粒材料的重要指标。 /p p style=" text-indent: 2em " 当光线照射到颗粒上时会发生散射 、衍射 。其衍射、散射光强度均与粒子的大小有关 。观测其光强度, 可应用夫琅和费衍射理论和 Mie 散射理论求得粒子径分布(激光衍射/散射法)。 /p p style=" text-indent: 2em " 光入射到球形粒子时可产生三类光:1)在粒子表面 、通过粒子内部、经粒子内表面的反射光 2)通过粒子内部而折射出的光 3)在表面的衍射光 。这些现象与粒子的大小无关 。全都可以作为光散射处理 。一般地 , 光散射现象可以用经Maxwell 电磁方程式严密解出的 Mie 散射理论说明。但是, 实际使用起来过于复杂, 为了求得实际的光强度, 可根据入射波长 λ和粒子半径r 的关系 ,即 :r& lt & lt λ时,Rayleigh 散射理论r& gt & gt λ时,Fraunhofer 衍射理论在使用上述理论时 ,应考虑到光的波长和粒子径的关系, 在不同的领域使用不同的理论 。 /p p style=" text-indent: 2em " 粒子径大于波长的时候, 由 Fraunhofer 衍射理论求得的衍射光强度和 Mie 散射理论求得的散射光强度大体是一致的。因此 ,可以把 Fraunhofer 衍射理论作为 Mie 散射理论的近似处理。这时 ,光散射(衍射)的方向几乎都集中在前方, 其强度与粒子径的大小有关 ,有很大的变化。即, 表示粒子径固有的光强度谱 。解出粒子的光强度分布(散射谱)就可以定出粒子径。当波长和粒子径很接近的时候 ,不能用 Fraunhofer 的近似式来表示散射强度 。这时有必要根据 Mie 散射理论作进一步讨论。在Mie 散射中的散射光强度由入射光波长(λ)、粒子径(a)、粒子和介质的相对折射率(m)来确定 。、 /p p style=" text-indent: 2em " 激光粒度分析的应用领域极为广泛, 如 :1)医药中的粒度控制着药物的溶解速度和药效 2)催化剂的粒度影响着生成反应效率 3)制陶原料的粒度影响着烧结后的物理特性 4)矿物的粒度影响着长途海运的安全 5)食品的保质期受粒度影响 6)橡胶原料粒度影响着其寿命 7)电池原料的粒度影响着电池的充放电效率和寿命 8)涂料 、染料中的粒度影响着产品染色时的发色、光泽 、退色 9)塑料原料的粒度影响着塑料的透明度和加工以及使用性能。 /p
  • 2021年激光粒度仪中标盘点:纳米粒度仪需求激增
    激光粒度仪是一种常用的粒度测试仪器,广泛应用于制药、化工、能源、建材、地矿、环保等行业,以及高校、科研院所、军工等领域;按工作原理,主要分为静态光散射激光粒度仪(俗称“静态激光粒度仪”)和动态光散射激光粒度仪(俗称“纳米粒度仪”)。为了更好的了解激光粒度仪市场,仪器信息网对2021年激光粒度仪中标标讯整理分析,供广大仪器用户参考。(注:本文数据来源于公开招中标信息平台,共统计激光粒度仪中标公告234条,不包括非招标形式采购及未公开采购项目,主要反映激光粒度仪科研市场变化,结果仅供定性参考。)从时间维度来看,2021年激光粒度仪月度中标数量波动较大。1-5月份科研市场采购需求疲软,招投标市场表现低迷;6月份中标数量激增,达到全年峰值,主要原因在于马尔文帕纳科在本月分别中标一批Mastersizer 3000激光粒度仪与一批Zetasizer Pro纳米粒度及电位分析仪;下半年中标数量虽有波动,但整体保持在相对高位。从季度分布来看,2021年激光粒度仪中标数量逐季增加,与2020年趋势基本相似。据公开招中标信息平台统计,2021年激光粒度仪招标单位覆盖29个省份、自治区及直辖市。广东省中标数量再列第一,排名二到五位的依次为江苏、北京、浙江、山东;激光粒度仪采购需求连续两年集中在以上五个省市。四川、山西、河北、辽宁、河南各省中标数量排名位于第二梯队,其中,河北与河南两地浮现激光粒度仪“采购大户”,2021年,河北化工医药职业技术学院、河北省药品医疗器械检验研究院、郑州大学分单次或多次采购了一批激光粒度仪,仪器总价均超过200万元。2021年激光粒度仪采购用户单位类型对采购单位分析发现,2021年,来自大专院校/科研院所的采购比例有所提升,高达79%;而企业占比缩减至5%。“十四五”期间,科技创新被提到前所未有的高度,国家实验室及研究机构的建设浪潮势必为科学仪器市场带来新的机遇,激光粒度仪厂商应高度关注,提前布局。2021年中标激光粒度仪类型分布从中标激光粒度仪类型来看,2021年纳米粒度仪采购需求激增,中标数量占比47%,创历年新高。近年来,随着新能源、生物医药、纳米技术等行业的迅速发展,对纳米颗粒尺寸表征的需求呈现指数般增长态势,国内外激光粒度仪生产厂商积极响应市场需求,纷纷推出纳米粒度及电位分析仪。2020年,马尔文帕纳科重磅发布Zetasizer Advance系列纳米粒度电位仪,包括Lab,Pro,Ultra三个型号;2021年,丹东百特隆重推出BeNano系列纳米粒度及 Zeta 电位仪,包括BeNano 90 Zeta、BeNano 180 Zeta、BeNano 180 Zeta Pro等多个型号;珠海欧美克高调发布NS-90Z纳米粒度及电位分析仪,成功引进和吸收了马尔文帕纳科纳米颗粒表征技术。随着各方入局及新产品的推出,纳米粒度仪市场迎来良好发展机遇。2021年激光粒度仪中标价格分布纵观整体中标价位分布,30万元以上的中高端激光粒度仪更受科研用户青睐,合计占比达67%。长期以来,国产品牌往往占据中低端市场,进口品牌则在高端市场占绝对优势;值得一提的是,国产品牌开始逐渐向高端市场渗透,2021年,多条中标讯息显示,丹东百特激光粒度仪中标单价超过40万元。2021年进口/国产品牌中标数量占比2021年激光粒度仪各品牌中标数量占比分布2021年激光粒度仪中标市场上,国产占比35%,进口占比65%,与2020年相比保持稳定。聚焦中标品牌,马尔文帕纳科以41%的占比稳坐榜首;丹东百特位列第二,占比19%,持续领跑国产品牌榜;麦奇克凭借7%的占比重回前三;济南微纳与珠海欧美克紧跟其后,并列第四,占比6%;布鲁克海文与安东帕中标数量旗鼓相当,各占比5%。其他表现较好的品牌还有新帕泰克、HORIBA、真理光学、Sequoia、贝克曼库尔特、美国PSS等。根据2021年中标数据信息,仪器信息网整理了2021年招投标市场“出镜率”较高的激光粒度仪明星型号,榜单如下:仪器类型品牌型号纳米粒度及Zeta电位仪马尔文帕纳科Zetasizer Pro激光粒度仪马尔文帕纳科Mastersizer 3000激光粒度仪丹东百特Bettersize2600纳米粒度及Zeta电位仪丹东百特BeNano 90 Zeta纳米粒度及Zeta电位仪安东帕Litesizer 500纳米粒度及Zeta电位仪麦奇克Nanotrac Wave II纳米粒度及Zeta电位仪布鲁克海文NanoBrook Omni纳米粒度及Zeta电位仪布鲁克海文NanoBrook 90plus PALS激光粒度仪欧美克LS-909激光粒度仪济南微纳Winner802
  • 湖北省筹建微型电量传感器计量检定中心
    12月22日,记者从天门市质监局了解到,经湖北省质监局批准,天门市开始筹建湖北省微型电量传感器计量检定中心,这是湖北省唯一的省级微型电量传感器检测机构,也是天门市首个省级高科技检测机构,计划在天门市建立首个国家级计量基准。   此项目由天门市质量技术监督局与天门电工仪器仪表研究所共同组织筹建。据天门质监局有关负责人介绍,微型电流传感器是应用在电子式电能表、继电保护装置,电子测量仪器上的一种电子元器件,使用范围广泛,随着国家实施“西电东送”、“智能电网”等重点工程的进展,在国内年需求量达10亿只以上,天门市也有数家企业从事此项产品的生产。微型电流传感器在出厂后和使用中必须进行校准,而目前国内还没有相关的国家标准量值,天门质监局邀请中国计量院、国家电网武汉高压试验研究院、国家电工仪器仪表质量监督检验中心、华中科技大学等单位的专家、教授,开展技术攻关,旨在填补我国微型电流传感器量值溯源的空白,目前已完成关键技术的研发。天门市筹建省级微型电量传感器计量检定中心后,可凭借技术上的领先优势,建成国内唯一的微型电量传感器检测机构,抢占微量电量传感器这一产品的至高点,打造天门高科技“城市名片”,进一步提升天门对外影响力,促进天门经济产业结构调整升级,壮大微型电量传感器产业集群,优化天门招商引资工作环境和平台。
