当前位置: 仪器信息网 > 行业主题 > >

粒子碰撞仪

仪器信息网粒子碰撞仪专题为您提供2024年最新粒子碰撞仪价格报价、厂家品牌的相关信息, 包括粒子碰撞仪参数、型号等,不管是国产,还是进口品牌的粒子碰撞仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粒子碰撞仪相关的耗材配件、试剂标物,还有粒子碰撞仪相关的最新资讯、资料,以及粒子碰撞仪相关的解决方案。

粒子碰撞仪相关的论坛

  • 碰撞池与反应池

    碰撞/反应池基本上有桶状的池体构成,两端留有空以方便粒子进出。池体内维持比周围真空腔内的压力稍高的增压状态。池内装有多级杆,也有池内装有离子透镜。池体一般位于离子透镜和主分析器之间。池中常用的气体有强反应气,如CH4,NH3,弱反应气H2,碰撞气he,xe,混合气体如H2/He或NH3/he(以he为主)。碰撞/反应池常常用反应池或碰撞池命名,用来强调和区分池体内进行化学反应过程特征。另一种对两种池体结构的主要不同处的论述是他们对排斥不希望的副反应产物离子的手段不同,一个利用质量歧视效应,另一个利用能量歧视效应。反应池内一般使用四级杆,此使用可变的带通,强调有一定的化学反应专一性。池内增压较高,离子动能较弱。使用强反应气NH3CH4或弱反应气H2O2。碰撞池池体内一般使用高级多级杆(六级杆或八级杆),强调对正离子的高功率引导功能,强调池体的动能歧视功能,一般增压较小。常使用的气体为碰撞气体He,及弱反应气体和混合气体。当前强反应气体混合气体被用于碰撞池后,使严格按池体内的化学反应过程来定义的池体命名方式模糊起来。

  • 【我们不一YOUNG】碰撞活化分解

    [font=&][size=15px]利用软电离技术(如电喷雾和快原子轰击)作为离子源时,所得到的质谱主要是准分子离子峰,碎片离子很少,因而也就没有结构信息。为了得到更多的信息,最好的办法是把准分子离子“打碎”之后测定其碎片离子。在串联质谱中采用碰撞活化分解(Collision activated dissociation, CAD)技术把离子“打碎”。[/size][/font][font=&][size=15px]碰撞活化分解也称为碰撞诱导分解(Collision Induced dissociation, CID),碰撞活化分解在碰撞室内进行,带有一定能量的离子进入碰撞室后,与室内情性气体的分子或原子发生碰撞,离子发生碎裂。为了使离子碰撞碎裂,必须使离子具有一定动能,对于磁式质谱仪,离子加速电压可以超过1000V,而对于四极杆,离子阱等,加速电压不超过100V,前者称为高能CAD,后者称为低能CID。二者得到的子离子谱是有差别的。[/size][/font]

  • 【分享】为寻找"上帝粒子" 欧洲大型对撞机延长运行一年

    欧洲核子研究中心的科学家准备让世界最大的粒子加速器大型强子对撞机(LHC)额外多运行一年,持续工作至2012年年底再关闭休整。他们相信,在这段时间里,LHC定能再接再厉,不负众望地找到希格斯粒子(或称希格斯玻色子),也就是传说中赋予其他粒子质量的“上帝粒子”。  按照原定计划,位于瑞士日内瓦边境地底长达27公里遂道内的LHC将于2011年结束本阶段的工作,然后进入长达一年休整期,对各项设备进行重大升级。如果新计划获得通过并实施,LHC的持续运行时间就将超过3年。据英国《自然》杂志网站 12月10日报道,目前围绕延期计划的一系列准备工作正处于最后的完善阶段,欧核中心管理委员会很可能于明年1月表决同意。  科学家们认为,LHC找到希格斯玻色子指日可待,这一重大发现可能“就在拐角处”。负责加速器维修和升级改造工作的史蒂夫·迈尔斯说:“就此停止将是一件令人惋惜的事。”  探寻希格斯玻色子之旅前景乐观  LHC的重要任务之一就是寻找希格斯玻色子。科学家们长期以来有个疑问,为什么有些粒子如质子比较重,而另一些粒子如光子比较轻?上世纪60年代英国物理学家彼得·希格斯大胆预测,存在一个希格斯场和希格斯玻色子。这种从理论上假定的希格斯玻色子是物质的质量之源,是电子和夸克等形成质量的基础。该机制被看作是粒子物理“标准模型”的必要延伸。  起初有人怀疑,就目前的运行能量而言,LHC是否能找到希格斯玻色子。自从2008年发生氦泄漏重大事故后,经过维修再次开机的LHC一直按照其设计能量的一半在工作。欧核中心工作人员原计划从2012年开始让LHC停止运行15个月,其间采集数据,以便让对撞机提升至最高能量状态(14万亿电子伏特)满负荷运转。  但现在,越来越多的科学家达成共识认为,即使不升级,LHC也已经在标准希格斯粒子可能存在的大部分范围内布下了罗网。欧核中心主管研究和计算的塞尔吉奥·贝托鲁奇表示,大多数物理学家的理想猜测是,希格斯粒子的质量介于114吉电子伏特到 600吉电子伏特之间(1吉电子伏特=10亿电子伏特)。质量将决定希格斯粒子如何衰减,也决定了它能否被轻而易举地探测到。  贝托鲁奇说,质量较重的希格斯粒子或许更容易被发现。这是因为较重的希格斯粒子很可能会衰变成两种稀有的重粒子,即所谓的W玻色子和Z玻色子。而在LHC碰撞实验所产生的粒子中,W玻色子对或Z玻色子对相较于其他粒子来说更加“鹤立鸡群”,容易辨别。如果希格斯粒子质量较轻的话,其留下的“签名”就会融入到背景中,使探测难度增大,而物理学家也需要将好几个月的碰撞数据集中到一起并从中过滤出有用信息。  尽管面临挑战,但贝托鲁奇对于LHC的监控面已经能够覆盖希格斯粒子出没之处的大部分区域表示“非常乐观”。2008年事故之后,这台机器的表现格外出色,他认为,对撞机具备在2011年至2012年运转期内提交大批所需数据的能力。此外,他说,LHC管理方认为,他们能够将粒子对撞能量从目前的7万亿电子伏特提升至8万亿电子伏特。

