当前位置: 仪器信息网 > 行业主题 > >

量单细胞仪

仪器信息网量单细胞仪专题为您提供2024年最新量单细胞仪价格报价、厂家品牌的相关信息, 包括量单细胞仪参数、型号等,不管是国产,还是进口品牌的量单细胞仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合量单细胞仪相关的耗材配件、试剂标物,还有量单细胞仪相关的最新资讯、资料,以及量单细胞仪相关的解决方案。

量单细胞仪相关的资讯

  • 活体单细胞淀粉含量检测法问世 无需细胞纯化
    高等植物和微藻能够利用光能将水和二氧化碳转化成淀粉等高能化合物,从而生产粮食和生物燃料。因此,高产淀粉细胞工厂的选育具有重要意义。目前,定量测定细胞中淀粉含量的方法通常包括破坏性的细胞处理过程、酶(或酸)介导的水解、水解产物的定量等多个环节,不仅需要大量细胞,且操作步骤繁琐、耗时耗力、成本较高,极大地限制了淀粉含量的高通量筛选。此外,传统方法通常无法检测自然界中大量存在的难培养微生物中的淀粉含量。   近日,中国科学院青岛生物能源与过程研究所单细胞研究中心助理研究员籍月彤、硕士研究生何曰辉等利用该中心研制的活体单细胞拉曼分选仪原型机(Raman-activated Cell Sorter,RACS),通过单细胞拉曼光谱的快速采集和分析,发明了一种快速、非侵入性、不须标记、以单个活体细胞为单位的淀粉定量检测方法,为富含淀粉的种质资源选育提供了一种崭新手段。该工作发表在新一期的Biotechnology Journal上。 利用单细胞拉曼光谱技术在单个细胞精度定量监测微藻产淀粉过程   研究人员以478 cm-1拉曼峰强度作为细胞淀粉含量的定量标记对莱茵衣藻(Chlamydomonas reinhardtii)以及工业常用藻株小球藻(Chlorella pyrenoidosa)进行了淀粉含量检测,证明该方法与传统试剂盒法测定结果相关系数(R2)达0.99。该方法无需破壁等繁琐预处理,信号测量时间仅需两秒,基本无耗材消耗,仅需个别细胞或纳升级样品。同时,该方法不需经过细胞纯化与培养环节,能将微藻种质淀粉含量筛选时间从几天缩短至几分钟。此外,该方法还能对难培养微生物资源进行检测并基于淀粉含量进行单细胞分选,从而极大地拓展了应用空间。   上述研究得到了科技部合成生物学&ldquo 863&rdquo 项目和中科院&ldquo 能源微藻生物炼制&rdquo 创新团队国际合作伙伴计划等支持,由徐健研究员和黄巍研究员共同主持完成,华东理工大学李元广教授团队也参与了该研究。
  • 单细胞ICP-MS应用:测定单个细菌细胞的铁含量
    细菌是一种单细胞生物体,个体非常小,目前已知最小的细菌只有0.2微米长,因此大多只能在显微镜下被看到。细菌广泛分布于土壤和水中,或者与其他生物共生。人体身上也带有相当多的细菌。据估计,人体内及表皮上的细菌细胞总数约是人体细胞总数的十倍。铁是细菌细胞内部进行各种生物过程所必须的金属辅助因子。通常,铁作为一种可抑制细菌生长的营养元素,细胞中的总铁含量限额取决于细胞的生长状态和代谢需要。细菌的生长和繁殖必须有铁的供给才能得以进行。但细胞内多余的可溶性铁是有毒的。在确定细胞生长条件和应激反应的影响时,实时地测定细菌细胞中的铁含量可提供关于细菌中铁耐受限值的信息。监测单个细胞内的铁含量还可了解细胞中铁的分布情况,从而确定细胞群的同质性。在本次实验中,我们利用单细胞电感耦合等离子体质谱 SC-ICP-MS法分别测定了三种菌株的单个细胞的铁含量。这三个菌株分别是大肠杆菌B株(Eco)、枯草芽孢杆菌168株(BAC) 和红球菌RHA1株(RHA)。样品大肠杆菌B株(Eco),枯草芽孢杆菌168株(BAC) 和红球菌RHA1株(RHA),其菌株的细胞尺寸分别约为2μm、4μm和10μm±2。经过培养后,被等分成1mL样本,并储存在50%的甘油中于-20℃保存。SC-ICP-MS分析的细菌细胞样品实验将细菌细胞样品放入35℃水浴中解冻1min,然后将样品置于冰袋,使用1%磷酸盐缓冲液(PBS) 将样品稀释至含有100,000个细胞/mL的样品稀释液后立即上机SC-ICP-MS分析。NexION 2000 ICP-MS及实验条件通过采用纯氨气通入反应池的模式(反应模式),消除ArO+对56Fe+的干扰。实验结果细胞浓度为50,000个细胞/mL时,大肠杆菌B株、枯草芽孢杆菌168株和红球菌RHA1株的56Fe的信号扫描图。横坐标单位为ag,表明了单个细胞中铁含量的分布情况。其中大肠杆菌B株的单个细胞平均铁含量最低,而红球菌RHA1株的单个细胞平均铁含量最高。为测试细胞重叠现象,将细菌细胞经系列稀释后进行测定。上图表明,将细菌细胞稀释至100,000、75,000和50,000个细胞/mL浓度时,单个细胞的铁平均含量并没有发生变化,反而每次稀释后,细胞数量呈线性变化,结果表明,细胞浓度对细胞重叠无显著影响。结论单细胞ICP-MS法可以准确定量单个细菌细胞中的铁含量,可以提供细菌培养物中的单个细胞内铁分布信息。所建立的分析方法可以为严格控制细菌细胞的总铁含量提供支持。单细胞ICP-MS法还可用于在不同应激条件下生长的细菌细胞中铁含量分布的测定。了解更多应用资料,扫描下方二维码,下载利用SC-ICP-MS法测定单个细菌细胞中的铁含量相关资料。
  • 北大谢晓亮、黄岩谊教授开发单细胞测序新技术
    来自北京大学的研究人员报告称,他们开发出了一种基于乳液的扩增方法来抑制扩增偏移检测单细胞拷贝数变异(CNV),同时以高精确度检测单核苷酸变异(SNV)。这一方法能够与各种扩增实验方案包括广泛使用的多重置换扩增(MDA)相兼容。这一重要的成果发布在9月4日的《美国国家科学院院刊》(PNAS)上。  北京大学的谢晓亮(X. Sunney Xie) 教授及黄岩谊(Yanyi Huang)教授是这篇论文的共同通讯作者。  谢晓亮教授是单分子生物物理化学和相干拉曼散射显微成像的开拓者之一,其研究组在离体实验及活细胞内生物系统在单分子水平的动力学研究方面取得了不少重要的成果,尤其是单分子荧光显微技术,比如相干拉曼显微成像技术(CARS、SRS)等方面成果斐然。近年来,他又在单细胞测序技术上取得突破,发表了不少重要成果。黄岩谊教授课题组主要致力于发展应用于集成生物学研究的新技术。  过去二十几年里,随着基因测序技术水平的提高以及千人基因组计划、癌症基因组计划、Meta-Hit计划等重大国际合作项目的相继开展,基因组研究日渐被推向高潮。  然而,一直以来的测序材料都是数百万甚至更多细胞的混合DNA样本。这种方法能够得到全基因组序列信息,但是对其进行研究得到的结果只是一群细胞中信号的平均值,或者只代表其中占优势数量的细胞信息,单个细胞独有的特性被忽视。  另一方面,有些样品稀少无法在实验室培养,样品量不足以进行全基因组分析,例如肿瘤循环细胞、组织微阵列、早期发育的胚胎细胞等。这些都是全基因组测序遇到的难题。  作为“在单个细胞水平上对基因组进行测序”的单细胞测序技术能够解决上述难题。与传统的全基因组测序相比,单细胞测序不仅测量基因表达水平更加精确,而且还能检测到微量的基因表达子或罕见非编码RNA,其优势是全方位和多层次的。近年来单细胞基因组学揭示出了各种生物学过程,如肿瘤进化、胚胎发育和神经体细胞嵌合前所未有的细节。  下一代测序的全基因组扩增(WGA)技术已被广泛应用生物学和医学领域用于确定单细胞基因组特征。WGA的高度均一性和保真度是精确测定CNVs和SNVs等基因组变异的必要条件。扩增产量沿基因组波动及SNV识别假阳性及假阴性结果限制了当前流行的WGA方法。  在这篇新文章中研究人员报告称,他们开发出了一种乳液WGA (eWGA)方法来克服这些问题。他们将单细胞基因组DNA分到油溶液包裹的大量(105)微微升水滴中。每个水滴中只包含少量的DNA片段,在反乳化作用之前每个水滴便达到了DNA扩增的饱和,因此将片段间扩增的差异被降至最小程度。研究人员进而采用MDA对eWGA方法进行了原理证明。  研究人员表示,这种容易操作的方法可实现在单个人类细胞中同时检测CNVs和SNVs,大大改善了扩增均一性和精确度。
  • 谢晓亮院士研发出单细胞测序新技术
    人类、草莓、蜜蜂、鸡和大鼠等许多生物体都已经进行过DNA测序。如果说测序个别物种具有挑战性,那么测序单个细胞的DNA无疑更难。    谢晓亮院士研发出单细胞测序新技术   为了获得足够的DNA进行测序,通常需要数以千计或甚至数以百万计的细胞。而找出哪种突变存在于哪种细胞中几乎是不可能的,只存在于少数细胞(如早期癌细胞)中的突变也基本上被掩藏。   发表在最新一期(12月21日)《科学》(Science)杂志上一项新技术为我们提供了一种拷贝DNA的途径,从而使得单细胞中90%的基因组能够被测序。这种方法使得检测单细胞中较小的DNA序列变异变得更容易,因此能够发现个别细胞之间的遗传差异。这样的差异可以帮助解释癌症恶化的机制,生殖细胞形成机制,甚至是个别神经元的差异机制。   领导这一研究是著名华人科学家、美国国家科学院院士谢晓亮(Sunney Xie)教授,谢晓亮教授出身于化学世家,其父为北大化学与分子工程学院著名教授谢有畅。谢教授毕业于北大化学系,1985年赴加州大学圣地亚哥分校攻读博士,1999年被聘为哈佛大学化学与生物系终身教授,是该校仅有的两位中国大陆的终身教授之一。目前其研究重点是单分子光谱检测及其在生命科学中的应用。谢教授曾获美国物理学会的青年光谱学家奖、以色列总统奖等多项殊荣,现已被聘为北大化学与分子工程学院客座教授。   为了测序单个细胞,研究人员必须首先利用包括PCR在内的技术生成大量的DNA拷贝。然而这些技术存在的一个缺点是:基因组的某些部分相比另一些会生成更大量的拷贝,这一问题被称作扩增偏倚(amplification bias),这会导致基因组最少拷贝的区域淹没,从而无法检测到它们。因此,大多数都尝试让单细胞测序覆盖达到平均大约为基因组的70%——而典型的大约为40%。   在新研究中,谢晓亮教授和同事们开发了一种称作多重退火和成环循环扩增(multiple annealing and looping-based amplification cycles ,MALBAC)的技术,使得他们能够测序单个人类细胞93%的基因组。在MALBAC中,研究人员首先分离出来自单细胞的DNA,然后添加称作引物的短DNA分子。这些引物可与DNA的随意部分互补,从而使得它们能够附着到DNA链上,充当DNA复制起点。   这些引物由两个部分构成——一个包含8个核苷酸的粘性部分变化多样,可与DNA结合,再加上一个包含27个核苷酸的共同序列。这一共同序列可防止DNA太多次拷贝,大大地降低了扩增偏倚。通过将自身掺入到新拷贝链,从而自身成环,防止了过度拷贝。   简易方法   “MALBAC开启了一扇通往许多重要问题的大门,”加州大学圣地亚哥分校任兵(Bing Ren)说。例如,可用它来检测突变累积的速度,寻找一个细胞群中的基因拷贝数变异和染色体异常。相比其他测序方法,它还可以帮助检测更多基因组的变异。   “我认为人们将会立即开始利用它,” James Eberwine说。Eberwine在宾夕法尼亚大学Perelman医学院从事单细胞遗传学研究。他补充说研究人员或许不得不调整条件,例如引物与基因组DNA的比率,从而能够开展实验工作。   不过,尽管MALBAC相比其他技术对基因组的覆盖更为完全,它并不完美。其仍然错过了大约三分之一的单核苷酸变异。此外,拷贝DNA的酶容易出错,因此拷贝过程本身可以引入不存在于细胞中的变异。   MD安德森癌症中心的Nicholas Navin说,谢晓亮需通过比较来自三个密切相关细胞的单个测序基因组,才能够除去所有的假阳性。这样将会增加成本,可能不适合某些组织样品。
  • 华大智造单细胞赛道再发力!发布单细胞液滴生成仪及组学新品
    7月29日,在第十二届细胞产业大会的单细胞多组学与临床应用分论坛上,华大智造重磅发布其在单细胞领域的两款最新产品,单细胞液滴生成仪 DNBelab C-TaiM 4(泰山),以及单细胞表观组学产品scATAC建库试剂盒。单细胞液滴生成仪 DNBelab C-TaiM 4(左)及单细胞表观组学产品scATAC建库试剂盒(右)这是华大智造继DNBelab C系列高通量单细胞转录组建库试剂盒产品后,单细胞组学全流程产品家族补充的重要产品,更为完善的产品组合也将更好地赋能全球生命科学实验室开启规模化、标准化的单细胞多组学研究。两款新品加持单细胞测序全流程本次上新的单细胞液滴生成仪DNBelab C-TaiM 4 (以下简称TaiM4)的命名灵感来源自“泰山”,传递了华大智造不断攀登技术极限的理念。TaiM 4能为细胞或细胞核的分离和标签提供稳定的动力。该仪器配备4个独立控制的微流控通路,同时兼容单细胞ATAC文库和3’ RNA文库制备需求,支持1-4个样本的灵活上样。它延续了华大智造单细胞产品小巧轻便、即开即用的优点,适用于2500米以下的海拔实验环境。此外,该设备在单细胞ATAC文库制备过程中的细胞核分离、标记过程仅需6分钟;在单细胞3’RNA文库制备过程中的细胞核分离、标记过程仅需9分钟。华大智造单细胞液滴生成仪DNBelab C-TaiM 4另外一款上新产品是DNBelab C系列高通量单细胞ATAC文库制备试剂盒套装及配套的微流控载片。和DNBelab C-TaiM4 单细胞液滴生成仪配套使用,可以完成数万细胞核的ATAC文库制备。试剂盒套装包含液滴生成使用的百万级标签磁珠、自主开发的液滴生成油、以及适配华大智造测序仪的文库制备试剂等。该产品基于精密压力驱动微流控技术,污染率低,可完成高质量单细胞ATAC文库的制备和数据产出。可用于免疫组学、肿瘤、神经科学、发育生物学等领域的单细胞研究。两篇Nature 科研应用表现不俗值得一提的是,scATAC建库试剂盒已经在科研应用中牛刀小试,早期试用的结果已用于2篇Nature文章中,产品数据表现不俗。一站式平台 助力单细胞多组学标准化、规模化华大智造作为生命科技核心工具缔造者,能够为单细胞测序全流程提供独一无二的一站式平台。其中,针对细胞/细胞核制备环节,华大智造提供小鼠多组织解离试剂盒和50+物种组织解离方案指南;此外,已经发布的DNBelab C系列3’ RNA建库产品,已经产出了 30000+例样本数据,覆盖了40多种物种类型和300多种组织类型,重磅预告了不同物种组织的3’ RNA数据表现白名单,并展示了部分数据;在数据分析环节,提供配套的单细胞高通量、高精度多模态分析平台,不仅能够对单细胞测序数据进行简单的质控,还支持更多功能的分析和多组学数据的整合。华大智造产品市场中心总监汪婧婧博士在发布会现场表示:“华大智造在单细胞领域,除了为科研人员提供单细胞建库产品和基因测序产品MGISEQ-2000、DNBSEQ-T7、DNBSEQ-T20外,还能够提供自动化文库制备系统MGISP-100,将复杂的单细胞文库制备过程转移到自动化平台一键运行,为单细胞行业引入了全新的自动化概念,这将开启单细胞湿实验标准化时代的到来,我们也坚信单细胞多组学标准化、规模化时代终将来临。”汪婧婧博士华大智造产品市场中心总监单细胞产品家族图自动化建库流程图在单细胞产品领域,华大智造通过其率先发布的DNBelab C系列产品,已收获了众多企业及科研用户的好评。在过去的一年时间里,国内已有9个企业认证成为华大智造单细胞产品服务商,终端使用客户数量100多家。在科研产出上,基于华大智造单细胞测序平台,已累计产出高质量文章50多篇,其中包括2篇Nature,1篇Cell,其中有21篇文章IF>10,充分证明了该单细胞平台性能的优越性。小结:单细胞技术是当前测序领域最火的技术之一,相关公司超过50家,其中不乏众多国产企业。作为国内基因测序上游龙头企业,华大智造并非在单细胞领域走的最快的,但其追赶之势十分迅猛,加上本身先天平台优势,大有后来者居上的势头。如其所言:“未来,华大智造将进一步深耕单细胞组学领域,发挥自身在基因测序设备领域、实验室自动化领域的优势,为规模化的科学研究、为单细胞组学全面进入临床及精准健康研究,提供更为优质、标准的系列产品组合,赋能单细胞多组学标准化、规模化时代”。
  • 美国科学院院士谢晓亮:单细胞全基因组测序曙光初现
    谢晓亮   12月21日出版的美国《科学》杂志发表了题为《单细胞全基因组测序探索精子重组规律和遗传缺陷》的论文。同时,该期《科学》杂志也将单细胞全基因测序列为2013年六大值得关注的科学领域之一。   该论文由美国科学院院士、哈佛大学教授谢晓亮课题组与北京大学生物动态光学成像中心(BIOPIC)研究员李瑞强课题组等联合完成。谢晓亮在接受《中国科学报》记者采访时表示,这项工作首次实现了高覆盖度的单个精子全基因组测序,构建了迄今为止重组定位精度最高的个人遗传图谱,这一技术方法在男性不育症研究和肿瘤早期诊断及个体化治疗等生物医学领域有着广泛的应用前景。   谢晓亮指出,单细胞DNA扩增技术和高通量测序技术的发明,使得测序单个细胞(精子)的基因组成为可能,利用单细胞全基因组测序技术来研究人类的染色体重组规律,具有以往技术无法比拟的优势。   首先,精子是天然重组产生的单倍体,取材方便,而且一个人身上可取的精子数量几乎是无限的,可以很容易地研究个人水平的重组分布规律 其次,单细胞全基因组测序技术提供了最高的分子标记密度,减少了偏差,能够得到最为精确的片段交叉重组定位结果,可以非常清晰地揭示片段交叉重组的分布以及个人水平上重组率的分布规律 第三,测序技术本身具有高通量、自动化等特点,随着未来测序成本的进一步降低,可以对一个人更多的精子进行测序,从而获得精度更高的个体特异性的重组率分布图谱,也可以通过比较很多人的精子来研究重组率分布在不同个体之间的差异。   据谢晓亮介绍,以往对人类染色体重组的研究,由于受到实验技术的限制,分辨率一直都比较低,此外由于一个家庭内的孩子数目有限,以往的研究都是在群体水平上开展的,而无法开展个体水平的遗传重组规律研究。   需要注意的是,重组率在整个基因组中并非均匀分布,而是集中在一些散布的狭小区域内,且不同物种之间以及相同物种的不同个体之间都可能存在明显差别。其中,为什么基因区附近的重组率会降低,成为长期困扰学术界的一个难题。   研究人员使用新近发明的MALBAC扩增技术,对一个亚洲男性的99个精子进行了单细胞全基因组DNA扩增,并且利用HiSeq高通量测序技术对每个精子分别进行了一倍深度的测序,其定位精度远远超过几个月前斯坦福大学一个小组的报道。研究人员首次发现,基因区附近重组率的降低由分子机制所决定,而非自然选择的结果,从而一举解决了多年来困扰学术界的生物学难题。   谢晓亮强调,单细胞全基因组测序是一种先进的技术方法,在未来生物医学研究中大有“用武之地”。   例如,谢晓亮等人在此次精子测序结果中发现,有5%的精子基因组是非整倍体的,而非整倍体会造成严重的先天性出生缺陷。因此,利用单细胞全基因组测序技术,有望揭示更多的导致男性不育症的原因。   谢晓亮还指出,已有的研究表明,基因或基因组变异是肿瘤发生的根本原因,利用单细胞全基因组测序技术,可以对获取的肿瘤细胞进行更为精确和深入的分析,了解癌细胞的基因如何突变,以及肿瘤的来源、属于哪种基因型等,为早期检测和诊断肿瘤和肿瘤的个体化治疗提供指导。