  • 天门市筹建省级微型电量传感器检测机构
    记者从天门市质监局了解到,经湖北省质监局批准,天门市开始筹建湖北省微型电量传感器计量检定中心,这是全省唯一的省级微型电量传感器检测机构,也是天门市首个省级高科技检测机构,计划在天门市建立首个国家级计量基准。   此项目由该市质量技术监督局与市电工仪器仪表研究所共同组织筹建。据市质监局有关负责人介绍,微型电流传感器是应用在电子式电能表、继电保护装置,电子测量仪器上的一种电子元器件,使用范围广泛,随着国家实施“西电东送”、“智能电网”等重点工程的进展,在国内年需求量达10亿只以上,天门市也有数家企业从事此项产品的生产。微型电流传感器在出厂后和使用中必须进行校准,而目前国内还没有相关的国家标准量值,该市质监局邀请中国计量院、国家电网武汉高压试验研究院、国家电工仪器仪表质量监督检验中心、华中科技大学等单位的专家、教授,开展技术攻关,旨在填补我国微型电流传感器量值溯源的空白,目前已完成关键技术的研发。天门市筹建省级微型电量传感器计量检定中心后,可凭借技术上的领先优势,建成国内唯一的微型电量传感器检测机构,抢占微量电量传感器这一产品的至高点,打造天门高科技“城市名片”,进一步提升天门对外影响力,促进天门经济产业结构调整升级,壮大微型电量传感器产业集群,优化天门招商引资工作环境和平台。
  • 耿建芳:坚持做最精良的激光粒度仪——访德国新帕泰克有限公司苏州代表处首席代表耿建芳博士
    德国新帕泰克有限公司是专业的激光粒度分析仪制造商,首部国际激光粒度仪制造标准ISO13320的主要技术内容就是根据德国新帕泰克公司的技术指标来制定的。该公司研发生产出了世界第一台专利干法激光粒度测试仪HELOS-RODOS,被全球粉体工程界誉为粒度测试领域中的里程碑式的创新 之后,又不断地推出了一系列的模块化设计的各种粒度粒形分析仪。新帕泰克公司提出并形成了 &ldquo 干样干测,湿样湿测 瞬时分散,瞬时测量 " 的测试理念 依据此理念给客户提供最精良的粒度仪。   2015年6月24日,在&ldquo 第十五届世界制药原料中国展(CPhI China),暨第十届世界制药机械、包装设备与材料中国展(P-MEC China)&rdquo 于上海召开之际,仪器信息网(以下简称instrument)就激光粒度仪主要的应用领域、测试方法技术等方面的问题采访了德国新帕泰克有限公司苏州代表处首席代表耿建芳博士。    德国新帕泰克有限公司苏州代表处首席代表耿建芳博士   Instrument:请您介绍一下哪些领域会用到激光粒度仪?   耿建芳:粒度检测是物料最基本的物理性质检测,在制药、水泥、化工、食品、冶金、磁性材料、矿业、陶瓷、电池等行业有广泛的应用。例如,近几年粒度仪在电池行业的应用也是一个热点,相同的物料生产出的电池,表面看上去没有什么区别,但是实际测出来的电量、循环次数等性能不一样,这与原料的粒度大小和粒度分布、以及颗粒的形状有很大关系 在水泥行业,粒度大小分布不合适,会影响到混凝土的强度和开裂等性能 在牙膏行业粒度仪的应用就更常见了,磨料颗粒的大小和形状会显著影响刷牙效果和牙齿的健康。   对于新帕泰克来说,医药、化工、水泥,金属材料,高校研究所等领域是我们的主要客户。在国内,激光粒度仪在食品方面的应用还处于刚刚起步阶段,已经有越来越多的厂商开始重视原料的粒度检测。例如一些进口的巧克力之所以口感特别好,控制研磨过程中的粒度是重要因素之一 在国外很多的食品企业,例如雀巢,可口可乐,好利友等都是我们的客户。   随着人们对生活品质要求越来越高,激光粒度仪的应用会越来越广泛。   Instrument:在此次制药原料展会上也有众多粒度仪厂家参展,那么请您谈谈粒度仪在制药行业的应用情况。   耿建芳:在国内,粒度仪在制药行业的应用还处于起步阶段。坦白地讲国内做原研药物研发的单位较少,而做仿制药的单位比较多。在进行新药研发的时候会用到很多新的检测手段、使用最好的仪器来测试原料药和制剂,包括做出的配方等。而仿制药已经形成一种成熟的工艺了,当时由于受限于检测技术的发展水平,国外研发用到的粒度检测方法大多是用湿法激光粒度仪,由于历史原因,现在很多企业仍然沿用这种湿法检测方法。在通常情况下,行业标准、药典等是最低标准,要落后于现代技术,而企业的内控标准都会高于行业标准及国家标准来控制生产质量。   自干法分散技术问世三十年来,干法激光粒度仪也逐渐被广大制药企业所接受。国内制药企业需要有一个认和改变的过程,只有采用最好的检测手段和最好的技术才能生产出更好的产品。用新的方法评定出的结果可能和老的方法评定出的结果不一样,中间有一个相对误差,这都可以通过一定的方法进行比对。例如浙江一些厂家原料药出口到欧洲,经常会遇到粒度比对的问题。对于粒径在10微米以下的API,用湿法分散很难完全分散开,和国外测试的结果会有比较大的误差,这时必须使用更先进的技术来进行测试。   Instrument:哪些因素会影响到激光粒度仪的测试结果?   耿建芳:采用激光粒度仪,要获得一个准确的能够反映出实际生产线上物料的粒度大小和粒度分布,有三个关键的问题:(1)如何从生产线上取到代表性的样品,最大程度地减少取样误差 (2)如何对取到代表性的样品进行完全彻底的分散 (3)采用先进的光学检测系统。要得到正确的粒度分析结果,一定要从这三个方面去进行考虑 如果不提取样、不提分散,只是说这个仪器本身如何好,是不严谨的。   一般情况下,要获得取样误差小于1%的检测结果,每次测试的样品所包含的颗粒个数要在一百万个以上,由于各种样品的比重差别比较大,粒度大小以及粒度分布也不同,这就要求检测仪器本身要具备能够处理从毫克级到公斤级样品的能力,仪器的进样系统和分散系统都要具备这样的能力。   干法分散技术是新帕泰克的专利技术,对一些很难分开的颗粒,我们的技术也能够分散开。在新帕泰克刚刚进入中国时,国内已经有很多品牌的粒度仪厂家了,当时大家基本上都没有听说过新帕泰克。我们先从业界公认的最难做的磁性材料行业开始,原因是磁性材料最难分散开,在新帕泰克键入中国之前,磁性材料行业的粒度检测都只有一个平均粒度值,无法检测磁性下来的粒度分布,其原因是现有的粒度仪无法将磁性材料完全分散开。我们的技术人员就是在展会现场演示给客户。目前在全国前100家大型磁性材料生产厂家都是用我们的干法激光粒度仪,在磁性材料行业已经有近200台仪器了。在中国,超过95%的磁性材料工厂,都在选用新帕泰克的干法粒度仪进行质量管控,提升产品质量,包括实验室干法激光粒度仪和在线激光粒度仪。   一些用户在一开始使用了在设计上有缺陷的干法粒度仪,没有办法把粉末有效地分散开,导致测试结果不准确,就造成了一个错误的认识,认为干法激光粒度仪测试不准确。这种认识是非常可悲的。我们在电池、金属材料等行业都遇到过这样的客户,是因为他们没有找到真正好用的、适合自己产品的干法激光粒度仪,这也是一些用户怀疑干法粒度仪准确性的原因。   Instrument:作为用户,如何来选择使用干法还是湿法进行粒度测试?   耿建芳:尽量保持物料在其原始状态下进行检测是最好的选择,所以新帕泰克的理念是&ldquo 干样干测,湿样湿测&rdquo 。我们做过这方面的研究,有些样品干法和湿法测试的结果是一致的,有些样品的确有偏差,尤其是那些超细颗粒的药物不太好分散,那么用干法分散会得到比较好的结果,有些样品吸水之后溶胀了,测出的结果与真实值相差较远,这个要具体问题具体分析。   Instrument:新帕泰克粒度仪的价格相对较高,您怎么看?   耿建芳:新帕泰克的理念是一个产品开发出来到用户那里至少可以使用十几年甚至是几十年。新帕泰克激光粒度仪的设计是模块化的,一台仪器的功能可以不断地升级。例如,原来客户购买的粒度仪是做保健品的,现在要做咖啡了,只要更换镜头,增加相应的模块就可以了,不需要购买新的仪器,这也是用户购买一台仪器后可以使用几十年的原因之一。我们在国内第一批激光粒度仪客户,已经使用了近二十年,目前仍在正常使用当中。   仪器的检测精度和使用寿命与仪器的设计和用材密切相关。新帕泰克不会为了降低仪器的制造成本而去牺牲仪器的检测精度和使用寿命。在检测方面,新帕泰克使用的是平行光,一些低价格的产品使用的是收敛光来检测。不管是什么形状的颗粒,通过激光束得到的衍射图形都呈180度对称,所以我们的探测器就做成了180度的一个整体探测器,其目的是不会丢失任何颗粒的衍射信号。一些便宜的产品,做成了离散型的探测器,会有信息丢失 我们的扫描速度是2000次每秒 另外,我们的激光源是要经过纯化的,激光束直径也是可以调节的,没有任何一家厂商的产品的激光束直径是可以改变的。   综上所述,我们不难看出德国新帕泰克产品的制造部件都是基于客户长远考虑的,很多细节的&ldquo 不妥协&rdquo 设计,造就了我们的产品制造成本比较高。但由于德国新帕泰克的仪器使用寿命非常长,如果将这个成本摊到时间轴上,我们的仪器反而是最便宜的,用户的使用成本也是最低的。我希望我们的产品在客户那里能够真正起到作用,提高客户产品的品质,而不是给个数据就可以了。 编辑:刘向东