  • 大型强子对撞机最新发现“美丽粒子”

    http://photocdn.sohu.com/20120504/Img342377026.jpg大型强子对撞机的紧凑渺子线圈探测器发现了Xi(b)*存在的证据  【搜狐科学消息】据国外媒体报道,大型强子对撞机(LHC)最近在进行原子粉碎实验时检测到了一个新的亚原子粒子,这是一个美丽的粒子。新发现的粒子早已被理论所预言,但从未被发现。  新的粒子被称为Xi(b)* ,是一个重子。据悉,重子是由三个更小的被称为夸克的物质组成。组成原子核的质子和中子也是重子。Xi(b)* 粒子属于所谓的美重子,其包含一个底夸克,亦称美夸克。虽然发现Xi(b)*未必见得是一个惊喜,但这一发现应有助于科学家解决“物质是如何形成的”这一更大的难题。进行大型强子对撞机实验的美国康奈尔大学的物理学家詹姆斯•亚历山大(James Alexander)说:“这是墙上的另一块砖。”  不同于质子和中子,美重子的寿命极其短暂,Xi(b)*存在不到一秒钟就衰变成其它21个短命粒子。美重子需要极高的能量才能创造出来,所以它在地球上除了原子加速器的中心,如坐落于日内瓦欧洲核子研究中心(CERN)的大型强子对撞机,其它地方都找不到。  大型强子对撞机的科学家不是直接发现这个新的粒子,而是他们看到了它衰变的证据,大型强子对撞机的紧凑渺子线圈(Compact Muon Solenoid,CMS)探测器捕捉到新粒子在质子和质子碰撞后的凌乱余波中衰变的过程。CMS的物理学家文森佐•奇欧奇阿(Vincenzo Chiochia)说:“寻找这个粒子真的很辛苦,在这样一个混乱的状况下寻找这种复杂的衰变,使我们对自己的能力充满信心,未来我们也可以找到其它新粒子。”  CMS的科学家表示,这个新粒子的存在已被证实,研究人员有99.99%的信心认为这一结果不是因为偶然。没有参与这项研究的费米实验室的科学家帕特里克•卢肯斯(Patrick Lukens)说:“这一发现进一步证实物理学家对夸克如何结合在一起的理解在本质上是正确的。”  这个粒子曾被物理学中非常成功的理论模型预言,被称为量子色动力学(quantum chromodynamics),该模型演示了夸克如何结合,以及如何创造更重的粒子。然而,卢肯斯说,发现Xi(b)*对寻找希格斯玻色子没有影响。希格斯玻色子可以解释为什么质量存在于宇宙中,它也是由量子色动力学模型所预言的粒子。(尚力)

  • 岛津的lcmsms8040碰撞产生的离子碎片问题

    在MRM模式下,优化之后碰撞产生的离子碎片很多,找不到可以作为目标离子的碎片,但是标准上给出的碰撞是可以找到大量目标离子碎片的,想问下到底问题出在了哪里。声明并不是一定要找标准上面的目标离子,只是仪器优化方法后,找不到一个合适的离子碎片作为目标离子,一种物质碰撞之后稀碎。

  • 三重四级杆中离子源与碰撞池

    三重四级杆中离子源与碰撞池的作用一个是使样品离子化(电子撞击),一个是是离子碎片化(气体撞击),请问电子撞击和气体撞击的差别是什么呢?离子化是否也可以用气体来撞击,或者CID是否也可以用电子来撞击呢?谢谢。

  • 【已解决】关于液质的碰撞气collision gas的问题

    今天看了Agilent的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]资料因为只用过6300,知道用高纯He作碰撞气。今天看了6410QQQ和6210TOF的资料,发现,1、6210没有碰撞气,那是不是,样品的质谱图除在在离子源中产生的碎片,就没有其他碎片离子峰了?2、6410用高纯N2作碰撞气,为什么不用高纯He,是因为价格问题?还是别的?碰撞气只是在Q2中?Q2不是也由电极棒组成吗,怎样拢住碰撞气?3、没看6100的资料,大胆猜想一下,应该没有碰撞气吧?请专家指教!谢谢!

