当前位置: 仪器信息网 > 行业主题 > >

临床生检测

仪器信息网临床生检测专题为您提供2024年最新临床生检测价格报价、厂家品牌的相关信息, 包括临床生检测参数、型号等,不管是国产,还是进口品牌的临床生检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合临床生检测相关的耗材配件、试剂标物,还有临床生检测相关的最新资讯、资料,以及临床生检测相关的解决方案。

临床生检测相关的论坛

  • 质谱技术在临床生化检测中的应用

    早在1886年, Goldstein发明了早期质谱仪常用的离子源。1906年, 诺贝尔物理学奖得主、英国著名物理学家Thomson发明了世界上第1台质谱仪。1942年第1台单聚焦质谱仪的商业化推广代表着质谱技术终于突破了理论发展的瓶颈阶段。迄今为止, 质谱技术已经为化合物结构研究提供了大量有用的信息, 被广泛应用于地质、环境化学、有机化学、制药、生命科学等领域[1]。  质谱技术是测量分子质荷比(m/z)的分析方法。它通过将分子电离后形成带电离子, 并按照离子m/z的大小顺序排列形成谱图数据。质谱仪是一类可以将样品分子转化成带电离子, 并利用适当的电场、磁场实现离子m/z分离, 进而检测每种离子的峰强度进行物质分析的仪器。质谱仪主要由进样系统、离子源、质量分析器、检测器和数据处理系统5个部分组成, 其中核心部件为离子源与质量分析器。离子源分为硬电离和软电离。硬电离如电子轰击电离可以给予样品分子较大的能量, 导致样品产生的离子碎片很小; 软电离则较为温和, 可以产生较大的离子碎片, 如电喷雾电离、基质辅助激光解吸电离和大气压化学电离等。随着软电离技术的发展与不断成熟, 实现了高分辨率与高质量检测范围的结合, 使得生物大分子质谱分析成为可能, 从而开辟了一个新的领域— — 生物质谱, 并在生命科学领域得到了广泛应用和飞速发展。质量分析器的作用是根据m/z将电离产生的带电离子分离, 主要有时间飞行、四级杆、离子阱、傅立叶变换离子回旋共振质量分析器等多种类型。目前用于生命科学领域的质谱仪多由几种质量分析器串联而成, 在空间或时间上实现了母离子选择、母离子碎裂、子离子检测功能并提供了离子碎裂的特征峰。这些特征峰是分子定性的依据, 使得质谱检测结果具有极高的特异性[1, 2, 3]。  一、质谱在临床生化检测中的应用  由于生物质谱技术具有特异性好、灵敏度高、选择性广、检测速度快等特点, 所以近年来在临床生化检验中的应用越来越广泛。目前国际上已经被广泛应用的质谱临床生化检验项目包括新生儿遗传代谢病筛查、维生素D检测、激素检测、血药浓度监测、微量元素检测等。  1. 新生儿遗传代谢病筛查 新生儿遗传代谢病筛查是指在新生儿期对某些危害严重的先天性遗传代谢疾病进行群体筛查, 并进行早期治疗, 从而避免或减轻疾病的影响。新生儿遗传代谢病筛查起源于1961年对苯丙酮尿症的筛查。此后随着医疗技术的发展, 越来越多的遗传代谢病被引入其中。我国自上世纪80年代初期开展的新生儿遗传代谢病筛查主要包括先天性甲状腺功能减退症、苯丙酮尿症、先天性肾上腺皮质增生以及葡萄糖-6-磷酸脱氢酶缺乏症等, 每种筛查需要单独进行。目前国际上美、欧、日等国家都已经使用串联质谱技术对多个代谢产物进行联合检测, 同时筛查超过30种疾病, 除以上提到的几项外, 还包括囊胞性纤维症、半乳糖血症、氧化脂肪酸缺陷症、有机酸尿症和尿素循环缺陷症等[4, 5]。在我国, 顾学范教授等多个研究团队已经利用该技术进行了大量临床检测与研究, 取得了良好效果[6]。同时多家第三方医学实验室和妇幼保健机构也可以提供项目服务。因此, 对于新生儿遗传代谢病筛查的质量控制与室间质评是目前急需解决的关键问题之一。  2. 维生素D检测 维生素D是一种脂溶性维生素, 化学本质为固醇类衍生物, 目前也被认为是一种类固醇激素。维生素D存在于部分天然食物中, 人体皮下储存有由胆固醇衍生出的7-脱氢胆固醇, 受紫外线照射后即可转变为维生素D3。近年来发现维生素D缺乏不仅可以造成骨质疏松症, 还与糖尿病、癌症、心血管疾病等相关。体内保持足够的维生素D对糖尿病等都有一定的预防作用。目前维生素缺乏已经成为一个全球性问题, 对体内维生素D含量的检测受到了越来越多的关注。25-羟基维生素D是体内维生素D的主要代谢形式, 包括25-羟基维生素D2和25-羟基维生素D3两种形式, 其含量可以代表体内维生素D的水平。目前国内外对血清中25-羟基维生素D的检测方法主要有放射免疫、竞争蛋白结合法以及新兴的串联质谱法。与传统方法相比, 串联质谱法定量测定25-羟基维生素D具有更好的特异性和更强的抗干扰性, 并能实现25-羟基维生素D2和25-羟基维生素D3的同时测定[7]。郭守东等[8]利用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱法检测糖尿病患者血浆中25-羟基维生素D3水平, 发现糖尿病患者25-羟基维生素D3水平明显低于健康人。周宁等[9]利用串联质谱法对过敏性鼻炎儿童血清中的维生素D进行了检测, 发现患儿维生素D水平低于正常儿童, 且维生素D3尤为显著。由此可见, 当需要区分维生素D的不同代谢产物种类时, 串联质谱法比传统免疫法具有明显的技术优势。  3. 激素检测 对类固醇激素及其代谢产物的检测是生物质谱技术在临床生化检验中一个非常重要的项目。通过质谱定量检测, 可以判断相应的类固醇激素与疾病的相关性[10, 11]。目前利用质谱技术可以对睾酮、脱氢睾酮、雄酮、雌酮、雌二醇和雌三醇等多种激素进行定量检测, 进而对相关疾病进行临床诊断和治疗, 如先天性肾上腺增生症、家族性高醛甾酮过多症、原发性醛固酮增多症等[1]。丁一峰等[12]利用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用法分析尿液中的类固醇, 实现多种激素同时检测, 且不同激素之间没有交叉反应, 准确性和灵敏度较好, 并证明类固醇激素水平与肾上腺和性腺等类固醇激素代谢异常疾病有关。黄河花等[13]建立了一种基于电喷雾电离质谱同时检测脱氢表雄酮、睾酮和雄酮的定量方法, 检测快速、灵敏度高、准确性好。  4. 血药浓度监测 在临床疾病治疗中, 很多药物的浓度需要严格限定在某一合适范围, 过少达不到治疗效果, 过多则可能引起毒性或成瘾反应, 造成不良后果, 给患者带来巨大痛苦。对这些药物浓度的检测目前我国主要应用免疫化学方法。这种方法虽简单易行, 但只能检测少数几种药物, 无法满足临床检测的要求。而且一般药物在体内的浓度都很低, 要求检测方法具有高灵敏度。近年来, 质谱技术逐渐成为药物浓度检测的重要手段。多种药物均可以利用质谱技术进行准确检测, 而且可以实现多药物同时检测, 提高了临床检测工作的效率。目前国际上已经在临床开展的药物浓度监测项目包括器官移植患者使用的免疫抑制剂、疼痛治疗药物、抗精神病药物、麻醉药、抗逆转录病毒药物等。同时随着质谱技术的不断发展和完善, 其有望成为药物及其代谢产物检测的“ 金标准” [14]。曲素欣等[15]建立了基于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测卡马西平浓度的方法, 并研究了该药物与癫痫疗效的关系。该检测方法特异性强、操作方便, 具有很好的灵敏度和准确性, 且重现性良好。崔刚等[16]建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测肾移植患者体内霉酚酸浓度的方法。该方法快速、准确, 可广泛应用于器官移植患者血药浓度的临床监测中。  5. 痕、微量元素检测 人体元素含量可以作为很多疾病的标志物, 检测人体痕、微量元素可以辅助诊断某些临床疾病和职业病。元素检测中常用的方法为发射光谱法和质谱法。质谱法可以实现多元素同时检测, 且灵敏度高、检测限低、动态范围宽, 可以直接对血液样品进行检测。目前质谱技术已成为无机元素分析的主要方法之一, 已建立了几十种痕、微量元素的检测方法, 广泛应用于全血、血清、尿液和头发中砷、铅等有害重金属以及铁、锌、硒等人体微量元素的检测[17]。张文洁等[18]利用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法对慢性肾炎患者血清中的微量元素做了检测, 发现慢性肾炎患者血清中钠、钾等元素与正常人无明显差异, 而铝、铁、锌等明显低于正常人。该方法可以对患者血液中微量元素的变化做实时监测, 为慢性肾炎的临床治疗提供指导。欧阳珮珮等[19]建立了基于质谱法的分析方法并对全血中5种微量元素同时做了检测, 此方法检出限低、灵敏度高、准确性好, 元素之间干扰较小, 符合复杂生物样品多元素同时检测的要求。  6. 其他项目 除以上项目外, 质谱技术的临床研究也已全面开展。叶军等[20]利用质谱技术对临床诊断不明的神经系统、消化系统以及皮肤损害患儿做了检测, 诊断患儿为多种羧化酶缺乏症, 并对生物素治疗过程做了监测, 发现疗效显著。  二、总结与展望  质谱技术自诞生以来发展十分迅速, 在临床生化检验中的作用越来越明显, 成为临床检验中的重要新型工具。质谱技术较其他方法具有更高的特异性、灵敏度、准确度、精确度, 且检出限低, 不受抗体或特殊生化反应的限制, 在临床应用中具有很好的前景。新生儿遗传代谢病筛查等多个项目已经在临床检验中得到广泛应用。  相比较而言, 我国临床生化检验中质谱技术的应用还非常有限, 与国外发展水平差异较大, 很多相关部分还需要进一步完善, 例如:质谱检测数据的判断标准、技术方法的掌握与人员培训、质量控制体系的建立、收费渠道与收费标准的确定等等。目前我国串联质谱技术进行临床生化检测的项目单一, 主要集中于少量第三方检测机构与妇幼保健单位, 独立于大型综合医疗机构之外, 不利于临床质谱技术的进一步深入发展。因此, 从临床需求出发, 结合医院实际情况, 完善技术与管理方案, 力求形成临床、科研、政府管理部门密切沟通合作的工作模式是发展质谱等新型检测技术的有效途径。

  • 质谱技术在临床生化检测中的应用

    早在1886年, Goldstein发明了早期质谱仪常用的离子源。1906年, 诺贝尔物理学奖得主、英国著名物理学家Thomson发明了世界上第1台质谱仪。1942年第1台单聚焦质谱仪的商业化推广代表着质谱技术终于突破了理论发展的瓶颈阶段。迄今为止, 质谱技术已经为化合物结构研究提供了大量有用的信息, 被广泛应用于地质、环境化学、有机化学、制药、生命科学等领域[1]。质谱技术是测量分子质荷比(m/z)的分析方法。它通过将分子电离后形成带电离子, 并按照离子m/z的大小顺序排列形成谱图数据。质谱仪是一类可以将样品分子转化成带电离子, 并利用适当的电场、磁场实现离子m/z分离, 进而检测每种离子的峰强度进行物质分析的仪器。质谱仪主要由进样系统、离子源、质量分析器、检测器和数据处理系统5个部分组成, 其中核心部件为离子源与质量分析器。离子源分为硬电离和软电离。硬电离如电子轰击电离可以给予样品分子较大的能量, 导致样品产生的离子碎片很小 软电离则较为温和, 可以产生较大的离子碎片, 如电喷雾电离、基质辅助激光解吸电离和大气压化学电离等。随着软电离技术的发展与不断成熟, 实现了高分辨率与高质量检测范围的结合, 使得生物大分子质谱分析成为可能, 从而开辟了一个新的领域— — 生物质谱, 并在生命科学领域得到了广泛应用和飞速发展。质量分析器的作用是根据m/z将电离产生的带电离子分离, 主要有时间飞行、四级杆、离子阱、傅立叶变换离子回旋共振质量分析器等多种类型。目前用于生命科学领域的质谱仪多由几种质量分析器串联而成, 在空间或时间上实现了母离子选择、母离子碎裂、子离子检测功能并提供了离子碎裂的特征峰。这些特征峰是分子定性的依据, 使得质谱检测结果具有极高的特异性[1, 2, 3]。一、质谱在临床生化检测中的应用由于生物质谱技术具有特异性好、灵敏度高、选择性广、检测速度快等特点, 所以近年来在临床生化检验中的应用越来越广泛。目前国际上已经被广泛应用的质谱临床生化检验项目包括新生儿遗传代谢病筛查、维生素D检测、激素检测、血药浓度监测、微量元素检测等。1. 新生儿遗传代谢病筛查新生儿遗传代谢病筛查是指在新生儿期对某些危害严重的先天性遗传代谢疾病进行群体筛查, 并进行早期治疗, 从而避免或减轻疾病的影响。新生儿遗传代谢病筛查起源于1961年对苯丙酮尿症的筛查。此后随着医疗技术的发展, 越来越多的遗传代谢病被引入其中。我国自上世纪80年代初期开展的新生儿遗传代谢病筛查主要包括先天性甲状腺功能减退症、苯丙酮尿症、先天性肾上腺皮质增生以及葡萄糖-6-磷酸脱氢酶缺乏症等, 每种筛查需要单独进行。目前国际上美、欧、日等国家都已经使用串联质谱技术对多个代谢产物进行联合检测, 同时筛查超过30种疾病, 除以上提到的几项外, 还包括囊胞性纤维症、半乳糖血症、氧化脂肪酸缺陷症、有机酸尿症和尿素循环缺陷症等[4, 5]。在我国, 顾学范教授等多个研究团队已经利用该技术进行了大量临床检测与研究, 取得了良好效果[6]。同时多家第三方医学实验室和妇幼保健机构也可以提供项目服务。因此, 对于新生儿遗传代谢病筛查的质量控制与室间质评是目前急需解决的关键问题之一。2. 维生素D检测维生素D是一种脂溶性维生素, 化学本质为固醇类衍生物, 目前也被认为是一种类固醇激素。维生素D存在于部分天然食物中, 人体皮下储存有由胆固醇衍生出的7-脱氢胆固醇, 受紫外线照射后即可转变为维生素D3。近年来发现维生素D缺乏不仅可以造成骨质疏松症, 还与糖尿病、癌症、心血管疾病等相关。体内保持足够的维生素D对糖尿病等都有一定的预防作用。目前维生素缺乏已经成为一个全球性问题, 对体内维生素D含量的检测受到了越来越多的关注。25-羟基维生素D是体内维生素D的主要代谢形式, 包括25-羟基维生素D2和25-羟基维生素D3两种形式, 其含量可以代表体内维生素D的水平。目前国内外对血清中25-羟基维生素D的检测方法主要有放射免疫、竞争蛋白结合法以及新兴的串联质谱法。与传统方法相比, 串联质谱法定量测定25-羟基维生素D具有更好的特异性和更强的抗干扰性, 并能实现25-羟基维生素D2和25-羟基维生素D3的同时测定[7]。郭守东等[8]利用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱法检测糖尿病患者血浆中25-羟基维生素D3水平, 发现糖尿病患者25-羟基维生素D3水平明显低于健康人。周宁等[9]利用串联质谱法对过敏性鼻炎儿童血清中的维生素D进行了检测, 发现患儿维生素D水平低于正常儿童, 且维生素D3尤为显著。由此可见, 当需要区分维生素D的不同代谢产物种类时, 串联质谱法比传统免疫法具有明显的技术优势。3. 激素检测对类固醇激素及其代谢产物的检测是生物质谱技术在临床生化检验中一个非常重要的项目。通过质谱定量检测, 可以判断相应的类固醇激素与疾病的相关性[10, 11]。目前利用质谱技术可以对睾酮、脱氢睾酮、雄酮、雌酮、雌二醇和雌三醇等多种激素进行定量检测, 进而对相关疾病进行临床诊断和治疗, 如先天性肾上腺增生症、家族性高醛甾酮过多症、原发性醛固酮增多症等[1]。丁一峰等[12]利用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用法分析尿液中的类固醇, 实现多种激素同时检测, 且不同激素之间没有交叉反应, 准确性和灵敏度较好, 并证明类固醇激素水平与肾上腺和性腺等类固醇激素代谢异常疾病有关。黄河花等[13]建立了一种基于电喷雾电离质谱同时检测脱氢表雄酮、睾酮和雄酮的定量方法, 检测快速、灵敏度高、准确性好。4. 血药浓度监测在临床疾病治疗中, 很多药物的浓度需要严格限定在某一合适范围, 过少达不到治疗效果, 过多则可能引起毒性或成瘾反应, 造成不良后果, 给患者带来巨大痛苦。对这些药物浓度的检测目前我国主要应用免疫化学方法。这种方法虽简单易行, 但只能检测少数几种药物, 无法满足临床检测的要求。而且一般药物在体内的浓度都很低, 要求检测方法具有高灵敏度。近年来, 质谱技术逐渐成为药物浓度检测的重要手段。多种药物均可以利用质谱技术进行准确检测, 而且可以实现多药物同时检测, 提高了临床检测工作的效率。目前国际上已经在临床开展的药物浓度监测项目包括器官移植患者使用的免疫抑制剂、疼痛治疗药物、抗精神病药物、麻醉药、抗逆转录病毒药物等。同时随着质谱技术的不断发展和完善, 其有望成为药物及其代谢产物检测的“ 金标准” [14]。曲素欣等[15]建立了基于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测卡马西平浓度的方法, 并研究了该药物与癫痫疗效的关系。该检测方法特异性强、操作方便, 具有很好的灵敏度和准确性, 且重现性良好。崔刚等[16]建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测肾移植患者体内霉酚酸浓度的方法。该方法快速、准确, 可广泛应用于器官移植患者血药浓度的临床监测中。5. 痕、微量元素检测人体元素含量可以作为很多疾病的标志物, 检测人体痕、微量元素可以辅助诊断某些临床疾病和职业病。元素检测中常用的方法为发射光谱法和质谱法。质谱法可以实现多元素同时检测, 且灵敏度高、检测限低、动态范围宽, 可以直接对血液样品进行检测。目前质谱技术已成为无机元素分析的主要方法之一, 已建立了几十种痕、微量元素的检测方法, 广泛应用于全血、血清、尿液和头发中砷、铅等有害重金属以及铁、锌、硒等人体微量元素的检测[17]。张文洁等[18]利用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法对慢性肾炎患者血清中的微量元素做了检测, 发现慢性肾炎患者血清中钠、钾等元素与正常人无明显差异, 而铝、铁、锌等明显低于正常人。该方法可以对患者血液中微量元素的变化做实时监测, 为慢性肾炎的临床治疗提供指导。欧阳珮珮等[19]建立了基于质谱法的分析方法并对全血中5种微量元素同时做了检测, 此方法检出限低、灵敏度高、准确性好, 元素之间干扰较小, 符合复杂生物样品多元素同时检测的要求。6. 其他项目除以上项目外, 质谱技术的临床研究也已全面开展。叶军等[20]利用质谱技术对临床诊断不明的神经系统、消化系统以及皮肤损害患儿做了检测, 诊断患儿为多种羧化酶缺乏症, 并对生物素治疗过程做了监测, 发现疗效显著。二、总结与展望质谱技术自诞生以来发展十分迅速, 在临床生化检验中的作用越来越明显, 成为临床检验中的重要新型工具。质谱技术较其他方法具有更高的特异性、灵敏度、准确度、精确度, 且检出限低, 不受抗体或特殊生化反应的限制, 在临床应用中具有很好的前景。新生儿遗传代谢病筛查等多个项目已经在临床检验中得到广泛应用。相比较而言, 我国临床生化检验中质谱技术的应用还非常有限, 与国外发展水平差异较大, 很多相关部分还需要进一步完善, 例如:质谱检测数据的判断标准、技术方法的掌握与人员培训、质量控制体系的建立、收费渠道与收费标准的确定等等。目前我国串联质谱技术进行临床生化检测的项目单一, 主要集中于少量第三方检测机构与妇幼保健单位, 独立于大型综合医疗机构之外, 不利于临床质谱技术的进一步深入发展。因此, 从临床需求出发, 结合医院实际情况, 完善技术与管理方案, 力求形成临床、科研、政府管理部门密切沟通合作的工作模式是发展质谱等新型检测技术的有效途径。参考文献[1] 韩丽乔, 庄俊华, 黄宪章. 质谱技术及其在临床检验中的应用[J]. 检验医学, 2013, 28(3): 252-256. [2] 武汉大学. 分析化学(下册)[M]. 5版. 北京: 高等教育出版社, 2007: 633-634. [3] YE H, GEMPERLINE E, LI L. A vision for better health: mass spectrometry imaging for clinical diagnostics[J]. Clin Chim Acta, 2013, 420: 11-22. [4] 王洪允, 江骥, 胡蓓. 串联质谱在新生儿遗传代谢性疾病筛查中的应用[J]. 质谱学报, 2011, 32(1): 24-30. [5] LA MARCA G. Mass spectrometry in clinical chemistry: the case of newborn screening[J]. J Pharm Biomed Anal, 2014, 101: 174-182.[6] 李峰, 顾学范. 串联质谱技术在临床检验中的应用进展[J]. 国外医学临床生物化学与检验学分册, 2004, 25(4): 319-321. [7] 程雅婷, 董衡, 梁晓翠, 等. 人血清中25羟基维生素D测定的两种质谱方法比较[J]. 中华临床医师杂志: 电子版, 2013, 7(14): 6535-6537. [8] 郭守东, 崔华东, 桑慧, 等. [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱法检测糖尿病患者血浆25-羟基维生素D3[J]. 泰山医学院学报, 2014, 35(3): 161-164. [9] 周宁, 曹梅馨, 黎冬梅, 等. 过敏性鼻炎儿童血清维生素 D 水平的临床研究[J]. 中国医药导报, 2012, 9(17): 180-181. [10] PEITZSCH M, DEKKERS T, HAASE M, et al. An [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS method for steroid profiling during adrenal venous sampling for investigation of primary aldosteronism[J]. J Steroid Biochem Mol Biol, 2014, 145: 75-84.[11] ZHAO X, XU F, QI B, et al. Serum metabolomics study of polycystic ovary syndrome based on liquid chromatography-mass spectrometry[J]. J Proteome Res, 2014, 13(2): 1101-1111.[12] 丁一峰, 顾学范, 叶军, 等. [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱分析新生儿尿液中类固醇激素方法的建立[J]. 临床儿科杂志, 2010, 28(8): 748-751.[13] 黄河花, 刘东阳, 胡蓓, 等. 高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法同时定量测定人血清中脱氢表雄酮、睾酮及雄酮[J]. 药物分析杂志, 2012, 32(2): 210-216.[14] 任秀华, 杜光, 刘东. [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法测定人血浆中甲氨蝶呤的血药浓度及其临床应用[J]. 中国医院药学杂志, 2014, 34(10): 801-804. [15] 曲素欣, 陈湛芳. [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]法监测癫痫患儿卡马西平血药浓度及结果分析[J]. 中国医学创新, 2014, 7(26): 101-103.[16] 崔刚, 陈文倩, 刘晓, 等. 超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法测定肾移植患者体内霉酚酸的血药浓度[J]. 中国药房, 2013, 24(22): 2046-2048.[17] 张霖琳, 邢小茹, 吴国平, 等. 微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]测定人体血浆中30种痕量元素[J]. 光谱学与光谱分析, 2009, 29(4): 1115-1118.[18] 张文洁, 何学红, 赵友林, 等. [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法测定慢性肾炎患者血清中的微量元素[J]. 中华中医药学刊, 2009, 28(5): 1017-1019.[19] 欧阳珮珮, 吴惠刚, 黄诚, 等. 压力罐消解[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]法同时测定全血中5种微量元素[J]. 氨基酸和生物资源, 2014, 36(2): 70-72. [20] 叶军, 韩连书, 邱文娟, 等. 联合质谱技术在多种羧化酶缺乏症诊治中的应用研究[J]. 中国实用儿科杂志, 2008, 23(8): 582-585.