  • 哈工深圳陈华英团队: 单细胞连续捕获, 弹性模量测量和可寻址分选打印
    研究背景细胞的机械特性对其生物学功能(如增殖、分化和凋亡)和形态状态(如迁移、附着和病理状态)至关重要。目前常用的细胞弹性模量测量技术包括原子力显微镜、微管吮吸、光镊和磁镊等。这些技术可以有效测量单个细胞的机械性质,但是通量低,限制了其实际应用。近年来,微流控芯片因其在小体积液体操控方面的独特优势,也被用于测量细胞弹性模量。现有的微流控芯片主要侧重于平台开发,虽然通量大幅提高,但很少将测量后的细胞进一步收集以实现后续分析。单细胞分析技术的发展要求能够准确地打印单个细胞。传统单细胞打印技术包括荧光激活细胞分选、有限稀释和手动细胞挑选,这些方法打印效率较低且难以实现自动化。近年来,各种微流控技术被开发用于高通量精确打印单个细胞,如喷墨打印、精确分配、双阀门筛选和移液管式单细胞分离等。这些技术可以根据目标细胞的荧光、形态等特征进行识别并打印,但是大多技术难以获得单细胞的机械信息。因此,本研究报道了一款基于 U 型阵列的微流控系统,集成了单细胞连续捕获,弹性测量和可寻址打印。该装置在研究细胞力学与其他生物学特性的关系方面具有强大的应用潜力。研究内容近日,哈尔滨工业大学(深圳)陈华英课题组在英国皇家化学会(RSC)期刊 Lab on a chip 上发表题为“Continuous trapping, elasticity measuring and deterministic printing of single cells using arrayed microfluidic traps” (《单细胞连续捕获、弹性模量测量和可寻址分选打印》)的研究论文,报道了一款创新的微流控芯片,实现了基于精确调节的压力对微球/细胞进行捕获和逐个打印,并将已知弹性模量的单细胞确定性地打印到孔板中(图 1)。该论文第一作者是哈工大(深圳)在读硕士研究生蔡逸珂和硕士毕业生余恩。陈华英副教授为通讯作者。微流控芯片(图 1A)由冲洗入口、样品入口、打印入口、压力维持口和两个平行的主通道组成,下游有打印出口。在所有入口通道中设计了宽度从 200μm 减小到 25μm 的微通道阵列,以过滤介质中较大的颗粒/细胞碎片。如图 1A 和 B 所示,在每个主通道的一侧有 16 个 U 型捕获陷阱,且吮吸通道的高度比分流通道的高度低 15 μm,以保证细胞停留在 U 型陷阱中并诱导其微小变形。▲图1 单细胞连续捕获、弹性测量和可寻址打印系统。(A)微流控芯片连接到压力泵,将单细胞精确分配到孔板中;(B)通过调节打印压力(Po)捕获(Pi-Po0)和释放(Pi-Po0)单个细胞的机制;(C)用于捕获和分离细胞的吮吸通道;(D)用于捕获和分离微球的分流通道。
  • Life Tech 激光显微切割和微量细胞单细胞分析最新进展新技术交流会
    2011年6月16-17日,美丽的西子湖畔,Life Tech美国总部及中国区技术专家携手中国用户针对激光显微切割Arcturus技术平台和单细胞微量细胞分析共同展开了为期两天的热烈讨论及技术交流。Life Technologies的Applied Biosystems Arcturus 激光捕获显微切割系统是世界上唯一的将激光捕获显微切割(LCM)和紫外(UV)激光切割融为一体的显微切割仪器。开放、模快化的设计实现了前所未有的研究灵活性和多功能性。 激光显微切割和微量细胞单细胞分析新技术交流会 来自全国的60位科研及公安法医领域的客户参与了本次技术交流会。Life Tech大中华区市场总监Jason Liu博士致欢迎词并介绍了公司的最新发展。未来30年,将从基础科研向应用科研发展,最终走向临床诊断治疗。随后美国总部研发专家Shirley Chu博士,中国区科研市场经理以及LCM技术专家分别介绍了Arcturus激光显微切割技术平台硬件软件,主要耗材样品提取以及此技术平台在活细胞切割中的应用。 Life Tech大中华区市场总监Jason Liu博士致欢迎词并介绍公司的最新发展 同时Life Tech很荣幸地邀请到上海复旦大学医学院病理学系的朱虹光主任和浙江省公安厅法医DNA室的吴微微主任分别介绍了激光显微切割技术在生命科学研究领域以及法医科学中的最新应用。 上海复旦大学医学院病理学系朱虹光主任作应用报告 浙江省公安厅法医DNA室的吴微微主任作应用报告 在单细胞和微量细胞下游分析领域,Life Tech的产品技术专家也针对新一代测序,荧光定量PCR, OpenArray和digital PCR在单细胞微量细胞分析技术中的最新应用做出了精彩的报告。 本次交流会在各位专家与客户的热烈互动及经验探讨中,圆满落幕。
  • 青岛能源所发明活体单细胞淀粉含量检测方法
    利用单细胞拉曼光谱技术在单个细胞精度定量监测微藻产淀粉过程   高等植物和微藻能够利用光能将水和二氧化碳转化成淀粉等高能化合物,从而生产粮食和生物燃料。因此,高产淀粉细胞工厂的选育具有重要意义。目前,定量测定细胞中淀粉含量的方法通常包括破坏性的细胞处理过程、酶(或酸)介导的水解、水解产物的定量等多个环节,不仅需要大量细胞,且操作步骤繁琐、耗时耗力、成本较高,极大地限制了淀粉含量的高通量筛选。此外,传统方法通常无法检测自然界中大量存在的难培养微生物中的淀粉含量。   近日,中国科学院青岛生物能源与过程研究所单细胞研究中心助理研究员籍月彤、硕士研究生何曰辉等利用该中心研制的活体单细胞拉曼分选仪原型机(Raman-activated Cell Sorter,RACS),通过单细胞拉曼光谱的快速采集和分析,发明了一种快速、非侵入性、不须标记、以单个活体细胞为单位的淀粉定量检测方法,为富含淀粉的种质资源选育提供了一种崭新手段。该工作发表在新一期的Biotechnology Journal上。   研究人员以478 cm-1拉曼峰强度作为细胞淀粉含量的定量标记对莱茵衣藻(Chlamydomonas reinhardtii)以及工业常用藻株小球藻(Chlorella pyrenoidosa)进行了淀粉含量检测,证明该方法与传统试剂盒法测定结果相关系数(R2)达0.99。该方法无需破壁等繁琐预处理,信号测量时间仅需两秒,基本无耗材消耗,仅需个别细胞或纳升级样品。同时,该方法不需经过细胞纯化与培养环节,能将微藻种质淀粉含量筛选时间从几天缩短至几分钟。此外,该方法还能对难培养微生物资源进行检测并基于淀粉含量进行单细胞分选,从而极大地拓展了应用空间。   上述研究得到了科技部合成生物学&ldquo 863&rdquo 项目和中科院&ldquo 能源微藻生物炼制&rdquo 创新团队国际合作伙伴计划等支持,由徐健研究员和黄巍研究员共同主持完成,华东理工大学李元广教授团队也参与了该研究。
  • 单细胞测序:少量细胞和稀有细胞的解决方案
    单细胞测序:少量细胞和稀有细胞的解决方案做单细胞测序的时,您是否遇到下列情况: ü 细胞样本量较少,不够做一次高通量单细胞测序… … ü 没有简便易用的设备分选单个细胞… … ü 保护细胞的基因完整性难度大… … ü 分选到单细胞后,找不到合适的试剂进行下一步操作… … 如果这些问题曾给您带来困扰,4月28日由Namocell联合Qiagen带来的关于“少量细胞和稀有细胞的单细胞测序解决方案”的讲座,一定会让您有所收获。 近年来的单细胞研究表明,生物体由数千种独特且不可重复的细胞类型组成。由于单细胞中核酸数量有限,使用二代测序(NGS)方法进行单细胞分析(类似于低样本量测序)传统上具有挑战性。当研究群体较小时,这种限制变得更加明显,例如稀有细胞样本(阳性细胞占比0.1%以下)。高保真度(HiFi)和高质量的DNA扩增对于单细胞测序至关重要,这在很大程度上取决于分离细胞的质量。因此,用于分离单个细胞的方法对于确保细胞活力和核酸完整性至关重要。 美国Namocell公司专利的轻柔分选和细胞富集技术为您克服上述挑战,为单细胞测序提供了更高数量和质量的细胞样本,让您能够轻松获得细胞样品的完整且准确的遗传信息。 无论您是单细胞分析的初学者还是专家,相信都能在这个信息丰富的网络研讨会中有所收获。让我们一起了解和探讨少量样本和稀有单细胞测序的重要因素和新技术。 会议时间2022.4.28 16:00-17:00(注册时选择观看时间为Thursday, April 28, 2022, 10:00 AM CEST) 报名通道(点击) 主讲人介绍
  • 单细胞组学研究的里程碑式进展——活细胞单细胞测序技术
    单细胞测序在疾病诊断和细胞异质性研究中发挥着重要作用。然而目前的单细胞测序手段需要将细胞消化并裂解才能够进行,而细胞状态在这一操作中不可避免的会发生改变,因此很难掌握细胞真实的基因表达情况,尤其对于基因通路上表达变化的检测为不利。近期苏伊士理工大学使用FluidFM创建了一种原位活细胞基因测序方法,这种方法能够在不杀死细胞的情况下完成对细胞的测序工作。通过这种技术该团队成功完成单细胞RNA基因测序,并通过这种方法检测到了细胞的基因表达和细胞周期状态变化。下面本文就这项工作的具体内容进行阐述。1. Live-Seq测序技术简述由于单个细胞的RNA总量仅有10 pg。为了实现无损的单细胞测序,该团队先使用FluidFM对现有的scRNA-Seq单细胞测序的方法进行了优化。为了尽可能的接近Smart-Seq的测试条件,该团队采用了先将缓冲液吸入探针,然后再进行细胞提取的操作。这样可以确保所提取的RNA能够很快与缓冲液混合,从而避免RNA的降解。通过这一方法,该团队成功实现了IBA细胞的测序,证明了这种方法的可行性(图1)。图1. Live-Seq技术a. Live-Seq技术的示意图和代表图片,黑色箭头指代液面;b. IBA细胞测序的质量控制图(n=10)。2. Live-Seq技术分析细胞系和细胞状态为了证实Live-Seq的有效性,该团队对多种细胞系进行了测序,这其中包括IBA细胞、小鼠脂肪干细胞和祖细胞(ASPCs)以及脂多糖处理的RAW264.7细胞和Mock处理的RAW264.7细胞。通过对这些细胞系进行测序发现,该方法能够区分上述细胞系,并且在特征基因检测中能够找到每种细胞所对应的特征基因,证明了Live-Seq方法的有效性(图2)。图2. Live-Seq单细胞测序区分细胞型及细胞状态a. 实验方法示意图,使用LPS和PBS对RAW细胞进行处理;b. 前500个高度易变基因的tSNE图;c. 前十的细胞型、细胞状态差别基因的热图;d. 小鼠基因图谱预测,使用前100个标记基因的团簇;e. Live-Seq对比scRNA-Seq的锚点分析,显示两者没有显著差异。3. Live-Seq技术对细胞的活力基本没有影响Live-Seq技术的显著优势在于提取过程中不会破坏细胞。通过对提取前后的测序对比可以发现,提取组与空白组之间的团簇没有显著性差异。并且通过对细胞形态的观察,发现细胞的形态基本没有改变,并且多数细胞仍然能够正常分裂(图3)。图3. Live-Seq对细胞活力的影响a. 细胞实验的示意图;b. Live-Seq测序后不同时间点(1h,4h)的scRNA-Seq的tSNE图;c.不同时间点scRNA-Seq所有能够发现差异的基因(共12个);d.不同时间点的细胞形态图片。4. Live-Seq技术能够记录细胞下游分子表型事件由于Live-Seq对细胞生理状态影响小,因此能够监测在细胞代谢过程中的基因变化。通过对比LPS处理的巨噬细胞周期实验发现,Live-seq技术与对照组的细胞代谢水平相比没有明显变化,因此这种方法测量的数据十分接近细胞代谢中基因表达的真实水平。通过测序对比LPS处理与空白的测序结果发现Nfkbia与Tnf的表达为相关。这一结果也验证这种测序方法在检测细胞下游表型时的优势。图4. Live-Seq技术的单细胞纵向分析a. 实验示意图;b. 不同处理细胞的mCherry强度变化;c. 3~7.5h之间mCherry强度变化;d.Tnf-mCherry强度变化的线性回归模型;e. Nfkbia与Tnf在Live-Seq测序中的表达关系;f. Nfkbia与Tnf在scRNA-Seq测序中的表达关系;g. Live-Seq测序中细胞处于S期的评分;h. Live-Seq测序中细胞周期的mTnf-mCherry强度变化;i.Tnf-mCherry的荧光强度增量(3~7.5h)。5. Live-Seq技术对同一细胞多次测序Live-Seq技术的无损性甚至能够实现对单个细胞的多次测序。通过对单个细胞两次提取后细胞活力变化的观察中发现,细胞的活力即使在2次提取后仍没有发生明显的变化,基因型分析也没有发现明显的基因表型改变。图5. Live-Seq对细胞的多次提取j.连续测序的示意图和代表图像;k.Live-Seq的tSNE图;l.整合Live-Seq和scRNA-Seq的tSNE图。 6. 总结Live-Seq是一种十分具有前景的单细胞测序的新方法,得益于FluidFM技术的无损提取的优势,Live-Seq技术除了能够实现传统测序的功能外,还降低了细胞的损伤,能够提供更加原生和真实的测序信息。这种特点甚至让单细胞的基因表达动力学研究成为可能。相信随着这种技术自动化的提高,将为单细胞测序技术带来更多可能。 参考文献:[1]. Genome-wide molecular recording using Live-seq, Wanze Chen, Orane Guillaume-Gentil, Riccardo Dainese, Pernille Yde Rainer, Magda Zachara, Christoph G. Gäbelein, Julia A. Vorholt, Bart Deplancke, bioRxiv 2021.03.24.436752 DOI: https://doi.org/10.1101/2021.03.24.436752
  • 谢晓亮:从单细胞研究到高通量测序
    2011年7月第八期《自然&mdash 方法学》刊登了Monya Baker撰写的一篇人物特写,详细介绍了在当期发表的论文 &ldquo Fluorogenic DNA sequencing in PDMS microreactors&rdquo 的主要作者哈佛大学谢晓亮教授的高通量测序技术。全文翻译如下:   在科学界,合情合理的实验也可能会出现令人吃惊的结果。当谈到他的实验室时,谢晓亮把他的主要研究分成三个领域:活体细胞中的动态基因表达研究,单分子酶学和免标记显微成像技术,而现在,又多了一个由于意外而诞生的新领域&mdash &mdash 高通量测序。   目前常见的测序技术&ldquo 焦磷酸测序&rdquo 是通过边合成DNA边测序实现的,当加入新三磷酸核苷酸时,荧光素酶水解三磷酸键所产生的能量会以光的形式发出,然而光信号转瞬即逝,需要检测系统能够灵敏地捕捉到这一瞬间的光信号。 另一种常见的技术是基于荧光的测序,相比之下,它可以产生一个稳定的光信号,但需要很多额外的化学修饰步骤才能产生荧光。在这篇Nature Method的文章中(指Sims, P.A., Greenleaf, W.J., Duan, H. & Xie, X.S.. Nat. Methods 8, 575&ndash 580 (2011).),谢晓亮和他的同事们推出了一种新型的测序技术,这种技术兼顾焦磷酸测序的简单流程和荧光检测的稳定信号,这使得高精确度并循环周期短的测序成为可能。   单分子荧光酶学的开端要追溯到十多年前,当时谢晓亮作为美国太平洋西北国家实验室的一位研究员,正在研究表征单个酶分子活性的方法,为此,他和同事曾应用过一个含有可发荧光的吖啶黄素基团的酶。那时,诸如 Helicos和Pacific Bioscience等公司也刚刚宣布了他们的DNA单分子测序计划。谢晓亮对把单分子酶学应用于DNA测序领域很感兴趣,但由于他已经在哈佛就职,这个想法仅仅被搁置于专利层面。&ldquo 我需要学着做个教授&rdquo ,谢晓亮说。   谢晓亮偶尔会尝试把基于荧光基团测序的想法推荐给一些研究生或博士后,但是年轻的科学家们通常不大敢尝试这一想法。&ldquo 提些建议对我来说是很容易的,因为我有很多项目,总有一些会成功的&rdquo ,谢晓亮解释道,&ldquo 但是对学生来说这是个很大的赌注,并不是所有人都敢于接受这种挑战。&rdquo 一位四年级的研究生Peter Sims听说了这个想法,当即接受了这个挑战,尽管当时他完全可以由单分子马达在活细胞的研究来获得学位。 Sims表示这种潜在的高通量测序激发了他的浓厚兴趣,但是对于所需的在核酸上修饰荧光基团的化学工作,他还没有经验。&ldquo 他当时刚刚涉足于此,才开始学习&rdquo ,谢晓亮说。谢晓亮和Sims共同商定了一个期限,如果Sims在此之前还没有获得显著的成绩,他就退回到原来的课题上,开始写毕业论文。   捕捉荧光信号就像成功产生荧光一样重要。在博士后William Greenleaf帮助下,他们解决了这个难题。&ldquo 微反应容器和荧光化学二者的结合,便是这项测序新技术的精髓。&rdquo 谢晓亮说。Greenleaf设法加工出了这些含有微反应容器的芯片,它是由可以重复密封的聚二甲基硅氧烷(PDMS)聚合物制成。谢晓亮说,没有这种材料,他的实验室的研究人员不可能做出这种尝试。&ldquo 我想把推广PDMS的功劳归于George Whitesides(George也在哈佛大学工作)&rdquo ,他说,&ldquo 基于PDMS我们才能够制作出各式各样的芯片上的实验室,而且他们真的很好用。&rdquo   但是研究进展并非一帆风顺。在后来的实验中,含有荧光基团的分子总是会扩散到PDMS 中或是产生一些不可信的伪信号。实验室的另一位成员段海峰加入了他们的小组,负责合成新型的荧光分子。此时,Sims和谢晓亮定下的期限也快到了,但他们仍没有做出很好的结果。   Sims和Greenleaf制定了另外一项计划,但是仅仅是对多拷贝的DNA测序而并非单分子测序。当时谢晓亮正在苏格兰出差,一天深夜他和Sims进行了一次电话长谈,讨论Sims是否应该退回到原来的项目来写毕业论文。谢晓亮回忆道: &ldquo 那真费了我好大一笔电话费。我说,&lsquo Peter,请你再想想,我们再尽快地尝试一下,如果你真的做到了,学术界将对你的毕业论文产生极大的兴趣。&rsquo &rdquo 几周后,他们果真拿到了数据,并且Sims在他的答辩中成功地阐述了这种测序方法。谢晓亮富有哲理地说:&ldquo 你开始一直在对着一堵墙作战,后来你稍微改变了方向,这就大不一样了&rdquo 。Sims也有另外的动机,他曾和谢晓亮开玩笑说,&ldquo 我做这个只是想毕业。&rdquo   虽然这项测序技术本身还是基于DNA扩增的,但谢晓亮希望它能为通用单细胞基因组测序提供一条道路。谢晓亮说:&ldquo 尽管我们的技术并不是我最初希望的DNA单分子检测,但它依然为单细胞中DNA单分子测序提供了可能。&rdquo
  • 温和细胞分选,开启单细胞测序成功的第一步!