  • 八极杆反应池的氦碰撞模式,高效消除ICP-MS干扰!

    (转帖)摘要 由于 ICP-MS 具有多元素同时分析能力,操作简单,许多常规分析实验室采用它作为元素分析的主要技术。其中,新兴的ICP-MS 的碰撞/反应池 (CRC) 技术对一些特定的质谱干扰具有很好的消除性能,然而,就 CRC 技术的多元素同时分析能力而言,它仍仅仅是一种替补分析技术。本研究的工作应用Agilent 7500ce ICP-MS 碰撞/反应池的单一 He 气工作条件,同时有效消除难分析的基体复杂的样品中多种干扰,证明了其多元素同时分析的强大能力。前言 ICP-MS 是一个非常强有力的多元素分析技术,但长期研究也证明了它的确受到一些特定的质谱干扰,尤其是当样品基体复杂、类型多变时更成问题。ICP-MS中大多数 干扰是来源于等离子体中产生的分子(或多原子)离子与目标元素的名义质量相同而发生质谱重叠。常见于报道的干扰主要可分为两组:来源于等离子体本身和水的 干扰(基于等离子体的),如 40Ar,40Ar16O,和 40Ar38Ar 等;来源于样品基体组分的干扰(基于样品基体的),如 35Cl16O,和 32S34S 等。基于等离子体的多原子离子干扰是可预知的而且基本不发生改变,它与样品基体无关。而基于样品基体的多原子离子干扰很难预知,并且干扰大小和类型随着样品基体组分和它们的相对浓度的不同而变化。 碰撞反应池(CRC)技术的最新发展,使得在某些样品基体中以前被证明很难或无法检测的低浓度受干扰元素的分析取得重大改进。在 CRC ICP-MS 中,一般在反应池中压入一种反应气体与干扰物反应(称作反应模式)。反应模式有多种工作机理,其中某一种反应过程机理可使干扰粒子减弱,这取决于所选择的 气体类型和干扰类型。不过,在实际工作中,只使用高活性气体的“纯反应模式”的 CRC 系统一般仅应用于分析特定的目标元素,清除已知的特定一种干扰离子 。另一些仪器使用“更简单”或较少活性的反应池气体,如 H2 ,但是它主要用于消除基于等离子体本身的分子离子干扰,因为它与难消除的基于基体的分子离子反应慢或根本不反应。氦 (He) 碰撞模式 安捷伦八极杆反应池系统 (ORS) 引进了一个新的更强有力的 CRC 操作模式—He 碰撞模式。它可以用一种惰性气体碰撞消除所有多原子粒子。它的消除干扰的原理是基于干扰粒子与目标元素的直径大小,而不是它们与反应气的相对反应活性不 同。因为所有的多原子干扰都比同等质量的分析物离子直径大,它们较大的横截面意味着它们在碰撞池中与碰撞气有更多的碰撞几率,所以当它们通过加入气体的碰 撞池前进时将损失更多动能。当到达碰撞池出口处时,(由于它们与 He 碰撞池气的碰撞)大横截面的多原子粒子的离子能量都比分析物离子的离子能量明显低,这样,用一个适当的截止电压(形成势能壁垒)即可阻止它们离开碰撞池, 而只容许能量较高的分析物离子通过碰撞池到达分析器。这个分离过程叫做动能歧视效应(KED),这个简单但极为有效的方法比反应模式具有许多重要的分析优 点。He 碰撞模式的优点:• 与反应池气相比,He 是惰性气体,因此不与样品基体反应,在碰撞池中不形成新的干扰物• 由于 He 是惰性气体,它不与分析物或内标离子反应并引起它们的信号损失• 所有干扰(基于等离子体本身的和基于样品基体的)均可被清除或极大减弱,因此有效干扰消除功能可以与多元素同时扫描或半定量分析功能相结合• 因为 He 碰撞模式不是仅针对某种特定的干扰,所以可以同时消除对同一个目标元素的多种可能的干扰(或同一基体产生的对多个元素的不同干扰) • 不需要预先知道样品基体情况,并且不需要建立特定的消除干扰方法;与此相反,应用强反应气体模式来消除干扰时,必须针对不同的目标元素,以及不同的样品基体分别建立不同的消除干扰的反应条件,使操作参数相当复杂 • He 碰撞模式可以应用于不同样品目标元素、不同样品基体,而却只采用相同的工作参数(如气体及流速)• 不用设置或优化碰撞池电压等参数• 不用建立干扰校正方程为什么其他 CRC-ICP-MS 不能使用 He 碰撞模式? 为了适当地消除干扰,He 碰撞模式需要采用动能歧视效应 (KED) 提供的高效率的目标元素/干扰离子的分离,这需要满足两个条件:第一,所有进入碰撞池的离子(初始离子)的能量必须受到严格的控制(动能基本相同并且不发 生能量扩散)。安捷伦独特的屏蔽炬 (Shield Torch) 接口确保进入碰撞池的离子能量扩散很窄 (1 eV);与其它类型的电子接地的等离子体设计(象平衡的、中心抽头的或交错的线圈)相比,屏蔽炬的物理接地原理提供了更好的初始离子能量控制。第二,在碰 撞池中,多原子粒子必须经历足够多次数的碰撞(以尽量降低动能),以便在碰撞池出口处与目标元素离子分开,在 Agilent ORS 碰撞池中(唯一使用八极杆碰撞池的 ICP-MS),这是通过采用八极杆进行离子聚焦与导引来实现的。使用八极杆碰撞池有两个主要好处:• 八极杆池的内径小。因此,碰撞池的入口和出口就小—所以碰撞池的工作压力比四极杆或六极杆碰撞池的操作压力高,增加了离子/气体的碰撞次数• 八极杆比六极杆和四极杆离子导引系统具有更好的聚焦效率。离子束紧密聚焦,确保了其在高碰撞池工作压力下仍然保持较好的离子传输效率,目标离子损失少,灵敏度高 只有 Agilent ORS 将屏蔽炬接口技术与八极杆碰撞池技术紧密相结合起来,所以只有 Agilent ORS 才可以有效地使用 He 碰撞模式。He 碰撞模式性能测试—最困难的基体情况设想 本试验制备了一个合成样品基体以产生多种常见的对多个目标元素的多种干扰,测试 He 碰撞模式消除所有的多原子粒子干扰的能力。表 1 列出了此样品基体中可能产生的各种多原子粒子干扰及受干扰的元素。实际上,在这一样品中,在中等质量数区域(从 50到 80 amu),几乎每个元素都会受到多种干扰。这使得复杂样品基体中的这些元素的准确测定对常规的 ICP-MS 极具挑战性,因为多种干扰同时存在的复杂性意味着数学校正将根本不可靠。这也同时说明为什么采用强反应气体的反应池对复杂样品基体中的多元素分析不适合; 因为每一个多原子离子干扰对任何给定的反应池气体都有不同的活性,所以没有一个单一反应气体对一批多原子离子同时是有效的。然而,表1 显示的每种干扰都是多原子的离子,因此采用 He碰撞 KED 模式的一套条件就可以有效地消除干扰。 本试验采集了两组质谱图来说明 He 碰撞模式消除多重干扰的能力:一个是无气体模式下采集,第二种是将 He 加入到碰撞池后采集。不用数据干扰校正或背景扣除等数学校正方法。最后,在该样品基体中加入5 ng/L(ppb)的多元素标准溶液,采集(加 He 时)质谱图,计算目标元素的回收率,同时验证目标同位素比与天然同位