  • 质谱技术在临床微生物样本直接检测中的应用-1

    基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption/ionization-time of flight mass spectrometry, MALDI-TOF MS)是20世纪80年代发展起来的一种新型软电离有机质谱, 作为一种新兴的蛋白质组学检测技术, 现已广泛应用于生命科学及相关领域。同时作为一项新兴的微生物鉴定技术, 受到了国内外的广泛关注。与传统的生化表型鉴定方法和分子生物学方法相比, MALDI-TOF MS具有操作简单、快速、准确和经济的特点。早在1975年, ANHALT等[1]利用质谱仪结合高温裂解技术第1次完成了细菌的鉴定, 从此拉开了质谱鉴定细菌的“ 序幕” 。随着质谱检测技术的不断完善和发展, 近年来, MALDI-TOF MS已经成功应用于微生物的鉴定, 显示了其在细菌、酵母菌等鉴定方面均具有良好的应用价值。众多的研究表明, MALDI-TOF MS技术对培养出的纯菌落进行菌种鉴定具有很高的稳定性及准确性, 对常见细菌和酵母菌的属的鉴定率能达到97%~99%, 种的鉴定率也能达到85%~97% 另外, MALDI-TOF MS大大缩短了细菌鉴定的时间, 而且其成本也较常规鉴定方法低[2, 3]。除此之外, MALDI-TOF MS已经能够成功地用于部分微生物亚种水平的鉴定和细菌耐药性的检测, 但这种方法在大多数情况下是应用于培养出的纯菌落的鉴定[3]。  如果能够从临床样本中直接检测细菌/真菌, 突破细菌/真菌培养阳性率低、培养时间长的瓶颈, 为细菌/真菌感染性疾病的诊疗提供更快、更准确的病原学依据, 将对临床及时控制细菌/真菌感染性疾病起到更大的作用。国内外学者已尝试将质谱技术应用于临床样本的直接检测, 并取得了显著的进展。本文就MALDI-TOF MS技术在临床样本的直接检测应用作一综述。一、MALDI-TOF MS检测原理  MALDI-TOF MS技术用于微生物鉴定的实质就是检测具有属、种或亚型特异性的生物标志的质量信号, 主要是微生物菌体内高丰度、表达稳定和进化保守的核糖体蛋白。MALDI-TOF MS 仪器主要由基质辅助激光解吸离子源(MALDI)和飞行时间质量检测器(TOF)两部分组成。MALDI的原理是用一定强度的激光照射样本与基质形成的共结晶薄膜, 基质从激光中吸收能量而汽化, 并迅速降解, 使样本分解吸附, 基质和样本之间发生电荷转移从而使样本分子发生电离 TOF的原理是带有电荷的样本分子在电场作用下加速飞过飞行管道, 因为离子的质荷比与离子的飞行时间呈正比, 所以不同质量的离子因达到检测器的飞行时间不同而被检测, 以离子峰为纵坐标、离子质荷比为横坐标形成特征性的质量图谱。将不同种属微生物经MALDI-TOF分析所形成的质量图谱与数据库中的参考图谱进行比较, 从而实现对目标微生物种或菌株的区分和鉴定[2]。二、MALDI-TOF MS直接检测临床样本的流程  临床样本直接检测的流程主要包括3个部分:临床样本的预处理、样本上机检测和对比蛋白质指纹图谱数据库得出鉴定结果。由于目前报道最多的临床样本是阳性血培养瓶和中段尿样本, 下面将以这二者为例介绍其直接检测的流程, 其它临床样本的检测流程与之类似。(一)临床样本预处理  MALDI-TOF MS直接用于临床样本的检测有2个基本的要求:(1)临床样本中细菌的量。为了得到准确的鉴定图谱, MALDI-TOF MS技术对置于靶板上的细菌的最低检测限约为(1× 104)~(1× 106)cfu/mL。若要直接检测拟似血流感染的血液样本以及拟似泌尿系统感染的中段尿等临床样本中的病原菌, 首先必须富集细菌 (2)临床样本的质。由于血液和血培养瓶中的大分子成分如血红蛋白和其它蛋白成分、尿液中的白细胞等有机成分会干扰细菌的谱峰, 所以直接检测前需要采取预处理措施去除这些干扰因素。1.阳性血培养瓶直接检测 直接检测阳性血培养瓶的细菌浓度常常需要1× 107 cfu/mL[2, 4]。由于在血流感染患者血液中的细菌量常常很低(最低可 1~10 cfu/mL), 因此对血样本的直接检测需要一个增菌的过程, 即采用血培养瓶增菌。目前已报道的阳性血培养病原菌预处理程序各不相同, 但预处理过程主要包含了以下2个步骤:(1)将细菌从血细胞中分离出来。先应用温和去污剂(如吐温-80、十二磺基硫酸钠、皂素等)将血液中的血细胞溶解, 然后通过不同的流程(离心、洗涤)去除其它的干扰因素, 纯化要鉴定的细菌样本 (2)将菌体中的蛋白质抽提出来。最常用的是混合溶剂处理法, 使用甲酸/乙腈溶液对样本进行处理来抽提蛋白, 利用2种溶剂的混合作用将菌体表面的蛋白和存在于细胞内的低相对分子质量的高丰度蛋白提取出来, 实现对菌株的鉴定。虽然至今尚没有规范化的处理程序, 不过目前市场上已有商品化的阳性血培养瓶预处理试剂盒Sepsityper kit(Bruker)可以提高鉴定分数和鉴定准确率, 但是花费比较高, 处理程序也费时较长[5]。另外, HAMMARSTR? M等[6]建立了一种基于声学捕捉和集成选择性富集目标(integrated selective enrichment target, ISET)的新方法用于富集样本中的细菌, 快速、准确并且简化了人工操作, 有望替代传统的以离心为基础的分离方法。2.中段尿样本 要取得一个较高的鉴定成功率, 直接检测中段尿样本中病原菌至少需要的细菌数量是1× 105 cfu/mL[7, 8]。对尿样本的预处理程序较为简单, 主要有下面几个步骤:低速离心去除白细胞, 高速离心收集细菌, 沉淀, 经过洗涤、离心之后进行蛋白质的提取(常用的是甲酸、乙腈), 经高速离心后取1 μ L上清涂布到MALDI的靶板上, 在室温下干燥后即可进行检测。

  • 质谱技术在临床微生物样本直接检测中的应用-3

    (二)泌尿系统感染病原菌的快速检测  因泌尿系统感染的中段尿样本中的细菌量相对很高, 中段尿样本也是MALDI-TOF MS直接检测的理想选择[30], 并且常常是单一菌种感染, 避免了MALDI-TOF MS在鉴定混合菌样本的不足[31]。泌尿系统感染是人类常见的感染性疾病, 临床泌尿系统感染最常见的病原菌为大肠埃希菌(70%~95%)、腐生葡萄球菌(5%~10%)以及其它肠杆菌科细菌, 如奇异变形杆菌和肺炎克雷伯菌。有研究表明MALDI-TOF MS对尿液样本中这些细菌的鉴定效率和准确率要优于传统鉴定方法和其他鉴定系统[7, 32, 33]。1.鉴定效能 FERREIRA等[7]选取尿液中细菌大于1× 105 cfu/mL的样本进行直接的MALDI-TOF MS鉴定, 结果显示尿液样本经过差速离心法处理后, 可将91.8%的菌株鉴定到种、92.7%的菌株鉴定到属的水平。  杨溪等[33]使用MALDI-TOF MS技术对临床收集到的1 040份尿液样本进行直接快速检测, 共鉴定出含细菌的样本526份, 其中尿细菌培养菌落数≥ 1× 105 cfu/mL, 培养出1种/2种菌的尿液样本MALDI-TOF MS的直接鉴定率分别为92.7%(430/464)和75%(96/128)。MALDI-TOF MS直接检测法的鉴定结果与尿细菌培养法鉴定出的细菌菌种一致, 符合率为100%。2.与流式细胞术联用 怀疑泌尿系统感染的尿液样本一般经离心后取沉淀直接进行检测, 但考虑到临床上有60%~80%的尿液样本是阴性的, 为了减少分析的时间和人工的工作量, 有学者将MALDI-TOF MS与流式细胞术联用检测, 用流式细胞术筛除细菌数量不足的尿液样本, 而MALDI-TOF MS用来检测筛选结果为阳性的尿液样本, 取得了良好的鉴定效果[34, 35]。MARCH ROSSELLó 等[34]建立了这样一种微生物鉴定程序:先用流式细胞仪进行菌落计数筛查出单一细菌阳性的尿液样本, 然后再进行MALDI-TOF MS检测, 发现细菌数在1× 107 cfu/mL时是足够的细菌浓度, 有87.5%的敏感性, 而细菌数在(1× 105)~(1× 107)cfu/mL之间的样本经过4 h的预增菌, 得到用于分析的足够的细菌数量后, 可以达到91.7%的敏感性。3.细菌含量对鉴定结果的影响 由于中段尿中病原菌数 2.0), 而随着样本中细菌数的降低, 鉴定成功的比例和鉴定分数也在下降, 当菌落数 1× 104 cfu/mL的中段尿样本, 应用MALDI-TOF MS直接检测即可取得满意的鉴定效果。4.中段尿样本直接检测的新方法 DEMARCO等[31]近期描述了一种透析过滤的方法, 通过脱盐、分馏、富集等步骤对100例阳性尿液样本在MALDI-TOF MS分析前进行了预处理, 实验结果表明这种预处理方法能够正确地鉴定阳性尿液样本, 并且正确分类了所有临床相关菌尿症的阴性尿液样本, 包括一组污染的尿液样本和一组临床上无关紧要的定植菌。敏感性和特异性分别是67%和100%。5.中段尿样本直接检测的不足之处 与直接检测培养阳性的血样本一样, 对于含有2种或2种以上细菌感染的中段尿样本, MALDI-TOF MS常常表现为鉴定能力不足[33, 35] 尿液蛋白质如α -防御素[8]会造成鉴定结果不能正确匹配数据库 对酵母菌的鉴定能力也有待于进一步提高 对于核糖体蛋白序列差异很小的菌种也常常不能区分。(三)其它无菌体液  MALDI-TOF MS直接检测和鉴定其它无菌体液样本如脑脊液、胸腹水和关节液等中细菌的报道尚不多。NYVANG HARTMEYER等[37]首次报道了通过直接将脑脊液样本离心取上清直接进行MALDI-TOF MS分析, 肺炎链球菌性脑膜炎可以在30 min内做出诊断, 为后续治疗方案的选择和结果的解释提供了重要的参考依据。SEGAWA等[38]也用同样的方法对一例肺炎克雷伯菌引起的脑膜炎做出了诊断, 但同时也指出在实际应用中能获得的样本量少, 细菌数少可能会限制它的应用。另外, 还可将无菌体液样本转移到血培养瓶中进行孵育, 待报阳后进行检测也是可行的。有研究应用MALDI-TOF MS检测了46份液体, 包括移植养护液、关节液、深部脓疱样本、骨小孔样本用血培养基孵育, 发现44/46(96%)能鉴定到种的水平, 余下的2份被鉴定到属的水平[18]。四、总结与展望  MALDI-TOF MS是一种简单、快速、高通量和高效的微生物鉴定手段, 在临床样本直接检测方面较传统的鉴定方法具有更大的优势, 能显著降低样本检测的周转时间和成本, 但尚存在着一些不足之处, 主要表现在:(1)MALDI-TOF MS在检测和鉴定细菌方面的敏感性还不高, 不能直接鉴定患者血样本中的病原菌(细菌数量太少) (2)对于一些核糖体蛋白差异较小的细菌用其辨别有较大的困难 (3)目前的研究都有各自不同的操作过程, 在样本处理、质谱图采集和分析等方面没有统一的标准, 可能会影响分析结果在实验室内和实验室间的可重复性 (4)标准的鉴定参考图谱数据库尚不够完善, 需要进一步拓展 (5)对一些细胞壁难以破坏的细菌(如革兰阳性菌、酵母菌)和混合菌等的鉴定能力还不够高。但是相信随着更加有效的样本预处理方法、更加严格的检测过程控制和更高分辨率的图像处理技术的实现, MALDI-TOF MS用于直接检测临床样本中的微生物会有更广阔的前景。

  • 第三方临床检测实验室,需要通过哪些认证?