    随着单细胞测序技术的快速发展,科研工作者们可对每个独一无二的单细胞进行分析,认识到细胞间的异质性,深入了解如胚胎发育早期的分化特征、肿瘤微环境中的非均质性、罕见循环肿瘤细胞的转录组等等以往传统高通量测序方法难以攻克的领域。单细胞分析的应用已进入百花齐放的时代,涵括神经生物学、癌症、免疫学、微生物学、胚胎发育、临床诊断等多个领域。单细胞测序分析的第一步,即是单细胞样品的制备,同时确保其生物完整性不被破坏。高质量的样品制备影响着后续单细胞分析成功与否。高活性、无细胞碎片且均一的单细胞悬液可使测序结果在完整性、真实性、数据可重复性得到提升。最常见细胞分离的方法可用MACS磁珠或流式细胞仪进行目的细胞分选与富集。单细胞测序流程利用流式细胞分选法富集目的细胞群体缩小研究范围,对单细胞群体可进一步精细化解读。尤其在研究罕见细胞族群,单细胞测序前先以流式细胞分选富集稀有细胞,可大大增加实验数据真实性与可靠性。现今已有愈来愈多单细胞测序研究结合流式细胞分选,筛选目的细胞、过滤死细胞减少样本中無效细胞的比例,提高单细胞文库构建的成功率以及后续的数据质量,让单细胞测序更有深度与广度分析实验数据,推动进一步研究范畴。传统高压液滴分选仪分选单细胞传统液滴式流式细胞分选(Droplet cell sorter),将目的细胞利用适宜的荧光标记。经荧光染色或标记的单细胞悬液,被高压压入流动室内,在鞘液的包裹和推动下,细胞被排成单列,以一定速度从流动室喷口喷出。通过相应荧光检测及充电,获得目的细胞,实现单细胞分离。然而操作过程中,分选的细胞相继受到高压、充电带有电荷、减压的刺激,常导致分选的目的细胞在分类过程中的损伤和溶解,活细胞回收率不高;即使回收的活细胞也因分选过程受刺激影响细胞基因转录图谱表现,无法维持其生物完整性。传统高压液滴分选仪进行单细胞分选Adapted from Technologies for Single-Cell IsolationInt. J. Mol. Sci. 2015, 16美天旎MACSQuant® Tyto® 革命性的细胞分选仪专利的微芯片技术,精准地控制阀门开合以进行细胞分选,该仪器的特性在于整个分选过程在一次性使用的全封闭样本舱(cartridge) 中进行,且无需鞘液、避免了样本污染和残留风险。上样简单、自动进行分选设置,无需操作人员进行高强度与长时间的培训就能轻松操作。由于实际分选过程都在样本舱进行,不会损失珍贵的样本材料;阳性和阴性分选组份均可在无菌洁净操作台内轻松回收。细胞不会受到高压、电荷及减压刺激,不同于传统的液滴分选仪,这种温和的分选方法可最大保持细胞活性和功能,即使经过多次分选,细胞活性也不会受影响,充分表明这种阀门介导的分选机制具有温和性质。美天旎MACSQuant® Tyto® 细胞分选仪与样本舱功能示意图。A. 美天旎MACSQuant® Tyto® 细胞分选仪;B. 样本舱;C.独特微芯片技术的分选示意图。单细胞测序前,使用美天旎MACSQuant® Tyto® 细胞分选仪(MQ Tyto)进行目的细胞分选富集。分选过程不受到高压、电荷、减压与剪切力刺激,作用温和不影响细胞生物功能完整性,维持细胞基因转录图谱表现,提高细胞存活率与回收率。位于美国加州大学(University of California, Irvine- UCI)的Dr. Kai kessenbrock研究团队致力于研究机体正常组织内环境稳态和乳腺癌中的细胞通讯。他们在单细胞水平上系统性分析研究乳腺干细胞微环境(stem cell niche)中细胞通讯的机制和乳腺上皮組織内的异质性,进一步加深对早期肿瘤发生过程中系统性变化的理解;最终目的是开发用于早期检测的生物标记物以及改善乳腺癌的治疗策略。Dr. Kai kessenbrock团队在FVB小鼠取出小鼠乳腺组织,分别以美天旎MACSQuant® Tyto® 细胞分选仪(MQ Tyto)与传统液滴式流式细胞分选(Droplet cell sorter)分离乳腺上皮细胞(CD49f+/EpCAM+)后,标记建库并进行单细胞测序;比较两种不同的流式细胞方法分选后,所获得的测序数据真实性与可靠性,也进行分选后的细胞培养,观察细胞存活与功能。小鼠乳腺上皮细胞分离与单细胞建库 (Data kindly provided by Quy Nguyen, UCI)1. MQ Tyto可有效分选出不同乳腺上皮细胞亞型(Luminal 1, Luminal 2, Basal-like subtypes),基因转录图谱完整呈现。聚类分析与差异基因热图展示2. 经由MQ Tyto分选,每个单细胞可捕获更多的mRNA数量(UMI),获得更多可分析的基因数(Genes);显示MQ Tyto保留了细胞的完整性。质控图3. 传统液滴式流式(Droplet cell sorter)细胞分选后细胞应激基因表现明显上调。这主要是来自于细胞分选操作过程中所受到的外力刺激,而非原始组织环境细胞的真实表现。应激基因表现量展示4. 细胞分选后,持续培养七天乳腺上皮细胞并形成乳腺球(mammosphere formation)进行计数。结果显示MQ Tyto组形成更多的乳腺球,表示其MQ Tyto分选后的上皮细胞维持其功能性与高存活率。综上,利用MQ Tyto对目的细胞进行分离与富集,作用温和不影响细胞生物功能完整性,维持细胞基因转录图谱表现,提高细胞存活率与回收率,开启单细胞测序成功的第一步。
  • 单细胞力谱仪研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 123" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 单细胞力谱仪 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 北京爱普益生物科技有限公司 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 联系人 /p /td td width=" 177" p style=" line-height: 1.75em " 李亚萍 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " liyp@ipe-bio.com /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □正在研发 √已有样机 □通过小试 □通过中试 □可以量产 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □技术转让 & nbsp □技术入股 & nbsp □合作开发 & nbsp & nbsp √其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong /p p style=" text-align:center" strong img src=" http://img1.17img.cn/17img/images/201603/insimg/36a21cb9-f67a-492a-aa28-5a6539648e58.jpg" title=" 单细胞力谱仪.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /strong /p ol class=" list-paddingleft-2" li p style=" line-height: 1.75em " 在原子力显微镜(AFM)基础上,开发出适合于单细胞实时研究的多功能单细胞力谱仪(SCFS)一体原型机,填补了单细胞力谱仪的商品化的市场空白。 /p /li li p style=" line-height: 1.75em " 技术特点或创新点:仪器具有同时进行单细胞力学测量和荧光成像的先进功能。仪器可探测到皮克(1万亿分之一)牛顿级的细胞表面力学变化。接触面积可以小到几个平方微米, 一次读数时间几到十几秒。另外,荧光信号的实时读出功能,为全面分析单细胞提供了新的维度。仪器设备完全具备一个新型科学仪器必有的创新、高效、低耗的特点,并可实现前所未有的以力学代替传统的生物化学为基础的研究模式。 /p /li li p style=" line-height: 1.75em " 自行研制了全内反射荧光成像显微镜系统,并申请发明专利。专利名称:一种可与原子力显微镜连用的全内反射荧光显微镜。申请号:201510947385.7。 /p /li li p style=" line-height: 1.75em " 仪器主要性能指标:力学检测限 100pN,光学成像分辨率 300nm。 /p /li li p style=" line-height: 1.75em " 研发一种新型打孔探针和两种低成本高效的细胞黏附剂。 /p /li li p style=" line-height: 1.75em " 利用单细胞力谱仪样机分别为广东医学院附属医院神经内科张晶晶课题组和清华大学医学院生物医学工程系的课题组提供了力谱测量服务。 /p /li /ol /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong /p ol class=" list-paddingleft-2" li p style=" line-height: 1.75em " 仪器可用于生命科学的基础研究,如细胞力学,生物材料的机械力学等。 /p /li li p style=" line-height: 1.75em " 可用于临床体外诊断,替代流式细胞仪的检测。 /p /li li p style=" line-height: 1.75em " 可用于药物筛选,作为寻找药物载体、种植材料以及新疫苗开发的新一代工具。 /p /li li p style=" line-height: 1.75em " 单细胞力谱技术作为非常重要的单细胞表征技术,其在基础研究与临床医学方面都有潜在的市场价值。随着单细胞力谱仪的商品化和产业化,未来单细胞力谱仪的市场重心将由科研领域转向临床诊断以及药物研发等应用领域,而后者具有更为广阔的市场空间。 /p /li /ol /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 具有核心技术(自主知识产权),提交的专利【一种可与原子力显微镜联用的全内反射荧光显微镜】(申请号201510947385.7)日前收到“发明专利初步审查合格通知书”。 /p /td /tr /tbody /table p br/ /p
  • 深度了解Namocell单细胞分离仪
    公司简介:Namocell是一家总部位于美国硅谷的专注于世界先进的单细胞分选技术的生物仪器公司。该公司自主研发的微流体单细胞分选平台,使复杂的单细胞分选变得极其简单快速,极大地推动了单细胞分析在基础研究和临床的上应用。我们的产品已在细胞株的构建,单克隆抗体的筛选,细胞基因编辑,癌症液体活检,癌症免疫治疗,产前基因筛查,噬菌体展示,单细胞基因组等多方面得到广泛的应用。目前Namocell单细胞分离仪已经被世界各大知名研究机构及生物制药公司广泛应用于生命科学研究的各个领域,例如美国国家卫生研究院(NIH),斯坦福大学,麻省理工大学,Genentech,Merck,Biogen等。在国内,目前也已经有多家高校、科研院所和生物公司采用Namocell的产品进行单细胞方面的工作。一、技术原理:美国Namocell公司的单细胞分离仪(NamocellSingleCellDispensers)采用先进的微流体技术以及灵敏的光学检测系统,在精确地鉴别细胞的同时又能对目的细胞进行单细胞的分离分选,最终在96孔板或者384孔板中得到结果。Namocell单细胞分离仪完美结合了三种重要技术,实现快速、高效、准确地分离并获取单细胞:1.流式细胞术:细胞检测方式采用流式细胞术,利用激光激发,荧光和散射光的接收来判断细胞特性,检测精度高;2.微流控技术:采用微流控芯片检测分离细胞,在极低的鞘液压力下()进行分选,如手工般轻柔,保持细胞活性,零损伤;3.液滴分配技术:可以让筛选得到的所需细胞,从微流控芯片中将含有单个细胞的液滴直接滴至96孔板或384孔板。二、产品特性特性1.轻柔---保护细胞活性Namocell单细胞分离仪发挥微流体技术的低鞘液压力优势,在整个分离过程中系统给流体的加压小于2psi,对细胞极其轻柔,保护细胞活性,促进细胞后续生长。以下是Namocell与两款传统的FACS流式细胞仪进行细胞铺板生长情况对比,结果显示,用Namocell单细胞分离仪进行单细胞铺板的结果普遍优于用FACS铺板的结果。特性2.灵活---适用各种样本浓度Namocell采用微流控芯片进行细胞分选,系统死体积小,样本浪费少。因此对于少量珍贵细胞样本,比如细胞数量少于一百个,也可轻松完成单细胞分离。Namocell独创的富集分选模式,可以在细胞密度很高的状态下进行(2x108cells/mL)挑选含量极低的()目标细胞。特性3.快速---96孔板只需1分钟Namocell单细胞分离仪是目前市场上最快速的单细胞分离系统:1.分选速度快:可在1分钟内完成96孔板分选,6分钟内完成384孔板分选。2.整体流程速度快:开机无需任何调试,无需微球进行复杂的dropdelay校准,一键即可在2分钟内自动完成初始化,开始进行细胞分选,更换样本只需1分钟,分选结束后关机只需2分钟。特性4.轻巧---整机小巧,方便移动整机体积小巧,轻便。尺寸是50×36×20cm,重量9kg,相当于小型家用微波炉的体积与重量,不占实验室空间,方便移动。尤其对于无菌要求高的实验,可以将Namocell单细胞分离仪放进超净台中使用。特性5:无菌---一次性芯片,杜绝交叉污染细胞分选的实验绝大多数需要无菌环境,Namocell单细胞分离仪在设计上为无菌要求做到了三重保护:1.体积小巧:方便整机置于超净台中进行细胞分选操作;2.一次性芯片,零污染:从根本上杜绝了样本之间相互污染的可能性,用户可在同一台仪器上分离细胞、细菌、酵母等生物样本,而无需为样本交叉污染而担忧;3.专属管路,无残留,无堵塞:Namocell采用的专属管路设计,确保样本在检测前不会流经共用通道。完全杜绝了FACS常见的系统堵塞以及样本残留在管路中的现象。特性6:轻松---使用简单,无需专人维护Namocell单细胞分离仪只有一个硬件开关,是真正的“一键启动”,并且启动后无需预热,无需调校,开机后可立即使用。使用极其简便,每一步都有软件自动提示,无需特殊培训,也无需流式经验,能够让每个人都成为细胞分选高手。三、应用领域Namocell单细胞分离仪已经广泛应用于生命科学的各个领域。在生物制药领域,用于细胞株构建、抗体药物开发;在肿瘤医学方面,用于稀有循环肿瘤细胞的分离;在植物学领域,用于原生质体的分离;在CRISPR基因编辑领域,用于工程细胞株的开发以及iPSCs的单克隆细胞培养;在单细胞分析方面,用于单细胞测序和单细胞质谱的前处理过程等等。了解更多内容,请关注Namocell官网。
  • BD-中科普瑞单细胞研究联合实验室:聚焦单细胞肿瘤临床研究/单细胞甲基化应用