  • 日冕物质抛射之间碰撞可能是超弹性碰撞

    新发现对保障航空航天安全具重要意义2012年10月12日 来源: 中国科技网 作者: 杨保国 吴长锋 最新发现与创新 中国科技网讯 中国科技大学地球和空间科学学院、中科院近地空间环境重点实验室汪毓明教授领导的日地物理研究组与在美科学家合作,利用美国国家航空航天局的日地关系观测卫星(STEREO)的数据,首次发现行星际空间中最大的等离子体团——日冕物质抛射之间的碰撞可能是超弹性碰撞。国际著名学术期刊《自然-物理》10月7日在线发表了这一研究成果。 日冕物质抛射,是太阳大气中最剧烈的爆发现象之一,其速度可高达每秒数千公里,携带的能量相当于数亿颗大型原子弹同时爆炸产生的能量,是灾害性空间天气事件的最重要的驱动源。在太阳活动峰年期间,平均每天有4—5次日冕物质抛射。通常情况下,固体之间的碰撞处在完全弹性和完全非弹性之间,碰撞之后,系统的总动能保持不变或减少。而对于液体和气体,它们之间的碰撞则是扩散和相互渗透的过程。日冕物质抛射是气体状态,它们之间的碰撞是否跟普通气体一样?中国科大申成龙和汪毓明等人通过对STEREO卫星观测到的一次日冕物质抛射碰撞事件的细致分析,发现日冕物质抛射之间的碰撞类似于弹性球之间的碰撞,在碰撞过程中,它们的方向和速度发生了明显的改变。而令人惊奇的是,碰撞之后系统总动能增加了7%,碰撞过程的弹性系数达到5.4,明显高于完全弹性碰撞的系数1。该研究表明,通过碰撞挤压,日冕物质抛射内部的热能和磁能会被进一步激发转换成动能。 该研究首次发现了日冕物质抛射之间的超弹性碰撞现象,对磁化等离子体团的碰撞过程、日冕物质抛射的动力学研究,以及对建立更为准确的空间天气预报模式以保障航空航天安全等具有重要意义。(杨保国 记者 吴长锋) 《科技日报》(2012-10-12 一版)