    如题,如果公司想开展一些临床检测业务,例如新生儿疾病筛查,或者常规血氨基酸或维生素检测,主打液质联用仪器。对医院样本出具报告,是不是需要建立一个独立的检测实验室?需要通过哪些认证?或者只是与医院合作,提供结果,不出具正规报告,是否也需要认证?目前公司有自营项目,也有自己检测,但只是内部质控。因仪器比较空闲,所以想开展下其他检测业务。查了一些资料,比较零散,求大家解惑。

  • 质谱技术在临床微量元素检测中的应用共识

    质谱(MS)是利用各种离子化技术将化合物转化为离子,按其质核比的差异进行分离测定,从而进行物质结构和成分分析的方法。近年来,质谱技术凭借其高通量、高特异性、高灵敏度的特点,在医学检验领域飞速发展,在临床生化检验、临床微生物检验、免疫检验等方面都成为了不可或缺的重要技术。微量元素在生物体生长发育及代谢过程中起着重要的作用,同时它们也可以作为人体内某些疾病的检测指标。质谱法可以实现多元素同时检测,且灵敏度高、检测限低、动态范围宽、分析速度快,可以直接对血液样品进行检测。其中,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]) ,已成为临床最为推荐的微量元素检测方法之一。与国外发展水平相比,我国质谱技术的临床应用还非常有限,很多相关部分还需要进一步完善,例如:质谱检测数据的判断标准、技术方法的掌握与人员培训、质量控制体系的建立等等。其中,方法学和质量管理体系是检测结果和应用的关键。在中国医师协会检验医师分会临床质谱检验医学专业委员会的指导下,首都医科大学北京妇产医院检验科质谱中心携手国内顶尖临床质谱应用专家,结合目前已公布的质谱技术标准、相关指南、文献及实际操作经验,制定本共识,重点阐述质谱技术在临床微量元素检测应用中对人员、环境、仪器、试剂、耗材、检测规程、方法性能评估及质量控制的要求,为临床实验室采用质谱技术开展微量元素检测提供基本指导。

  • 重视新药非临床安全性评价供试品的检测

    全部标题重视新药非临床安全性评价供试品的检测作者胡晓敏、冯毅、王庆利部门药理毒理学部正文内容 非临床安全性评价是新药开发中的重要内容,其耗时长(从一周到几年)、花费大(几十万到几百万元RMB),但其结果对于发现新药的毒性,预测临床安全性具有重要的意义。非临床安全性研究与评价贯穿于整个新药的研发过程中。供试品是非临床安全性评价获得可靠结果的基础,其质量和配制的准确性,直接影响非临床安全性试验结果及新药的后期开发。为了使新药安评的结果可靠,并避免在新药研发过程中出现不必要的失误和损失,在非临床安全性评价试验中应加强供试品检测。1 供试品检测的必要性 2005年国家局发布了多个非临床安全性试验技术指导原则,这些指导原则对规范我国药物安评试验,推进GLP的实施起到了重要作用。近来,不断有相关研究机构和专家反映,由于未能在有关的技术指导原则中要求开展安评试验的供试品的相应检测,致使安评试验结果具有不确定性。 目前我国创新药的研究与申请逐渐增加,为了使安评结果准确可靠,弥补非临床安全性试验技术指导原则中的对供试品检测未设置相关要求的缺憾,建议在安评试验中应加强供试品检测,避免出现不必要的失误和损失。2 国内外对供试品检测的要求 FDA、EMA在GLP规范中,对供试品的检测提出了要求。各大制药公司内部的SOP也对供试品检测有要求。 我国的GLP对供试品检测也有原则性要求。但由于在新药申报和相关技术评价指导原则中未对此有明确要求,故当前不是每个GLP试验室、或每个安全性试验都进行供试品检测。3 供试品检测的适用范围 安全性试验中供试品检测的要求,应该适用于所有新药研究。中药成分复杂,结构不清楚的成分多,但如中药一类(单一成分)可参考化药执行。欧美对生物制品也要求进行供试品检测,内容在化药的稳定性、均一性等的基础上增加蛋白含量分析和生物活性分析。对于生物制品供试品检测的要求,建议参照化药的方法,遵从Case by case的原则。4 供试品检测的内容 ①供试品的基本理化性质检验报告(包含来源、批号、纯度、浓度、处方组成(包括辅料)、稳定性、溶解性、有效期、保存条件等信息)。②若供试品需经溶解后(混合、混悬、溶解)给药,则应提供供试品在溶剂中的稳定性、均一性(非溶液体系)等检测报告(浓度范围需能覆盖全部毒理试验的浓度范围),以及配制后的供试品浓度分析报告。③针对检测供试品浓度和含量分析的方法学验证报告。5 供试品检测报告的提供 供试品检测方法的建立和验证,可以由申请人(含生产者)、GLP试验机构或第三方完成,或由其中的一方完成后转移至另外一方进行检测;由验证方提供供试品检测方法学验证的资料。 配制后的供试品浓度分析方法的方法学验证资料,应由完成配制后的供试品浓度分析检测的GLP实验室提供。 必要时对对照品进行分析,对照品的分析要求与供试品相同。如果对照品为上市产品,其基本理化性质等资料可以参照对照品的说明书和/或标签。

  • 【讨论】临床运用内毒素定量检测的意义!!!!

    1、抗生素在杀菌或抑菌的同时促进了内毒素的释放,临床已见有抗生素使用后,出现脓毒性休克的先例。2、经研究发现,不同抗生素中诱发内毒素释放的作用存在差异,即头孢他啶培福新依米配能阿米卡星;在拮抗革兰阴性菌的抗生素中,碳青霉烯类优于头孢菌素类。3、避免应用亚治疗量的抗生素,不但最终未能达到杀菌目的,反而会促进耐药菌的形成,更有促进内毒素释放的负面作用。资料来源于《中华烧伤杂志》肖光夏教授快速鉴别诊断细菌性和非细菌性感染和炎症。早期判断革兰氏阴性细菌感染情况。相关疾病的早期诊断与病情监控。帮助临床医生筛选适当的药物。 评价临床治疗及预后情况,提高临床治愈率,降低死亡率。

  • 临床样品的药物浓度检测可以由申办者自己进行测定吗

    [color=#444444]因为临床试验样品分析这块经常出问题,所以年后领导决定本公司内部建立临床样品分析组,对本公司临床试验生物样品中的药物浓度进行检测,不再委托第三方。我想问下,这样可以吗,建立的实验室是否需要什么资质认证?法规有没有明确的规定?如果没有规定的话,是否存在潜规则啊?[/color]

  • 临床质谱技术在中国:巨大的潜在临床应用前景

    质谱是一种测量离子质荷比(质量-电荷比)的分析方法,最早由英国著名物理学家J. J. Thompson于1906年发明。可以把它想象成一杆特殊的天平,称量的是离子的质量。在这100多年的发展历史中,质谱技术不断进步发展,具有快速、高分辨率、高灵敏度、高特异性等优点。从80 年代开始,质谱发展成工业产品,最早应用于化学分析,生命科学科研和制药业。image.png2目前国内质谱技术的发展现况如何?目前主要在哪些医学领域得到了很好的运用?◤国内的质谱应用也和北美经过了同样的历程,最早应用于科研机构,随着制药的发展,质谱技术被广泛应用于新药研发,接着是食品,环境及临床应用领域。精确诊断是精准医疗的重要前提,作为生物样本内小分子分析的金标准方法,质谱技术是精准诊断实现过程中不可或缺的工具,也是临床检验技术重要的发展方向。近年来,精准医疗在逐步获得国际医疗机构认可和重视的同时,质谱技术在临床检测中的需求也越来越大,目前国内越来越多的第三方及医院相继建立了质谱分析平台,质谱技术也因其自身高灵敏度、高特异性、高技术型等特点一度成为了临床检验能力的一种标志。相比美国QUEST、Labcorp, MAYO Clinic等大型独立医学实验室而言,目前国内临床质谱发展还处于起步阶段,和北美2009-2010年前后的情况非常相近,临床质谱主要集中在个别大型独立实验室和少数三甲医院,开展项目主要包括遗传代谢病筛查、维生素系列检测、药物浓度监测、类固醇激素检测等,涉及项目非常有限,其中以微生物检测、新生儿筛查和维生素检测等领域的应用较为广泛。目前,中国临床应用正处于高速发展的前期。image.png3质谱技术的灵敏度和特异度这么高,是不是所有能运用的项目都要运用质谱技术?还是质谱技术会优先运用于某些项目?相对于传统的检测方法,质谱技术分别在检验医学各个领域明显优势在哪?◤每种方法都有各自的优缺点,需要根据综合需求选择检测方法学。比如一些项目免疫生化方法成熟准确,没有必要应用质谱方法,但对于小分子化合物生化指标,质谱对精准检测有绝对的优势。因为医疗体系收费的限制,现在很多检测项目在选择方法学时无奈以价格为第一考量,但是,检测结果的准确性是精准治疗的前提,如果检测结果不准确即使再便宜的方法也是更大的浪费且耽误病人的治疗甚至生命安全。从检测原理上来看,质谱技术与传统免疫法比较,检测结果具有更可靠性,因为质谱技术对样本中生物标志物的分析基于化合物本身的分子量、结构等化学性质,是一种直接分析方法,而不像免疫学方法是抗体和目标化合物反应,再去进行检测。[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱联用技术可以在复杂基质如人血清和血浆中获得更高的灵敏度和特异性及同时检测多组分,日渐成为生物样品中内源性痕、微量物质检测的“金标准”。对于那些在体内含量水平低,内源干扰多的物质定量分析就需要质谱技术来实现,比如说激素。激素的前体物质和代谢物大多时候结构相似或为同分异构体,放射免疫法的灵敏度可以达到检测需求,但所用抗体特异性不足,会和其他结构类似的物质发生反应,往往使结果偏高造成假阳性。而质谱法特异性强,是在分子水平检测,即使像睾酮和DHEA这样的同分异构分子也可以准确区分和定量,从而真正反映人体中激素水平状态。同时,质谱还可以通过微量样品一次进样检测代谢通路的多个相关的生化指标,可以精准诊断疾病。比如,诊断先天性肾上腺增生通常采用免疫学方法测定17-羟孕酮、氢化可的松、雄烯二酮,假阳性率非常高,用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱, 一次检测相关代谢通路可将假阳性率降低85.15%。特别是对于特殊人群,比如性腺功能减退的男性、更年期女性或者儿童来说,激素浓度更低,采用质谱法可以做到精准定量,指导医生给出更有效的治疗方案。在微生物检验方面,基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)能大大缩短鉴定时间,临床往往因为细菌培养的耗时较长,医生在获得实验室报告前已经采取抗菌药物治疗,一定程度上造成了抗菌药物的滥用;另外质谱检测范围也从原本数百种细菌扩大到2000+种细菌。image.png4开展质谱技术需要哪些条件?从您回国这一年的经验来看,目前国内的情况下质谱在基层医院能否得到进一步的推广?还是仅限在“高大上”的医疗机构?如果在基层得到应用,是否对基层的常规检测项目和方法带来一定的冲击?◤质谱技术作为一种多功能的新型的检测技术,硬件已是完全工业产品化,虽然其功能非常强大,但方法学和质量管理体系是检测结果及应用的关键。同一台仪器, 如果样品处理方法不同,达到的检测的准确性和灵敏度会有很大的差异。这对传统的医院或检验实验室或检验人员来说都是一种新的挑战,但同时也是一种新的发展机遇。在中国临床质谱应用发展过程中,主要存在几个难点:仪器属于大型仪器,投资高,医院没有经费购买仪器;对人员技术要求高, 业界缺乏相关的专业应用技术人才; 没有相关质谱检测的收费标准;没有标准化的IVD方法学;没有成熟的质量管理体系。在方法学开发优化的过程中,还需要在质谱检测数据的判断标准、临床范围的建立、技术方法的掌握与人员培训、质量控制体系的建立等方面严格把控,要求具备完善的实验室管理体系和质量保证体系,对每一种方法均进行严格的性能验证,包括检测结果的准确性和重现性。

  • 目前临床上用于检测排卵的方法

    目前临床上用于检测排卵的方法功能排卵监测方法BBTLH试纸条超声波FAM可以提1-3天预报排卵期吗?不可以不可以不可以可以可以精确地测出排卵的日子吗?不可以(只有在排卵后才知道)对于23.1%的女性可以可以对于所有女性可以(99%)可以在家里使用该方法吗?可以可以不可以可以该方法对当月的受孕机率有提高指导作用吗?没有没有(临床证明排卵日受孕机率≤5%)没有(临床证明排卵日受孕机率≤5%)有该方法使用方便吗?方便方便不方便方便不同使用者之间的肉眼读取数据存在着差别吗?没有有(人为误差很大)有没有该方法可以自动推算并准确预报下一个周期的排卵日子吗?不能不能不能可以

  • 北京临床基因扩增检验实验室筹建策划方案

    北京临床基因扩增检验实验室筹建策划方案

    北京临床基因扩增检验实验室筹建策划方案项目名称:2012年临床基因扩增检验实验室1 概述 临床基因扩增实验是专门用来检验艾滋病、乙型肝炎、禽疫病等病毒感染性疾病的一种检测手段。它可以通过将病毒体内所含的基因进行扩增的方法,测出一些病毒含量不高的感染者体内是否含有特定的病毒。由于该检测方法可以测出普通检验难以检测出的病毒并具有灵敏度高、特异性高、快捷、对样品要求低等优点,因此被临床医生广为认可,已广泛应用于医院的临床诊断和各防疫检测部门的禽疫病诊断。但是,这种实验需要有能保证绝对安全、配置合理的实验室和非常规范的操作为前提。近年来对临床基因扩增检验实验室的建设越来越得到重视,因为它对检测结果的可靠性、准确性和安全性起到至关重要的作用。本文主要从临床基因扩增检验实验室的平面布局,空调通风系统设计、气流控制和污染的防制几个方面对实验室设计中的主要特点进行了阐述。 临床基因扩增检验实验室设计的核心问题是如何避免污染。因此,实验室的平面布局、空调通风系统设计、气流控制等都是围绕这个核心问题进行的。下面就对这几个方面分别进说明。2 临床基因扩增实验室平面布局 临床基因扩增检验实验室原则上分为四个单独的工作区域:试剂贮存和准备区、标本制备区、扩增反应混合物配制和扩增区、扩增产物分析区。为避免交叉污染,进入各个工作区域必须严格遵循单一方向进行,即只能从试剂贮存和准备区→标本制备区→扩增反应混合物配制和扩增区→扩增产物分析区。 各实验区之间的试剂及样品传递应通过传递窗进行。临床基因扩增实验室平面布置示意图如图1所示。 http://ng1.17img.cn/bbsfiles/images/2011/11/201111250944_332855_2394712_3.jpg图1临床基因扩增实验室平面布置示意图3 实验室空调通风系统设计及压力控制 临床基因扩增实验室并没有严格的净化要求,但是为避免各个实验区域间交叉污染的可能性,宜采用全送全排的气流组织形式。同时,要严格控制送、排风的比例以保证各实验区的压力要求。3.1 试剂贮存和准备区 该实验区主要进行的操作为贮存试剂的制备、试剂的分装和主反应混合液的制备。试剂和用于标本制作的材料应直接运送至该区,不得经过其他区域。试剂原材料必须贮存在本区内,并在本区内制备成所需的贮存试剂。 对与气流压力的控制,本区并没有严格的要求。3.2 标本制备区 该区域主要进行的操作为临床标本的保存、核酸(RNA、DNA)提取、贮存及其加入至扩增反应管和测定RNA时cDNA的合成。 本区的压力梯度要求为:相对于邻近区域为正压,以避免从邻近区进入本区的气溶胶污染。另外,由于在加样操作中可能会发生气溶胶所致的污染,所以应避免在本区内不必要的走动。3.3 扩增反应混合物配制和扩增区 该区域主要进行的操作为DNA或cDNA扩增。此外,已制备的DNA模板和合成的cDNA(来自样本制备区)的加入和主反应混合液(来自试剂贮存和制备区)制备成反应混合液等也可在本区内进行。在巢式PCR测定中,通常在第一轮扩增后必须打开反应管,因此巢式扩增有较高的污染危险性,第二次加样必须在本区内进行。 本区的压力梯度要求为:相对于邻近区域为负压,以避免气溶胶从本区漏出。为避免气溶胶所致的污染,应尽量减少在本区内的不必要的走动。个别操作如加样等应在超净台内进行。3.4 扩增产物分析区 该区域主要进行的操作为扩增片段的测定。如使用全自动封闭分析仪器检测,此区域可不设。 本区是最主要的扩增产物污染来源,因此对本区的压力梯度的要求为:相对于邻近区域为负压,以避免扩增产物从本区扩散至其它区域。4 污染的预防与控制 临床基因扩增实验室设计的核心问题是如何避免污染。在实际工作中,常见的有以下几种污染类型:扩增产物的污染;天然基因组DNA的污染;试剂的污染以及标本间的污染。由于一旦发生污染,实验就必须停止,直到找到污染源为止,而且实验结果必须作废,需重新进行实验。所以发生污染后再围绕实验室来寻找污染源不但耗时而且繁琐,浪费人力物力。因此要避免污染,首先应是预防,而不是排除。4.1 工作区域的严格划分(1)各个实验区域设置合理;(2)各个实验区域要有明显的标记(如醒目的门牌或不同的地面颜色等),以避免各个不同实验区域设备物品、试剂等发生混淆。4.2 合理的系统设置(1)合理的空调通风系统设置,尽量采用全送全排的空调系统;(2)严格的气流压力控制,保证不同的实验区内不同的压力要求。[/fon