    p   近期,中科普瑞整合IsoTex-BD China单细胞研究联合实验室经过近一年的研发测试和应用,正式投入科研服务应用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/92a657b0-670f-473c-bf67-1ada9534cb59.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 469" height=" 310" style=" width: 469px height: 310px " / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " BD(China)—Sinotech Genomics(中科普瑞)单细胞研究联合实验室 /span /strong /p p   中科普瑞自2018年3月BD(中国)-云泰生物单细胞研究联合实验室成立以来,联合实验室完成了多项技术研发测试,已获得了数百例肿瘤组织的单细胞全转录组测序数据,并针对性设计靶向panel进行验证,完成合作研发项目五十余项。 /p p   单细胞测序技术在2018年继续飞速发展,各类相关技术和应用纷纷上线,与此同时, strong 单细胞水平转录组与蛋白质组的检测,也逐渐广泛应用于免疫、癌症和干细胞等研究领域。 /strong BD公司旗下的单细胞平台—BD Rhapsody作为单细胞研究应用领域的利器,既可通过单细胞全转录组和靶向转录组测序的整合策略,在单细胞水平构建从新靶标发现到多样本验证的完整研究体系,又可利用其最新的BD& reg AbSeq assay检测单细胞水平的蛋白表达,实现特异高效的转录组和蛋白组的多组学研究方案。 /p p    strong 为了更好地聚焦单细胞肿瘤临床研究应用,中科普瑞携其下属科研服务子公司—上海鲸舟基因推出单细胞研究系统解决方案。 /strong 立足于BD Rhapsody 单细胞研究平台开展单细胞全转录组和靶向转录组测序服务,并以单细胞肿瘤临床研究为中心,着力进行单细胞甲基化检测等技术研发和应用,进而建立涵盖单细胞甲基化研究、单细胞转录组研究以及单细胞蛋白组研究的立体式系统解决方案,为单细胞研究提供新的解决方案和思路。 /p p    span style=" color: rgb(192, 0, 0) " strong 聚焦单细胞肿瘤临床研究 /strong /span /p p   肿瘤研究的逐步深入和高通量测序技术的不断精进促使了精准医疗策略的提出。而解析肿瘤组织内细胞的高度异质性,是实现更精确的癌症分型,选择更合理的个体化治疗策略的迫切需求。针对肿瘤组织及其免疫微环境的单细胞转录组测序可以帮助科学家绘制肿瘤组织内细胞的异质性转录组图谱,通过鉴别肿瘤细胞、基质细胞与浸润淋巴细胞的不同细胞亚群,来解析不同细胞亚群生物学功能异同,最终构建肿瘤细胞及免疫微环境的互作网络,并探究肿瘤细胞产生耐药或免疫逃逸等机制。 /p p   中科普瑞单细胞测序平台可利用高通量单细胞转录组测序技术,通过揭示肿瘤发生发展进程中各种细胞亚群转录组的变化与差异,助力科学家开展肿瘤的早期诊断、病情监测及预后判断等方面的研究。 strong 中科普瑞还与国家大数据中心进行战略合作,结合大数据共享和应用分析,通过单细胞转录组研究整合多组学和临床数据,构建健康与疾病的信息网络数据库,以期为不同遗传背景的患者提供个体化诊断及精准治疗。 /strong /p p   同时,中科普瑞还将利用BD& reg AbSeq assay这一单细胞蛋白组分析利器,大幅提高客户对其感兴趣的稀有或未知细胞的检测能力,以促进药物治疗反应、细胞治疗等肿瘤免疫学应用研究的进展。 /p p    span style=" color: rgb(192, 0, 0) " strong 聚焦单细胞甲基化研究 /strong /span /p p   近年来,基于血浆ctDNA甲基化的肿瘤早期诊断、溯源及预后的技术突破,为肿瘤风险筛查和防治提供了新的曙光。DNA甲基化还可用于疾病分型、预后以及用药指导等临床领域。单细胞甲基化检测技术在未来的疾病研究与临床应用中有着光明前景和无限可能,既可从单细胞水平研究DNA甲基化修饰在组织分化、发育过程中的特异性,帮助医生判断转移癌组织的原发病灶,进而明确诊断疾病 还可针对特定肿瘤组织DNA甲基化修饰的异常,进行对应的诊疗指导或药物开发。 /p p   2018年3月以来,中科普瑞作为中国十万人甲基化组计划(表观星图计划)的项目实施方,通过与国内外基因组队列计划联动,建立中国人甲基化基准数据库,为表观遗传领域研究、应用和临床检测等建立基础数据库。表观星图计划除利用甲基化芯片进行甲基化基准数据库的建立外,还将利用BD(China) — Sinotech Genomics(中科普瑞)单细胞研究联合实验室在单细胞研究方面的技术优势,聚焦单细胞甲基化研究,以期为肿瘤的风险筛查和预防提供新的手段。 /p
  • 华大智造推出如虎添“亿”单细胞助研计划
    华大智造国产化单细胞平台DNBelab C系列高通量单细胞RNA文库制备试剂盒(DNBelab C4),配合DNBSEQ测序平台和自动化平台等,助力突破单细胞研究门槛高、费用高的瓶颈,进入超高通量、超大数据研究阶段。为推进单细胞测序工作稳定、快速、规模化的发展,华大智造将在中国大陆启动如虎添 “亿”单细胞助研计划。华大智造DNBelab C4开启规模化单细胞研究新时代口袋里的单细胞实验室-小巧便携的DNBelab C4装置,简化仪器的操作难度,降低单细胞研究的门槛。高效的磁珠捕获系统-自主设计的捕获磁珠配合多磁珠识别技术,可有效提高细胞捕获效率以及获取细胞完整信息。单细胞研究一站式平台-DNBelab C4配合自动化文库制备系统和DNBSEQ测序平台,全面支持单细胞组学研究的快速展开。目前应用华大智造DNBelab C4和DNBSEQ测序平台已开展百万单细胞项目十余项,发表SCI文章十余篇,其中两篇文章发表在国际顶级学术期刊《自然》(Nature)上。2022年4月13日 基于DNBelab C4和DNBSEQ测序技术,华大联合国内外科研机构绘制的全球首个非人灵长类动物全细胞图谱在Nature发表。2022年3月22日 基于DNBelab C4和DNBSEQ测序技术,中国科学院广州生物医药与健康研究院、深圳华大生命科学研究院等在干细胞领域重大突破在Nature发表作为生命科技核心工具的提供者,在单细胞领域,华大智造致力于为所有生命科学实验室提供便携、经济、用户友好的单细胞组学全流程产品,助力行业开启大规模化单细胞研究新时代。
  • 将国产单细胞分析仪器推向临床——访“朱良漪奖”获得者南京大学江德臣
    朱良漪,原机械部国家仪表总局副局长、中国仪器仪表学会分析仪器分会名誉理事长,是仪器仪表和自动化控制领域最早的开拓者,影响中国仪器仪表和自动化控制行业发展的奠基人。为纪念朱良漪先生矢志不渝推动我国分析仪器事业发展的精神,以及激发企业及广大科技工作者积极投身于分析仪器的创新工作中,由中国仪器仪表学会设置、中国仪器仪表学会分析仪器分会承办执行“朱良漪分析仪器创新奖”,共分为“创新成果奖”和“青年创新奖”两个奖项。  “朱良漪分析仪器创新奖”的设立不只是对朱老的怀念与敬意,更是对分析仪器创新精神的坚守与传承。自2017年举办至今,“朱良漪分析仪器创新奖”已成功颁发四届,先后有12项分析仪器创新成果、14位青年创新科学家获奖。  2021年度朱良漪分析仪器创新奖已经完成评审,最终获奖结果即将揭晓公布。在此之前,中国仪器仪表学会分析仪器分会与仪器信息网将联合走访 “朱良漪分析仪器创新奖” 往届获得者,倾听了解他们在获奖之后的新成就与新感受。南京大学 江德臣教授  南京大学江德臣教授于2018年荣获“朱良漪分析仪器创新奖”之“青年创新奖”。评审组认为:江德臣瞄准单细胞分析存在的需个体化设计识别探针,难以提供胞内生物分子化学信息的技术挑战,系统设计了“单细胞试剂盒”和“单细胞器试剂盒”,并研制成装置,建立了通用性强、可测量生物分子活性/结构等化学信息的新型单细胞分析方法,成功用于动脉硬化类疾病的研究,揭示了细胞的个体差异性和细胞器的均一性等特征,成果突出。  一直以来,江德臣教授课题组始终围绕“单细胞中生物分子定量分析”这一科学问题建立分析方法并构建原创仪器。早期,课题组通过电化学泵实现检测试剂向单细胞中的精准输运,构建了“单细胞活性分析仪”,完成对单个细胞内酶分子活性的定量检测。为了实现对单细胞内多种酶分子同时检测这一目标,更好地研究单个细胞的生理过程,目前课题组着力构建基于质谱分析的第二代单细胞活性分析仪。该仪器利用试剂与酶分子反应前后底物和产物的分子量差异进行分析,突破了第一代仪器依赖“过氧化氢”作为中间产物加以测量的限制,可同时对单个活细胞内多个生物分子的活性加以测定,有望在单细胞生物分析及临床应用上发挥更大的作用。  2018年后,江德臣教授本人获得基金委杰出青年基金资助,“单细胞活性分析仪”还获得了2021年度日内瓦发明金奖。当前,课题组正在开发“单细胞多元生物分子分析仪”,有望申报新一轮的“朱良漪分析仪器创新奖”。据了解,该仪器可以同时对单个细胞内多种生物分子的活性及含量进行测量,完整地研究细胞内整条信号通路中的分子水平波动,有助于更好的理解该过程的化学机制。  “十四五”开局,对于科研工作者的科研创新提出了哪些新的机遇与挑战?江德臣教授感受到目前国家高度重视原创仪器研究工作。科技部和基金委都在“十四五”期间加大了对于该领域的投入,这对从事原创仪器开发的科研工作者来说,是个绝佳的发展机遇。但是,当下国际环境使得仪器工作者需要更多地从源头开发所有的仪器零配件,这也加大了仪器开发的难度,延长了仪器开发时间。需要科研工作者去思考:如何构建具有完全自主知识产权的仪器 如何构建100%零配件国产化的高端原创仪器?这既是挑战,更是机遇。“因为这会促使我们从更高的角度来审视整个仪器的开发,构建出更高原创性和国产化的科学仪器。”  荣获“朱良漪创新奖”对江德臣教授这样的科研工作者而言是一种激励。下一步将如何发挥奖项精神,更好地开展科研工作,江德臣教授表示:“朱良漪先生作为老一代科学家和仪器开发工作者,在一穷二白的情况下,独立建立成一系列的原创仪器,促进了国民经济发展。这种精神将成为我们后辈人奋斗的动力。下一步,我希望能够深入地思考‘单细胞分析’领域中的难点。针对这些科学挑战,构建新型的单细胞分析仪器 通过积极和临床大夫进行合作,更快地将我们的仪器应用于临床分析,提升仪器的应用价值,更好地服务于人民健康。”  同时,江德臣教授建议:“如有可能,可以开展一些年轻科研工作者的交流活动。邀请一些学界和产业界的前辈,向年轻人更多地传经送宝,减少年轻人摸索的进程 也便于产业界更好的了解年轻人开发出仪器的性能,提出宝贵意见,促进后期开发。”  江德臣教授还表达了对行业的祝福:“衷心祝愿中国的科学仪器行业能够发展得越来越好,研发出更多的具有完全自主知识产权和‘中国芯’的高端科研仪器,在国际市场上成为旗舰产品,在各种高端学术成果中能够看到中国仪器所发挥的关键作用。也祝福我的同行,能够每天开心地工作,身体健康,万事如意!”
  • 技术线上论坛|5月25日《如何实现自动化、高通量单细胞力谱测量?单细胞显微操作技术一步搞定!》
    [报告简介]单细胞粘附力作为生物机械学分支的重要组成部分,是细胞与外周相互作用的直观体现,能够有效的反映出细胞与基质或细胞之间相互作用能力。细胞与基质之间的作用力十分微小,一般都在nN别,过去通常使用原子力显微镜才能够进行测量。但是原子力显微镜方案往往具有通量低,操作繁琐等问题,使得单细胞力谱的研究非常繁琐。基于此,Cytosurge推出的全新多功能单细胞显微操作FluidFM技术给细胞力谱测量带来了新的希望。该技术结合了的原子力显微镜探测技术与微流体控制系统,能够直接通过使用中空的原子力探针将细胞通过负压抓取在探针表面,并不需要激活细胞的任何通路信号,为粘附力的测量带来了大的优势。一方面,这种方法能够提供远比蛋白结合牢固的多的粘附力,能够将细胞牢固的固定在探针上并且无需包被探针。另一方面,由于没有生物化学处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。该系统具备高度自动化,能够快速,全自动的完成力学的测定,让单细胞力谱研究变得十分容易。本报告将介绍FluidFM单细胞显微操作技术的原理和发展,并结合多篇发表在期刊Nature、Cell、Bioactive Materials等上的近科研成果,深入阐述这种技术在单细胞力谱测量方面的新进展。[直播入口]请扫描下方二维码进入FluidFM单细胞显微操作技术群,届时会在微信群中实时更新直播入口,无需注册!扫码进群,即刻获取直播链接,无需注册![报告时间]05月25日 下午15:00-16:00 [主讲人介绍]Tamás Gerecsei 亚太区席应用科学家,高FluidFM解决方案工程师,Cytosurge AGTamás是一位生物物理学家,毕业于Etvs Loránd(ELTE罗兰大学)。 在与FluidFM在学术环境中合作多年后,他加入了Cytosurge公司,成为了一名训练有素的微纳米系统工程师。在Cytosurge AG,Tamás不断推动并拓展FluidFM技术的应用边界,并使FluidFM技术应用于各地研究人员的课题中。您可以经常发现他在各种专业的学术会议上传播关于Cytosurge和FluidFM技术的信息。 郭亚茹 北京大学口腔医院,口腔医学中心,获中国博士后科学基金,并入选北京大学医学部 2021年博雅博士后项目,在Advanced functional materials、Bioactive Materials、Journal of dental research等杂志上以作者或共同作者的身份发表5篇。 2021年,在Bioactive Materials发表了题为:Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis的研究文章,报道了基质硬度通过p-PXN-Rac1-YAP信号轴调节细胞形成,这项工作不仅有助于在组织工程和再生医学中寻找佳材料,也为肿瘤治疗和病理性血管再生提供了新的治疗策略。在生物材料设计和治疗一些病理情况方面具有特殊意义。本实验研究人员采用了多功能单细胞显微操作系统——FluidFM技术,实现了单个细胞的分离,单个细胞粘附力的测量。 [原理&应用简介]FluidFM技术如何测定细胞粘附力?众所周知,细胞在基质上进行单层培养时,吸附在基质表面时主要会产生两种不同类型的力,一种是细胞与基质之间的粘附力,另一种是细胞与细胞之间的粘附力。因此对于细胞粘附力来说,单个细胞的粘附力就是细胞与基质之间的作用力。而单层细胞的细胞粘附力则是细胞之间相互作用力和细胞基质与细胞之间作用力之和。如下图所示:因此只要同时测定单个细胞粘附力即可得到细胞与基质之间的相互作用力,而细胞间的相互作用力则可以通过同时测量单层细胞的细胞粘附力和单个细胞的粘附力做差得到,如下公式所示:Force cell-cell ≌ Force Monolayer – Force Indiv.cellFluidFM测量力学步骤与一般的原子力显微镜十分类似,但是操作却远比原子力显微镜简单,这得益于FluidFM有的中空探针。这种探针无需像普通原子力探针一样对探针进行修饰或者将细胞提前粘连在探针上,可以直接在液体中原位抓取细胞,完成粘附力测定,并且在测量后探针仍然可以继续进行测试,并且无需对探针进行更换或再修饰。FluidFM技术测量单细胞力谱的基本流程。仅需操作鼠标系统即可自动完成对细胞的抓取和粘附力的测量。此外FluidFM系统会自动记录探针运动轨迹和力学曲线,如上图中所示当探针开始靠近细胞后,探针表面开始出现压力变化,当系统达到设定力学值后系统会自动停止下降并开始施加负压抓住细胞。随着探针开始上升,细胞给予探针的拉力随之增高,并逐渐达到临界,随后细胞脱离基质,探针受力趋近于零,而这一过程中探针受力的大值即为细胞粘附力。FluidFM技术测量HeLa细胞核CHO细胞的粘附力。能够高通量测量单细胞粘附力谱FluidFM测量粘附力十分智能化,仅需5分钟即可完成单个细胞的粘附力测定,一天可完成上百个细胞的测量,能够大幅度提升单细胞力谱测量的通量,让单细胞力谱研究变得简单、快速、高通量。 应用举例一:FluidFM技术测定衰老内皮细胞的力谱内皮细胞衰老导致细胞表型的改变与心血管疾病有着密切关系。随着细胞的衰老,细胞的粘附力等机械属性会有很大改变,因此对于细胞粘附力的研究将有助于理解细胞衰老的变化。Nafsika Chala等人利用FluidFM技术对血管内皮细胞与基底之间的粘附力进行研究发现,衰老的细胞与正常细胞存在着nN别粘附力差异。如下图所示:FluidFM技术用于衰老与正常细胞的单细胞粘附力测定。对比衰老小、大和正常细胞的细胞尺寸(a)、细胞粘附力(b)和细胞周长(c)及单细胞粘附力/面积(e)和单细胞粘附力/周长(f)的变化。研究者认为,衰老内皮细胞的粘附力增加是与细胞的粘着斑增加有关,表明衰老细胞能够加强与基质的相互作用从而防止内皮剥脱,但是受制于血流的影响这种能力受到了很大限制。 应用举例二:FluidFM揭示应力依赖性酵母交配中的分子相互作用性凝集素是芽殖酵母酿酒酵母介导细胞聚集交配的关键蛋白。交配细胞表达的互补凝集素类“a”型和“α”型的结合是促进细胞的凝集和融合的关键。Marion Mathelié-Guinlet等通过测量“a”型和“α”型结合的单个特定键的强度(~100 pN),发现延长细胞间的接触能够大地增加了交配细胞间的粘附力,而这种增强可能是由于凝集素的表达。FluidFM技术用于酵母属间交配过程单细胞力谱测量。MATa与MATα相互作用的示意图(a)和Fluid测量细胞间相互作用示意图(b)及测量结果(c);用DTT和DEPC药物刺激研究二硫键和His273对粘附的影响(d)、其示机制意图(e)和无粘附、DTT和DEPC粘附发生的概率(f);以及物理应力增强MATa和MATα细胞之间的粘合力(g)、发生频率(h)及破裂长度(i)。此外,研究组发现凝集素二硫键在粘附过程中起到了关键作用,而这一作用主要来自于α-凝集素的组氨酸残基His273。更为有趣的是,作者发现机械张力增强了相互作用的强度,这可能是由于激诱导凝集素构象从弱结合折叠状态转换成强绑定伸展状态导致。这项研究很好地展现了一种理解控制酵母性别的复杂机制的可能方法。 总结 细胞粘附力测定在细胞生命科学研究中起着至关重要的作用,然而传统手段中有着各种各样的局限性,主要原因是缺乏一种能够有效抓取细胞并进行力学测定的手段。现如今FluidFM技术在细胞粘附力测定中的使用,使得研究者们有了一种能够有效、低损的方式抓取细胞,配合原子力显微镜的测量的特性,真正意义上做到、无损、快速的测量单细胞粘附力,帮助研究者寻找细胞粘附力与细胞生命发展、肿瘤细胞转移之间的关系。