  • 塑料工业少不了钛白粉 粒度分布影响关键指标
    p style=" text-indent: 2em " 近几年,塑料工业与钛白粉可谓焦不离孟。在世界范围内超过500家的钛白粉牌号中,专属于塑料用的就超过50个,而高达6%的年均增长率,也让塑料工业成为使用钛白粉增速最快的领域,并“荣膺”钛白粉的第二大用户。有材料应用的地方自然就有相配套的指标、参数考衡,粒径粒度分布和颗粒形状就显著影响着塑料用钛白粉的关键指标。而塑料用钛白粉的粒径恰好处于激光粒度仪大展身手的范围内,因此对于钛白粉在塑料工业中的应用,业内人士不妨给予更多的瞩目。 /p p style=" text-indent: 2em text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/5a1cc424-4105-479d-975f-1e95fbaa5764.jpg" title=" 激光粒度仪 钛白粉.jpg" / /p p style=" text-indent: 2em " 众所周知,钛白粉的学名是二氧化钛,具备优良的白色性能,高遮盖力和高消色力,被广泛应用油墨、造纸、涂料、油漆等行业,享有“白色之王”的美誉,这正是钛白粉在塑料制品中得以应用的重要原因,即钛白粉可以决定浅色或白色塑料制品的外观。当然钛白粉于塑料还有很多其他好处,比如提高塑料制品的耐热、耐光、耐候性能,使塑料制品免受UV光的侵袭,改善塑料制品的机械性能和电性能等。几乎所有热固性和热塑性的塑料中都会使用钛白粉,它们既可以与树脂干粉混合,也可以与含增塑剂的液体相混合,用量一般在3-5%左右,聚烯烃类(主要是低密度的聚乙烯)、聚苯乙烯、ABS、聚氯乙烯等莫不如是。 /p p style=" text-indent: 2em " 在塑料工业中衡量钛白粉的质量主要有四大指标——遮盖力、分散性、耐候性和白度。钛白的遮盖力越好,生产出的塑料制品就越轻薄;分散性则影响塑料制品生产成本,钛白粉的分散性越好,塑料制品的光滑度和光亮度就会越高;具备良好耐候性的钛白粉,则对室外使用的塑料制品以及塑料门窗是必不可少的。 /p p style=" text-indent: 2em " 最后一大指标就是白度了,所谓白度是指距离理想白色的程度。影响钛白粉白度因素主要有以下几点。第一点是杂质,在钛白粉工艺中,尤其是硫酸法钛白粉工艺,大部分的作业是为了除去产品中的杂质,因为杂质严重影响钛白粉的应用性能,特别是白度。显色金属氧化物杂质在极低的含量下就能影响白度,这些元素有铁、锰、铬、铜等,这些杂质本身就带有颜色,在白色的钛白粉中极易显色。 /p p style=" text-indent: 2em " 第二点就是粒径和粒度的分布了,他们主要是通过钛白粉颗粒对光的反射、散射等现象影响其白度的。钛白粉的粒径越小,白度值越高,这主要是由于钛白粉粒径越小,表面积增大,光的反射、漫反射增强。根据光波的特性,当颜料粒子的粒径小于光波的一半时可以获得对该波长的色光的最大散射,经分析,对波长蓝色光散射最好的粒径在0.2μm左右,波长较长的红色光散射最大的粒径在0.35μm左右,因此,小粒径的钛白粉的散射光呈蓝相,而透过光则为蓝色的补色红黄相,反之,大粒径的钛白粉散射光为红相,透过光为蓝相。通常涂料用钛白粉的粒径为0.2~0.4μm,而大多数塑料用钛白粉粒径都较细,粒径为0.15~0.3μm,因为这样可以获得兰色底相,对大多数带黄相的树脂或易泛黄的树脂有遮蔽作用。 /p p style=" text-indent: 2em " 此外,颗粒形状、钛含量、包膜剂对钛白粉的白度都有一定影响。其中,粒形对白度的影响比较小,一般来说,层状钛白粉的白度略低,球状和杆状的白度略高。而二氧化钛含量的升高,钛白粉白度值也升高,铝、硅、锆等包膜剂含量升高,钛白粉白度值下降。 /p p style=" text-indent: 2em " 值得一提的是,在塑料色母粒的生产工艺中,钛白粉的白度也是一项重要质量指标,塑料色母粒是一种高浓缩、高效能的颜色配置品,即颜料以超常浓度均匀分布在载体树脂中,并形成一定粒径的颗粒。它主要由核心层(颜料)、偶联层(偶联剂或表面活性剂)、分散层(润滑剂或分散剂)、增混层(载体树脂)等组成,在塑料中作为染色剂使用,广泛用于吹膜、注塑、热压、注塑等塑料制品的生产,色母粒着色效果优越,使用方便,节约能源,使用时无粉尘和污水,因此备受用户的青睐。色母粒是作为工业原料,性能优劣通常是在后续产品应用中表现出来(如吹膜或注塑),因此,钛白在色目粒中的性能也主要体现在色母粒的应用过程中。钛白的着色能力、分散性、加工性能、白度都会对色母粒的应用产生重大影响,顺理成章地,也少不了对钛白粉粒度分布的检测。 /p p style=" text-indent: 2em " strong 结语: /strong 激光粒度仪作为目前最流行的粒度测量仪器,已在粉体工艺中发挥着越来越重要的作用,随着米氏散射理论在各品牌激光粒度仪中的应用越来越广泛,已经对亚微米级的塑料用钛白粉有充足的适配性。随着钛白粉在塑料工业中的需求越来越大,对这一市场大蛋糕的进一步经营和开拓,或许值得激光粒度仪的厂商们好好思考。 /p
  • 2019粒度检测仪器企业新品及大事记盘点
    p style=" text-align: justify text-indent: 2em " 颗粒无小事,大约有70%的工业产品都与颗粒有关,而粒度、粒度分布以及粒形检测作为颗粒检测重要的分支,历来都是产学研界关注的焦点,相关仪器也应运而生。特别在近来的中国市场上,粒度检测类仪器推陈出新年年不断,国内外生产企业也蓬勃发展,整个行业市场热闹非凡。2019年即将过去,您是否好奇这些厂商都推出了哪些新品?又发生了重要变化?别着急,下面小编就与您共同盘点属于颗粒检测仪器企业的2019。 /p p style=" text-align: justify text-indent: 2em " (特别声明:受限于时间与资源,本文仅汇集了2019年(截至发稿时间)仪器信息网搜索雷达上的主流厂商重要信息,仅供读者参考,如有疏漏,欢迎补充完善) /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(0, 176, 240) " strong 2019颗粒检测仪器新品盘点——国产翻新静态法 外企聚焦图像法 /strong /span /p p style=" text-align: justify text-indent: 2em " 颗粒检测仪器的种类很多,粒度仪是当前应用最广泛的仪器类别,而纵观2019年,粒度仪新品的爆发主要集中在两个领域:静态光散射法激光粒度仪(下简称激光粒度仪)和图像法粒度粒形分析仪。而一个有趣的现象是,今年推出激光粒度仪新品的主要是国产企业,而图像法粒度粒形分析仪的新品则主要由外企带来。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 激光粒度仪新品概览 /strong /span /p p style=" text-align: justify text-indent: 2em " strong (1)珠海欧美克 /strong /p p style=" text-align: justify text-indent: 2em " 在激光粒度仪市场上,珠海欧美克是2019年推出新品最为活跃的企业。