  • 质谱技术在临床微生物样本直接检测中的应用-2

    (二)MALDI-TOF MS分析  目前主要有4种MALDI-TOF MS系统[9]:MALDI Biotyper系统 (Bruker Daltonics, 德国), VITEK MS系统 (BioMé rieux, Marcy l’ Etoile, 法国), the AXIMA@SARAMIS 数据库 (AnagnosTec, 德国)和the Andromas (Andromas, 法国), 其中前2种质谱系统已获得中国食品和药品监督管理局许可证, 可以用于临床样本的检测。  在进行质谱分析前, 应根据不同的检测对象和使用的激光类型选择合适的基质。基质由基质复合物和基质溶剂组成。常用溶剂有:乙醇、乙腈和一种强酸如三氟乙酸、甲酸等。常用的基质是2, 5-二羟基苯甲酸(2, 5-dihydroxybenzoic acid, DHB)、ɑ -氰基-4-羟基肉桂酸(ɑ -cyano-4-hydroxycinnamic acid, ɑ -CHCA)、3, 5-二甲氧基-4-羟基肉桂酸(sinapinic acid, SA)等。将经过提取的微生物样本细胞内容物与等量的基质溶液(通常是1 μ L)混合或分别点加在样本靶板上, 待室温条件下干燥后(使得样本与基质共结晶)上机检测即可。(三)鉴定结果分析  将质谱检测得到的谱峰与数据库进行模式匹配, 得到一个鉴定分数。基于软件给出的在列表中第1种微生物的鉴定分数, 根据各自质谱分析系统的判断标准得出检测结果。目前文献报道有2种判断标准:第1种是由STEVENSON等[10]提出的, 鉴定结果按照匹配程度进行打分, 分值在0~3之间。当得到的鉴定分数≥ 2.0时, 表示待测菌株有较大的把握被鉴定到种的水平 鉴定分数在1.7和2.0之间时, 表示菌株被鉴定到属的水平, 分值 1.7表示产生的鉴定结果不可信。第2种标准是LA SCOLA等[11]提出的, 当一个样本经过4次点样鉴定, 当列表中第1种微生物的鉴定结果均一致, 并且至少2次的鉴定结果鉴定分数≥ 1.900, 或者4次的鉴定分数均≥ 1.200, 表明微生物能被正确鉴定。有学者发现通过改进上述的鉴定标准可以得到更好的鉴定效果, ROSSELLó 等[12]认为在临床样本直接鉴定时, 鉴定分数要比直接纯培养的低, 可能会对分析结果造成干扰, 而厂商推荐的鉴定标准有些严格, 只有得到很高的鉴定分数结果才是被接受的。因此提出新的标准增加可接受的准确鉴定数:当一个样本4次点样中至少有2次的鉴定结果一致, 并且对列表中的第1个微生物种的鉴定分数均≥ 1.4时, 即表示能够准确鉴定, 这种标准与纯培养的鉴定结果有100%的符合率。NONNEMANN等[5]、GORTON等[13]将种的鉴定分数降到1.5, 可以将种的鉴定率从56%提升到76%、54%提升到63%。以上均提示了厂商推荐的cut-off值比较保守, 使得鉴定的敏感性降低。此外, 由于目前的数据库尚不完善, 对于部分菌株可能会出现鉴定失误的情况, 实验室工作人员应在商品数据库的基础上建立和丰富自己的参考数据库, 以提升鉴定的准确率。三、MALDI-TOF MS在临床样本直接检测中的应用  从临床样本直接检测微生物可以节省转种培养的时间。目前已取得显著进展的是从血培养阳性样本中直接检测细菌和酵母样真菌, 而从中段尿和其他无菌体液样本中的直接检测也在快速发展。(一)血流感染病原菌的快速检测  血流感染的发病率和死亡率都相当高, 快速准确的血流感染病原菌鉴定对于临床抗菌药物的合理使用和病愈率的提高至关重要。直接检测能显著减少鉴定时间( 29 h), 使得在血培养阳性的第1个24 h内接受适当抗菌药物治疗的患者增加11%[14]。CLERC等[15]认为基于MALDI-TOF MS 对血培养阳性样本的检测可能会成为血培养阳性患者管理中除了革兰染色报告之外的第2个关键步骤。近年来, 有不少的研究应用MALDI-TOF MS直接鉴定临床微生物样本, 取得明显进展的是从血培养阳性样本中直接鉴定细菌和酵母样真菌[5, 10, 16], 而混合菌和厌氧菌等的鉴定还有待更多的研究。1.鉴定效能 (1)细菌:在引起血流感染常见菌的鉴定方面, MALDI-TOF MS技术已经在肠杆菌科细菌、葡萄球菌等病原菌的直接鉴定方面取得了很好的鉴定结果。大量的研究评估了MALDI-TOF MS用于直接鉴定阳性血培养瓶的表现, 不同文献报道的种水平的鉴定率在54%~99%不等[5, 10, 11, 17, 18, 19], 主要是由于所鉴定细菌种类/数量的不同, 或是运用了不同的预处理/提取方法, 或是定义了不同的cut-off值。SCHMIDT等[19]、SCHUBERT等[20]应用不同的操作程序直接鉴定阳性血培养瓶样本, 结果显示103株代表临床最常见的13个属24个种的样本中, MALDI-TOF MS准确鉴定其中的72%(86.6%革兰阴性菌, 60.0%革兰阳性菌) 500例样本中, 其中革兰阳性菌358例, 革兰阴性菌98例, 总体种的鉴定率达到了86.5%, 其中革兰阳性菌是89.8%, 革兰阴性菌是86.3%。国内最新的研究也显示, 陈峰等[21]运用分离胶促凝管联合MALDI-TOF MS直接检测, 革兰阴性菌和革兰阳性菌中有84.0%和75.0%能被准确鉴定到种的水平 对于血流感染中最常见的病原菌的菌种鉴定符合率达到83.3%~96.9%。以上研究均显示了MALDI-TOF MS在血流感染直接鉴定方面的良好表现, 并呈现出了如下特点:对革兰阴性菌的鉴定率比革兰阳性菌高 无荚膜的细菌较有荚膜的细菌(细胞壁难以破坏提取到足够的菌体蛋白)的鉴定率高 混合细菌感染时鉴定能力有限, 多数情况下只能鉴定出其中一种优势细菌 对草绿色链球菌的鉴定效果较差(鉴定不出, 或将缓症链球菌鉴定为肺炎链球菌)[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], 需要进行另外的确证试验 (2)真菌:MALDI-TOF MS在鉴定酵母菌方面有较高的鉴定率。FERRONI等[18]、YAN等[16]的研究表明酵母菌鉴定的正确率可达91%~100%。但是也有学者得到了相反的结果, GORTON等[13]和PAOLUCCI等[22]直接鉴定的正确率只有56%和41%, 可能是因为鉴定使用的血量过少(1.5 mL), 或是在处理样本的过程中样本的丢失导致了低鉴定率 (3)其它细菌:目前关于厌氧菌的直接鉴定的报道较少, 并且显示了鉴定成功率并不理想, 可能是因为厌氧菌对生长条件的要求较为苛刻, 导致增菌的数量达不到要求, 还需要更多的研究来优化其鉴定条件。2.不同的检测方法 上述结果均是MALDI-TOF MS直接检测报阳血培养瓶的样本所得到的。有研究表明报阳血培养瓶的样本也可以转种到固体培养基上进行短暂孵育(如2~4 h)后再进行鉴定, 则具有更大的优势。KROUMOVA等[23]在质谱法分析实施蛋白提取程序之前, 将样本富集到一个增菌培养基中孵育大约2 h后再进行质谱分析, 同时达到增菌和减少血液成分干扰的目的, 提升了鉴定分数, 使鉴定结果更可信 IDELEVICH等[24]将血培养阳性的样本转种到血平板孵育1.5、2、3、4、5、6、7、8、12和 24 h(对照), 分别直接进行MALDI-TOF MS检测, 直到有可靠的到种水平的鉴定结果出现(鉴定分数≥ 2.0), 结果发现革兰阳性球菌平均鉴定到种所需要的孵育时间是5.9 h, 革兰阴性杆菌平均鉴定到种所需要的孵育时间是2 h。如果增加了蛋白提取程序, 革兰阳性球菌的孵育时间将缩短至3.1 h, 但对革兰阴性杆菌的影响不明显。这种方法可以有效地减少额外的人工操作时间和费用。HONG等[25]的研究也表明, 这种方法能得到可靠的鉴定结果(与传统生化方法的属水平的一致率是98.9%), 并且这种方法不会受血培养系统的影响, 成本低, 易于操作。3.与药物敏感性联合检测 为了克服MALDI-TOF MS不能做体外药物敏感性试验的不足, MALDI-TOF MS已经开始与药物敏感性试验联合用来直接检测阳性血培养瓶的样本[26], 用不含活性炭的血培养基在过滤和洗涤之前用溶解细胞的缓冲液进行孵育, 然后将从过滤膜上收集的微生物直接进行MALDI-TOF MS分析, 剩下的样本用VITEK 2系统孵育并进行药物敏感性试验, 将94.0%的样本鉴定到了种的水平, 药物敏感性试验与传统方法相比有93.5%的一致率, 并且相较于传统的56.3 h, 新方法鉴定和药物敏感性试验所用的时间缩短到了11.4 h。证明了在一天内完成微生物鉴定和药物敏感性试验的可行性。为获得更好的治疗争取了时间并且减少了住院的费用[27]。4.检测结果的影响因素 有研究指出不同的血培养瓶和血培养系统可能会产生鉴定结果的差异[19, 28, 29]:使用含有活性炭的血培养瓶和BacT/ALERT血培养系统的鉴定率较低, 使用含有树脂的血培养瓶和BACTECTM血培养系统鉴定率较高。其中一项研究比较了含有活性炭的和不含活性炭的血培养瓶在BacT/ALERT血培养系统下的鉴定表现, 发现使用不含活性炭的血培养瓶的MALDI-TOF MS的鉴定率为30%, 而含有活性炭的血培养瓶的鉴定率只有8%[28]。而另一项研究比较了3种不同的血培养系统— — BACTECTM, VERSATREK和BacT/ALERT对鉴定率的影响, 经这些鉴定系统培养的阳性血培养瓶的鉴定成功率分别是76%、69%和62%[29]。此外, 使用不同的细菌蛋白提取程序也会影响鉴定成功率[11]。

  • 质谱技术在临床中的应用

    来自SDi的最新报告指出,未来五年临床质谱市场将以7.6%的速度增长。根据美国临床实验室协会的数据,美国临床实验室每年对血液、尿液和其他患者样品检测次数超过70亿次。免疫分析一直是临床诊断中应用最广泛的技术,但出于对检测结果精准性等需求,越来越多的实验室开始将质谱作为首选的检测工具。另外,相比于测序技术的预测性质,质谱技术的应用更是所见即所得的提示,其意义与价值不言而喻,如果测序是算法分析和公式推导,那么质谱技术就是实践是检验真理的唯一标准,如果说测序还有算命性质,那么质谱技术就是就事论事板上钉钉。事实上,在西方质谱应用于临床已有几十年的历史,发展相对成熟,如美国Quest和Labcorp等大型独立医学实验室,检测项目有4000余项,其中基于质谱的检测项目多达400余项,临床质谱检测设备上百台。再看中国,临床质谱处在早期增长阶段,正迎来高速发展,预计未来五年会迎来两位数的增长。最显著的增长来自独立医学实验室。随着国家精准医疗、分级诊疗等新医改政策的逐步落地,第三方医学检验机构如雨后春笋般遍布全国,有越来越多的独立医学实验室也开始加大投入来搭建更大规模的质谱检测平台,以金域、迪安这两个行业领先者为例,金域目前有数十台质谱检测设备,包括[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS等,质谱检测项目也有近40项 迪安诊断在今年早些时候设立了控股子公司凯莱谱,致力于建立国内顶尖的临床质谱检测平台。迪安诊断董事长陈海斌在凯莱谱开业庆典上表示,“迪安决心将质谱技术作为实验室发展的重点方向。”临床实验室中的质谱仪目前,临床诊断中最常用的质谱类型有三重四级杆LC MS/MS和MALDI-TOF。特别是前者,是当前在临床诊断中应用最广的质谱技术。具体应用如维生素检测、药物代谢物检测、毒理学和新生儿筛查等,均推动的了该技术在临床诊断领域的发展。MALDI-TOF系统最常用来做临床微生物鉴定,也用于基因检测。最近,用MALDI质谱成像技术做直接组织分析,分析时间缩短,具有很大的临床应用潜力。此外,还有LC/TOF、[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]、手持式MS等。LC/TOF主要用于生物标志物的鉴定,从而有助于提早发现疾病或感染。[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]主要用来测人体内微量元素含量,从而做一些职业病的诊断。手持式MS是相对较新的技术,目前在临床上的应用有限,但是在偏远地区和即时诊断等应用场景有巨大的市场潜力。质谱仪制造商积极应对目前临床实验室用质谱做临床检测以实验室自建项目(LDT)为主,很少使用CFDA、FDA等监管部门批准的检测试剂盒。鉴于临床对于质谱的需求越来越大以及临床领域的特殊性,世界各地有关部门均开始采取措施以加强监管。据悉,FDA正在建立一个规范临床质谱检测的监管框架,要求每个检测项目都要走注册流程,这意味着一个公司今后可能要在注册方面投入数百万美元。CFDA对于注册医疗器械许可的质谱仪审查也极为严格。为迎接即将到来的市场变革,所有领先的质谱仪制造商都开始着手为他们的仪器产品寻求监管批准,并不断推出新产品,以消除临床实验室大规模采用临床质谱的障碍,包括:监管审批、质量(如实验室检结果差异)、资源(如操作人员技能)和工作流程(如周转时间)等。赛默飞世尔于2017年5月公布了一套标准的临床化学分析仪——Cascadion SM临床分析仪。该系统包括自动化的Thermo Scientific TurboFlow在线样品制备技术、基于Prelude MD HPLC s系统设计的新LC、基于TSQ Altis三重四极杆质谱设计的新质谱系统和专用软件 此外,还有专业耗材[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]、用于样品制备的自动化LC 模块和特殊的样品管。该系统将于2018年获得欧盟CE标志 一旦其获得美国FDA I类医疗器械许可后,也将在美国展开推广。赛默飞世尔还计划推出三个专为该系统设计的试剂盒,这些试剂盒均获得FDA 510(k)批准,分别针对25OH维生素D、总睾酮和免疫抑制药物的检测。后续还有药物滥用和内分泌物检测的试剂盒。SCIEX在2017年6月召开的美国质谱年会(ASMS)上展示了用于临床诊断的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]整体解决方案——Topaz系统。该系统包括clearcore MD软件和首个通过FDA批准的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]维生素D测定试剂盒——Vitamin D 200M Assay,用于测定成人血清中维生素D的含量。Topaz已获批FDA II类医疗器械,也可用于LDT。2017年,SCIEX的三重四级杆LC MS/MS系统4500MD通过了中国的CFDA二级医疗器械注册。沃特世旗下各类LC、MS在全球59个国家获得医疗器械注册证的批准,其中有三款三重四级杆[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]/MS产品面向临床市场。在中国,其三重四级杆[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS均通过CFDA二级医疗器械认证,解决方案有新生儿遗传代谢性疾病筛查、血浆中儿茶酚胺及其代谢物含量测定、血浆中醛固酮含量测定和全谱氨基酸分析等。在2007年推出的MassTrak免疫试剂盒获得510(k)批准,通过质谱方法来检测他克莫司血药浓度。对于欧洲市场,沃特世提供有CE标识的MassTrak维生素D的解决方案和用于定量检测他克莫司和依维莫司的MassTrak免疫抑制剂XE试剂盒。此外,沃特世还提供用于体外诊断和临床研究的色谱柱、样品前处理试剂和实验方案。珀金埃尔默也是临床质谱市场的活跃者之一,其新生儿筛查试剂盒获得了非常广泛的市场认可,每年要为3900万多名婴儿做遗传代谢性疾病筛查。在中国,珀金埃尔默的业务正不断扩大,有超过90%的新生儿做遗传代谢性疾病筛查(使用珀金埃尔默仪器和试剂盒),其在苏州的临床实验室对外提供新生儿筛查服务。2016年,珀金埃尔默还推出了专门用于临床诊断检测的LC/MS——QSight MD210,目前已经获得了欧洲CE认证,正在注册中国CFDA二级医疗器械许可。岛津推出了CLAM-2000/[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]MS系统,是由全自动[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]预处理仪器SCLAM-2000和岛津三重四级杆LC MS/MS 8040 组成的全自动前处理[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff] LC [/color][/url]MS/MS 系统,用以简化大批量临床样本前处理环节的工作流程。安捷伦通过FDA I 类医疗器械的色质产品有Agilent K1260 Infinity [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统和 K6460/K6420 三重四极杆质谱仪,并正在申请中国CFDA医疗器械注册许可证。布鲁克占据了超过一半的MALDI-TOF细分市场,是全球临床微生物鉴定市场的标杆企业,其 microflex LT/SH质谱仪通过CFDA二级医疗器械注册。中国的微生物鉴定市场正处在早期上升阶段,市场潜力巨大。今年中国质谱市场发生了新的情况,多家国产厂商和IVD企业瞄准临床微生物鉴定市场,纷纷推出MALDI-TOF,加上先一步推出产品的两家,目前有MALDI-TOF产品的国产厂商已达7家。其中,毅新博创和融智生物均拿到了CFDA医疗器械注册证。可以预见,未来这一市场的竞争将会异常激烈。

  • 《治疗药物监测临床应用手册》新书发布会

    《治疗药物监测临床应用手册》新书发布会

    [font=微软雅黑][font=微软雅黑][img=,690,151]https://ng1.17img.cn/bbsfiles/images/2020/08/202008221959342497_2222_2507958_3.jpg!w690x151.jpg[/img][/font][/font][font=微软雅黑][font=微软雅黑]治疗药物监测([/font]Therapeutic Drug Monitoring, TDM)是一门研究个体化药物治疗机制、技术、方法和临床标准,并将研究结果转化应用于临床治疗以达到最大化合理用药的药学临床学科。TDM通过测定患者体内的药物暴露、药理标志物或药效指标,利用定量药理模型,以药物治疗窗为基准,制订适合患者的个体化给药方案。旨在对患者实施个体化药物治疗,提高药效,减少毒副作用。[/font][font=微软雅黑][font=微软雅黑]针对临床实践中[/font]TDM专业参考书籍的缺乏并为满足临床需求,在从事治疗药物监测的专家团队的支持下,由中日友好医院主任药师 张相林教授领衔主编《治疗药物监测临床应用手册》。[/font][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑]《治疗药物监测临床应用手册》已于[/font]2020年4月由人民卫生出版社出版。《治疗药物监测临床应用手册》新书发布会将于2020年9月1日通过仪器信息网网络讲堂线上会议平台举行,本书主编及核心章节编委将为从事治疗药物监测的专业医师和药师,以及从事药物研发的专业技术人员讲解编撰背景、意义与由来,并选取核心章节进行剖析,以促进个体化药物治疗规律的建立,推进合理、科学、有效用药。[/font][font=微软雅黑][font=微软雅黑]会议时间:[/font]2020年9月1日14:00-16:00[/font][font=微软雅黑][font=微软雅黑]会议安排:[/font][/font][font=微软雅黑] [img=,690,282]https://ng1.17img.cn/bbsfiles/images/2020/08/202008221959469794_3597_2507958_3.jpg!w690x282.jpg[/img][/font][font=微软雅黑][font=微软雅黑]报名地址:[url=https://www.instrument.com.cn/webinar/meetings/ZLYW0818]点击打开链接[/url][/font][/font][font=微软雅黑][font=微软雅黑]欢迎报名参加![/font][/font]