  • 液质联用仪中碰撞气的作用

    [size=24px][font=宋体]碰撞气是[/font][font=宋体]液[/font][font=宋体]质[/font][font=宋体]联用仪[/font][font=宋体]中[/font][font=宋体]用于质谱端[/font][font=宋体]的一路气[/font][font=宋体]体[/font][font=宋体]。 [/font][font=宋体]以串联四级杆质谱为例,气路系统将[/font][font=宋体]其[/font][font=宋体]引入[/font][font=宋体]质谱碰撞池中,与来自于第一个四[/font][font=宋体]极[/font][font=宋体]杆筛选过滤后传输来的离子发生碰撞,离子被撞碎后,送到第三个四极杆。 碰撞气[/font][font=宋体]在碰碎离子过程中[/font][font=宋体]只传递动[/font][font=宋体]能[/font][font=宋体],不与[/font][font=宋体]其[/font][font=宋体]反应,因此一般采用高纯的惰性气体作为碰撞气[/font][font=宋体],如氩气、氮气[/font][font=宋体]。[/font][/size][font=&][/font]

  • 碰撞池的CID了解多少

    [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]MS用MRM模式时,会设置碰撞池的碰撞气和碰撞能量,具体的反应机理是怎样呢?设想:1.母离子和碰撞气反复碰撞,给母离子储备势能,断裂阈值达到后,会产生产物离子2.碰撞能量是施加给母离子还是碰撞气?欢迎大家分享经验!

  • 二级质谱碰撞能量的选择

    有一个问题想跟大家讨论一下。我们实验室有一台varian 1200 的MS/MS. 在设定二级质谱参数时,有两个选项可以调节,从而改善方法。一个是反应室氩气的气压(单位是mTorr),一个是在方法里面改变碰撞能量 (单位是eV). 我理解氩气气压高但是不一定碰撞能量强。但是氩气气压高的话通过一级质谱的离子发生碰撞的几率就大,从而更有可能被打成碎片。这个跟提高碰撞能量感觉上有相似的效果。所以我想知道有没有哪位大侠有更好的理解。谢谢!

  • 碰撞解离模式CID下,碰撞能是指啥呢?

    碰撞解离模式CID下,碰撞能是指啥呢?

    如下图片,有两个疑惑:1.部分干扰离子的键能为啥是个范围呢?2.如何理解下图中的碰撞能?是否为氦气与对应干扰离子碰撞时传输的能量呢?谢谢。http://ng1.17img.cn/bbsfiles/images/2017/10/2015030817021576_01_1699201_3.jpg

  • 怎样理解岛津液质正离子源采集下碰撞电压为负值?

    日常使用Waters、AB[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]居多,看到岛津[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]一篇应用案例,发现正离子源采集模式下碰撞电压为负值(找了一篇负离子采集模式案例,碰撞电压为正),有没有老师可以答疑,感谢!

  • 天瑞的ICPMS加了碰撞池了?

    刚刚坛子的新闻看到,天瑞的ICPMS,增加了碰撞池。比较好奇的是,CRC系统里面的四极杆、六极杆、八极杆都是专利产品,瓦里安(ICPMS现归属布鲁克)最晚做碰撞反应系统,结果还不得不改为碰撞反应接口。那么天瑞的这个碰撞反应池是什么结构的呢?有了解的板油来讲解下么

  • 【讨论】反应池/碰撞池及其它多原子离子干扰排除方法选择的疑问

    各[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICPMS[/color][/url]仪器公司选择都不近相同,当然主要原因可能是专利方面,但是就多原子离子干扰排除方法而言,PE的四极杆反应池、THERMO ELECTRONS的六极杆和Agilent的八极杆碰撞池以及就稳定性和反应有效性是否有大的差异?当然这个问题可能根据不同的检测元素和不同反应气的选择各不相同,希望有经验的朋友多谈谈,另外varian的碰撞口技术是否比其它的更耗反应气呢?

  • 为什么qtof的一级质谱也有碰撞能量的选项

    [font=&]新手求助[/font][font=&]安捷伦6530qtof, data acquisition b9.0 版本,一级质谱方法设置那里也有个colision energy大小的选项,[/font][font=&]碰撞能不是用来打碎分子采集二级质谱的吗?那么一级质谱这个设置的作用是什么,有必要设置吗[/font]

  • LC-MSMS 碰撞池没通气

    背景:十一放假回来开机,我休假,同事开的机。然后她忘记开氮气了,也就是碰撞气,但是仪器调谐过了,还走了样品,一切正常。一周后仪器报错提示没开碰撞气。仪器型号液相1260,质谱6460。讨论:1。没开碰撞气,走MRM模式,子离子是怎么打碎的?2。仪器会有什么损伤?大牛们,帮忙解答一下,我怎么都想不通啊!