在年初和年末相继推出了两款新品激光粒度仪:Topsizer Plus和LS-909E。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/6c47ca24-2fca-4ec2-8e18-9bfba87a0fef.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.1.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.1.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/news/20190328/482586.shtml" target=" _self" style=" text-decoration: underline " strong Topsizer Plus /strong strong /strong /a /p p style=" text-align: justify text-indent: 2em " Topsizer Plus于3月28日正式上市,仪器在延续了前代Topsizer核心光学设计的基础上,在光学元器件以及反演算法上进行了五大升级:一、测试范围扩展到0.01-3600um;二、准确性误差提升到≤0.6%;三、探测通道数增至103个;四、支持可测量大颗粒的自由落体进样器;五、软件平台采用全新智能化设计。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/31ca43ed-768e-455b-beb3-765095f962df.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.2.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.2.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/news/20191127/517843.shtml" target=" _self" style=" text-decoration: underline " strong LS-909E /strong strong /strong /a /p p style=" text-align: justify text-indent: 2em " 在第二十四届中国国际涂料展上,欧美克正式发布了LS-909E,该仪器是欧美克主要为粉体涂料用户打造的干法分散激光粒度仪,该仪器实现了检测的高度自动化,具有智能化自动对中系统和性化的自定义及报表功能。同时仪器提升了检测速度,维护及清洗需求低,是一款高性价比仪器。 /p p style=" text-align: justify text-indent: 2em " strong (2)济南微纳 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/bf324617-02d1-4dd7-a138-b0b0b02c40f7.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.3.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.3.jpg" / /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" font-size: inherit font-weight: normal padding: 0px margin: 0px text-align: center " microsoft=" " white-space:=" " background-color:=" " text-align:=" " a href=" https://www.instrument.com.cn/netshow/SH100386/C318154.htm" target=" _self" style=" text-decoration: underline " strong winner star2018 /strong strong /strong /a /p p style=" text-align: justify text-indent: 2em " 2019年2月,济南微纳发布了新品湿法激光粒度仪Winner star2018,该仪器是对前代产品winner2000的优化升级。仪器缩短了测试光路,有效地避免了外置分散系统因管路长而导致的颗粒分布不均匀、大颗粒沉积等不良现象。仪器采用了全方位散射光探测系统,并配合有高灵敏度的环式光电探测器,进一步提高测试精度。分散系统也集超声搅拌、超声分散、内置循环于一体。 /p p style=" text-align: justify text-indent: 2em " strong (3)真理光学 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/f2138e55-1ea9-46a3-9b5d-84fd832b0106.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.4.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.4.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/news/20190305/481154.shtml" target=" _self" style=" text-decoration: underline " strong LT2100 /strong strong /strong /a /p p style=" text-align: justify text-indent: 2em " LT2100由享誉学界的张福根博士带团设计。仪器采用了独特的Hydrolink SM 手动湿法分散进样器,并内置有高效防干烧超声分散器,保证了样品的有效分散和均匀输送。样品池标准容量最大可达500毫升,且具有悬浮式液面感知功能,可自动消除气泡。该仪器在电池材料,制药,涂料,陶瓷,磨料,非金属矿,粉末冶金,化工,地质,水文等领域都有广泛应用。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 图像法粒度粒形分析仪新品概览 /strong /span /p p style=" text-align: left text-indent: 2em " strong (1)莱驰科技 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/6a6a6c13-fc8a-40cb-84e5-7f97194abf6a.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.5.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.5.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH101146/news_486393.htm" target=" _self" style=" text-decoration: underline " strong CAMSIZER M1 /strong strong /strong /a /p p style=" text-align: justify text-indent: 2em " 莱驰科技是弗尔德旗下的重要品牌,2019年推出了新品图像法粒度粒形分析仪CAMSIZER M1。该仪器采用静态图像法设计,测量范围达0.5um- 1500 um,可测量亚微米级别细粉和悬浮液颗粒的粒度粒形。仪器样品台位置精度小于3微米,且搭载创新的拼接功能,可以将延伸到多个图像上的过大或细长的颗粒拼接在一起进行计算。另外该仪器还具有5个不同放大倍率物镜,并可选配一个1.25x或100 x的物镜。 /p p style=" text-align: justify text-indent: 2em " strong (2)梅特勒-托利多 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/c972aee2-26ec-4b6e-9591-3a480b2f5b56.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.6.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.6.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/C341547.htm" target=" _self" style=" text-decoration: underline " strong EasyViewer100 /strong strong /strong /a /p p style=" text-align: justify text-indent: 2em " 2019年,梅特勒-托利多发布了新品图像与粒度分析工具EasyViewer100。该仪器并非传统意义上的图像法粒度粒型分析仪,主要应用在在线测量领域,是一款探头式图像工具,可以实时在线采集过程中晶体、颗粒与液滴的高分辨率图像。它能在线追踪颗粒及液滴的粒度、粒数及形状的变化。该仪器探头采用哈氏合金材料,耐酸碱,耐化学腐蚀,且能在各固相或分散相的浓度中测量。 /p p style=" text-align: justify text-indent: 2em " strong (3)岛津 /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/148f2c50-acee-450a-803a-ec38216265da.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.7.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.7.jpg" / /strong /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/news/20190416/483524.shtml" target=" _self" style=" text-decoration: underline " strong iSpect DIA-10 /strong strong /strong /a /p p style=" text-align: justify text-indent: 2em " 在粒度检测领域沉寂许久的仪器巨头企业岛津,也在2019年4月份推出了新品图像法粒度粒型分析系统iSpect DIA-10。该仪器具有三大特征:一、可以测量小至50μL的样品;二、独特结构设计最大限度降低了颗粒落在镜头视野外的可能性,提升了准确性和重复性。三、可在15秒内完成快速自动对焦。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 其他 /span /strong /p p style=" text-align: justify text-indent: 2em " 除了激光粒度仪和图像法粒度粒形分析仪外,2019年,美国麦克仪器也推出了全新的费氏粒径测试仪——全自动亚筛分粒径分析仪MIC SAS II。现拾遗补充如下: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/bac2b327-2150-42fa-90ad-59031db2295b.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.8.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.8.jpg" / /p p style=" text-align: center text-indent: 2em " a href=" https://www.instrument.com.cn/netshow/SH100677/C334692.htm" target=" _self" style=" text-decoration: underline " strong MIC SAS II /strong strong /strong /a /p p style=" text-align: justify text-indent: 2em " MIC SAS II采用空气渗透法测量比表面积和颗粒粒径,在前代基础上,仪器对Fisher Model95 SubsieveSizer (FSSS)进行升级,采用全自动操作,并可得到电子记录的数据,大幅改善了FSSS的性能。 /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(0, 176, 240) " strong 2019主流粒颗粒检测类仪器企业大事记盘点 /strong /span /p p style=" text-align: justify text-indent: 2em " 品完新品,让我们在来关注下各主流粒度检测仪器企业在2019年的重大事件。 /p p style=" text-align: justify text-indent: 2em " (注:篇幅有限,本文仅选取主流粒度仪企业具有重大影响的事件,且一个企业仅选一件最具代表性的事件,如有遗漏欢迎补充) /p p style=" text-align: justify text-indent: 2em " strong (1)丹东百特——Bettersize2600获中国颗粒学会一等奖 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/9629c1aa-675f-4ced-b98d-66419cef7a36.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.9.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.9.jpg" / /p p style=" text-align: center text-indent: 2em " strong Bettersize2600激光粒度仪 /strong /p p style=" text-align: justify text-indent: 2em " 由丹东百特自主研发的Bettersize2600激光粒度仪是2019年最受中国学界关注的粒度仪之一。在6月18日由中国颗粒学会主持召开的技术与产品鉴定会上,Bettersize2600凭借着单光束单镜头正反傅里叶光学系统、“样品折射率测量”及“样品复配”新功能、丰富且具有“一键测试”功能的进样分散系统、高达11kHz的采样频率,赢得专家们的一致认可,经中国颗粒学会鉴定, Bettersize2600达到国际先进水平,并具备批量投产条件( a href=" https://www.instrument.com.cn/netshow/sh100350/news_487335.htm" target=" _self" style=" text-decoration: underline " span style=" color: rgb(0, 176, 240) " 点击了解详情 /span /a )。随后在第十二届全国颗粒测试学术会议期间,Bettersize2600激光粒度仪荣获首届中国颗粒学会颗粒测试奖一等奖。 /p p style=" text-align: justify text-indent: 2em " strong (2)马尔文帕纳科——升级为思百吉集团三大业务平台之一 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/911dcf16-83c3-4917-97e5-09285d81eda0.