  • 中美临床质谱发展现状比较

    近年来,随着质谱技术的快速发展,离子源技术及质量分析器技术的变革,质谱仪器设计的快速改进,使得质谱仪成为化学分析领域尤其是 生命科学领域非常有效的一种分析工具。  得益于质谱技术的发展,过去几十年来,许多临床检测实验室已经陆续引进 质谱技术,因为与传统的检测方法相比,质谱技术具有高灵敏度、高特异性和高准确度的特点。质谱技术在临床检验中的应用,主要涉及临床生化检验、临床免疫学 检验、临床微生物检验以及临床分子生物诊断等方面。在临床生化检验领域,由于串联质谱技术的高特异性、高准确度、高灵敏度、高简便性、线性范围宽及高通量 的优点,逐渐取代了部分传统的检测方法,使得生化检验结果更加准确可靠,对临床诊断的参考意义进一步提升 检测方式不再是一次分析只针对一种代谢物、一种 疾病,而是一次分析可针对多种代谢物、多种疾病。正是由于质谱技术在生化检验中的优异表现,进一步促进了质谱技术在临床检验中的迅速发 展。  在美国,临床质谱技术已经发展得相对成熟,服务于临床检测的项目已达400余项 涉及产前检查、新生儿筛 查、滥用药物监测、代谢物检查(氨基酸、脂肪酸)、类固醇激素检测(内分泌)、维生素族检测以及微生物鉴定等领域。同时,在蛋白组学研究方面,也正在研究 如何从科研转化到临床应用。  临床质谱技术在美国的成熟发展,离不开上下游供应产业的成熟发展和行业协会的推 动。在美国,较大型的质谱公司如SCEIX、Thermo Fisher、Agilent等不仅能提供质量较高的检测仪器,而且都积极配合临床质谱的发展,不断更新升级自身的软硬件设备及应用支持服务,使得质谱技 术在临床的应用获得强大的后盾支撑。同时,为了汇聚检验领域专家,共同促进行业对临床质谱分析的关注和理解,促进质谱成为健康管理的便利工具,2008 年,由David Herold教授等人在美国圣地亚哥发起举办了第一届Mass Spectrometry: applications to the Clinical Lab(MSACL),即质谱在临床实验室的应用会议。会议以其高度的专业聚焦性受到了业界人士的广泛欢迎。会议宗旨是为质谱的临床应用发展研讨提供专业 的交流平台,专注专业的行业聚焦型会议,促进了行业人才的培养,加快了行业信息的流通,提高了新技术、新应用的普及率,很好地推动了质谱技术在临床检验实 验室的发展。  当然质谱技术的发展除了其本身发展和应用的良好推广与实践外,更离不开行业政策环境的支撑。在美 国对临床质谱技术采用了有效兼顾监管和鼓励创新的LDT (Laboratory Developed Test)模式。在此模式下,只要是有临床实验室改进修正案(CLIA)执照的实验室,其研发的产品和技术服务就可以合法进入临床,合理收费。实验室取得 CLIA标准相关认证后,检测结果即可用于指导临床诊疗。该管理方式自实施以来,得到了患者、医院、第三方临检中心、保险公司的广泛认可,目前美国有近 25万个CLIA实验室。美国临床病理学会(ASCP)对LDT定义为:实验室内部研发、验证和使用,以诊断为目的的体外诊断实验。LDT仅能在研发的实 验室内使用,可使用购买或自制的试剂,但这些试剂不能销售给其他实验室、医院或医生。LDT的开展不需要经过FDA的批准。正是这种有效兼顾监管和鼓励创 新的LDT模式,极大地促进了美国质谱技术在临床应用中的快速发展。  在中国,临床质谱技术属于较年轻的检测方 法,临床应用还处于起步阶段,少量第三方医学检验机构和大城市的三甲医院开展了利用质谱为手段的检测项目,数量十分有限,应用广度和深度远不如美国。在中 国临床质谱应用方面,以金域检验为代表的机构中,临床质谱的主要应用涉及新生儿筛查、药物浓度监测、代谢物检查(氨基酸、脂肪酸、胆汁酸)、类固醇激素检 测(内分泌检测)、微量元素检测、维生素族检测以及微生物鉴定等领域 检测项目数量有限,开展数量较多的金域检验公司也仅70余 项。  中国的质谱市场上,仪器设备几乎被国外公司垄断,市场上应用较多的为SCIEX、Agilent、 Waters、Thermo Fisher、Shidmazu、Bruker等公司的产品 国产质谱仪器主要在部分研究机构有应用,距离实际的生产应用普及还有很大的距离。这一现状, 导致了中国的临床质谱的投入成本较高、技术支持服务有限,一定程度上限制了技术的发展。  在行业政策环境方面,中国除香港外,没有开放的CLIA监管机制,也无明确的LDT政策。我国许多专家学者呼 吁,中国应该借鉴美国的管理模式,允许LDT项目,实现临床实验室检验结果的质量保证。这样既能控制风险,又能加速新技术的临床应用。在行业协会方面,非 常认可LDT项目,并在积极推动中国LDT项目的发展。2014年3月7日,上海医学会举行了“部分基因和质谱检测的实验室自建项目(LDT)的研讨 会”。在会上,上海市卫计委医政处、规财处和发改委领导均对LDT 开展表示支持,鼓励医院在保证质量的前提下,开展LDT项目试运行。上海医学会表示愿意作为学术平台,为政府机关和临床专家搭建沟通平台,希望在有关政府 机构的支持和监督下,规范而又稳步推进LDT项目,促进个体化诊疗的发展。  在中国香港,由于LDT项目的开 放,临床质谱技术得到了很好的发展。质谱技术的高准确度、高灵敏度、高特异性以及低成本等特点,促使了香港很多检验机构已经用质谱技术完全替代了放射免疫 技术,用于临床检测服务 越来越多的免疫学方法项目也在逐步被临床质谱检测项目所替代。CLIA监管模式下的LDT项目的开放,是质谱等年轻技术发展的推 动力,希望中国能尽快形成LDT的氛围,促进临床质谱等新技术的发展。  当然,中国临床质谱技术的发展,也受限于技术本身的局限性。这些局限性表现在几个方面,第一,临床质谱技术相较于传统免疫学技术:仪器自动化程度低,仪器 数据不能直接转化为可读数据,对技术人员的操作能力和专业数据处理能力要求高 第二,质谱仪器厂商的应用支持欠缺,也加大了对技术人员的要求,需要技术人 员具备较强的仪器使用与维护能力 第三,质谱技术本身属于高精尖技术,技术复杂程度较高,即使是化学领域的专业人才,也需要经过长期的培训和实践,才能掌 握。所以技术的复杂性对医学检验行业的技术人员是很大的挑战。正是基于技术局限性对人员的依赖和高要求,所以技术的发展渴求高水平、大批量的专业技术人才 的涌现。目前,在中国没有专门的临床质谱人才培养方案,也无专业的临床质谱行业协会或培训交流会议,临床质谱行业人才匮乏。这种人才匮乏的现状,也在一定 程度上限制了临床质谱技术的应用和普及。针对此种现状,一方面中华医学会检验分会,对临床质谱技术的聚焦呼之欲出,另一方面需要各界社会力量集聚、积极筹 备相应的培训交流会议。  综合以上的中 美临床质谱发展的现状,中国的临床质谱行业较美国还有很大的差距。行业的发展,离不开有关部门、行业组织的多方推动。我们希望,中华医学会检验分会、质谱 仪器厂商、医院检验科、第三方医学独立实验室以及有关监管部门,共同联动,一起推动中国临床质谱行业的发展。我们也期待,在不久的将来,临床质谱技术能更 好、更广泛的为医学检验服务,让检验结果更加准确、快速、有效,造福病患。

  • 首台应用于临床检验领域的高分辨质谱系统登陆中国

    首台应用于临床检验领域的高分辨质谱系统登陆中国赛默飞Thermo Scientific Q Exactive系统助力中国医院特种检测服务中国上海,2012年6月7日 ——全球科学服务领域的领导者赛默飞世尔科技公司(以下简称:赛默飞)近日宣布,武汉康圣达医学检验所有限公司选择与赛默飞合作,采购Thermo Scientific Q Exactive系统,用于为全国的医院提供特种检测服务。这是目前在中国临床检验领域运用的首台高分辨质谱系统,同时也是中国整个临床检验系统第一台高分辨质谱仪器。此前在蛋白质组学、环境分析、食品安全等应用领域广受好评的Thermo Scientific Q Exactive系统,将在临床检测领域大展拳脚,助力中国医院特种检测服务!武汉康圣达医学检验所有限公司是中国首家也是最大的综合性临床医学检验机构,已成为中国医院在包括血液、肿瘤、遗传、感染以及心血管等高端医学专科特验领域首选的合作伙伴。此次康圣达与赛默飞的合作充分显示了赛默飞在高分辨质谱领域的领导地位,以及业界对Thermo Scientific Q Exactive系统性能的一致肯定。Thermo Scientific Q Exactive系统将用于为全国的医院提供新生儿筛查、疾病标志物筛查、维生素D水平检测、内分泌水平检测等特种检测服务。Thermo Scientific Q Exactive系统是首台将四极杆的母离子选择性和高分辨率精确质量(HR/AM) OrbitrapTM质量分析相结合的商业化仪器,旨在提供高度可靠的定量和定性(quan/qual)工作流程。Q ExactiveTM质谱仪具有创新的HR/AM Quanfirmation™功能,能够在单次分析中鉴定、定量和确认生物样本中更多痕量级的药物和代谢物、肽类和蛋白质以及其它内源性成分。

  • 质谱分析法在微生物临床鉴定中的应用

    19世纪末“正电荷粒子束在磁场中发生偏转”被发现后,1912年世界上第一台质谱仪在英国面世,从此一种通过测量离子电荷质量比,而进行样品成分和结构分析的方法在生物学及医学上大放异彩。质谱以其灵敏度高、特异性强、分析速度快、多指标同时检测等特点跻身高端定量检测分析仪器行列。  分辨率、灵敏度、质量范围、质量测定准确性是衡量质谱的主要技术指标。分辨率R是指相邻两个峰被分离的程度,是质谱仪区别两个峰的能力指标。灵敏度的指标实际上是仪器综合性能的反映,因为它与样品、分辨率、扫描速度、进样方式以及电离方式密切相关。磁质谱仪器的质量范围与加速电压有关,在仪器最高加速电压下可测的最高值为范围指标,加速电压降低,范围加大,但灵敏度下降。  质谱工作原理,是将样品分子经过离子化后,利用其不同质荷比(m/z)的离子在静电场或磁场中受到的作用力不同而改变运动方向,使其在空间上分离,最后通过收集和检测这些离子得到质谱图谱,实现成分和结构分析。  [b]质谱仪虽种类繁多,  但每种仪器结构可概括为以下6部分:[/b]  1.进样口:直接进样或接其他仪器,用于样品的引入。  2.真空系统:用于维持质量分析器至检测器部分的高真空状态,使离子能够在电磁场作用下自由飞翔,避免离子在运动途中发生碰撞,导致信号丢失或产生虚假信号。  3.离子源:用于将样品离子化。  4.质量分析器:用于将不同质荷比的离子分离开,让他们逐个进入检测器,或只筛选特定质荷比的离子进入检测器。  5.检测器:通常是电子倍增管或其他,将离子的数量转化为电信号的大小。  6.数据处理系统:处理检测器捕获到的电信号,获得质谱图,并进一步处理得到所需信息。  质谱种类多,应用广。从用途(分析对象)可分为:无机质谱、有机质谱、同位素质谱及气体质谱等。从单机或组合可分为:单(一)质谱、串联质谱,单一质谱两个及以上的组合即为串联质谱。广泛应用于化合物结构的定性测定或混合物组成的定量测定。飞行时间质谱仪(MADLI-TOFMS)归类于有机质谱,可应用于临床微生物(包括细菌和真菌)的高通量快速鉴定、疾控中心的微生物传染病原的鉴定与监测、海关进出口商品的检验检疫、食品生产中的微生物检测和工业、农业和环境中的细菌监测等领域。  目前,服务于临床诊疗的质谱检测项目已达400余项,主要涉及临床化学、临床免疫学以及临床微生物鉴定等领域,也被用于建立临床化学检测项目的参考测量程序和研制参考物质。欧美发达国家从1961开始将质谱技术用于新生儿筛查,目前实现使用串联质谱技术对多个代谢产物进行联合检测,可筛查新生儿遗传代谢病等30种新生儿遗传代谢疾病。国内质谱的临床检测主要用于新生儿遗传筛查、维生素D检测、微生物诊断、药品检测等检测领域。  相比国外100多年的质谱发展历史,受限于国际离子源与质量分析器的核心专利知识产权保护,国产质谱设备发展备受制约,直到2000年后国内企业才逐步开始质谱技术的积累。从2006年第一台国产商业化质谱——四级杆[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]问世,到17年7月国家质量监督检验检疫总局和中国国家标准化管理委员会发布,18年2月份开始实施的推荐性国标——质谱仪通用规范。短短十年时间,以安图生物为代表的6家国产IVD生产企业陆续推出MALDI-TOF 质谱仪,逐步打破以进口品牌垄断为主的中国质谱格局,努力弥补当前国产质谱仪占有率相对较低,2016年抽样调查中[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]及[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]国产化率均不到2%的差距,全力推进MALDI-TOF MS质谱在临床微生物检测领域的发展。[align=center][img=1.jpg]https://i4.antpedia.com/attachments/att/image/20200602/1591081536537269.jpg[/img][/align]  众所周知,微生物诊断指的是通过病原学和药物敏感性分析为临床传染性疾病的预防、诊断、治疗与疗效观察提供依据。传统微生物快速诊断包括三种方法:  1.样品的直接检测,例如[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测;  2.菌体富集后检测;  3.分离培养后检测。  传统的生物化学、分子生物学和形态学等方法基于单菌落的生化特征需要菌种的筛选、培养、鉴定等过程,实验时间需要数天不等,耗时耗力,且实验操作较为繁琐,并不能满足临床对检测结果时效性的要求;分子生物学方法进行微生物鉴定大大地提高了灵敏度和时效性,但对工作人员技术要求高,检测成本高,仅针对某些特定细茵,难以满足临床常规要求。因而,样本流转(TAT)时间长仍然是当前制约临床微生物检验发展的主要因素之一。MALDI-TOF MS质谱仪可实现临床对部分微生物传统检测方法的技术替代,通过对未知化合物(菌)所得谱图的分析,进而解析出化合物结构。MALDI-TOF MS快速鉴定经固(液)体培养基短时培养的阳性血培养物中的病原菌,且一次实验可同时多个样本检测,准确率与检测通量均有大幅的提升,一定程度上节省了人力和财力,可适用于微生物室日常工作的血培养阳性标本快速鉴定的方法。从而助力临床微生物检验在感染性疾病诊断、临床用药指导、抗菌药物管理、院内感染控制等多方面均衡发展,将彻底改变微生物实验室的面貌。[align=center][img=1.jpg]https://i4.antpedia.com/attachments/att/image/20200602/1591081550562115.jpg[/img][/align][align=center][font=黑体, SimHei]图.全自动微生物质谱检测系统[/font][/align][align=center][font=黑体, SimHei](Automated Mass Spectrometry Microbial Identification System)[/font][/align]  飞行时间质谱仪的质量分析器是一个离子漂移管。由离子源产生的离子加速后进入无场漂移管,并以恒定速度飞向离子接收器。离子质量越大,到达接收器所用时间越长,离子质量越小,到达接收器所用时间越短,根据这一原理,可以把不同质量的离子按m/z值大小进行分离。质谱图,横轴表示单位电荷质量(m/z);纵轴表示离子流强度,通常以相对强度(相对丰度)来表示。相对丰度以最强的离子流强度定义为100%,其他离子流以其百分比显示。  进样系统、基质辅助激光解吸电离离子源、飞行时间质量分析器、传感器和电脑是临床微生物鉴定的 MALDI—TOFMS主要组成部分。MALDI—TOFMS鉴定微生物的标志物主要是特异性保守核糖体蛋白。MALDI—TOFMS基于微生物蛋白指纹图谱的特异性峰谱进行鉴定,只需将细菌涂布于靶板,加入基质溶液裂解,室温干燥后即上机检测,获取的质量图谱与数据库中的标准图谱进行自动对比分析,即可获得鉴定结果。鉴定结果全程自动判读、自动分析、自动报告、标本自动卸载,20分钟内可完成96个菌株的鉴定,且检测成本低,仪器使用耗材只需样品板和质谱专用基质,无须其他任何附加试剂,对工作人员的技术要求不高。  有研究证实,在重症监护室(ICU)临床治疗中,抗生素如果晚一小时准确治疗,病人存活率下降8%。而运用质谱检测技术则可缩短至少1.5天的鉴定时间,为临床救治危急重症患者赢得更多时间。除单一质谱外,串联质谱在美国及欧盟国家商业化应用相对成熟的主要是药物浓度监测、小分子标志物检测、新生儿筛查和维生素检测等。国内除目前已实现商业化的微生物鉴定、新生儿筛查、维生素等临床检测领域外,应拓展质谱在血药浓度监测领域的绝对优势;紧抓质谱在小分子生物标志物在心脑血管和代谢病方面的发展趋势,质谱仪因能敏锐地分析其他设备仪器难以分析的肿瘤生长分泌的微量外泌体,在癌症的液体活检领域,质谱检测也有望跟基因检测分一杯羹。  质谱作为一个能同时检测大量的化合物的分析器,有望开启IVD检测发展的新篇章。从1953年飞行时间质谱仪原型被设计出,到1955年世界上第一台飞行时间质谱仪诞生,再到国产飞行时间质谱迅猛发展,随着临床对个体化和精准化医疗需求的增加,基于质谱技术的基因组学、蛋白组学、代谢组学等很多研究成果正不断转化至临床实践,值得我们翘首以盼。  中国质谱仪过去面临着4大挑战,技术发展水平的挑战、进口产品替代的挑战、知识产权保护的挑战以及做强、做大与做大、做强之间的挑战。未来希望国内的质谱仪企业抓住全球市场需求增长率超过10%,以及中国市场远超10%的需求增长,结合市场需求和实际情况,通过自身的努力,将更多精良的产品投入到市场中,从而推动中国质谱行业的快速发展。  参考文献:  [1]中国临床微生物质谱共识专家组.中国临床微生物质谱应用专家共识[J]. 中华医院感染学杂志,2016,26(10)  [2]李永军,Sihe Wang.[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱联用技术临床应用[M].上海科学技术出版社  [3]中国质量检测设备摸底调研.分析测试百科网.中金公司研究部