  • 液滴微流控流式细胞仪技术|CTC单细胞miRNA原位多重检测
    在液体活检的研究中,基于表面上皮标志物(EpCAM和CK)的循环肿瘤细胞(CTC)检测策略应用较为广泛,但存在局限性。研究表明,CTC中的肿瘤相关miRNA与癌症的发生和发展具有高度相关性,具有成为肿瘤表征和鉴定标志物的潜力。目前,高通量地针对单个CTC在活细胞水平开展原位分析,并进一步实现多个miRNA的同步分析,是颇具挑战性的工作。然而,新型的二维纳米材料——金属有机框架(MOF)因结构可控、功能多样的特性,为研究人员提供了活细胞探针载体的新思路。   近日,中国科学院深圳先进技术研究院陈艳团队联合清华大学深圳国际研究生院谭英团队、香港理工大学杨莫团队,提出了新型的2D MOF纳米传感器集成的液滴微流控流式细胞仪(Nano-DMFC),可应用于CTC单细胞miRNA的原位多重检测。相关研究成果以2D MOF Nanosensor-Integrated Digital Droplet Microfluidic Flow Cytometry for In Situ Detection of Multiple miRNAs in Single CTC Cells为题,发表在Small上。   本研究开发了一种新型的2D MOF纳米传感器集成的液滴微流控流式细胞仪(Nano-DMFC),突破了活细胞中核酸原位分析的技术瓶颈,高通量地实现了样本中单个CTC活细胞miRNA的原位、多重、定量分析。该纳米传感方案以金属有机框架MOF为猝灭剂,双色荧光染料标记DNA探针为供体,首次合成了用于双重miRNAs检测的生物功能化MOF荧光共振能量转移(FRET)纳米探针。该2D MOF纳米传感器修饰了两种乳腺癌靶向多肽序列,以增加肿瘤细胞靶向和内体逃逸能力。集成2D MOF纳米传感器的数字液滴微流控流式细胞仪,可实现单个乳腺癌细胞中双重miRNA标志物(miRNA-21和miRNA-10a)的原位检测。   纳米传感器集成的液滴微流控流式细胞仪由三部分组成——单细胞液滴发生器、纳米探针微注射单元和液滴荧光检测单元。Nano-DMFC系统首先产生单细胞液滴,然后2D MOF纳米传感器被精确地微注射到每个单细胞液滴中,在活细胞水平实现单个肿瘤细胞中的双重miRNA表征。在单个肿瘤细胞内存在目标miRNA时,MOF纳米片上的染料标记的ssDNA与其靶标形成杂交双链DNA(dsDNA),dsDNA和MOF之间的相互作用减弱,使dsDNA从MOF表面分离,最终触发荧光的恢复。不同类型的miRNA在单个细胞中产生不同的荧光信号。最后,研究使用光纤集成的液滴流式检测装置,在纳米探针孵育后对液滴中的信号进行检测和分析,从而实现对单细胞中双重miRNA的检测。实验结果表明,Nano-DMFC平台能够以双重miRNA为靶标在仿生样本(含有10,000个阴性上皮细胞)中检测出10个阳性CTC细胞,同时在加标血液样本的回收实验中表现出良好的重复性。该平台验证了以miRNA为标志物的CTC检测新策略。Nano-DMFC系统作为小型化、高度集成、操作简易的活细胞miRNA分析平台,为探究肿瘤细胞异质性和鉴定细胞亚型提供了新思路,并在临床研究中具有癌症早期诊断和术后监测的潜力。   研究工作得到国家自然科学基金、广东省粤港联合创新领域项目、深圳市科技创新委员会和香港研究资助局等的支持。   论文链接   A、同时检测miR-21和miR-10a的MOF-PEG-peps纳米复合材料传感器的制备方案;B、Nano-DMFC系统中的样品处理单元和miRNA检测单元,可实现单细胞液滴包裹、纳米传感器微注射、单个CTC细胞多重miRNA荧光检测。 在液体活检的研究中,基于表面上皮标志物(EpCAM和CK)的循环肿瘤细胞(CTC)检测策略应用较为广泛,但存在局限性。研究表明,CTC中的肿瘤相关miRNA与癌症的发生和发展具有高度相关性,具有成为肿瘤表征和鉴定标志物的潜力。目前,高通量地针对单个CTC在活细胞水平开展原位分析,并进一步实现多个miRNA的同步分析,是颇具挑战性的工作。然而,新型的二维纳米材料——金属有机框架(MOF)因结构可控、功能多样的特性,为研究人员提供了活细胞探针载体的新思路。
  • 活细胞也能进行细胞器操纵?多功能单细胞显微操作FluidFM技术首次实现活细胞间线粒体移植
    摘要:线粒体和复杂的内膜系统是真核细胞的重要特征。到目前为止,对活细胞内的细胞器进行操纵仍然十分困难。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。近期,Julia A. Vorholt课题组使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪,作者发现与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。该篇文章以” Mitochondria transplantation between living cells.”为题,发表在BioRxiv.上。 结果:1. 从活细胞中提取线粒体为了检测FluidFM探针对单细胞细胞器采样的能力。作者使用了两种探针,分别是锥型探针(A=1.2 um2)和圆柱型探针(A=1.6 um2)(图1B)。实验结果表明,使用这两种探针都可以对线粒体及单个线粒体进行提取或大量抽提。作者对内质网(ER)和线粒体提取后的细胞活力进行了检测,发现细胞仍保持较高的细胞活力 (95%)。为了进一步确保FluidFM提取方案在探针插入时不会破坏细胞质膜,作者使用荧光探针(mito-R-GECO1)监测细胞培养基中可能发生的Ca2+内流。实验显示,在操作过程中和操作后都没有Ca2+流入,表明细胞器提取过程中细胞质膜的完整性。本研究还发现暴露在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。 其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构终被拉断,并在悬臂中呈现为球状线粒体(图2E)。进一步探究显示,施加FluidFM负压后,力诱导的形状转变沿线粒体小管在毫秒到秒的范围内传播了数十微米。形状转变沿这一方向均匀传播,而外层线粒体膜(OMM)保持了初的完整性。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生立的球形线粒体,而管状结构的其余部分放松并恢复。结合线粒体牵引实验和线粒体定位的钙流实验,结果证明线粒体的串上珍珠表型的形状转变以及随后细胞质内的线粒体裂变是不依赖钙的。 图1:(A) 示意图:使用FluidFM技术进行细胞器提取。通过调整悬臂探针中的负压(-Δp)进行提取。(B) 通过调节孔径大小和流体作用力的适用范围,选择性地提取不同的细胞器成分。1行:用悬梁臂探针提取单细胞细胞器的示意图。2行:不同孔径的悬臂扫描电镜图。3行:FluidFM悬臂探针孔径与对应的流体力范围。(C) 示意图:使用FluidFM技术进行细胞器注射。通过调整悬臂探针中的正压(+Δp)进行将探针中的细胞器注射到受体细胞内。 图2:(A) FluidFM悬臂探针的扫描电子显微镜图像。具体尺寸参数是:L = 200 μm, W = 35 μm, H = 1 μm。Scale bar= 5 μm。(B) 提取线粒体后的FluidFM悬臂的荧光显微镜图像。由于折射率不同,可以看到提取物和悬臂探针填充物之间的边界。Scale bar = 10 μm。(C) 是图(B)的示意图,提取物的体积是1170 fL。(D- F) 活细胞器提取的延时图像和提取后金字塔悬臂图像。黄框表示细胞内的悬臂的位置。(D) 对表达su9-BFP(线粒体)和Sec61-GFP (ER) 的U2OS细胞进行提取。箭头表示ER区域。使用孔径为0.5µm2的悬臂梁探针。Scale bar = 10 μm。(E) 从表达su9-BFP的U2OS细胞中提取单个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。(F) 从表达su9-BFP的U2OS细胞中提取数个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。 2. 线粒体移植至新细胞研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了两种可能性方案:方案一、用FluidFM技术直接提取线粒体而后注入到新的宿主细胞中;方案二、将从细胞中分离纯化的线粒体回充入FluidFM探针,然后注射(图3A-D)。作者比较了两种方法,为了实现可视化的线粒体的转移,作者在供体和受体细胞中分别对线粒体进行了差异化标记 (图3E-F 供体细胞线粒体su9-mCherry和受体细胞线粒体su9-BFP)。当使用FluidFM直接将线粒体从一个细胞移植到另一个细胞时,成功率高达95%,而且保持了细胞活力(图3G, 41个移植细胞中有39个)。在注射纯化线粒体后,作者观察到46%的样本(19/41)发生了线粒体转移且保持了细胞活力(图3G)。移植的定量结果显示,这些实验中移植的线粒体数量从3到15个线粒体每个细胞不等(图3H)。两种替代方案的不同成功率可以由线粒体分离获取的条件差异来解释。在评估线粒体提取方案时,作者观察到部分提取的线粒体外膜发生破裂。线粒体的不可逆损伤导致细胞内降解,细胞色素C释放可能导致细胞凋亡。虽然线粒体的细胞间移植降低了通量,但它的优点是细胞外时间短(如上所述,细胞间移植即方案一的效率高,并可以直接观察单个移植线粒体的命运。为了展示这一点,作者将标记好的线粒体(su9-mCherry)从HeLa细胞移植到差异标记的U2OS细胞(su9-BFP)中,这种细胞通常用于研究动态线粒体行为。高灵敏度相机可以用于追踪受体细胞内的单个线粒体(图3L)。作者观察到荧光线粒体基质标签在移植后23分钟的发生初始融合而后扩展到线粒体网络。综上所述,作者建立了两种将线粒体转移到单个培养细胞的方法。 一种方法是活细胞间移植。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。二种方法是大量纯化线粒体并将其注射到受体细胞中。 注射速度相当快,但不可避免地损害线粒体和细胞功能。图3:(A) 方案一示意图(活细胞间线粒体移植):通过FluidFM吸入法提取线粒体。 随后,将带有提取物的悬臂探针移至受体细胞插入并注入提取物。(B) 方案一预填充C8F18的FluidFM悬臂梁的图像,被移植线粒体通过su9-mCherry标记,提取量~0.8 pL。Scale bar = 10 μm。(C) 方案二示意图(纯化线粒体注入细胞):使用标准线粒体纯化方案纯化的线粒体进行线粒体移植的方案。 将纯化的线粒体重悬在HEPES-2缓冲液中,直接填充到FluidFM探针中并对细胞进行注射。(D) 方案二由su9-mCherry标记的FluidFM悬臂充满线粒体的图像。Scale bar = 10 μm。(E) 通过方案一(活细胞间线粒体移植)进行线粒体移植后的宿主细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(F) 通过方案二(纯化线粒体注入细胞)进行线粒体移植后的受体细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(G) 通过光学成像对两种方案注射的细胞进行评估。每种方法评估了40个细胞。(H) 两种方案的线粒体的计数评估。每种方法评估了22个细胞。(I) 方案一移植线粒体后,对移植线粒体(su9-mCherry)和宿主线粒体网络(su9-BFP)使用不同的荧光标记进行成像,融合。Scale bar = 5μm。(J) 方案二注入纯化线粒体后移的融合状态,标记方案同(I)。Scale bar = 5 μm。(K) 移植线粒体发生降解,分裂成多个更小的荧光囊泡(su9-mCherry),荧光与标记的宿主细胞线粒体网络(su9-BFP)没有重叠。Scale bar=5 μm。 (L) 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。 讨论单细胞的操纵一直是细胞生物学领域的热点和难点,尤其是在不损害细胞活力的情况下从细胞中提取细胞器或将外源物质直接导入到细胞中。截止到目前,尽管单细胞技术有了较大的发展,但要实现将细胞器从一个细胞移植到另一个细胞,除了更大的卵母细胞外,几乎是不可能实现的。线粒体是细胞中的能量转换的核心,与细胞代谢和信号通路以及细胞命运紧密联系在一起。线粒体含有自身的遗传成分(mtDNA),通常是严格垂直遗传给子细胞的。目前将线粒体地转移到细胞的手段有限,对于线粒体移植后的剂量-反应关系分析更是十分困难,这样我们就很难从机制上了解健康或疾病细胞的线粒体移植后的生物学效应。本文使用的FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。 多功能单细胞显微操作系统- FluidFM OMNIUM参考文献[1].C. Gäbelein, Q. Feng, E. Sarajlic, T. Zambelli, O. Guillaume-Gentil, B. Kornmann & J. Vorholt. Mitochondria transplantation between living cells. (2021). BioRxiv.