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.10.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.10.jpg" / /p p style=" text-align: justify text-indent: 2em " 2019年,英国思百吉集团进行重大战略调整,集团旗下的知名材料表征仪器生产商马尔文帕纳科与HBK、Omega三家公司由于占整个集团销售额的60%,根据集团最新的利润改善计划,被升级为集团的三大业务平台,思百吉集团最新收购的CLS公司也被并入马尔文帕纳科业务平台体系。自此,马尔文帕纳科的业务增长情况也将直接体现在集团财报中。而据马尔文帕纳科中国区总经理梁东表示,马尔文帕纳科中国区也在2019年重组了业务体系,划分为基础材料、先进材料、生命科学三大模块。( a href=" https://www.instrument.com.cn/netshow/SH100646/news_484843.htm" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 点击了解详情 /span /a ) /p p style=" text-align: justify text-indent: 2em " strong (3)欧美克——战略及品牌发展总负责人上任 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/cec5ea92-ba69-4e1e-a2f1-174f1f2f3e40.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.11.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.11.jpg" / /p p style=" text-align: justify text-indent: 2em " 2019年3月,珠海欧美克正式公布人事任命, Andre Balogh正式出任欧美克战略及品牌发展总负责人。Andre Balogh1992年毕业于荷兰Fonteys学院电子工程专业,曾相继担任帕纳科业务墨西哥区总经理、帕纳科业务运营经理、马尔文帕纳科业务运营总监等职位,具备多年统筹管理,商业运作,销售及市场推广经验。接受采访时表示,自己的到来正是要全力拓展欧美克的市场空间潜力,将欧美克的品牌价值发扬光大。要让欧美克成为马尔文帕纳科乃至整个思百吉集团高性价优质激光粒度仪的知识中心和全球代言官。( a href=" https://www.instrument.com.cn/netshow/SH100546/news_482735.htm" target=" _self" span style=" color: rgb(0, 176, 240) text-decoration: underline " 点击了解详情 /span /a ) /p p style=" text-align: justify text-indent: 2em " strong (4)麦奇克——被弗尔德集团收购 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/9c09ab78-44e0-4e9e-9cb2-3aff8ec037d2.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.12.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.12.jpg" / /p p style=" text-align: justify text-indent: 2em " 2019年6月3日,弗尔德集团发布重磅讯息,集团正式从Nikkiso Co. Ltd.手中收购粒度粒形分析领域和表面分析领域的两大著名制造商——美国麦奇克公司和日本麦奇克拜尔公司。(点击了解详情)据麦奇克CEO Paul Cloake表示,加盟弗尔德后,麦奇克将获得更多政策上的支持和资金、市场开发资源,这对麦奇克的发展大有裨益。同时他也表示,虽然归入弗尔德旗下,但根据弗尔德的收购惯例,麦奇克将依旧独立运营,特别在中国市场上,麦奇克的产品将继续由已经合作15年之久的大昌华嘉独家代理销售。( a href=" https://www.instrument.com.cn/netshow/SH100150/news_491179.htm" target=" _self" span style=" color: rgb(0, 176, 240) text-decoration: underline " 点击了解详情 /span /a ) /p p style=" text-align: justify text-indent: 2em " strong (5)美国麦克仪器——沈复昊出任中国区总经理 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 300px height: 300px " src=" https://img1.17img.cn/17img/images/201912/uepic/1b0ab219-d6ae-47b1-bbd4-3ed20602ef62.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.13.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.13.jpg" width=" 300" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 2019年9月,全球知名材料表征解决方案供应商美国麦克仪器公司宣布,沈复昊将担任公司新任中国区总经理一职。沈复昊毕业于加拿大西安大略大学毅伟商学院(Ivey),曾在豪迈、赛默飞世尔科技等多家跨国公司担任过不同的领导职务。加入美国麦克仪器之前,沈复昊担任英国豪迈集团的兰格恒流泵公司销售和市场副总裁一职。( a href=" https://www.instrument.com.cn/news/20190927/494117.shtml" target=" _self" span style=" color: rgb(0, 176, 240) text-decoration: underline " 点击了解详情 /span /a ) /p p style=" text-align: justify text-indent: 2em " strong (6)仪思奇——引进Vasco kin原位时间分辨纳米粒度分析仪 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/99bf50b0-6ab0-4b84-90cb-7c9c9bad3166.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.14.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.14.jpg" / /p p style=" text-align: justify text-indent: 2em " 2019年,由中国颗粒检测领域著名专家杨正红老师领衔的仪思奇(北京)科技发展有限公司将法国Cordouan Technologies的Vasco kin原位时间分辨纳米粒度分析仪和MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪引入中国。Vasco kin 的突出特点就是不接触样品,原位远程测定包装物及反应釜中的粒度分布及随时间的变化,具有极高的分辨率,并且可以和其它分析手段联用。MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪用于水中纳米颗粒的痕量表征,浓度测定低至ng/L的范围,可对10nm到1000nm之间的颗粒进行计数。