  • 多组学背景下临床质谱发展三大趋势

    随着精准医学的发展、多组学研究上的突破,临床质谱迎来了发展机会。仪器信息网特别策划[color=#0070c0][url=https://www.instrument.com.cn/zt/CMS2022]“临床质谱技术及应用进展”专题[/url][/color],聚焦临床质谱新产品新技术及相关临床领域的最新应用,以增强业界相关人员之间的信息交流,展示更丰富的临床诊断质谱产品、技术解决方案。与生化、免疫等传统检测技术相比,临床质谱技术在灵敏度、特异性、多指标联检等方面具备独特优势。它既是生化、免疫等检测技术的补充,又是传统检测技术的延伸,可以提高现有检验项目的精准度,也可以检测其他技术不能检测的指标,能够更好地指导临床诊断,为患者提供更准确的检测结果。临床质谱技术正在新生儿遗传代谢病筛查、维生素检测、药物浓度监测、激素检测、微生物鉴定、微量元素检测等多个临床应用场景发挥着越来越重要的作用。[color=#ff0000]解决仪器和试剂适配问题是临床质谱落地路径 [/color]从商业模式角度来说,由于医疗服务体系和保险制度的不同,美国大部分质谱服务都是LDT模式(Laboratory Developed Test, 独立医学实验室),形成了像Quest和Labcorp这样的第三方服务龙头。美国60%以上的医学检验都是外包,医院只采样。而国内临床检验的市场主要还是以公立医院检验科为主,以第三方医学检验为辅的市场结构。大医院的检验科能力强,有能力在院内开展检测。同时,报告时间、政策监管及医院管理的需求,也更倾向样本在院内检测。因此,IVD模式(In Vitro Diagnosis,体外诊断)更适合中国。临近两年中国整个临床质谱行业发展非常迅猛,临床质谱这个赛道上涌入的企业也越来越多,资本的投资热度逐渐升高。由于临床看重的是检验性能和临床价值,需要仪器、试剂、服务一站式解决方案,而非单一的仪器。随着国内临床质谱企业增多,首先解决仪器和试剂的适配问题,成为打通质谱分析临床落地路径。[color=#ff0000]多组学背景下,临床质谱行业发展三大趋势[/color]在临床质谱几大技术平台中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱是临床最为成熟的技术平台之一,布局企业多、仪器多、试剂多,是临床质谱市场的核心板块。在精准医疗技术迭代、临床需求持续扩大、多组学趋势背景下,临床质谱政策环境、资本环境等持续向好,临床质谱行业未来技术及应用整体呈现几大趋势:[b]1、以[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱为核心的多组学研究已成为各类疾病筛查、早期诊断、治疗监测和预后评估的生物标志物创新发现的关键应用平台。[/b]生命组学时代来临,临床质谱技术有望成为常规底层技术。疾病发生发展复杂,单一组学无法解决所有问题,已有大量研究表明依靠单一组学存在较大局限性,多组学在致病机理研究、疾病标志物与致病靶点筛选,以及早期诊断和治疗上都有着巨大的潜力,临床医学正在快速过渡至多组学整合分析。而组学研究样本复杂,通常样本中含有数十万个化合物,分子丰度低,对检测灵敏度要求极高,数据分析庞大,质谱技术多指标检测、高灵敏度、高特异性、高通量的特点非常契合多组学发展趋势,有望在多组学时代中大放异彩。相比基因组学和转录组学,蛋白质组学和代谢组学在精准诊断的普检和特检、精准治疗的创新药研发和伴随诊断中具有更加深远和广泛的意义。其中,蛋白质组学研究难度更高、与临床结合更为紧密、药物医学转化程度更高,是推动临床应用与医学转化的重中之重。[b]2、在应用场景上,常规检测应用成红海,针对大病种的精准诊疗将成为未来临床质谱主力市场。[/b][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱临床应用分为两类,一类是常规检测应用,对现有方法学进行升级,如新生儿遗传代谢病筛查、药物浓度监测、维生素检测等,另一类是基于组学研究,开辟空白、创新应用场景,如慢病诊疗跟踪、肿瘤标志物发现等。随着我国临床质谱常规应用渗透率提高,新生儿遗传代谢病筛查、维生素检测等已成为红海市场,传统检验替代、大病种尤其是阿尔茨海默症、心血管病和肿瘤等疾病的精准诊疗将成为未来重要的临床质谱增量市场。[b]3、未来,各类质谱仪器会持续向国产替代方向发展。[/b]从近年来提出的精准医疗等热点可以得知,人们越发重视生活质量提升,实现精准医疗的目标就离不开[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析技术。由于现有的质谱属于高精尖仪器,需要专业人员操作和维护,且几乎依赖进口,无法满足我国对该技术日益增长的需求,质谱技术向国产化、POCT化、自动化方向发展是未来趋势,推动临床质谱市场成熟。我们相信,2020-2030年是生命组学时代,质谱技术将助推代谢组学、蛋白质组学等组学技术在精准医疗领域发挥重大作用。基于组学技术的疾病特检、伴随诊断未来将有大的发展。一个行业的持续发展需要构建良好的生态,虽然目前我国质谱行业还处于行业发展的早期阶段,但行业生态已经逐步形成。临床质谱产业链的全面发展,硬件厂家、试剂厂家、服务提供商的水平都在快速提升,医院、终端用户的需求日益增长,科研院校、医药企业的参与增多,生态中各种参与者之间的联系越来越紧密。

  • 质谱技术及其在临床检验中的应用

    [font=&][size=18px]引言[/size][/font][font=&][size=18px]质谱(mass spectrometry,MS)技术是一种重要的检测分析技术,通过将待测样本转换成高速运动的离子,根据不同的离子拥有不同的质荷比(m/z)进行分离和检测目标离子或片段,然后依据保留时间和其丰度值进行定性和定量[ 1]。近年来,质谱技术发展迅速,通过改进离子源和分离器相继发展了多种类型的质谱仪如电喷雾离子源质谱(ESI-MS)、大气压化学电离离子源质谱(APCI-MS)、四级杆(QQQ)质谱仪、离子阱质谱技术以及各种串联、联用质谱仪等多种类型,极大提高了检测的分辨率和检测范围。质谱技术最先应用于计量和分析化学领域,在临床检验中质谱仍属于一种年轻的检测方法。但自从其在临床检验应用以来,便以其高灵敏度、低检测限、样本用量少、高通量、检测速度快、样本前处理简单的优势显示出巨大的生命力,尤其和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]的联用极大的扩展了质谱技术在临床检验中的分析范围。[/size][/font][font=&][size=18px]一、质谱仪的组成[/size][/font][font=&][size=18px]质谱仪主要有5个部分组成:进样系统、离子源、质量分析器、检测器和数据处理系统。其核心部件是离子源和质量分析器。离子源的功能是将由进样系统引入的样本分子转化成离子,包括硬电离方法和软电离方法。硬电离方法给予样本较大的能量,如电子轰击电离、化学电离、场致离子化电离等 软电离方法是一种比较温和的离子化方式,包括快原子轰击电离、大气压化学电离、大气压光致电离、电喷雾电离、基质辅助激光解吸电离等类型。硬电离方法适用于一些小分子化合物的分析,软电离适用于分子量较大的化合物,尤其是一些生物分子,如蛋白质、多肽、寡聚核苷酸等。质量分析器主要是将电离产生的离子根据其不同的质荷比来分离目标离子,其主要类型有单聚焦、双聚焦、摆线、磁分析器、飞行时间、四级杆质量分析器、离子阱分析器、傅立叶变换离子回旋共振质谱等类型。此外仪器还需要在高真空环境中进行离子分离,因此真空系统也是质谱仪必备的组成部分[ 2]。[/size][/font][font=&][size=18px]二、质谱仪的工作原理[/size][/font][font=&][size=18px]质谱仪的基本工作原理:待测样本由进样系统进入离子源内电离成离子进入质量分析器,然后质量分析器据形成的离子的m/z进行分离,后进入检测器检测,数据系统将离子信号转换成谱图进行质谱解析或定量分析。目前生命科学领域中的质谱仪大都由几种质量检测器串联组成,这样可以提高离子分离效率,使检测更具特异性和准确度[ 3]。[/size][/font][font=&][size=18px]三、质谱仪在临床检验中应用[/size][/font][font=&][size=18px](一)在微生物检验方面的应用[/size][/font][font=&][size=18px]传统的致病微生物检测大多采用微生物培养、生物化学和分子生物学的方法检测,不仅分析周期长而且没有明确的种群分型标准,往往造成分析结果的滞后和种类分型的误判。据估计,在临床实验室中仅在链球菌的分类中,就有高达13%的辨别错误[ 4]。近年来,质谱技术在微生物检验方面的应用越来越多,这主要得益于其得天独厚的优势:(1)可用于多种微生物样本,如痰液、血液、尿液、脑脊液和胸腹腔积液以及经过培养的样本 (2)可用于几乎所有类型的病原体鉴定和分类检测,如细菌、真菌及其孢子、病毒、寄生虫等 (3)可对病原的多种成分进行分析,包括蛋白质、脂质、脂多糖、脂寡糖、DNA、多肽及其他可被离子化的分子 (4)检测速度快,例如一个病原微生物的质谱检定实验,包括样本的采集和制备,整个过程不到10 min[ 5] (5)样本用量少 (6)样本前处理简单 (7)特异性和准确性高,例如金黄色葡萄球菌的表型鉴定,Rajakaruna等[ 6]利用基质辅助激光解吸/电离-飞行时间质谱(SELDI-TOF-MS)技术分析了来自临床实验室的95个分离群和39个葡萄球菌群,并利用MicrobeLynx软件成功的识别了各个种群 (8)高敏感性,例如[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱可以检测到10~100个细菌或20~50个孢子的存在。在对生物样本进行处理后,甚至可以在单个菌水平发现并确定致病菌[ 7] ,使其在微生物尤其是传染病病原体鉴定方面具有巨大的优势。近年来已建立了微生物胞膜蛋白质、脂多糖、核酸等的指纹数据库,使其检测更加准确和快速。[/size][/font][font=&][size=18px]目前在细菌检测中应用较多是飞行质谱技术。通过检测细菌胞膜成分或表达的特异蛋白对细菌进行种群的鉴别,不仅可以识别病原菌,而且有助于发现新的病原菌。此外还有用于病原体的药物敏感性实验检测和真菌检测研究等[ 8, 9] 。[/size][/font][font=&][size=18px](二)质谱技术在临床免疫学检验的应用[/size][/font][font=&][size=18px]飞行质谱技术的全称是表面增强激光解吸电离飞行时间质谱技术(surface enhanced laser desorption/ionization time of flight mass spectrometry,SELDI-TOF-MS),是利用相同能量的带电粒子,由于质量的差异而具有不同速度从而以不同时间通过相同的漂移距离到达接收器,依据离子束到达检测器的时间推算出m/z,从而进行定性和定量检测。其高灵敏度、高通量的分析特点使其在临床免疫学检验生物标志物检测方面成为一项有力的工具,筛选作用独特高效。如前列腺癌及前列腺增生、卵巢癌、胰腺癌、膀胱癌、乳腺癌、肺癌、肝癌、肾癌、结肠癌、喉癌、鼻咽癌、食道癌等,都发现了特异的蛋白或某些蛋白的增加或者减少[ 10, 11, 12, 13]。尤其质谱检测技术在泌尿系统中的应用发展迅速。由于其检测的样本为尿液,对患者身体不造成伤害,不仅可以早期诊断肾脏疾病,而且避免或减轻了传统侵入性方法如肾脏活检等给患者带来的痛苦,提高患者治疗的依从性和存活率。在肾脏肿瘤、糖尿病性肾脏病变、肾脏移植功能检测等具有很大应用前景[ 14]。此外毛细管电泳质谱技术被广泛用于泌尿系统 peptidomical 生物标志物的研究,验证了许多已经报道的但是没有蛋白和肽段识别的研究结果[ 15]。[/size][/font][font=&][size=18px]Agger等[ 16]采用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-多重反应检测-质谱(LC-MRM/MS)方法通过同时定量测定血浆样本中载脂蛋白A-Ⅰ和载脂蛋白B来推进质谱方法同时定量多种血浆/血清中蛋白质在临床前期的生物标志物大规模筛选以及取代价格昂贵的免疫测定方法作为实验室检查的常规方法的应用。结果表明LC-MRM/MS与传统免疫学方法相关性良好且具有大规模应用于临床研究的可行性。因其简化了样本的前处理以及样本前处理中蛋白消化作用带来的变异,具有潜在的应用前景。[/size][/font][font=&][size=18px](三)在临床生物化学检验中的应用[/size][/font][font=&][size=18px]1.在体内激素检测方面的应用 质谱技术在临床生物化学中一项重要的应用是用于体内激素的检测,如类固醇激素(甾体激素)及其代谢产物的检测,具有极重要的临床诊断价值,几乎可以诊断所有的类固醇相关障碍性疾病。如睾酮(T)、双氢睾酮(DHT)、血浆雌酮硫酸盐、雌酮、雌二醇和雌三醇等的定量检测,可辅助多种激素相关疾病及激素替代治疗疾病如儿科遗传性激素相关疾病、先天性肾上腺增生症、家族性高醛甾酮过多症、多囊卵巢病、成人生殖系统和第二性征的维持、前列腺增生和前列腺癌、原发性醛固酮增多症、肾上腺机能减退、雌激素缺乏及抗雌激素药治疗、肾上腺功能异常(如Cushing's综合症)的诊断、监测、治疗和研究等[ 17, 18]。[/size][/font][font=&][size=18px]2.在血药浓度监测和药物代谢研究中的应用 临床中某些药物效用范围比较窄,很容易引起毒性反应,造成不良后果。如免疫抑制剂随着器官移植技术和移植成活率的提高越来越多的应用于患者,其在人体内过多和过少都会给患者带来很大的痛苦。但这些药物在体内的浓度往往很低,给检测带来一定的困难。近几年随着质谱技术的发展,其高灵敏度、高特异性和检测速度快的优势使其已成为药物浓度检测的重要工具。特别是在免疫抑制药物、抗肿瘤药物、抗逆转录病毒(HIV)药物、抗精神病药物、一些激素类药物、中药及其天然产物分析、药物滥用(如吗啡、鸦片和一些镇痛药)、麻醉药、中毒药物的急救中得到广泛应用,并且质谱技术被公认为生物样本中药物及其代谢产物检测的标准化方法[ 19, 20]。此外有报道通过用飞行质谱方法进行单链核苷酸多态性的快速基因分型从而指导华法林(抗凝血药)用量的研究[ 21]。这为新的多重基因分型方法提供了一个非常好的临床检验平台,促进个体化药物治疗的研究。[/size][/font][font=&][size=18px]3.在遗传性疾病检测中的应用 质谱技术在遗传性疾病的诊断和筛查中应用广泛。最为大家熟知的就是质谱技术在新生儿筛查检测中的应用,通过检测氨基酸、脂肪酸、有机酸及其代谢产物可以灵敏、准确地检测出20多种遗传代谢疾病,从而早期诊断、早期治疗,挽救了很多患儿的生命和人生[ 22, 23]。还有报道质谱技术用于快速筛查嘌呤和嘧啶代谢紊乱高危患者的研究,快速且特异,弥补了该种遗传病表型表现多样性和非特异性给诊断带来的困难[ 24]。孙卫华等[ 25]采用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用技术([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])测定尿琥珀酰丙酮(SA),精确性和准确性均较高,为临床上鉴别诊断酪氨酸血症I型提供了新的方法。[/size][/font][font=&][size=18px]4.痕量元素/微量营养素检测中的应用 [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]分析技术([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])是20世纪80年代发展起来的无机元素分析检测技术,近年来在痕量、超痕量成分及同位素分析检测中广泛应用。[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]是在样本处理前加入待测元素的同位素,利用其测定前后的丰度比例改变而达到测定目的。可以同时测定多种痕量元素,具有检测限低、动态线性范围宽、干扰少、稳定性好、分析精密度高、速度快、样本前处理简单、高通量等诸多优点,是最准确的无机元素分析方法之一。目前已广泛应用于血清、全血、尿液以及头发中铅(Pb)、砷(As)、铁(Fe)、硒(Se)、锌(Zn)等有害重金属元素和人体微量元素的测定,可辅助临床疾病和职业病的诊断和鉴别诊断等。但是其一个最大的缺点是昂贵的耗费以及某些重金属元素比如铬和铁等有较多的干扰[ 26]。此外,质谱技术还可应用于人体微量营养元素的检测,如B12、维生素D等,对于诊断人体相关微量营养素异常导致的疾病具有重要临床应用意义。[/size][/font][font=&][size=18px]5.糖化血红蛋白的检测应用 糖化血红蛋白(HbA1c)被认为是诊断糖尿病的最好指标。Nakanishi等[ 24]报道用电喷雾电离质谱法(ESI-MS)检测HbA1c并与传统方法比较,结果显示ESI-MS方法与传统方法的相关性高于96%,而且重复性非常好,在临床检验常规方法的质量控制中可以起到很大作用。[/size][/font][font=&][size=18px](四)在分子生物诊断中的应用[/size][/font][font=&][size=18px]1.蛋白组学和核苷酸多态性的研究应用 质谱技术应用领域中的另一个重要方面是蛋白质组学研究。2002年软电离技术被授予诺贝尔化学奖。生物质谱技术也成为质谱学中最具有活力的前沿热门技术。其可以检测蛋白质的氨基酸组成、分子量、多肽或二硫键的数目和位置及蛋白质的空间构象等 还用于检测核酸的分子量和单核苷酸多态性(即基因位点的突变)研究。其准确、灵敏和高通量的特点已经成为检测蛋白及多肽分子和基因的重要技术[ 28, 29]。通过MALDI-TOF-MS检测寻找特异的一组蛋白质峰,建立肿瘤早期血清差异表达蛋白的诊断模型,对早期快速诊断肿瘤提供可能。已有研究报道用于多种肿瘤的早期诊断。单核苷酸多态性是指DNA序列上发生的单个核苷酸碱基之间的变异,在人群中的发生频率1%,是决定疾病易感性和药物反应性差异的重要因素。通过检测突变的位点可以对疾病进行预测,提供诊断意见和用药指导并探讨与疾病发生的相关性。因为MALDI-TOF-MS检测的是核苷酸本身的分子量,相较于传统的单核苷酸多态性分型检测方法更为省时、省力和可靠。[/size][/font][font=&][size=18px]2.