  • 空气过滤器是怎么拦截空气中的尘埃粒子

    空气过滤器过滤层捕集微粒主要有以下5大效应: 1.拦截效应:当某一粒径的粒子运动到纤维表面附近时,其中心线到纤维表面的距离小于微粒半径,灰尘粒子就会被滤料纤维拦截而沉积下来。 2.惯性效应:当微粒质量较大或速度较大时,由于惯性而碰撞在纤维表面而沉积下来。 3.扩散效应:小粒径的粒子布朗运动较强而容易碰撞到纤维表面上。 4.重力效应:微粒通过纤维层时,因重力沉降而沉积在纤维上。 5.静电效应:纤维或粒子都可能带电荷,产生吸引微粒的静电效应,而将粒子吸到纤维表面上。 在现在社会,应该已经没人没听说过空气过滤器了吧,但是大部分也只是局限于听说过而已,所以在本文中我给大家带来这方面的信息,促进大家的了解。 根据现在的物理学知识我们可以知道。在我们现在空气中的尘埃粒子,它们都是随气流作惯性运动或无规则布朗运动或受某种场力的作用而移动,如果当微粒运动撞到其它物体的话,大家都知道物体之间存在范德华力(是分子与分子、分子团与分子团之间的力),在这力的作用下会使微粒粘到纤维表面。然后进入过滤介质的尘埃就回有着较多撞击介质的机会,尘埃粒子撞上介质就会被粘住。较小的粉尘相互碰撞会相互粘结形成较大颗粒而沉降,空气中粉尘的颗粒浓度相对稳定。这也就解释了为什么室内及墙壁贵褪色了。需要强调一点的就是把纤维过滤器像筛子一样看待是错误的。 下面我来给大大家介绍尘埃粒子惯性和扩散作用。在没有外力的情况下颗粒粉尘在气流中作惯性运动,但是当遇到排列杂乱的纤维时,也就是气流改变方向的话,那么粒子会因惯性偏离方向,于是就会被撞到纤维上而被粘结。如果粒子越大的话则越容易撞击,效果也就是越好。 对于小小颗粒粉尘而言,因为它作无规则的布朗运动。根据物理学知识知道颗粒越小,那么无规则运动越剧烈,这也就代表着撞击障碍物的机会越多,过滤效果也会越好。空气中小于0.1微米的颗粒主要作布朗运动,粒子小,过滤效果也就要好。而对于大于0.3微米的粒子而言主要作惯性运动,粒子越大效率越高。扩散和惯性都不明显得粒子最难过滤掉。

  • 【建设新闻】汽车碰撞实验室 21日将向公众开放

    重庆商报滚动新闻 记者 纪文伶 17:55 报道今日,作为“2010年科技活动周”的活动之一,车辆/生物碰撞安全重庆重点实验室向市民开放,大家看到了价值100多万元一个得“假人”,耗资1千余万的实验室,最高时速可达120公里/小时的碰撞试验……本月21日,位于大坪医院内的实验室还会将外开放。