  • 建立单细胞分析新方法——访朱良漪分析仪器青年创新奖获得者江德臣
    p   2018年8月8日,由中国仪器仪表学会分析仪器分会、长三角科学仪器产业技术创新战略联盟主办的“第五届中国分析仪器学术年会”(ACAIC 2018)在苏州召开。主办方于当晚颁发2018年“朱良漪分析仪器创新奖”,南京大学江德臣教授荣获“青年创新奖”。仪器信息网于次日采访了江德臣,介绍团队在单细胞仪器研制方面的创新成果。 /p p   “朱良漪分析仪器青年创新奖”评审组认为:江德臣瞄准单细胞分析存在的需个体化设计识别探针,难以提供胞内生物分子化学信息的技术挑战,系统设计了“单细胞试剂盒”和“单细胞器试剂盒”,并研制成装置,建立了通用性强、可测量生物分子活性/结构等化学信息的新型单细胞分析方法,成功用于动脉硬化类疾病的研究,揭示了细胞的个体差异性和细胞器的均一性等特征,成果突出。 /p p   近年来,单细胞的研究格外火热,多篇 Nature、Cell 的高分文章都是通过单细胞水平研究获得的。单细胞的分析能够揭示细胞的个体特征,帮助理解细胞自身的复杂性及彼此之间存在的种种差异,具有十分重要的生物学价值。过去几年南京大学化工学院生命分析化学国家重点实验室研制了基于电驱动模式的单细胞分析仪,以及基于电质化学发光的单细胞高通量分析装置,并与部分医院建立合作,突破了单细胞内生物分子活性测量难的技术瓶颈。团队已与江苏瑞明生物等企业开展合作,推动单细胞分析仪装置的产业化。 /p p   更多详情,点击视频查看: /p script src=" https://p.bokecc.com/player?vid=A0AADB1947658C1E9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=2BE2CA2D6C183770& playertype=1" type=" text/javascript" /script p br/ /p
  • 400万!复旦大学单细胞多色流式细胞分选仪采购项目
    项目编号:1639-224126090465/04项目名称:复旦大学单细胞多色流式细胞分选仪预算金额:400.0000000 万元(人民币)最高限价(如有):392.0000000 万元(人民币)采购需求:序号/ No.货物名称/Name of the goods数量/Quantity简要技术规格/Main Technical Data交货期/ Delivery schedule1单细胞多色流式细胞分选仪预算金额:人民币400万元最高限价:人民币392.0万元1set流式细胞分选仪主要用于复杂细胞样本中快速分选纯化出一种或几种目标细胞,在干细胞、免疫细胞、血液细胞、肿瘤细胞和其它所有低含量稀有细胞的高端研究中必不可少。合同签订后6个月内货到复旦大学。/ DPU Fudan University 6 months from official order合同履行期限:合同签订后6个月内货到复旦大学本项目( 不接受 )联合体投标。
  • 单细胞拉曼分选仪(RACS):探索微观世界的利器
    马波*,籍月彤,刘阳,徐健*  摘要:  单个细胞是地球上生命活动的基本单元,单细胞精度的科学研究能够揭示生命科学的本质问题,已经成为国际研究热点。拉曼激活细胞分选(Raman-activated Cell Sorting,RACS)能够利用“单细胞拉曼图谱”这一细胞内在、免外源标记的“生化指纹”进行功能分选,突破“细胞功能异质性原理”、“大多微生物尚难培养”等共性科学问题与重大技术屏障。本文介绍了拉曼光谱在单细胞功能识别方面的研究进展,详述了基于拉曼光谱的单细胞分选技术和核心器件研制的产业化过程。同时,介绍了近期推出的第一代商品化的RACS仪器,并且讨论了这些国产仪器装备为医药、海洋、土壤/环境、工业生物技术领域提供的原创解决方案。这些拥有自主知识产权的国产高端仪器装备将广泛服务于工业过程在线实时监控、细胞工厂筛选、工业/土壤/海洋种质资源挖掘、临床精准用药及新能源开发等。  关键词:拉曼组,单细胞表型组,拉曼激活细胞分选,国产仪器装备,单细胞分选技术与核心器件  单个细胞是地球上生命活动的基本单元,因此单个细胞精度的生命系统研究能够揭示“细胞功能异质性机制”这一生命科学的本质问题1。传统的、基于细胞群体水平性状测量的信息并不能真实反映细胞内部的生物过程及机制2,3,这是因为,在细胞种群中,即使是基因组信息完全一致的不同单个细胞之间,其表型也具有极为显著的差异,而这些差异往往具有重要的生物学意义4,5。因此,单个细胞的研究能够带来生物技术在能源、环境、健康、农业、海洋等广泛应用领域的突破。2018年,利用单细胞测序技术完成的胚胎发育初期单细胞命运追踪被Science杂志评为2018年最重要的十大科学进展之首。近两年来,世界顶级学术期刊《科学》《自然》分别有43篇和38篇文章聚焦于单细胞分析。  (一)拉曼组技术是单细胞功能识别的创新工具和有力武器。  自上个世纪以来,研究人员主要通过荧光标记与流式细胞术的结合实现单细胞功能分选,即荧光激活细胞分选(Fluorescence-activated Cell Sorting,FACS)6。然而,FACS一般需要针对特定的生物标识物对细胞外加荧光标记,因此在单细胞分选方面存在如下瓶颈:(1)细胞适用性有限。不论在干细胞发育的机理研究、肿瘤细胞的诊断,还是微生物群落中功能组分的识别中,关键的细胞表型经常仅有粗放认识或完全未知(即“未知”的细胞表型),也没有其生物标记。因此,FACS通常难以分选那些生物标识物通常未知或难以外加活体荧光标记的细胞体系(如微生物群落等)。(2)难以开展“原位”研究。进入细胞的荧光标记经常会改变细胞的原位状态,有时甚至影响细胞活性,因此该方法通常仅限于能够进行外加荧光标记的细胞,而且难以进行真正意义上的“原位”研究。(3)难以获取全方位的代谢表型。FACS在单位时间只能获得与区分很有限的细胞信息数据,如形态、折光率、反射率或荧光强度等有限指标,难以表征单细胞全方位的“代谢表型组”,因此通常不易获得尚难培养微生物与其生态功能之间的原位联系。  拉曼光谱是一种非标记的散射光谱,每个单细胞拉曼光谱由分别对应于一类化学键的超过1500个拉曼谱峰组成,反映了特定细胞内化学物质的成分及含量的多维信息。因此,特定时空状态下一个细胞群体的单细胞拉曼光谱的集合称为“拉曼组”7。由于细胞内化合物的组成对于细胞生理状态和微环境的变化等因素敏感,因此单细胞拉曼图谱或拉曼组不仅潜在能区分不同物种的细胞,还可以静态或动态地表征该细胞的生理状态及所处微环境8。  业界研究表明,利用拉曼组可实现较为广泛的细胞类型及功能的表征8。例如,Forrester和Deng等分别利用拉曼光谱成功地对多株芽孢杆菌属细菌的生化特性进行了鉴定,发现根据拉曼光谱信息可实现菌株水平的鉴定,并分析了各菌株之间可能的遗传进化关系9,10。在细胞功能识别方面,Samek和Singh等分别通过检测拉曼图谱分析了不同微藻的油脂产量,并建立了通过分析特定峰位比值来估测脂类不饱和度的方法11,12。Heraud等通过检测细胞拉曼图谱,对微藻细胞所处的营养状态(缺氮与否)进行判别和预测13。在临床方面,2011年Dochow等通过微流控芯片结合拉曼光镊技术,成功对人体白细胞、红细胞、急性髓性白血病细胞以及两种乳腺癌细胞进行了鉴别14。利用癌细胞的生化表型与正常细胞的区别,Barman15, Surmacki16和Haka17分别独立地证实了单细胞拉曼可用于乳腺癌早期诊断。此外,中国科学院青岛生物能源与过程研究所单细胞中心等也证明,单细胞拉曼光谱可以区分或定量表征细菌细胞的种系发生18、药物应激反应与耐药性19,20、分解代谢(综合细胞代谢活性21、分解特定底物的活性22)、合成代谢(甘油三酯含量及油脂饱和度23,24、淀粉含量25)、不同物种之间的代谢互作26等。  (二)基于拉曼光谱的单细胞分选技术和核心器件是单细胞组学研究获得突破性进展的关键。  拉曼激活细胞分选(Raman-activated Cell Sorting,RACS)能够利用“单细胞拉曼图谱”这一细胞内在、免外源标记的“生化指纹”进行功能分选,建立单细胞功能表征和单细胞组学分析之间的桥梁,突破“细胞功能异质性原理”、“大多微生物尚难培养”等共性科学问题与重大技术瓶颈27,28。随着微流控技术的进步,一系列基于拉曼光谱的单细胞分选技术和核心器件先后面世,其中包括在静止或者相对静止系统中进行的拉曼光镊分选21,29,30、单细胞拉曼弹射分选(RACE)18,31和拉曼激活光镊重力驱动微液滴分选技术(RAGE)32,以及在液相流动态细胞中进行的拉曼激活微流分选(RAMS)33、拉曼激活单细胞微液滴流式分选(RADS)34、介电迟滞拉曼激活单细胞微液滴流式分选(pDEP-RADS)。  RACE适用于静置或贴壁细胞的单细胞分选。该技术在风干的芯片上对细胞逐一测量拉曼信号后,用脉冲激光弹射出具有目标拉曼信号的细胞18。通过改进弹射基片材料,RACE可以在背向直接采集拉曼信号,降低了操作的繁琐性并大幅提升了全流程的速度和通量35 同时,“All-In-One”RACE芯片的面世,让测量、弹射、细胞裂解与核酸扩增都在同一与空气隔绝的封闭体系内进行,从而降低了环境DNA对目标单细胞核酸扩增的污染35。近期油相震荡乳化单细胞MDA方法的开发,使RACE分离的纯培养E. coli(每个MDA体系含5个细胞)基因组覆盖度由通常的青岛星赛生物科技有限公司依托于中国科学院青岛生物能源与过程研究所单细胞中心的原创技术与知识产权,自主研发了一系列基于拉曼组原理的原创单细胞拉曼分选仪器装备。  单细胞拉曼分选-测序耦合系统(Raman-Activated single-Cell Sorting RACS-Seq)克服了单个细胞拉曼分离可靠性低、核酸扩增容易污染、全基因组测序覆盖度不均等关键技术难点,具备样品预处理、显微拉曼成像、RAGE/RADS拉曼分选、单细胞微液滴细胞裂解和核酸扩增、拉曼组分析软件等功能,实现了单细胞功能检测、分选、测序与培养之完整流程的仪器化。RACS-Seq带有配套的RAGE、RADS、pDEP-RADS等芯片和相应试剂盒(环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等),能够满足不同实验目的所需的单细胞识别、分选和测序文库构建,并且适用于任何大于0.5 μm的细菌、古菌和真菌细胞(也适用于微藻、植物、动物及人体细胞)。  临床单细胞拉曼药敏快检仪(Clinical Antimicrobial Susceptibility Test Ramanometry CAST-R)是临床样品之病原鉴定、药敏性表型测量及耐药基因解析的一体化装备。它基于重水饲喂单细胞拉曼光谱技术,不需分离培养而直接鉴定病原种类,并测量基于代谢活性抑制的药敏性表型(及其在细胞之间的异质性),全流程可在3小时内完成,将目前检测时长缩短至1/10 20。进而通过单细胞微液滴光镊拉曼分选与核酸扩增技术,完成低偏好性、高覆盖度、与耐药表型关联的单细胞基因组测序。最新论文证明,该系统能从临床菌群中直接、精准地获取一个细菌细胞的药敏表型及其完整基因组(以往未有先例) 32。CAST-R在单个细菌细胞精度同时追踪“药敏表型-完整基因组”的独特能力,预期将为临床感染诊断和用药、耐药性传播监控、微生态监控等提供新一代解决方案。  单细胞拉曼表型监测系统(Raman-Activated Phenotyping System RAPS)是基于拉曼复合表型对细胞工厂进行单细胞水平高通量、低成本、非入侵式的快速表型监测装备。现有发酵过程的监控方案存在三大问题:1)时间精度,目前只能通过离线方式对各表型分别进行测定,由于样品处理和测量时间带来的滞后性,使得微生物发酵过程的控制比一般的工业生产难度更大 2)表型精度,由于缺乏综合表型表征手段,只能通过胞外产物尽量刻画细胞状态 3)测量精度,现有表型的测量均基于群体水平大量细胞的平均性状,在高压、高浓、高密度、且营养物质不均一的发酵过程中,细胞之间的差异被累积并级联放大,而群体水平的平均性状掩盖了这种差异的发生/发展和变化规律,无法反映细胞的真实状态。RAPS克服了现有方法的滞后性、可检测表型有限,以及无法反映细胞异质性等局限,为细胞工厂研究提供了一个高效、全景式的表型鉴定和过程监测方案。  模块式单细胞微液滴分离系统(EasySort)是一款拥有自主知识产权的小型台式仪器。它小巧灵活,操作简便,能够自由地与各种型号的显微镜搭配组装,轻松将明场/荧光/拉曼显微镜升级为“所见即所分”、保持原位状态与活性的细菌单细胞精准功能分选装置。在显微镜的视野下,具特定表型的直径大于0.5 μm的单细胞均能够被迅速包裹成单液滴,并通过独有的重力驱动专利技术迅速移动到孔板或者EP管中,对接下游实验。因其兼具超高的性价比、便携的外形、灵活的适配度、简易的用户界面以及优秀的细胞活性保持等众多优势,EasySort将广泛应用于各类单细胞的分离、分选、培养及测序实验。  高通量流式拉曼分选仪(High-throughput RACS:FlowRACS)搭载了具自主知识产权的pDEP-RADS技术,通过在高速液流中基于介电迟滞来精确捕获和采集单细胞拉曼信号,克服了单细胞拉曼分选的通量限制,以及微液滴对于拉曼表型鉴定的影响,巧妙地集成了单细胞拉曼信号采集与单细胞微液滴发生。同时它利用全光谱实时判别算法,实现了活体单细胞超高通量拉曼分选的高度自动化。  (四)原创国产单细胞拉曼分选装备将服务于医药、土壤/环境、海洋和工业生物技术等广阔领域。  上述介绍的这些拥有自主知识产权的原创仪器装备已经支撑着临床精准用药、生物资源挖掘、环境微生态机制、细胞工厂筛选、工业过程监控等广阔领域。  在医药领域,细菌耐药性蔓延是临床感染面临的严重危机。当前基于培养原理的病原鉴定和药敏仪器检测一般需要花费2-3天。而CAST-R不再需要培养,而是基于重水标记单细胞拉曼光谱,在3小时之内即可完成针对代谢活性抑制的药敏性实测,而且将具有耐药表型的目标耐药菌单细胞分离出来,直接耦合细菌单细胞基因组测序,实现了在单个细菌/真菌细胞的精度,挖掘耐药基因及突变、追踪病原传播和考察耐药微进化机制。利用CAST-R针对临床尿液样品的初步分析显示,基于单细胞拉曼的菌株鉴定准确率达到93%,药敏测试与培养法的一致性达到90%。同时,从临床尿液样本中直接识别和分选出耐受特定抗生素的临床E. coli,并进行了精确到一个细菌细胞的全基因组测序,覆盖度可达99.5%32,保证了基因组上所有耐药基因突变均得以全面、精确地揭示。  在海洋和土壤/环境领域,“99%的微生物难培养”、“异质性普遍存在”、“原位功能难以测量”等因素均对环境功能基因研究、种质资源挖掘、生态环境监测等提出了严峻的挑战。借助RACE技术,研究人员以中国黄海近海真光层的新鲜海水为模式,用13C-NaHCO3饲喂其微生物组,然后通过测量海水拉曼组中各个单细胞拉曼图谱上13C峰的动态特征,分辨出在海水中活跃固定与代谢无机碳的单细胞群。同时,分选这些原位固碳单细胞群(30个细胞混合)并测定其DNA序列,可重构出基因组草图35。后续研究表明,利用搭载RAGE-Seq芯片的RACS-Seq系统,可以分选获取海水中单个原位固定CO2的目标细菌细胞,并且对1个细胞的基因组即可获得超过95%的基因组覆盖度。对于土壤样品,则可以基于重水孵育、针对代谢活性进行菌群中功能细胞的识别、分选和测序,单个细胞的基因组覆盖度可达90%。  在工业生物技术领域,新兴的合成生物学需要对细胞工厂进行人工设计并构建具新功能的生物系统,从而建立药物、材料或能源替代品等的生物制造途径36。其中细胞表型的测试筛选工作是合成生物技术发展的“限速步骤”之一。代谢物是细胞中基因表达的最终产物,因此对细胞代谢物组或代谢状态的检测是细胞功能检测最直接有效的手段之一。利用RACS-Seq,可以快速、非侵入性、不须标记地以单个活体细胞中淀粉含量这一特定表型对莱茵衣藻和小球藻进行快速表型鉴定,为富含淀粉的种质资源选育提供了一种崭新手段25。在莱茵衣藻和微拟球藻中,利用RACS-Seq可针对单个细胞中淀粉、蛋白质、甘油三酯含量和脂质不饱和度等表型对目标细胞进行快速筛选24。利用RACS-Seq,还能够针对CO2利用速率这一特定表型对海水中难培养微生物进行分选和测序,从而完成功能基因及种质资源挖掘35。  此外,在酶活筛选方面,将未知功能的酶基因库转化入酵母底盘中,利用FlowRACS基于拉曼光谱、不需酵母培养和纯化而直接识别和定量其单细胞精度的目标代谢物,进而高通量流式拉曼分选目标单细胞,并利用下游测序快速识别其中表达的目标化合物合成酶。因此,FlowRACS大大节约了时间、耗材和人力的成本,可将酶的筛选效率提高100到1000倍。  总之,拉曼组和单细胞拉曼分选基于细胞本征性的生化指纹图谱来识别与分选特定“代谢表型组”的目标细胞,具有不需预知生物标识物、不需标记、非侵入性、可全景式识别细胞代谢表型等核心优势8。因此,包括RACS-Seq,CAST-R,RAPS,EasySort以及FlowRACS等在内的单细胞分析仪器系列(青岛星赛生物科技有限公司),将在精准医疗、大健康、生物资源挖掘、生态监测、生物安全、工业生物技术等领域得以广泛应用,同时为单细胞研究提供全新的科学思路、技术路线和仪器装备。  参考文献:  1 Schubert, C. Single-cell analysis: The deepest differences. Nature 480, 133-137, doi:10.1038/480133a (2011).  2 Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167-173, doi:10.1038/nature09326 (2010).  3 Spiller, D. G., Wood, C. D., Rand, D. A. & White, M. R. Measurement of single-cell dynamics. Nature 465, 736-745, doi:10.1038/nature09232 (2010).  4 Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183-1186, doi:10.1126/science.1070919 (2002).  5 Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714-717, doi:10.1126/science.1203163 (2011).  6 Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. Fluorescence activated cell sorting. Rev Sci Instrum 43, 404-409, doi:10.1063/1.1685647 (1972).  7 Xu, J. et al. Emerging trends for microbiome analysis: from single-cell functional imaging to microbiome big data. Engineering 3, 66-70 (2017).  8 He, Y., Wang, X., Ma, B. & Xu, J. Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution. Biotechnol Adv 37, 107388, doi:10.1016/j.biotechadv.2019.04.010 (2019).  9 Forrester, J. B., Valentine, N. B., Su, Y. F. & Johnson, T. J. Chemometric analysis of multiple species of Bacillus bacterial endospores using infrared spectroscopy: discrimination to the strain level. Anal Chim Acta 651, 24-30, doi:10.1016/j.aca.2009.08.005 (2009).  10 Deng, A. H., Sun, Z. P., Zhang, G. Q., Wu, J. & Wen, T. Y. Rapid discrimination of newly isolatedBacillaleswith industrial applications using Raman spectroscopy. Laser Phys Lett 9, 636-642, doi:10.7452/lapl.201210052 (2012).  11 Samek, O. et al. Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors (Basel) 10, 8635-8651, doi:10.3390/s100908635 (2010).  12 Wu, H. et al. In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108, 3809-3814, doi:10.1073/pnas.1009043108 (2011).单细胞中心合影  中国科学院青岛生物能源与过程研究所单细胞中心(徐健、马波、籍月彤、刘阳 所在单位)简介:中国科学院青岛生物能源与过程研究所是由中国科学院、山东省人民政府、青岛市人民政府于2006年7月启动筹建,2009年11月30日通过共建三方验收并纳入中国科学院“知识创新工程”管理序列的国立科研机构。单细胞中心的核心使命是以基因组工程、工具酶开发、先进成像、微流控器件、大数据等为主要方法学支撑,围绕细胞工厂构建、微生物组快检及机制等领域的关键科学和技术瓶颈,开发单细胞分析、分选、测序与培养技术,研制与产业化单细胞分析仪器系列,从国产装备的角度支撑单细胞大数据网络和微生物组天网等原创大数据系统,服务于工业生物技术、大健康、海洋资源挖掘、环境保护与修复、生物安全等应用领域。  青岛星赛生物科技有限公司(籍月彤所在单位):青岛星赛生物科技是一家专注于单细胞分析科研设备及临床诊断仪器研发与产业化的创新型高新科技企业。竭诚为科学研究人员、工业生物技术人员、以及临床工作者提供高效、可靠、一体化全方位的单细胞水平解决方案,着力打造国产高端生命科学仪器品牌。产品应用于工业过程监控、工业及海洋种质资源挖掘、临床精准用药、微生物组研究、生物安全及新能源开发等领域。