代谢组学研究的应用 人体是一个复杂的生化大工厂。当某部件出现异常时必然会伴随着某些代谢小分子的水平异常。相对来说这些小分子比DNA、RNA、蛋白质等更能反应一个细胞当前的功能状态。代谢组学也是目前研究的一个热点,质谱技术在检测这些代谢小分子的变化上也有重要的应用,为多种疾病及肿瘤的更早期诊断和指导治疗提供依据[ 30]。如张文亮等[ 31]采用毛细管电泳与MALDI-TOF-MS联用测定血清转甲状腺素蛋白的化学修饰,为进一步探索淀粉样变性的发病机制提供了一种简便的检测方法。[/size][/font][font=&][size=18px](五)在参考方法建立和研制标准物质方面的应用[/size][/font][font=&][size=18px]在临床检验中基于准确性的标准化检测是目前急需的。1997年国际物质量咨询委员会(CCQM)将同位素稀释质谱(ED-ID-MS)原理定为一级(基准)测量原理之一,其同时具有质谱分析的高度特异性和同位素稀释的高度精密性,且测量的动态范围宽,样本制备不需严格定量操作,测量值能够直接溯源到国际单位制的物质量基本单位“摩尔”。因此基于同位素稀释质谱原理的方法在生物和临床化学溯源研究中受到越来越多的重视,为临床检验中标准物质的研制提供了技术保障,是临床检验参考方法的最佳选择。[/size][/font][font=&][size=18px]Thienpont 等[ 32]建立基于常规实验室的ED-ID-MS法检测游离T3和T4通过IFCC的候选国际传统参考测量程序方法的校准和溯源,检测指标都取得了很好的相关性。张传宝等[ 32]应用同位素稀释[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法建立了测定血清尿酸的候选参考方法。[/size][/font][font=&][size=18px]四、结语[/size][/font][font=&][size=18px]质谱技术,尤其是串联质谱技术可以提供物质的结构和质量信息。因此其在定性和定量生物样本中的作用越来越大,同时也适合一些探索性的工作。MALDI-TOF和SELDI质谱仪近来被广泛用于一些标志性物质的探索。三重四级杆线性离子阱分析器的发展使分析器定量的能力与离子阱的扫描能力相结合,从而可以容纳扫描器组合的不同排列。选择性反应物探测的组合和三重质谱技术的组合(MS/MS/MS)是一个定量的很好组合。电喷雾离子化、大气压光致电离是近年来发展迅速的离子源,可以检测极性和非极性化合物。[/size][/font][font=&][size=18px]质谱技术虽然有很多的优点,在近年来很多领域的应用也发展迅速,但其也有自身的瓶颈:如没有某纯物质为内标或特征性的离子碎片,则难以判断该物质是何种物质,无法定性和定量,所以目前还有许多物质无法用质谱检测,尤其是一些大分子的复杂物质 目前质谱技术的自动化程度还还相对较差,前处理过程也相对复杂,其对工作人员的技术要求较高 另外仪器昂贵,日常运行费用及维护费用也较高,如ID-MS仪器,在处理样本时需要加入适量的同位素稀释剂,该种稀释剂来源较困难,制备成本较高等,这些都为ID-MS的普及应用带来困难 此外该技术的高敏感性,如SELDI-TOF-MS技术筛检蛋白的高敏感性必然带来了检测的假阳性,这也是该技术不容忽视的一个弱点。但相信随着质谱技术的发展成熟,其在临床实验室检测中会有更广泛的应用。[/size][/font][font=&][size=18px]参考文献[/size][/font][font=&][size=18px][1] Burtis CA, Ashwood ER, Bruns DE. Tietz textbook of clinical chemistry and molecular diagnosis [M]. 4th edition. St. Louis: Elsevier Inc, 2006: 128-137.[/size][/font][font=&][size=18px][2] 杨根元. 实用仪器分析[M]. [M]. 第3版. 北京: 北京大学出版社, 2001: 262-266.[/size][/font][font=&][size=18px][3] 庄俊华, 冯桂湘, 黄宪章, 等. 临床生化检验技术[M]. [M]. 北京: 人民卫生出版社, 2009: 66-87.[/size][/font][font=&][size=18px][4] Kikuchi K, Enari T, Totsuka K, et al. Comparison of phenotypic characteristics, DNA-DNA hybridization results, and results with a commercial rapid bio-chemical and enzymatic reaction system for identification of viridians group Streptococci[J]. J Clin Microbiol, 1995, 33(5): 1215-1222. [/size][/font][font=&][size=18px][5] 鲁辛辛, 袁梁. 新技术在微生物检验中的应用[J]. 中华检验医学杂志, 2009, 32(5): 596-600.[/size][/font][font=&][size=18px][6] Rajakaruna L, Hallas G, Molenaar L, et al. High throughput identification of clinical isolates of Staphylococcus aureus using MALDI-TOF-MS of intact cells[J]. Infect Genet Evol, 2009, 9(4): 507-513.[/size][/font][font=&][size=18px][7] 胡晓舟, 张捷. 医学检验中[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱的应用[J]. 临床检验杂志, 2005, 23(4): 314-316.[/size][/font][font=&][size=18px][8] Pinto A, Halliday C, Zahra M, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of yeasts is contingent on robust reference spectra[J]. PLoS One, 2011, 6(10): e25712.[/size][/font][font=&][size=18px][9] Bader O, Weig M, Taverne-Ghadwal L, et al. Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. Clin Microbiol Infect, 2011, 17(9): 1359-1365.[/size][/font][font=&][size=18px][10] Liu C, Pan C, Shen J, et al. MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of colorectal cancer[J]. Int J Med Sci, 2011, 8(1): 39-47.[/size][/font][font=&][size=18px][11] Ummanni R, Mundt F, Pospisil H, et al. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform[J]. PLoS One, 2011, 6(2): e16833.[/size][/font][font=&][size=18px][12] Matta A, Ralhan R, DeSouza LV, et al. Mass spectrometry-based clinical proteomics: head-and -neck cancer biomarkers and drug-targets discovery[J]. Mass Spectrom Rev, 2010, 29(6): 945-961.[/size][/font][font=&][size=18px][13] 金宏伟, 杨光, 黄河清. 柱层析和MALDI-TOF质谱技术筛选食道癌血清标志多肽[J]. 检验医学, 2009, 24(11): 792-795.[/size][/font][font=&][size=18px][14] Benkali K, Marquet P, Rérolle J, et al. A new strategy for faster urinary biomarkers identification by Nano-LC-MALDI-TOF/TOF mass spectrometry[J]. BMC Genomics, 2008, 9: 541.[/size][/font][font=&][size=18px][15] Theodorescu D, Wittke S, Ross MM, et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis[J]. Lancet Oncol, 2006, 7(3): 230-240.[/size][/font][font=&][size=18px][16] Agger SA, Marney LC, Hoofnagle AN. Simultaneous quantification of apolipoprotein A-I and apolipoprotein B by liquid-chromatography-multiple-reaction-monitoring mass spectrometry[J]. Clin Chem, 2010, 56(12): 1804-1813. [/size][/font][font=&][size=18px][17] Rauh M. Steroid measurement with [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS in pediatric endocrinology[J]. Mol Cell Endocrinol, 2009, 301(1-2): 272-281.[/size][/font][font=&][size=18px][18] Faupel-Badger JM, Fuhrman BJ, Xu X, et al. Comparison of liquid chromatography-tand em mass spectrometry, RIA, and ELISA methods for measurement of urinary estrogens[J]. Cancer Epidemiol Biomarkers Prev, 2010, 19(1): 292-300. [/size][/font][font=&][size=18px][19] Haller CA, Stone J, Burke V, et al. Comparison of an automated and point-of-care immunoassay to [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url] for urine oxycodone testing in the clinical laboratory[J]. J Anal Toxicol, 2006, 30(2): 106-111.[/size][/font][font=&][size=18px][20] Ansermot N, Brawand -Amey M, Eap CB. Simul-taneous quantification of selective serotonin reuptake inhibitors and metabolites in human plasma by liquid chromatography-electrospray mass spectrometry for therapeutic drug monitoring[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2012: 885-886: 117-130.[/size][/font][font=&][size=18px][21] Yang S, Xu L, Wu HM. Rapid genotyping of single nucleotide polymorphisms influencing warfarin drug response by surface-enhanced laser desorption and ionization time-of-flight (SELDI-TOF) mass spectro-metry[J]. J Mol Diagn, 2010, 12(2): 162-168.[/size][/font][font=&][size=18px][22] 江剑辉. 新生儿遗传代谢病串联质谱筛查和高危儿筛查[A]. 新筛及临床检验技术国际研讨会[C]. 广州: 广州市新生儿筛查中心, 2011: 3. [/size][/font][font=&][size=18px][23] 田国力, 龚振华, 王燕敏. 非衍生化串联质谱法检测酰基肉碱方法的应用[J]. 检验医学, 2011, 26(9): 598-601.[/size][/font][font=&][size=18px][24] Ito T, van Kuilenburg AB, Bootsma AH, et al. Rapid screening of high-risk patients for disorders of purine and pyrimidine metabolism using HPLC-electrospray tand em mass spectrometry of liquid urine or urine-soaked filter paper strips[J]. Clin Chem, 2000, 46(4): 445-452.[/size][/font][font=&][size=18px][25] 孙卫华, 曹迪, 王艺, 等. [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]技术检测尿琥珀酰丙酮及其在酪氨酸血症诊断中的应用[J]. 检验医学, 2009, 24(5): 373-377. [/size][/font][font=&][size=18px][26] Hsieh HF, Chang WS, Hsieh YK, et al. Using dried- droplet laser ablation inductively coupled plasma mass spectrometry to quantify multiple elements in whole blood[J]. Anal Chim Acta, 2011, 699(1): 6-10.[/size][/font][font=&][size=18px][27] Nakanishi T, Miyazaki A, Kishikawa M, et al. Quantification of glycated hemoglobin by electrospray ionization mass spectrometry[J]. J Mass Spectrom, 1997, 32(7): 773-778.[/size][/font][font=&][size=18px][28] Tao Y, Julian RR . Examining protein surface structure in highly conserved sequence variants with mass spectrometry[J]. Biochemistry, 2012, 51(8): 1796-1802.[/size][/font][font=&][size=18px][29] Sauer S, Reinhardt R, Lehrach H, et al. Single-nucleotide polymorphisms: analysis by mass spectro-metry[J]. Nat Protoc, 2006, 1(4): 1761-1771. [/size][/font][font=&][size=18px][30] Yoshida M, Hatano N, Nishiumi S, et al. Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography-mass spectrometry[J]. J Gastroenterol, 2012, 47(1): 9-20.[/size][/font][font=&][size=18px][31] 张文亮, 宋林, 李优鑫, 等. 毛细管电泳与MALDI TOF/MS联用测定血清转甲状腺素蛋白的化学修饰[J]. 检验医学, 2012, 27(3): 185-188.[/size][/font][font=&][size=18px][32] Thienpont LM, Van Uytfanghe K, Beastall G, et al. Report of the IFCC working group for stand ardization of thyroid function tests part 2: free thyroxine and free triiodothyronine[J]. Clin Chem, 2010, 56(6): 912-920.[/size][/font][font=&][size=18px][33] 张传宝, 张江涛, 张天娇, 等. 同位素稀释[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法测定人血清尿酸[J]. 检验医学, 2009, 24(12): 878-882.[/size][/font]