( a href=" https://www.instrument.com.cn/netshow/SH103908/news_515421.htm" target=" _self" span style=" color: rgb(0, 176, 240) text-decoration: underline " 点击了解详情 /span /a ) /p p style=" text-align: justify text-indent: 2em " strong (7)海岸鸿蒙荣获CNAS认可证书 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 300px height: 463px " src=" https://img1.17img.cn/17img/images/201912/uepic/bcc2d347-58fc-4e74-bcb5-bb283ab7c198.jpg" title=" 2019粒度检测仪器企业新品及大事记盘点.15.jpg" alt=" 2019粒度检测仪器企业新品及大事记盘点.15.jpg" width=" 300" height=" 463" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 2019年12月,北京海岸鸿蒙标准物质技术有限责任公司获得CNAS标准物质/标准样品生产者认可证书,生效日期为2019年12月2日-2025年12月1日。标准颗粒是对粒度测量仪器性能进行评价、校验或标定,以及进行颗粒测量方法和技术研究的重要工具或参考。而从事高分子材料研发及国家标准物质生产的高新技术企业——北京海岸鸿蒙标准物质技术有限责任公司正是国内最大的标准颗粒商业化生产厂商之一,因此虽非仪器厂商,也列入本盘点,供读者朋友参考。 /p p style=" text-align: justify text-indent: 2em " strong (8)其他重要企业大事记掠影 /strong /p p style=" text-align: justify text-indent: 2em " strong ●新帕泰克& amp 安东帕——2019涨势喜人: /strong 新帕泰克和安东帕的粒度仪产品销售涨势喜人。对新帕泰克而言,在线检测领域尤为突出。( a href=" https://www.instrument.com.cn/news/20191115/516950.shtml" target=" _self" span style=" color: rgb(0, 176, 240) text-decoration: underline " 点击了解详情 /span /a )而安东帕的激光粒度仪则在竞争激烈的市场环境中大幅增长,预计2020年将加强颗粒表征领域各产品线的协同效应( a href=" https://www.instrument.com.cn/news/20191031/515930.shtml" target=" _self" span style=" color: rgb(0, 176, 240) text-decoration: underline " 点击了解详情 /span /a )。 /p p style=" text-align: justify text-indent: 2em " strong ●HORIBA& amp 布鲁克海文& amp 飞驰——新品粒度仪蓄势待发: /strong 据仪器信息网了解,HORIBA将于2020年推出新品纳米追踪粒度仪,可视化纳米粒度仪领域将迎来新鲜血液;而据布鲁克海文中国区负责人王继军透露,公司也将于明年更新升级整个纳米粒度仪产品线,并推出其他原理的新品粒度检测仪器;在BCEIA2019期间,飞驰粒度仪产品经理Maik Paluga也表示飞驰将公司在粒度检测行业的品牌知名度,并预告将于2020年推出新品激光粒度仪。( a href=" https://www.instrument.com.cn/netshow/SH102816/news_517944.htm" target=" _self" span style=" color: rgb(0, 176, 240) text-decoration: underline " 点击了解详情 /span /a ) /p p style=" text-align: justify text-indent: 2em " strong ●成都精新——经典产品升级: /strong 通过对探测器以及控制电路板的性能改进,大幅增大了激光粒度仪产品的颗粒测试范围。其中JL-1177激光粒度仪测量范围从0.02μm-2000μm增大到0.01μm-3000μm;JL-3000型喷雾激光粒度仪测试范围从0.5μm-1300μm增大到0.01μm-3000μm。 /p p style=" text-align: justify text-indent: 2em " strong ●济南微纳——开展五大研发项目: /strong (1)“水泥厂成品粒度在线控制系统”;(2)“自 清洗粒度测试样品窗升级项目” (3)“在线粒度仪云数据管理系统” (4)“干法动态颗粒图像分析 仪” (5)“应用于在线粒度仪的气幕保护样品窗”其中,(2)和(3)“两大项目已经研发完成。 /p p style=" text-align: justify text-indent: 2em " strong ●真理光学——提出学术新概念: /strong 张福根教授第十二届全国颗粒测试学术会议上提出了用以表征粉体样品中大粒含量的新单位:PPT(& gt dc)。( a href=" https://www.instrument.com.cn/netshow/SH104201/" target=" _self" span style=" color: rgb(0, 176, 240) text-decoration: underline " 点击了解详情 /span /a ) /p p style=" text-align: justify text-indent: 2em " strong ●莱驰科技——20周年庆典: /strong 2019年5月23日,莱驰科技成立20周年庆典在上海举办,同期组织了莱驰科技粒度仪新老客户培训活动。( a href=" https://www.instrument.com.cn/netshow/SH101146/news_485961.htm" target=" _self" span style=" color: rgb(0, 176, 240) text-decoration: underline " 点击了解详情 /span /a ) /p p style=" text-align: justify text-indent: 2em " 总结:盘点到此接近尾声,不知读者朋友们是否有所收获,欢迎在留言区与小编互动、补充。总体而言,2019年,在市场维度,中国粒度检测市场仍呈现百花齐放,国内外共荣的良好态势,各主流厂商的市场活动及行为也更加活跃。在研发维度,2019年上市的粒度检测重磅新品相较2018年有所回落,但是不少主流厂商都进行了技术储备和前期研发,2020年有望见到更多重量级新品面市。从新品研发的趋势看,传统激光粒度仪,特别是国产厂商在沿着高技术含量精细化和高性价比两个维度不断迭代;而在线化和图像法的粒度检测仪器则有望迎来更大的发展空间。2019年接近尾声,仪器信息网也将继续关注2020年中国粒度检测市场的变化与发展。 /p p style=" text-align: justify text-indent: 2em " (再次声明:受限于时间与资源,本文仅汇集了2019年(截至发稿时间)仪器信息网搜索雷达上的主流厂商重要信息,仅供读者参考,如有疏漏,欢迎补充完善) /p
  • 国际先进!丹东百特Bettersize2600激光粒度仪通过中国颗粒学会鉴定