  • 单个活细胞&细胞器操纵新突破丨多功能单细胞显微操作技术首次实现活细胞间线粒体移植
    前所未有的全自动高精度单细胞操纵平台!多功能单细胞显微操作FluidFM技术首次将原子力系统、显微成像系统、微流控系统、活细胞培养系统融为一体的单细胞显微操作平台,其核心技术——FluidFM技术采用了纳米级别中空探针,完美实现了单个细胞水平、fL级别超高精度、全自动化的细胞及细胞器的操作。是一套超温柔,纳米级,全自动的细胞操纵方案。这项技术将传统细胞显微操作实验无法触及领域的大门彻底打开,科学家可以在单个细胞上实现前所未有的精妙操纵。其主要功能包括单细胞提取、单细胞分离、活细胞细胞器移植、单细胞注射、单细胞力谱等。图1 FluidFM技术整机外观及原理示意图在活细胞中也能进行细胞器操纵?多功能单细胞显微操作FluidFM技术首次实现活细胞间线粒体移植线粒体和复杂的内膜系统是真核细胞的重要特征。到目前为止,对活细胞内的细胞器进行操纵仍然十分困难。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。近期,Julia A. Vorholt课题组使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪,作者发现与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。该篇文章以” Mitochondria transplantation between living cells.”为题,发表在BioRxiv.上。1从活细胞中提取线粒体在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构最终被拉断,并在悬臂中呈现为球状线粒体(图2)。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生独立的球形线粒体,而管状结构的其余部分放松并恢复。图2 提取线粒体后的FluidFM悬臂探针的显微图像及示意图2线粒体移植至新细胞研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了最佳的两步走方案:第一步,用FluidFM技术直接提取线粒体,第二步,将提取的线粒体注入到新的宿主细胞中。该方案的成功率高达95%,而且保持了细胞活力,其优点是细胞器在细胞外停留的时间短(作者标记供体细胞的线粒体(su9-mCherry)和受体细胞的线粒体(su9- BFP),能够观察移植细胞线粒体网络的实时状态(图3)。实验跟踪了22个细胞的移植命运:18个细胞显示移植的线粒体完全融合,4个细胞的线粒体发生降解。多数细胞样本(18个细胞中的14个)在移植后30分钟内首次观察到融合事件而后扩展到线粒体网络。综上所述,作者建立了将线粒体转移到单个培养细胞的方法。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。图3 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。本文使用的FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是独一无二的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。单个线粒体移植视频该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。
  • 性价比谁与争锋?大连华微新推单细胞分选仪仅售36.8万
    性价比谁与争锋?大连华微新推单细胞分选仪仅售36.8万——“HW-cyclone旋风系列2023”单细胞液滴制备与分选系统,破茧而出!大连华微生命科技,推出“HW-cyclone旋风系列”单细胞液滴制备与分选系统(2023款),单激光(基础版)售价36.8万!此消息一出,业内哗然!单细胞分选设备平均百万的售价,被大连华微靠自研专利技术,砍掉三分之二!这——还没完!单细胞液滴制备与分选相应耗材:华微生命的微流控芯片,更是达到惊人的低价:RMB200-600元/片,仅为进口单价的1/10—1/5;一次性管线耗材,低至人民币10元+/次……单细胞领域,注定又是一场腥风血雨!西方人说:技术,不能让中国人掌握!似曾相识,像中国高铁一样,只要研发起步不落后于西方,中国民族企业就能靠自己的智慧,以“铁杵磨针”的韧性不辍耕作,就能捅破高科技那层“窗户纸”,而核心技术一旦被中国企业掌握,就能创造物美价廉的高性价比产品,让全球客户都买得起、用得上!而性价比——是中国制造在高科技领域:靓丽的标签!图1 大连华微生命科技推出的“HW-cyclone旋风系列”单细胞液滴制备与分选系统这么低的售价,能和国外百万以上的产品pk么?性能如何?功能是否拉跨?和流式技术对比,细胞活性怎么样?带着这些疑问,让我们走近这个被预言为“2023年性价比新高度”的“HW-cyclone旋风系列”单细胞液滴制备与分选系统。一、结构 (1)基于用户显微镜的开放式研发体系,包括:“HW-cyclone旋风系列”单细胞液滴制备与分选系统、显微镜、进样驱动装置(注射泵或压力泵)、微流控芯片等部分组成,不仅大幅降低采购成本,更方便改造、升级甚至用户自行设计(变更)各流程环节,个性化科研,才能让灵感迅速转化为科技成果。此外,系统的1+N积木式结构,以及客户常用的注射泵、压力泵等传统进样方式,与客户科研习惯具有良好的兼容性。从源头(细胞进样悬液),至最终分选成果收集,全流程低成本管线通路(含微流控芯片),可一次性或多轮使用,“一次抛”方式杜绝了污染与交叉影响;“多次抛”常见于相同试剂重复实验或高效教学环节,并可大幅降低成本。图2 大连华微生命科技推出的“蓝晶系列”单细胞液滴包裹与分选类微流控芯片二、功能针对单个细胞、细菌、病毒、线虫、细胞团等1-100um粒径范围的生物颗粒,进行液滴包裹、检测、按阈值分选等操作。 (1)单细胞微滴包裹(微滴批量制备)(2)细胞检测: 荧光标记 无标记技术(高级版)(3)细胞分选(以下方式任选其一): 电场力分选 磁场力分选 流体驱动柔性分选(4)特色技术(均高端机型/版) 单细胞液滴包裹时空滴删除功能 液滴切分功能 液滴再注液功能 连环分选(分选后再分选) 一分三路分选 分选后捕获(培养、扩增) 多种类单核1+1分选(5)升级扩展 升级至多激光/多通道, 扩展至影像传感、拉曼检测等检测方式; 增配单细胞自动植板系统(96/384孔板,单孔入单滴); 升级至疾风、暴风、飓风、龙卷风等大连华微高端系列; 根据客户想法,升级为其它个性化微流控方式三、价格(直销)(1)单激光分选系统(单通道基础版):36.8万元RMB;(2)微流控芯片(通用款或批量型):200-800元RMB;(3)管线通路耗材:10-30元/实验;(4)生物显微镜、泵、试剂、PC电脑等均可客户自备。 (提醒用户:长期实验使用,请重点考量耗材成本)四、系统原理(1)单细胞液滴包裹原理 针对细胞、细菌等1-100um粒径的生物颗粒,基于两相不相溶液体,在“十”、“T”、“Y”等形式液路中的通道交叉口,利用剪切力,生成均一的液滴,实现微观下细胞个体之间的分离。 (2)分选原理有别于流式分选技术对细胞极大伤害性的高压鞘液,本产品采用低液压驱动,肿瘤细胞等敏感生物颗粒几乎不会收到液压方面的伤害。基于电磁场、介电力、流体驱动等方式,针对单个细胞在分叉通道处,根据实时检测参数,施力向不同的分支驱动液滴,实现分选,其中电场力、介电力驱动效率高达:1000个细胞/分钟;五、功能及参数 (1)单细胞液滴包裹:1,000—50,000 drop/min (2)电场力/磁场力/介电力分选:1,000 drop/min (3)无标记分选:100 drop/min上述分选通量,无法与流式细胞仪(每秒数万个)相提并论,原因之一:降低的速度,极弱的液压推动,就是为了——细胞活性!如果流式分选针对某种细胞分选的活率为30%,华微采用的弱压驱动分选原理,使细胞分选活率达到流式的2至3倍(60%-90%),其分选成果符合单细胞基因测序的活率要求。尤其针对肿瘤细胞等脆弱样本,细胞保活的优势明显。原因之二:匹配单细胞植板流程。从另一个角度,如果下一环节是单细胞孔板滴注,那么,针对秒级的板孔间喷嘴移动,超过5Hz的分选速度,对整个系统的单细胞植板效率影响不大。六、活性因采用柔性低压力驱动方案(1-30PSI可调,压强可低至流式1/70),以及从头至尾的液滴全流程包裹策略,且细胞无需沾染电荷,故活性远优于流式分选技术,分选后细胞活率60-99%表1 常见流式分选设备喷嘴与压力配置表七、耗材微 流控芯片(液滴制备、液滴分选、特定功能定制芯片);管 线耗材(管路、夹具、连接件等),价格低廉,成本可忽略。大连华微生命科技,产品源于元器件级别的自主研发,客户众多,质量经过中科院、中国农科院、三甲医院、中国海洋大学、华东理工大学、江南大学等985/211高校,及其它众多客户应用及检验,性能稳定,价格低廉,拥有更亲民的性价比。公司创始研发团队包括:五位北京大学校友、两位原中科院资深工程师、多位国内985/211高校毕业生,并与中科院大连化物所、大连理工大学、大连交通大学、大连医科大学等合作单位的多位教授、博士或其它科研人员,进行长期合作。大连华微生命科技,是中国单细胞液滴分选领域的“清晨耕耘者”,(国内未发现比华微更早的商业化产品研发&制造商),用“十年磨一剑”描述毫不为过——在2013年,创始人就申请了多项发明专利,攻克多项西方对我国的“卡脖子”技术,并历经无数次改进优化,并实现了国产化。2021年,大连华微生命科技携手大连医大附属医院(三甲)、大连交通大学,以源于企业创始人专利技术的“单细胞柔性分选技术”,入选“2021年大连市重点科技计划项目”,并喜报频传,两年来不断获取新成果(预计2024年实现商业化,敬请期待)。大连华微的每一次技术革新,或能提高性能,或大幅降低成本,都承载着华微人潜心研发、敢于挑战未来科技的创业精神,我们将一如既往,不辍耕作,在单细胞细分领域不断探索,致力于全球业内的前沿科技研发,为中国民族工业添砖加瓦。企业简介:大连华微生命科技有限公司(Dalian Life Huawei Technology Co., Ltd.)(以下简称大连华微),科技型企业,是一家拥有自主知识产权,集研发、生产、销售及服务为一体的微流控系统一站式解决方案供应商,依靠自有专利技术,立足独立研发民族品牌,致力于微流体控制科技产品的研发与生产,历经十年的探索磨砺,为中国乃至世界的业内客户带来全新的选择。未来公司将一如既往地重视创新科研,与广大华微客户一起携手进步,共同推动着中国生命科学的发展,做世界细分领域有话语权的中国高科技民族企业。
  • 如何同时对单细胞进行多组学研究
    大多数全基因组分析提供了大量细胞的平均水平,但是最近的技术进步可以克服这个局限。开创性的单细胞分析现在能够对基因组、表观基因组、转录组、蛋白质组和代谢组谱系进行分析。Cell旗下的Trends inBiotechnology综述了为同一的细胞提供复杂的谱系,将不同维度的分析组合成多组学分析的方法。  策略  和活细胞荧光成像不同,组学的方法比如新一代测序和质谱是破坏细胞进行分析的。第一代单细胞分析选择了一种类型的生物大分子(比如DNA、 RNA、染色质、蛋白或代谢产物)就会丢弃其它所有的材料。而现在证实了一个概念:不同的组学可以在同一个细胞进行平行分析。例如,基因组/转录组或基因 /蛋白水平。现在已经确定了如图所示的多组学单细胞分析的五种基本策略。  结合  在相同或相似的生物分子上的实验分析可以合并成一个单一的操作。例如,基于纳米孔测序方法和单分子实时(SMRT)技术所获得的动力学曲线,不仅反映了DNA序列,也进行了 DNA甲基化检测。同样,精心优化质谱检测可以提供相同细胞的蛋白组学和代谢组学数据。要从单个细胞获得高品质的集成文件,进一步提高检测的效率将是必不可少的。  组分分离  不同种类的生物分子可以在从相同的细胞裂解液提取、分离、和独立分析。例如,最近的一项研究用生物素标记的寡聚dT接头沉淀总RNA,进行 RNA测序文库制备,而游离的DNA可扩增后进行DNA测序。这种策略严重地依赖分离的质量,因为所有留在错误组分中的材料都丢失了。  分别处理  当精确的生化分离不可行时,细胞裂解液可以分别被独立处理。最近的一项研究通过将裂解液分别进行多步定量PCR反转录RNA分析和对DNA抗体报告基因的定量PCR分析。从概念上来说分别处理不如生化组分分离,因为有一些材料不可避免地丢失在错误的组分中。它是进行不同分析的最一般的策略。  转换  不同组学之间的生化转换使得它们能一起分析。例如,亚硫酸氢钠处理将DNA甲基化转换成DNA序列信息,可以进一步与GpC甲基转移酶处理结合来捕获DNA甲基化和单细胞核小体定位。它也可以通过对连接细胞核中三维空间接近的DNA片段的操作,获得单细胞染色体结构的信息。  预测  作为对上述实验策略的补充,也可以对一个或多个组学直接检测,而后通过计算机的方法来预测其它的。这五种策略的设为计更加全面的多组学分析提供了一个框架,因为它们可以以许多不同的方式相结合。  应用  单细胞多组学分析能发现其它方法难以处理的问题。  复杂组织和整个器官的数据驱动的分析可能会挑战我们目前的细胞类型的概念。随着分辨率和单细胞分析的吞吐量,我们可以找出无数的细胞状态,而不是少数的稳定和不同类型的细胞。  多组学分析的另一个关键的应用程序是在医药上。许多肿瘤、肿瘤部分区域在耐药、复发和转移、变化上不同,综合数据集可以提供足够详细的图谱来识别的肿瘤内差异的生物学基础。在平行的多组学分析可以帮助发现不同的耐药性,例如基于遗传和表观遗传学的改变,从而有助于自适应和个性化治疗。  第三个多组学谱系的应用是在生物技术和生态系统中研究不可培养微生物。这些细菌通常很难获得足够纯的群体进行大量分析,而单细胞的操作是综合分析的关键,例如将一定的蛋白组学和相关的代谢谱系联系起来。  最后,测量同一细胞内的细胞状态的不同方面的能力有望揭开细胞的基因组、表观基因、转录组、蛋白质组与代谢组之间的相关联系 可以揭示DNA甲基化、染色质于转录起始之间的复杂关系。  结语  第一个单细胞多组学的检测已经存在了,这预示了单细胞系统生物学是一个令人兴奋的新领域。文章预测,关注单细胞作为生物学的核心将为基础科学提供见解,在生物技术和生物医学方法提供有效的应用机会。
  • 青岛能源所开发智能化、自动化的微生物单细胞分选仪
    单细胞分析已成为生命科学的有力工具,原位样品在单个细胞精度的识别、分选、测序/鉴定对于深入解析微生物组的结构和功能具有重要作用。青岛能源所单细胞中心与青岛星赛生物合作,成功开发微生物单细胞自动分选系统EasySort AUTO,可将常规显微镜升级为微生物单细胞的智能化、自动化分选装置,并利用酵母和大肠杆菌细胞示范了单细胞分选—测序/培养的全流程,为微生物资源的探测和挖掘提供了有力手段,该研究成果近日发表于《微生物》mLife杂志。 EasySort AUTO的“慧眼”和“巧手”服务微生物组资源挖掘   微生物组(亦称菌群)在自然界及人体中无所不在,它们蕴含着精准健康、碳减排、环境保护、清洁能源等当今人类社会重大挑战的解决方案。然而,微生物细胞尺寸小,操控难度大,单个细胞的识别与分选极具挑战性;同时,菌群中的庞大的细胞数量让原位、单细胞层面的菌群研究对于自动化、高通量的需求尤为迫切。   针对上述问题,单细胞中心刁志钿博士、阚凌雁工程师、赵怡龙工程师带领的研究小组,基于青岛星赛生物的单细胞微液滴分选系统EasySort Lego,开发了新一代人工智能辅助的微生物单细胞自动化分选系统EasySort AUTO。经测试,系统搭载的AI辅助图像识别算法可以智能化、自动化地识别目标细胞,准确率达80%;系统嵌入的光镊技术可以捕捉并精准操控目标细胞;最后,基于界面接触的微量液体分离专利技术,目标细胞能够以单管单细胞(One-Cell-One-Tube)的形式自动收集于PCR管中,通量为~120细胞/小时,单细胞率高于93%。该系统分选的目标单细胞可以直接开展单细胞测序、培养等工作,单细胞测序成功率高于84.2%,酵母细胞和大肠杆菌单细胞培养的成功率分别为~85%和~80%。   此外,EasySort AUTO的设计还具备三个显著特点:1)广谱适用性,由于光镊可以操控不同尺寸的细胞,该系统广泛适用于各类单细胞的分离、分选、培养及测序实验;2)灵活性,该系统采用模块化的设计,可通过安装“巧手”—光镊模块和自动收集模块,将生物实验室常见的正置显微镜升级为单细胞分选装置;3)高活性保持,分选后的目标细胞具备较高的活性和DNA/RNA质量。   单细胞中心长期致力于微生物单细胞技术开发、装备研制和产业化,前期和青岛星赛生物合作已陆续推出高通量流式拉曼分选仪(FlowRACS)、临床单细胞拉曼药敏快检仪(CAST-R)、单细胞拉曼光镊分选仪(RACS-Seq)、单细胞微液滴分选系统(EasySort)等产品,并已进入市场。作为EasySort仪器系列的新成员,EasySort AUTO的设计聚焦在为显微镜的“慧眼”提供一双自动的“巧手”,使得显微镜可以智能化发现目标单细胞,并自动化分离获取。基于上述创新,EasySort AUTO系统将以便捷的操作、灵活的组装、自动化的细胞收集、目标细胞的高活性保持等优势为微生物单细胞的分选工作提供特色解决方案。   该工作由单细胞中心马波研究员和李远东工程师主持,与青岛星赛生物合作完成,得到了国家重点研发计划的资助。
  • 全球首台活体单细胞拉曼分选仪问世