  • 【原创】ICP-MS主流产品对比-分帖之五 碰撞反应池

    5 碰撞反应池可能各家厂商的产品都有一些自己的特点,然而如果不是碰撞反应池技术的出现,几乎各家的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]都没有什么大区别了。从PE公司在6100上推出DRC以来,各家公司都注意到了碰撞反应池是ICP/MS上的一个重要技术,但受到专利的影响,各家的碰撞反应技术各不相同,成为最有区别的一部分。碰撞反应池的位置在离子透镜之后,四级杆之前。并不是所有仪器都有,但这四家仪器厂商都有的主流产品都配备了碰撞反应池。首先介绍PE的DRC。之所以先介绍PE,是因为在这四家公司里PE公司最早推出反应池技术的。当时是在Elan 6100上推出的,其名称叫动态反应池DRC(Dynamic Reaction Cell)。这是一个专利技术。现在的主流产品是DRC-e和DRC II。连仪器型号都直接用该技术命名,可见碰撞反应池对于现行产品的影响有多大。DRC和其它碰撞反应最大的不同就是这个反应池是一个四级杆设计。Thermo是六级杆、Agilent是八级杆,Varian是个接口。四级杆设计和其它设计不同就在于四级杆能够进行质量甄别,也就是可以让一定范围里的质量数通过。这就是PE说它的DRC仪器是[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]-MS的原因。而限于专利,其它厂商都没有这个功能。DRC-e可以使用包括甲烷、氧气、氢气和氦气在内的任何一种气体,DRC II还可以用氨气、氧化氮等强反应气。由于其反应原理,被测离子在DRC中受影响小。厂商说对灵敏度不受影响,但从实际数据来看,灵敏度也会有明显的下降,但其下降幅度比其它厂家低得多。PE的DRC需要针对不同质量数和干扰进行特别的设置,也就是说其气体类型和参数设置针对性比较强,在多元素测量中有些困扰。最近,PE公司对于条件通用化进行了比较多的研究。总之,PE公司的DRC技术是独一无二的质量甄别反应技术。在消除干扰,降低本底方面有着突出的效果。Thermo公司的碰撞反应池的名称叫碰撞池技术CCT(collision cell technology),采用了一个六级杆来完成这个工作。Thermo公司一般采用氦气和氢气混合气(氢气7%)来作为反应碰撞气。Thermo公司的技术文献也有报道用氧气的,不知道有没有实际应用。Agilent公司的碰撞反应池技术叫八级杆反应系统ORS(Octopole Reaction System),7500CX通常是排一路氦气,7500CS通常排2路,一路氦气,一路氢气,据Agilent公司介绍7500CS也可选排第3路气,用氨气。用氨气不知道在半导体行业有没有实际应用。但一般使用,Agilent都只使用氦气,在半导体行业,用氦气和氢气。上面提到,由于专利的限制,Thermo没办法做四级杆反应池,只好做六级杆,六级杆无法进行质量甄别,只是保证离子传输以及提供一个碰撞反应的场所。Thermo的CCT也是有专利的。Agilent公司没办法做四级、六级,只好做八级杆,同样也有专利。Varian公司来得最晚,再做十级杆的话,那就太复杂了。不过,Varian公司还是有一些创新能力的(90度离子透镜的设计就可以看出来),在锥口设计了一个碰撞反应接口CRI(Collision Reaction Interface),来完成碰撞反应去干扰。具体是在锥口开了夹层,使气体从锥口冲出,达到碰撞反应的目的。在样品锥和截取锥上都采用了这样的设计。虽然这三家的设计和理念有所不同,但其去干扰的原理基本一致。主要是通过样品产生的离子流和氢气或氦气或两者混合气进行碰撞和反应。氦气是惰性气体,主要起到碰撞作用,氢气是弱反应气,主要通过反应来去除干扰。由于不能做质量甄别,必须使用反向电场进行能量甄别,以消除大量的副产物干扰离子。在能量甄别中,被测离子中大部分也会被甄别掉。所以,在碰撞反应模式下,灵敏度会大大下降,不同质量数和碰撞反应条件下,下降的幅度不同,有时候甚至高达几十倍。虽然这三家的碰撞反应原理差不多,但具体使用还是有些不同。Thermo基本使用氦气为主的氦氢混合气,其理念是提供一个通用气和条件,适合绝大部分样品去干扰的要求。所以,气体里面又有碰撞气——氦气,又有反应气——氢气。氦气和氢气对于不同的样品和干扰有着不同的影响。比如:80Se的测量,有40Ar40Ar的干扰。如果要去除这个干扰,需要用氢气,氦气效果不佳。但全部用氢气的话,反应又难以控制。所以Thermo采用了这个混合气的办法。Thermo公司会向用户展示CCT在80上的低本底计数,说明其CCT去除干扰的能力。然而,即使如此,氢气的副作用还是很明显。其副产物产生的影响难以控制。Agilent公司通常推荐用氦气,100%的。这样的好处是氦气是靠碰撞,不会产生新的干扰。也就是说,干扰只会减少,不会生成新的、未知的干扰。当然,只靠氦气是不能解决问题。比如上面提到的80上的40Ar40Ar干扰。所以,Agilent的7500CX在使用ORS时80上的计数是很高的。Agilent认为一般条件下,测量硒可以用78或82,而不是80。但氦气不能较完全地去除干扰则是可以定论的。所以,Agilent公司在需要去除Ar干扰、进行低含量水平检测时,还是要用到氢气,这在7500CS上就留了氢气的气路。Varian公司在CRI上可以用氢气或氦气,可以切换。Varian公司的资料说到由于CRI只是一个接口,不是一个“池”,所以气体切换非常快。从实践来看,从通气和不通气的切换确实很快,但从氢气和氦气之间的切换却非常慢,比PE公司换气速度还慢。估计是Varian仪器内部气路的设计问题。另外,正是由于没有一个“池”,在锥口这样一个狭小的空间完成碰撞反应,其气流量要比Thermo和Agilent公司的要大的多。气流量大,对被测离子的灵敏度影响也越大,结果就是,Varian的ICP/MS在非碰撞反应模式下灵敏度远远高于其它三家,但在碰撞反应模式下,其灵敏度大大下降,和其它三家基本在同一水平上。

  • 【实战宝典】碰撞/反应池技术的作用是什么?

    【实战宝典】碰撞/反应池技术的作用是什么?