    p style=" text-align: justify text-indent: 2em " 6月18日,由中国颗粒学会主持召开的“Bettersize2600激光粒度仪”项目技术与产品鉴定会在丹东百特仪器有限公司成功举办,Bettersize2600凭借多项自主创新和优异的性能得到了众位中国颗粒学会权威专家的一致肯定,成功通过科技成果鉴定。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/201906/uepic/de08b7de-d391-412f-bdc3-de9376de7b24.jpg" title=" IMG_1453.JPG" alt=" IMG_1453.JPG" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 会议现场 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/201906/uepic/85c4604e-10e4-4637-b7ac-e5a7e5ed950e.jpg" title=" DSC_5764e323e2.jpg" alt=" DSC_5764e323e2.jpg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center text-indent: 0em " strong 中国颗粒学会理事长陈运法 /strong /p p style=" text-align: justify text-indent: 2em " 会议由中国颗粒学会理事长陈运法主持,参加会议的专家还有上海理工大学教授蔡小舒、沈阳药科大学教授崔福德、北京航空航天大学教授沈志刚、中科院过程工程研究所研究员李兆军、北京市理化分析测试中心研究员周素红、上海市计量测试技术研究院研究员吴立敏、中国计量科学研究院副研究员张文阁、中国颗粒学会秘书长王体壮等。参会的丹东百特高层领导有丹东百特仪器有限公司总经理董青云、副总经理刘忠兰、销售总监丛丽华、研发总监范继来等。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 500px " src=" https://img1.17img.cn/17img/images/201906/uepic/7f5b59e4-557d-4626-8e77-61c8d8fe190f.jpg" title=" das asd.jpg" alt=" das asd.jpg" width=" 500" height=" 500" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em " strong 中国颗粒学会专家现场考察 /strong /p p style=" text-align: justify text-indent: 2em " 参会专家们首先在董青云总经理的陪同下前往丹东百特的展示厅、车间和实验室等地,现场考察了其制造、供应、研发、销售和服务能力。从1995年成立,经过24年砥砺前行的丹东百特如今建筑面积达10000平方米,拥有独立的仪器制造中心、新产品研发中心、精密机械加工车间等,具备制造高质量、高技术含量仪器的硬件条件。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/201906/uepic/f75b4a49-7775-436f-8427-81eebcb3b4d2.jpg" title=" IMG_1461.JPG" alt=" IMG_1461.JPG" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 董青云 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/201906/uepic/a78e066a-c2cd-428b-878e-4d8e148abcfc.jpg" title=" IMG_1507.JPG" alt=" IMG_1507.JPG" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 范继来 /strong /p p style=" text-align: justify text-indent: 2em " 鉴定会上,董青云向各位专家介绍了丹东百特的起步历程和近年来的发展情况,范继来汇报了Bettersize2600的工作、研究、经济社会效益及用户的使用情况,百特的研发工程师先后汇报了与之相关的多功能进样系统和高速采样系统。Bettersize2600是丹东百特自主立项、研制的高性能激光粒度仪,于2017年底正式研发成功,是丹东百特产品线上广受用户欢迎的佼佼者,已获国内外制药、电池、陶瓷、金属、非金属粉体、农药、食品、水泥等行业200多家用户的应用与好评。仪器目前共授权发明专利4项,授权实用新型专利3项,通过了欧盟CE认证和美国FDA21 CFR Part 11认证,并曾荣获2018年度中国科学仪器优秀新产品奖。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 277px " src=" https://img1.17img.cn/17img/images/201906/uepic/4e62213a-5d08-42a2-8bc3-0651b1181b40.jpg" title=" 是完全去.jpg" alt=" 是完全去.jpg" width=" 500" height=" 277" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong Bettersize2600激光粒度仪 /strong /p p style=" text-align: justify text-indent: 2em " 与会专家审阅了鉴定材料,听取了项目组的工作报告、研究报告和现场测试报告,并进行了现场考察和质询,最后一致认为,Bettersize2600具有如下特点和优势: /p p style=" text-align: justify text-indent: 2em " 首先,提出并研制成功“单光束单镜头正反傅里叶光学系统”和高速近全角度信号探测系统,仪器的量程为0.02-2600(μm),测量重复性优于0.3%,准确性优于0.5%。 /p p style=" text-align: justify text-indent: 2em " 其次,仪器具有“样品折射率测量”和“样品复配”新功能,解决了未知折射率颗粒粒度测量和用户粒度分布级配需求的难题。 /p p style=" text-align: justify text-indent: 2em " 此外,仪器配备有干法、微量干法、循环水湿法、循环溶剂湿法、微量溶剂湿法5种进样系统并具有“一键测试”功能,可以满足各种样品测试需求,实现了从纳米、微米到毫米级的颗粒粒度测试功能,是一种“全能型”激光粒度仪。 /p p style=" text-align: justify text-indent: 2em " 最后,仪器的采样频率达到11kHz,显著提高了粒度测量的精度和准确性,特别是对微量(毫克级)干法样品粒度测量具有重要意义。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 500px " src=" https://img1.17img.cn/17img/images/201906/uepic/6fe03793-407c-45d7-a892-b80236f4b548.jpg" title=" 41 231 23.jpg" alt=" 41 231 23.jpg" width=" 500" height=" 500" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em " strong 专家讨论剪影 /strong /p p style=" text-align: justify text-indent: 2em " 经过严格的审查和热烈的讨论,专家们给出了如下鉴定结论:Bettersize2600激光粒度仪采用多项创新技术,填补了国内空白,达到国际先进水平,并具备批量投产条件。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制