    近日,中科院青岛生物能源与过程研究所功能基因组团队与北京惟馨雨生物科技公司联合承担的科技部创新方法工作专项&mdash &mdash &ldquo 拉曼光钳筛选新方法在活体单细胞高通量分离中的应用&rdquo 通过了评审验收,这标志着全球首台活体单细胞拉曼分选仪在中国研制成功。   该研究是在青岛能源所研究员徐健和兼职研究员、英国谢菲尔德大学黄巍主持下,通过所企联合攻关完成的。项目组此次研发的是目前已公开文献报道的首台基于细胞拉曼指纹图谱的细胞手动和自动分选仪器。该分选仪可实现单细胞拉曼图谱快速采集,并首次将单细胞的拉曼信号采集时间缩短到1~100毫秒 还可完成基于拉曼图谱的细胞种类及生长状态快速鉴别等多项任务。   该仪器的核心优势在于,对细胞生化信息及其变化敏感,无须预知生物标识物,无须标记细胞,可进行原位和非侵害性的活体检测等。此项技术将对单细胞生物技术和单细胞基因组的研究产生积极的贡献。   项目组利用该仪器,已经在光合产油微藻生理状态识别、多环芳烃降解微生物分离等研究中取得初步成果,并建立起应用示范技术参照方法和数据分析流程。   据了解,目前该仪器已服务于国内外多个科研团队,在海洋资源挖掘、生物燃料和生物材料、生物能源种质筛选、食品微生物检测、药物研究、肿瘤监测与分选、环境微生物监控、农业生态研究等领域发挥重要作用。 青岛能源所首台&ldquo 活体单细胞拉曼分选仪&rdquo 样机通过验收   背景新闻:   日前,受科技部条财司委托,中国21世纪议程管理中心在北京组织专家对中国科学院青岛生物能源与过程研究所功能基因组团队与北京惟馨雨生物科技公司联合承担的科技部创新方法工作专项&ldquo 拉曼光钳筛选新方法在活体单细胞高通量分离中的应用&rdquo 项目进行验收,标志着研究所基于自主技术开发的首台&ldquo 活体单细胞拉曼分选仪&rdquo 通过科技部验收。   验收专家听取了项目组的工作总结汇报、审查了验收材料,认为项目组基于自主开发的&ldquo 活体单细胞拉曼分选仪&rdquo 开展的各项工作完全符合任务书下达的全部考核指标,一致同意项目通过验收。   在项目实施过程中,项目组成功研制开发了&ldquo 活体单细胞拉曼分选仪&rdquo (&ldquo Raman-Activated Cell Sorter&rdquo ,简称RACS),并在中科院青岛能源所成功搭建了首台样机。该样机(编号RACS-1)由激光器、拉曼光谱仪、落射荧光显微镜、细胞分选系统以及自动控制系统组成,是目前已公开文献报道的首台基于细胞拉曼指纹图谱的细胞手动和自动分选仪器。目前,RACS-1已可实现的功能包括:单细胞拉曼图谱快速采集,并首次将单细胞的拉曼信号采集时间缩短到1-100ms 基于拉曼图谱的细胞种类及生长状态快速鉴别 拉曼-落射荧光不可培养功能微生物鉴定 拉曼光钳单细胞操纵 基于拉曼信号的单细胞计数 单细胞拉曼数据库系统 拉曼激活单细胞分选等。   与现有的基于细胞荧光信号的荧光流式细胞分选仪(&ldquo Fluorescence-Activated Cell Sorter&rdquo ,简称 FACS)原理和方法均不同,RACS是基于对单个细胞的拉曼化学指纹图谱(细胞生化信息)的获取并与参照细胞拉曼数据库比对,从而原位、不依赖于培养、高通量地分选具有特定(或指定)生化状态的单细胞。与FACS相比,RACS的核心优势在于:对细胞生化信息及其变化敏感、不需预知生物标识物、不需标记细胞、原位和非侵害性的活体检测等。因此,RACS可有效克服&ldquo 细胞功能异质性&rdquo 、&ldquo 尚不可培养微生物&rdquo 、&ldquo 探测未知的细胞表型&rdquo 等三个共性科学与技术瓶颈。   此外,项目组利用RACS-1在光合产油微藻生理状态识别、多环芳烃降解微生物分离等方面研究取得了初步示范成果,并建立起应用示范技术参照方法和数据分析流程,为未来对细胞表型鉴定及功能微生物筛选奠定了基础。
  • 单细胞基因测序市场分析
    p    span style=" color: rgb(0, 112, 192) " 什么叫做单细胞基因测序(Single-Cell Sequencing)? /span /p p   一句话说,就是单个细胞水平上对基因组进行测序。2013年,自然杂志把年度技术授予了单细胞 a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-3-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 基因测序 /span /a (Single Cell Sequencing),认为该技术将改变 a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-3-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 生物界和医学界 /span /a 的许多领域。 /p p    span style=" color: rgb(0, 112, 192) " 我们为什么要进行单细胞基因测序? /span /p p   传统的测序方法,无论是基因芯片或者二代基因测序技术(Next Generation Sequencing,NGS)都需要从超过10万个细胞中提取一大堆(bulk)DNA或者RNA,而提供的信息是一大堆细胞的平均值。但是传统的方法,对于理解人体细胞的多样性有着明显的局限性。 /p p   在人体的每一个组织中,比如说,肾脏组织,拥有着大量不同的细胞类型,每一种细胞类型有着独特的起源和功能。每一个细胞的谱系和发展的状态又决定了每个细胞如何和周围的细胞和环境如何反应,把基因测序应用到单个细胞层面,对于我们理解细胞的起源,功能,变异等有着至关重要的作用。 /p p   关于二代基因测序已经详细在我们的前期两篇深度报告中进行了介绍,在本篇报告中,我们将详细解读单细胞基因测序,以及该技术对癌症,辅助生殖以及免疫学等领域带来的新的突破。 /p p    strong 一、单细胞基因测序行业:刚启程,面临引爆点 /strong /p p   BCC Research的一项分析报告指出,2014年全球单细胞分析(Single-cell Analysis)的市场达5.4亿美金,预测将从2015年的6.3亿美金增长到2020年的16亿美金,复合增长率达21%。根据GENReports的报告,关于单细胞分析的文章发表在过去的几年也有着爆发性的增长。 /p p style=" text-align: center "   图2:单细胞分析的文章发表数量 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/006c9fd7-a2cd-46b2-a028-18b51b5ea3cd.jpg" / /p p style=" text-align: center "   资料来源:GEN,民生证券研究院 /p p   其中,传统的单细胞基因组学主要是由基因芯片和PCR主导的,随着二代基因测序的成本以超摩尔定律下降,目前单细胞基因组学逐渐由二代基因测序技术接棒。 /p p   和qPCR在90年代的发展一样,目前所有的刺激因素(高度的科研兴趣,生物医药巨头公司的关注等)正在解锁这个市场,单细胞基因测序行业正面临引爆点。 /p p   strong  二、单细胞基因测序的基本流程:单细胞分离--基因组扩增--测序和分析 /strong /p p   单细胞测序,简单地说,主要经过如下的步骤:单细胞的分离--DNA/RNA的提取和扩增(全基因组扩增和全转录组扩增)---测序以及后续的分析和应用。 /p p style=" text-align: center "   图3:单细胞测序的步骤 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/782ee757-3c06-4a1b-9103-4c7336ac2929.jpg" / /p p style=" text-align: center "   资料来源:Recent advances and current issues in single-cell /p p style=" text-align: center " sequencing of tumors,民生证券研究院 /p p   2.1 单细胞的捕捉和分离 /p p   单细胞测序的第一步是单细胞的分离和提取,目前的方法主要有如下几种方法:流式细胞术,激光捕获显微切割技术以及微流控技术。 /p p style=" text-align: center "   图4:单细胞分离的三种方式:流式细胞术,激光捕获显微切割以及微流控技术 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/ea66e087-c9b2-4930-a4d3-50025543fe8b.jpg" / /p p style=" text-align: center "   资料来源:Technologies for Single-Cell Isolation,民生证券研究院 /p p   1)流式细胞术 (Flow Cytometry) /p p   是指通过对于悬浮于流体中的细胞或者其他颗粒进行定量分析和分选的技术。在各种流式细胞仪中,大家主要讨论的是荧光活化细胞分类计FACS(Fluorescence Activated Cell Sorting)系统分离单细胞。定量原理:待测细胞经特异性荧光染料染色后,加入样品管中,经过测量区,由染色后的细胞在激光照射下的荧光产生的电信号来进行定量分析 分选原理:通过流束形成含有细胞的带电液滴来实现的。 /p p   2)激光捕获显微切割技术Laser Capture Microdissection(LCM) /p p   LCM技术可以在显微镜直视下快速、准确获取所需的单一细胞亚群,甚至单个细胞,从而成功解决了组织中细胞异质性问题。其基本原理是通过一低能红外激光脉冲激活热塑模-乙烯乙酸乙烯酯(EVA)膜,在直视下选择性地将目标细胞或组织碎片粘到该膜上。 /p p   3)微流控技术(Microfluidics) /p p   微流控技术是一种用于精确控制微量液体的技术。微流控芯片是实施该技术的平台,通常通过细微的管道对液体实施操控,微流控对液体的操控尺度, 刚好适合于单细胞样品的处理操作。 /p p   2.2 全基因组扩增 (Whole Genome Amplification. WGA)/ 全转录组扩增 (Whole Transcriptome Amplification,WTA):单细胞测序的难点 /p p   2.2.1 主要的三种全基因组扩增技术,各有优势 /p p   由于在单细胞中的DNA和RNA的数量非常小(几个pg),用传统的测序仪无法检测,所以科学家们必须首先对这些分子进行扩增,同时尽量的减少错误。目前的全基因组扩增技术主要有三种:简并寡核苷酸引物PCR扩增(DOP-PCR),多重置换扩增(MDA) 和基于多次退火和成环的扩增循环(MALBAC)。 /p p   1)基于PCR技术的全基因组扩增技术,例如DOP-PCR(简并寡核苷酸引物PCR扩增) /p p   DOP-PCR是一种部分随机引物法, 其引物构成为3& amp #8242 -ATGTGG-NNNNNN-CCGACTCGAG-5& amp #8242 ;主要 利用3& amp #8242 端ATGTGG这6个在人体中分布频率极高的碱基作为引导, 以6个碱基的随机序列来决定特异的扩增起始位点,从而达到扩增整个基因组的目的。 /p p   2)多重置换扩增(MDA) /p p   MDA是一种等温的链置换扩增反应, 其使用随机的6碱基引物在多位点和模板链结合, 接着利用 phi29DNA 聚合酶很强的模板结合和置换能力实现对全基因组的扩增。 /p p style=" text-align: center "   图5:DOP-PCR和MDA全基因组扩增技术简介 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/d9b0aef0-e3b1-4c63-8313-c20796064bb3.jpg" / /p p style=" text-align: center "   资料来源:Single-cell genome sequencing: current state /p p style=" text-align: center " of the science,民生证券研究院 /p p   3)MALBAC(Multiple annealing and looping-based amplification cycles)基于多次退火和成环的扩增循环 /p p   通过采用特殊引物,使得扩增子的结尾互补而成环,从而达到近乎线性的扩增,该技术是哈佛大学谢晓亮教授团队发明的。 /p p style=" text-align: center "   图6:MALBAC全基因组扩增的示意图 /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/83e2f828-d990-4b9c-afd6-bd692fc52888.jpg" / /p p style=" text-align: center "   资料来源:Single-cell sequencing by Doug Brutlag,民生证券研究院 /p p   表1:三种类型的全基因组扩增方式比较 /p p style=" text-align: center " img width=" 600" height=" 302" title=" QQ截图20160302115018.jpg" style=" width: 600px height: 302px " src=" http://img1.17img.cn/17img/images/201603/noimg/297e4e6e-a134-4101-a297-456cd703c3af.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center "   资料来源:Single-Cell Sequencing Technologies: Current and Future, /p p style=" text-align: center " 民生证券研究院 /p p   Navin 在研究报告中指出(来源:Cancer genomics: one cell at a time),对于检测CNV(Copy Number Variation)的时候,DOP-PCR以及MALBAC较有优势,另一方面, MDA方法一般用来检测点突变。Gawad et al., (2015)更是指出,三种全基因组扩增技术并没有明显的胜者,具体方法的使用取决于研究的目的。 /p p   2.2.2 全转录组扩增 /p p   一个哺乳动物的单细胞大约含有10pg的RNA,其中mRNA大约在0.1-0.5pg,并不能满足目前测序平台的要求,所以需要进行全转录组扩增技术。 /p p   单细胞中提取的RNA首先经过逆转录出cDNA,然后对逆转录生成的cDNA进行扩增。目前主要的转录组扩增技术主要包括如下几种:传统的PCR,改进的PCR,T7-in vitro 体外转录组扩增以及Phi29聚合酶扩增。 /p p   三. 单细胞测序的主要应用:癌症,辅助生殖以及免疫学领域 /p p   当单细胞被分离,细胞内的DNA/RNA被提取和扩增后,二代基因测序(Next Generation Sequencing)可以用来进行后续的测序。当把基因测序应用于单个细胞层面,在下游应用领域有着先天独到的优势。 /p p   3.1单细胞基因测序技术有助研究癌症起因和治疗 /p p   首先谈一下癌症的异质性:中晚期的肿瘤或由一系列的肿瘤克隆组成,每一种克隆有着独立的变异,形态和药物反应。对于肿瘤克隆精准的诊断非常重要,因为一个占据原发性肿瘤5.1%的亚克隆种群在复发的时候可能成为主要的致病因素。 /p p style=" text-align: center "   图7:肿瘤的异质性 /p p style=" text-align: center " img title=" 6.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/88b49609-3a47-4577-ad2a-7e9b36b6a4dc.jpg" / /p p style=" text-align: center "   资料来源:Illumina,民生证券研究院 /p p   实体瘤由一系列不同的细胞组成,包括癌症纤维细胞,内皮细胞,淋巴细胞,巨噬细胞等。同时,实体瘤由多个肿瘤克隆亚种群构成,使得临床样本的分析更加复杂。当多个肿瘤克隆同时存在时,标准方法检测的要么是平均信号要么是主要的克隆群体(并不一定是最致病的)的信号。 /p p   而同时,肿瘤的异质性和癌症产生抗药性以及转移密切相关,所以,单细胞测序开始用来检测肿瘤内基因异质性,对于癌症起因以及后续治疗的研究非常关键和重要。 /p p   例如,Navin et al.(2011), 利用单细胞基因测序的方法(流式细胞术提取细胞-全基因组扩增-NGS),在某个乳腺癌肿瘤组织中检测了100个乳腺癌细胞的CNVs,覆盖度大约6%,发现了三种完全不一样的克隆亚种群。 /p p   除了肿瘤细胞,单细胞基因测序同样可以应用于循环肿瘤细胞(Circulating tumor cells)和外周血播散肿瘤细胞DTC(disseminated tumor cells),该部分内容将在后续的研究报告中深入讨论。 /p p   3.2 单细胞基因测序助力辅助生殖 /p p   PGS(Pre-implantation Genetic Screening)是胚胎注入前遗传学筛查,主要是通过检测胚胎的23对染色体结构、数目,来分析胚胎是否有遗传物质异常 PGD(Pre-implantation Genetic Diagnosis),主要用于检测胚胎是否携带遗传缺陷的基因,关于PGS/PGD的介绍,请参考我们之前的行业深度《基因+大数据的颠覆:从癌症基因测序到辅助生殖》。 /p p   PGD过程中,目前主要有三种方式获得活检材料:1)卵子的第一极体和第二极体 2)培养至第3天胚胎卵裂期的卵裂球细胞(一般取1-2个细胞) 3)培养第5天左右的囊胚细胞。 /p p   例如,牛津大学的Dr.Dagan Wells团队,通过对囊胚细胞进行单细胞基因测序,选择健康的胚胎植入。另外,谢晓亮教授团队通过对女方卵细胞极体细胞进行测序,结合胚胎选择,选择正常的胚胎移植。 /p p style=" text-align: center "   图8:卵母细胞减数分裂产生极体的过程 /p p style=" text-align: center " img title=" 7.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/a1c2724b-0f2c-4b27-9eca-d304dccd613c.jpg" / /p p style=" text-align: center "   资料来源:Genome Analyses of Single Human Oocytes,民生证券研究院 /p p style=" text-align: center "   (注:其中PB1和PB2是第一极体和第二极体) /p p   3.3 单细胞基因测序打开免疫报多样性研究之门 /p p   用单细胞基因测序分析免疫细胞的原因是现存的多样的病原体导致了免疫细胞的高度异质性,传统的检测方法,取样来自一大堆细胞,低估了单个免疫细胞的多样性,所以我们需要更加精确检测单个免疫细胞的遗传物质,从而理解机体复杂的免疫机制。正如开篇提到的Juno收购的单细胞基因测序公司AbVitro致力于T细胞和B细胞的基因测序。 /p p   图9展示了对单个T细胞受体基因测序(TCR Sequencing)的流程。TCR & amp #945 和& amp #946 mRNA经过逆转录,扩增,重叠延伸,目的基因被选择性地进行PCR扩增以及后续的分析。 /p p style=" text-align: center "   图9:TCR Sequencing过程 /p p style=" text-align: center " img title=" 8.png" src=" http://img1.17img.cn/17img/images/201603/noimg/04e7c357-80bd-4709-89dc-92ee07a28fa9.jpg" / /p p style=" text-align: center "   资料来源:Pairing of T-cell receptor chains via emulsion PCR, /p p style=" text-align: center " Illumina,民生证券研究院 /p p   四. 单细胞基因测序未来的发展之路 /p p   在目前来看,单细胞基因测序还处在非常初级的阶段,也面临很多技术的挑战,包括:如何高效的分离细胞,全基因组无偏差的扩增,以及下游的数据分析等。但各大生物医药巨头都已经目光锁定了这个方向,除了今年初Juno收购AbVitro(单个T细胞和B细胞进行基因测序),去年八月BD公司收购了单细胞测序公司Cellular Research。Illumina也通过和Clontech合作,推出了单细胞RNA测序服务。 /p p   我们认为,未来的基因测序一定朝着更精准,更微观的方向前进,如今,单细胞测序正面临着一场革命,在单个细胞层面让我们在前所未有的水平理解基因组学,表观基因组学和转录组学的多样性。 /p p   背景案例: /p p   2016年1月,肿瘤免疫疗法的领头羊公司Juno宣布以1.25亿美金的股票和现金收购波士顿的一家单细胞测序公司:AbVitro Inc.。 AbVitro公司的技术起源于哈佛大学George Church的实验室,AbVitro的技术包括对单个T细胞和B细胞进行基因测序,帮助科学家们理解T细胞受体(T cell receptor & amp #945 和& amp #946 链的基因的复杂性。 /p p   图:Juno收购AbVitro之后的布局 /p p style=" text-align: center " img title=" 9.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/6ef1eca1-dc46-4600-9c6d-d95f77a85f9e.jpg" / /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制