    问题描述:碰撞/反应池技术的作用是什么?解答:[color=black] 尽管相比于[/color][font='Times New Roman','serif'][color=black]ICP-OES[/color][/font][color=black]技术,[/color][font='Times New Roman','serif'][color=black][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url][/color][/font][color=black]谱线干扰较少,但由于样品溶剂、样品中共存基体、等离子体气体、空气背景等存在,以及高温离子经接口时因压力或温度的骤降可能形成新的复合离子,均可能导致严重地质谱干扰,尤其在分析痕量超痕量元素[/color][font='Times New Roman','serif'][color=black][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url][/color][/font][color=black]分析时无法忽视。碰撞[/color][font='Times New Roman','serif'][color=black]/[/color][/font][color=black]反应池技术[/color][font='Times New Roman','serif'][color=black] (collision and reaction-cell) [/color][/font][color=black]是解决[/color][font='Times New Roman','serif'][color=black][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] [/color][/font][color=black]多原子离子干扰的一个重要突破。碰撞[/color][font='Times New Roman','serif'][color=black]/[/color][/font][color=black]反应池技术的原理和应用源于有机质谱分析中混合物的结构分析以及离子[/color][font='Times New Roman','serif'][color=black] - [/color][/font][color=black]分子反应的基础研究。多极杆碰撞[/color][font='Times New Roman','serif'][color=black]/[/color][/font][color=black]反应池是介于离子透镜系统和质量分析器之间,腔体内可充入各种碰撞[/color][font='Times New Roman','serif'][color=black]/[/color][/font][color=black]反应气体[/color][font='Times New Roman','serif'][color=black], [/color][/font][color=black]与聚焦后的离子进行碰撞和[/color][font='Times New Roman','serif'][color=black]/[/color][/font][color=black]或反应。碰撞[/color][font='Times New Roman','serif'][color=black]/[/color][/font][color=black]反应技术主要基于动能歧视([/color][font='Times New Roman','serif'][color=black]Discrimination by Kinetic Energy[/color][/font][color=black])和质量分辨([/color][font='Times New Roman','serif'][color=black]Discrimination by Mass[/color][/font][color=black])两种原理。本节只简要地介绍广泛应用的四级杆(图[/color][font='Times New Roman','serif'][color=black]2-11[/color][/font][color=black])、六级杆(图[/color][font='Times New Roman','serif'][color=black]2-12[/color][/font][color=black])、八级杆(图[/color][font='Times New Roman','serif'][color=black]2-13[/color][/font][color=black])碰撞[/color][font='Times New Roman','serif'][color=black]/[/color][/font][color=black]反应池和接口碰撞技术(图[/color][font='Times New Roman','serif'][color=black]2-14[/color][/font][color=black]),具体的消除干扰技术将在后续质谱干扰消除章节中详细地讨论。[/color][color=black]值得关注的是,在碰撞[/color][font='Times New Roman','serif'][color=black]/[/color][/font][color=black]反应池与离子聚焦系统之间增加了一个四极杆,即[/color][font='Times New Roman','serif'][color=black]ICP[/color][/font][color=black]串联质谱仪,可更好地实现离子与反应气的选择性“可控反应”,即串联[/color][font='Times New Roman','serif'][color=black][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url][/color][/font][color=black]技术。如[/color][font='Times New Roman','serif'][color=black]Agilent[/color][/font][color=black]公司[/color][font='Times New Roman','serif'][color=black]2012[/color][/font][color=black]年推出了[/color][font='Times New Roman','serif'][color=black]8800 ICP-QQQ[/color][/font][color=black],赛默飞[/color][font='Times New Roman','serif'][color=black]2016[/color][/font][color=black]年推出了[/color][font='Times New Roman','serif'][color=black]iCAPTQ[/color][/font][color=black],[/color][font='Times New Roman','serif'][color=black]2020[/color][/font][color=black]年[/color][font='Times New Roman','serif'][color=black]PerkinElmer[/color][/font][color=black]公司[/color][font='Times New Roman','serif'][color=black]2020[/color][/font][color=black]年推出[/color][font='Times New Roman','serif'][color=black]NexION 5000[/color][/font][color=black]和我国杭州谱育公司[/color][font='Times New Roman','serif'][color=black]2020[/color][/font][color=black]年推出了[/color][font='Times New Roman','serif'][color=black]SUPEC 7350 QQQ[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url][/color][/font][color=black],在[/color][font='Times New Roman','serif'][color=black]2021[/color][/font][color=black]年[/color][font='Times New Roman','serif'][color=black]BCEIA[/color][/font][color=black]上杭州谱育公司甚至将串联质谱技术结合于[/color][font='Times New Roman','serif'][color=black]ICP-TOF[/color][/font][color=black]质谱仪上,即[/color][font='Times New Roman','serif'][color=black]ICP-Q-TOF[/color][/font][color=black]。[/color][color=black]尽管目前所有商品化的四极杆[/color][font='Times New Roman','serif'][color=black][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url][/color][/font][color=black]均配置了碰撞[/color][font='Times New Roman','serif'][color=black]/[/color][/font][color=black]反应技术,但无论哪种类型的碰撞[/color][font='Times New Roman','serif'][color=black]/[/color][/font][color=black]反应池技术[/color][font='Times New Roman','serif'][color=black], [/color][/font][color=black]都不是万能的。一种系统并不能解决所有的质谱干扰问题。而且许多系统都过于复杂[/color][font='Times New Roman','serif'][color=black], [/color][/font][color=black]分析样品的类型不同[/color][font='Times New Roman','serif'][color=black],[/color][/font][color=black]要求建立的分析方法也不同。[/color][align=center][font='Times New Roman','serif'][color=black][img=,456,144]https://ng1.17img.cn/bbsfiles/images/2022/06/202206211258199433_7641_3389662_3.jpg!w456x144.jpg[/img] [/color][/font][/align][align=center][b][color=black]图[/color][font='Times New Roman','serif'][color=black]2-11 [/color][/font][color=black]四级杆碰撞反应池技术图[/color][font='Times New Roman','serif'][color=black] 2-12 [/color][/font][color=black]六级杆碰撞反应池技术[/color][/b][/align][align=center][img=,473,202]https://ng1.17img.cn/bbsfiles/images/2022/06/202206211258319382_1205_3389662_3.jpg!w473x202.jpg[/img][/align][align=center][b][color=black]图[/color][font='Times New Roman','serif'][color=black]2-13[/color][/font][color=black]八级杆碰撞反应池技术[/color][font='Times New Roman','serif'][color=black] [/color][/font][color=black]图[/color][font='Times New Roman','serif'][color=black]2-14 [/color][/font][color=black]接口碰撞技术[/color][/b][/align]以上内容来自仪器信息网《[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]实战宝典》

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制