  • 质谱技术及其在临床检验中的应用

    [font=&][size=18px]引言[/size][/font][font=&][size=18px]质谱(mass spectrometry,MS)技术是一种重要的检测分析技术,通过将待测样本转换成高速运动的离子,根据不同的离子拥有不同的质荷比(m/z)进行分离和检测目标离子或片段,然后依据保留时间和其丰度值进行定性和定量[ 1]。近年来,质谱技术发展迅速,通过改进离子源和分离器相继发展了多种类型的质谱仪如电喷雾离子源质谱(ESI-MS)、大气压化学电离离子源质谱(APCI-MS)、四级杆(QQQ)质谱仪、离子阱质谱技术以及各种串联、联用质谱仪等多种类型,极大提高了检测的分辨率和检测范围。质谱技术最先应用于计量和分析化学领域,在临床检验中质谱仍属于一种年轻的检测方法。但自从其在临床检验应用以来,便以其高灵敏度、低检测限、样本用量少、高通量、检测速度快、样本前处理简单的优势显示出巨大的生命力,尤其和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]的联用极大的扩展了质谱技术在临床检验中的分析范围。[/size][/font][font=&][size=18px]一、质谱仪的组成[/size][/font][font=&][size=18px]质谱仪主要有5个部分组成:进样系统、离子源、质量分析器、检测器和数据处理系统。其核心部件是离子源和质量分析器。离子源的功能是将由进样系统引入的样本分子转化成离子,包括硬电离方法和软电离方法。硬电离方法给予样本较大的能量,如电子轰击电离、化学电离、场致离子化电离等 软电离方法是一种比较温和的离子化方式,包括快原子轰击电离、大气压化学电离、大气压光致电离、电喷雾电离、基质辅助激光解吸电离等类型。硬电离方法适用于一些小分子化合物的分析,软电离适用于分子量较大的化合物,尤其是一些生物分子,如蛋白质、多肽、寡聚核苷酸等。质量分析器主要是将电离产生的离子根据其不同的质荷比来分离目标离子,其主要类型有单聚焦、双聚焦、摆线、磁分析器、飞行时间、四级杆质量分析器、离子阱分析器、傅立叶变换离子回旋共振质谱等类型。此外仪器还需要在高真空环境中进行离子分离,因此真空系统也是质谱仪必备的组成部分[ 2]。[/size][/font][font=&][size=18px]二、质谱仪的工作原理[/size][/font][font=&][size=18px]质谱仪的基本工作原理:待测样本由进样系统进入离子源内电离成离子进入质量分析器,然后质量分析器据形成的离子的m/z进行分离,后进入检测器检测,数据系统将离子信号转换成谱图进行质谱解析或定量分析。目前生命科学领域中的质谱仪大都由几种质量检测器串联组成,这样可以提高离子分离效率,使检测更具特异性和准确度[ 3]。[/size][/font][font=&][size=18px]三、质谱仪在临床检验中应用[/size][/font][font=&][size=18px](一)在微生物检验方面的应用[/size][/font][font=&][size=18px]传统的致病微生物检测大多采用微生物培养、生物化学和分子生物学的方法检测,不仅分析周期长而且没有明确的种群分型标准,往往造成分析结果的滞后和种类分型的误判。据估计,在临床实验室中仅在链球菌的分类中,就有高达13%的辨别错误[ 4]。近年来,质谱技术在微生物检验方面的应用越来越多,这主要得益于其得天独厚的优势:(1)可用于多种微生物样本,如痰液、血液、尿液、脑脊液和胸腹腔积液以及经过培养的样本 (2)可用于几乎所有类型的病原体鉴定和分类检测,如细菌、真菌及其孢子、病毒、寄生虫等 (3)可对病原的多种成分进行分析,包括蛋白质、脂质、脂多糖、脂寡糖、DNA、多肽及其他可被离子化的分子 (4)检测速度快,例如一个病原微生物的质谱检定实验,包括样本的采集和制备,整个过程不到10 min[ 5] (5)样本用量少 (6)样本前处理简单 (7)特异性和准确性高,例如金黄色葡萄球菌的表型鉴定,Rajakaruna等[ 6]利用基质辅助激光解吸/电离-飞行时间质谱(SELDI-TOF-MS)技术分析了来自临床实验室的95个分离群和39个葡萄球菌群,并利用MicrobeLynx软件成功的识别了各个种群 (8)高敏感性,例如[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱可以检测到10~100个细菌或20~50个孢子的存在。在对生物样本进行处理后,甚至可以在单个菌水平发现并确定致病菌[ 7] ,使其在微生物尤其是传染病病原体鉴定方面具有巨大的优势。近年来已建立了微生物胞膜蛋白质、脂多糖、核酸等的指纹数据库,使其检测更加准确和快速。[/size][/font][font=&][size=18px]目前在细菌检测中应用较多是飞行质谱技术。通过检测细菌胞膜成分或表达的特异蛋白对细菌进行种群的鉴别,不仅可以识别病原菌,而且有助于发现新的病原菌。此外还有用于病原体的药物敏感性实验检测和真菌检测研究等[ 8, 9] 。[/size][/font][font=&][size=18px](二)质谱技术在临床免疫学检验的应用[/size][/font][font=&][size=18px]飞行质谱技术的全称是表面增强激光解吸电离飞行时间质谱技术(surface enhanced laser desorption/ionization time of flight mass spectrometry,SELDI-TOF-MS),是利用相同能量的带电粒子,由于质量的差异而具有不同速度从而以不同时间通过相同的漂移距离到达接收器,依据离子束到达检测器的时间推算出m/z,从而进行定性和定量检测。其高灵敏度、高通量的分析特点使其在临床免疫学检验生物标志物检测方面成为一项有力的工具,筛选作用独特高效。如前列腺癌及前列腺增生、卵巢癌、胰腺癌、膀胱癌、乳腺癌、肺癌、肝癌、肾癌、结肠癌、喉癌、鼻咽癌、食道癌等,都发现了特异的蛋白或某些蛋白的增加或者减少[ 10, 11, 12, 13]。尤其质谱检测技术在泌尿系统中的应用发展迅速。由于其检测的样本为尿液,对患者身体不造成伤害,不仅可以早期诊断肾脏疾病,而且避免或减轻了传统侵入性方法如肾脏活检等给患者带来的痛苦,提高患者治疗的依从性和存活率。在肾脏肿瘤、糖尿病性肾脏病变、肾脏移植功能检测等具有很大应用前景[ 14]。此外毛细管电泳质谱技术被广泛用于泌尿系统 peptidomical 生物标志物的研究,验证了许多已经报道的但是没有蛋白和肽段识别的研究结果[ 15]。[/size][/font][font=&][size=18px]Agger等[ 16]采用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-多重反应检测-质谱(LC-MRM/MS)方法通过同时定量测定血浆样本中载脂蛋白A-Ⅰ和载脂蛋白B来推进质谱方法同时定量多种血浆/血清中蛋白质在临床前期的生物标志物大规模筛选以及取代价格昂贵的免疫测定方法作为实验室检查的常规方法的应用。结果表明LC-MRM/MS与传统免疫学方法相关性良好且具有大规模应用于临床研究的可行性。因其简化了样本的前处理以及样本前处理中蛋白消化作用带来的变异,具有潜在的应用前景。[/size][/font][font=&][size=18px](三)在临床生物化学检验中的应用[/size][/font][font=&][size=18px]1.在体内激素检测方面的应用 质谱技术在临床生物化学中一项重要的应用是用于体内激素的检测,如类固醇激素(甾体激素)及其代谢产物的检测,具有极重要的临床诊断价值,几乎可以诊断所有的类固醇相关障碍性疾病。如睾酮(T)、双氢睾酮(DHT)、血浆雌酮硫酸盐、雌酮、雌二醇和雌三醇等的定量检测,可辅助多种激素相关疾病及激素替代治疗疾病如儿科遗传性激素相关疾病、先天性肾上腺增生症、家族性高醛甾酮过多症、多囊卵巢病、成人生殖系统和第二性征的维持、前列腺增生和前列腺癌、原发性醛固酮增多症、肾上腺机能减退、雌激素缺乏及抗雌激素药治疗、肾上腺功能异常(如Cushing's综合症)的诊断、监测、治疗和研究等[ 17, 18]。[/size][/font][font=&][size=18px]2.在血药浓度监测和药物代谢研究中的应用 临床中某些药物效用范围比较窄,很容易引起毒性反应,造成不良后果。如免疫抑制剂随着器官移植技术和移植成活率的提高越来越多的应用于患者,其在人体内过多和过少都会给患者带来很大的痛苦。但这些药物在体内的浓度往往很低,给检测带来一定的困难。近几年随着质谱技术的发展,其高灵敏度、高特异性和检测速度快的优势使其已成为药物浓度检测的重要工具。特别是在免疫抑制药物、抗肿瘤药物、抗逆转录病毒(HIV)药物、抗精神病药物、一些激素类药物、中药及其天然产物分析、药物滥用(如吗啡、鸦片和一些镇痛药)、麻醉药、中毒药物的急救中得到广泛应用,并且质谱技术被公认为生物样本中药物及其代谢产物检测的标准化方法[ 19, 20]。此外有报道通过用飞行质谱方法进行单链核苷酸多态性的快速基因分型从而指导华法林(抗凝血药)用量的研究[ 21]。这为新的多重基因分型方法提供了一个非常好的临床检验平台,促进个体化药物治疗的研究。[/size][/font][font=&][size=18px]3.在遗传性疾病检测中的应用 质谱技术在遗传性疾病的诊断和筛查中应用广泛。最为大家熟知的就是质谱技术在新生儿筛查检测中的应用,通过检测氨基酸、脂肪酸、有机酸及其代谢产物可以灵敏、准确地检测出20多种遗传代谢疾病,从而早期诊断、早期治疗,挽救了很多患儿的生命和人生[ 22, 23]。还有报道质谱技术用于快速筛查嘌呤和嘧啶代谢紊乱高危患者的研究,快速且特异,弥补了该种遗传病表型表现多样性和非特异性给诊断带来的困难[ 24]。孙卫华等[ 25]采用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用技术([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])测定尿琥珀酰丙酮(SA),精确性和准确性均较高,为临床上鉴别诊断酪氨酸血症I型提供了新的方法。[/size][/font][font=&][size=18px]4.痕量元素/微量营养素检测中的应用 [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]分析技术([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])是20世纪80年代发展起来的无机元素分析检测技术,近年来在痕量、超痕量成分及同位素分析检测中广泛应用。[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]是在样本处理前加入待测元素的同位素,利用其测定前后的丰度比例改变而达到测定目的。可以同时测定多种痕量元素,具有检测限低、动态线性范围宽、干扰少、稳定性好、分析精密度高、速度快、样本前处理简单、高通量等诸多优点,是最准确的无机元素分析方法之一。目前已广泛应用于血清、全血、尿液以及头发中铅(Pb)、砷(As)、铁(Fe)、硒(Se)、锌(Zn)等有害重金属元素和人体微量元素的测定,可辅助临床疾病和职业病的诊断和鉴别诊断等。但是其一个最大的缺点是昂贵的耗费以及某些重金属元素比如铬和铁等有较多的干扰[ 26]。此外,质谱技术还可应用于人体微量营养元素的检测,如B12、维生素D等,对于诊断人体相关微量营养素异常导致的疾病具有重要临床应用意义。[/size][/font][font=&][size=18px]5.糖化血红蛋白的检测应用 糖化血红蛋白(HbA1c)被认为是诊断糖尿病的最好指标。Nakanishi等[ 24]报道用电喷雾电离质谱法(ESI-MS)检测HbA1c并与传统方法比较,结果显示ESI-MS方法与传统方法的相关性高于96%,而且重复性非常好,在临床检验常规方法的质量控制中可以起到很大作用。[/size][/font][font=&][size=18px](四)在分子生物诊断中的应用[/size][/font][font=&][size=18px]1.蛋白组学和核苷酸多态性的研究应用 质谱技术应用领域中的另一个重要方面是蛋白质组学研究。2002年软电离技术被授予诺贝尔化学奖。生物质谱技术也成为质谱学中最具有活力的前沿热门技术。其可以检测蛋白质的氨基酸组成、分子量、多肽或二硫键的数目和位置及蛋白质的空间构象等 还用于检测核酸的分子量和单核苷酸多态性(即基因位点的突变)研究。其准确、灵敏和高通量的特点已经成为检测蛋白及多肽分子和基因的重要技术[ 28, 29]。通过MALDI-TOF-MS检测寻找特异的一组蛋白质峰,建立肿瘤早期血清差异表达蛋白的诊断模型,对早期快速诊断肿瘤提供可能。已有研究报道用于多种肿瘤的早期诊断。单核苷酸多态性是指DNA序列上发生的单个核苷酸碱基之间的变异,在人群中的发生频率1%,是决定疾病易感性和药物反应性差异的重要因素。通过检测突变的位点可以对疾病进行预测,提供诊断意见和用药指导并探讨与疾病发生的相关性。因为MALDI-TOF-MS检测的是核苷酸本身的分子量,相较于传统的单核苷酸多态性分型检测方法更为省时、省力和可靠。[/size][/font][font=&][size=18px]2.代谢组学研究的应用 人体是一个复杂的生化大工厂。当某部件出现异常时必然会伴随着某些代谢小分子的水平异常。相对来说这些小分子比DNA、RNA、蛋白质等更能反应一个细胞当前的功能状态。代谢组学也是目前研究的一个热点,质谱技术在检测这些代谢小分子的变化上也有重要的应用,为多种疾病及肿瘤的更早期诊断和指导治疗提供依据[ 30]。如张文亮等[ 31]采用毛细管电泳与MALDI-TOF-MS联用测定血清转甲状腺素蛋白的化学修饰,为进一步探索淀粉样变性的发病机制提供了一种简便的检测方法。[/size][/font][font=&][size=18px](五)在参考方法建立和研制标准物质方面的应用[/size][/font][font=&][size=18px]在临床检验中基于准确性的标准化检测是目前急需的。1997年国际物质量咨询委员会(CCQM)将同位素稀释质谱(ED-ID-MS)原理定为一级(基准)测量原理之一,其同时具有质谱分析的高度特异性和同位素稀释的高度精密性,且测量的动态范围宽,样本制备不需严格定量操作,测量值能够直接溯源到国际单位制的物质量基本单位“摩尔”。因此基于同位素稀释质谱原理的方法在生物和临床化学溯源研究中受到越来越多的重视,为临床检验中标准物质的研制提供了技术保障,是临床检验参考方法的最佳选择。[/size][/font][font=&][size=18px]Thienpont 等[ 32]建立基于常规实验室的ED-ID-MS法检测游离T3和T4通过IFCC的候选国际传统参考测量程序方法的校准和溯源,检测指标都取得了很好的相关性。张传宝等[ 32]应用同位素稀释[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法建立了测定血清尿酸的候选参考方法。[/size][/font][font=&][size=18px]四、结语[/size][/font][font=&][size=18px]质谱技术,尤其是串联质谱技术可以提供物质的结构和质量信息。因此其在定性和定量生物样本中的作用越来越大,同时也适合一些探索性的工作。MALDI-TOF和SELDI质谱仪近来被广泛用于一些标志性物质的探索。三重四级杆线性离子阱分析器的发展使分析器定量的能力与离子阱的扫描能力相结合,从而可以容纳扫描器组合的不同排列。选择性反应物探测的组合和三重质谱技术的组合(MS/MS/MS)是一个定量的很好组合。电喷雾离子化、大气压光致电离是近年来发展迅速的离子源,可以检测极性和非极性化合物。[/size][/font][font=&][size=18px]质谱技术虽然有很多的优点,在近年来很多领域的应用也发展迅速,但其也有自身的瓶颈:如没有某纯物质为内标或特征性的离子碎片,则难以判断该物质是何种物质,无法定性和定量,所以目前还有许多物质无法用质谱检测,尤其是一些大分子的复杂物质 目前质谱技术的自动化程度还还相对较差,前处理过程也相对复杂,其对工作人员的技术要求较高 另外仪器昂贵,日常运行费用及维护费用也较高,如ID-MS仪器,在处理样本时需要加入适量的同位素稀释剂,该种稀释剂来源较困难,制备成本较高等,这些都为ID-MS的普及应用带来困难 此外该技术的高敏感性,如SELDI-TOF-MS技术筛检蛋白的高敏感性必然带来了检测的假阳性,这也是该技术不容忽视的一个弱点。但相信随着质谱技术的发展成熟,其在临床实验室检测中会有更广泛的应用。[/size][/font][font=&][size=18px]参考文献[/size][/font][font=&][size=18px][1] Burtis CA, Ashwood ER, Bruns DE. Tietz textbook of clinical chemistry and molecular diagnosis [M]. 4th edition. St. Louis: Elsevier Inc, 2006: 128-137.[/size][/font][font=&][size=18px][2] 杨根元. 实用仪器分析[M]. [M]. 第3版. 北京: 北京大学出版社, 2001: 262-266.[/size][/font][font=&][size=18px][3] 庄俊华, 冯桂湘, 黄宪章, 等. 临床生化检验技术[M]. [M]. 北京: 人民卫生出版社, 2009: 66-87.[/size][/font][font=&][size=18px][4] Kikuchi K, Enari T, Totsuka K, et al. Comparison of phenotypic characteristics, DNA-DNA hybridization results, and results with a commercial rapid bio-chemical and enzymatic reaction system for identification of viridians group Streptococci[J]. J Clin Microbiol, 1995, 33(5): 1215-1222. [/size][/font][font=&][size=18px][5] 鲁辛辛, 袁梁. 新技术在微生物检验中的应用[J]. 中华检验医学杂志, 2009, 32(5): 596-600.[/size][/font][font=&][size=18px][6] Rajakaruna L, Hallas G, Molenaar L, et al. High throughput identification of clinical isolates of Staphylococcus aureus using MALDI-TOF-MS of intact cells[J]. Infect Genet Evol, 2009, 9(4): 507-513.[/size][/font][font=&][size=18px][7] 胡晓舟, 张捷. 医学检验中[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱的应用[J]. 临床检验杂志, 2005, 23(4): 314-316.[/size][/font][font=&][size=18px][8] Pinto A, Halliday C, Zahra M, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of yeasts is contingent on robust reference spectra[J]. PLoS One, 2011, 6(10): e25712.[/size][/font][font=&][size=18px][9] Bader O, Weig M, Taverne-Ghadwal L, et al. Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. Clin Microbiol Infect, 2011, 17(9): 1359-1365.[/size][/font][font=&][size=18px][10] Liu C, Pan C, Shen J, et al. MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of colorectal cancer[J]. Int J Med Sci, 2011, 8(1): 39-47.[/size][/font][font=&][size=18px][11] Ummanni R, Mundt F, Pospisil H, et al. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform[J]. PLoS One, 2011, 6(2): e16833.[/size][/font][font=&][size=18px][12] Matta A, Ralhan R, DeSouza LV, et al. Mass spectrometry-based clinical proteomics: head-and -neck cancer biomarkers and drug-targets discovery[J]. Mass Spectrom Rev, 2010, 29(6): 945-961.[/size][/font][font=&][size=18px][13] 金宏伟, 杨光, 黄河清. 柱层析和MALDI-TOF质谱技术筛选食道癌血清标志多肽[J]. 检验医学, 2009, 24(11): 792-795.[/size][/font][font=&][size=18px][14] Benkali K, Marquet P, Rérolle J, et al. A new strategy for faster urinary biomarkers identification by Nano-LC-MALDI-TOF/TOF mass spectrometry[J]. BMC Genomics, 2008, 9: 541.[/size][/font][font=&][size=18px][15] Theodorescu D, Wittke S, Ross MM, et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis[J]. Lancet Oncol, 2006, 7(3): 230-240.[/size][/font][font=&][size=18px][16] Agger SA, Marney LC, Hoofnagle AN. Simultaneous quantification of apolipoprotein A-I and apolipoprotein B by liquid-chromatography-multiple-reaction-monitoring mass spectrometry[J]. Clin Chem, 2010, 56(12): 1804-1813. [/size][/font][font=&][size=18px][17] Rauh M. Steroid measurement with [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS in pediatric endocrinology[J]. Mol Cell Endocrinol, 2009, 301(1-2): 272-281.[/size][/font][font=&][size=18px][18] Faupel-Badger JM, Fuhrman BJ, Xu X, et al. Comparison of liquid chromatography-tand em mass spectrometry, RIA, and ELISA methods for measurement of urinary estrogens[J]. Cancer Epidemiol Biomarkers Prev, 2010, 19(1): 292-300. [/size][/font][font=&][size=18px][19] Haller CA, Stone J, Burke V, et al. Comparison of an automated and point-of-care immunoassay to [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url] for urine oxycodone testing in the clinical laboratory[J]. J Anal Toxicol, 2006, 30(2): 106-111.[/size][/font][font=&][size=18px][20] Ansermot N, Brawand -Amey M, Eap CB. Simul-taneous quantification of selective serotonin reuptake inhibitors and metabolites in human plasma by liquid chromatography-electrospray mass spectrometry for therapeutic drug monitoring[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2012: 885-886: 117-130.[/size][/font][font=&][size=18px][21] Yang S, Xu L, Wu HM. Rapid genotyping of single nucleotide polymorphisms influencing warfarin drug response by surface-enhanced laser desorption and ionization time-of-flight (SELDI-TOF) mass spectro-metry[J]. J Mol Diagn, 2010, 12(2): 162-168.[/size][/font][font=&][size=18px][22] 江剑辉. 新生儿遗传代谢病串联质谱筛查和高危儿筛查[A]. 新筛及临床检验技术国际研讨会[C]. 广州: 广州市新生儿筛查中心, 2011: 3. [/size][/font][font=&][size=18px][23] 田国力, 龚振华, 王燕敏. 非衍生化串联质谱法检测酰基肉碱方法的应用[J]. 检验医学, 2011, 26(9): 598-601.[/size][/font][font=&][size=18px][24] Ito T, van Kuilenburg AB, Bootsma AH, et al. Rapid screening of high-risk patients for disorders of purine and pyrimidine metabolism using HPLC-electrospray tand em mass spectrometry of liquid urine or urine-soaked filter paper strips[J]. Clin Chem, 2000, 46(4): 445-452.[/size][/font][font=&][size=18px][25] 孙卫华, 曹迪, 王艺, 等. [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]技术检测尿琥珀酰丙酮及其在酪氨酸血症诊断中的应用[J]. 检验医学, 2009, 24(5): 373-377. [/size][/font][font=&][size=18px][26] Hsieh HF, Chang WS, Hsieh YK, et al. Using dried- droplet laser ablation inductively coupled plasma mass spectrometry to quantify multiple elements in whole blood[J]. Anal Chim Acta, 2011, 699(1): 6-10.[/size][/font][font=&][size=18px][27] Nakanishi T, Miyazaki A, Kishikawa M, et al. Quantification of glycated hemoglobin by electrospray ionization mass spectrometry[J]. J Mass Spectrom, 1997, 32(7): 773-778.[/size][/font][font=&][size=18px][28] Tao Y, Julian RR . Examining protein surface structure in highly conserved sequence variants with mass spectrometry[J]. Biochemistry, 2012, 51(8): 1796-1802.[/size][/font][font=&][size=18px][29] Sauer S, Reinhardt R, Lehrach H, et al. Single-nucleotide polymorphisms: analysis by mass spectro-metry[J]. Nat Protoc, 2006, 1(4): 1761-1771. [/size][/font][font=&][size=18px][30] Yoshida M, Hatano N, Nishiumi S, et al. Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography-mass spectrometry[J]. J Gastroenterol, 2012, 47(1): 9-20.[/size][/font][font=&][size=18px][31] 张文亮, 宋林, 李优鑫, 等. 毛细管电泳与MALDI TOF/MS联用测定血清转甲状腺素蛋白的化学修饰[J]. 检验医学, 2012, 27(3): 185-188.[/size][/font][font=&][size=18px][32] Thienpont LM, Van Uytfanghe K, Beastall G, et al. Report of the IFCC working group for stand ardization of thyroid function tests part 2: free thyroxine and free triiodothyronine[J]. Clin Chem, 2010, 56(6): 912-920.[/size][/font][font=&][size=18px][33] 张传宝, 张江涛, 张天娇, 等. 同位素稀释[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法测定人血清尿酸[J]. 检验医学, 2009, 24(12): 878-882[/size][/font]

  • 【原创大赛】临床质谱应用主要挑战及发展探索

    [align=center][font=宋体][size=14.0pt]临床质谱应用主要挑战及发展探索[/size][/font][/align][font=宋体][size=12.0pt]近年来,各种检验新理论和新技术不断涌现,极大地推动了临床检验学科的发展。液相色谱串联质谱(liquid chromatography-tandem mass spectrometry, [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)技术集液相色谱对复杂样本的高分离性能和质谱的高敏感性、高特异性于一体。临床质谱应用愈来愈广,但发展过程面临诸多挑战:初始投资高、仪器操作复杂、缺乏自动化和法规不确定等。而在临床质谱应用发展探索中,需要使方法验证规范化、质量管理系统化、样品处理自动化和行业发展专业化等。现在临床质谱的应用已涉及维生素D、药物中毒检测、内分泌(激素)检测、新生儿筛查遗传病、小分子标志物、蛋白与多肽、微生物及体内微量元素等。[/size][/font][font=宋体][size=12.0pt]我国质谱临床检测可望达百亿规模。2017年全球临床质谱市场份额为49.8亿美元,未来(2017-2025年)CAGR预计以7.3%增长。中国未来五年临床质谱将以7.6%的速度增长,形成一个超百亿规模的临床质谱检测市场。[/size][/font][font=宋体][size=12.0pt]质谱技术具有诸多优点:特异性好,克服免疫分析对小分子化合物的检测缺陷,检测结果更可靠;操作简便,比HPLC和GC-MS的容易使用,通量更大,是免疫分析法的主要互补方法;成本效益高,与其他技术相比,单个样本的测试成本更低;灵活性高,建立和验证新方法比较容易;高灵敏度;多通道检测能力;更接近参考方法。[/size][/font][font=宋体][size=12.0pt]质谱技术使用通用试剂,批量检测时成本较低,受第三方检测公司青睐;质谱的直接检测原理,特异性高,抗干扰(可见即可信);质谱具有即刻、多通道检测能力,通量主要限于样品前处理;检测底限可达ng甚至pg水平,适合微量甚至痕量物质分析,避免使用放射性检测技术。[/size][/font][font=宋体][size=12.0pt]但质谱同样也有缺点,如缺少配套试剂,操作复杂,检测人员需要专门培训,对环境有特殊要求,方法需要开发和验证等。在发展探索过程中,方法验证规范化,质量管理系统化,样品处理自动化,行业发展专业化尤为重要,分析工作者及实验室管理人员应密切关注政策变化和行业动向,紧随行业发展方向。[/size][/font][font=宋体][size=12.0pt]今天的分享到此结束,感谢仪器信息网提供原创大赛平台让大家互相学习![/size][/font]

  • ELISA试剂的临床质量评价

    ELISA试剂的评价(evaluation)分两个方面:一是试剂本身的质量评价,符合一定要求后才能生产供应;一是在临床应用中效果的评价。以肝炎ELISA诊断试剂为例,首先必须通过中国药品生物制品检定,以得到生产的许可。检定内容除包装、标签、说明书等外,对试剂的性能,如特异性、灵敏度、精密度和线性等均需逐项检定,通过对一系列参比品的检测,结果符合要求者才为合格。ELISA试剂的临床质量评价是用该试剂对临床样本进行检测,以观察其实际应用价值。部临检中心对乙肝ELISA诊断试剂在这方面进行了工作,通过质量评价,促进了试剂质量的提高。一、诊断试剂临床质量评价要点 从临床应用角度考核检验试剂的可靠性,是以其能否区分健康与疾病的能力作为依据的。目前还很难找到100%可靠的试验,任何试验都会出现假阳性或假阴性。判断试验的可靠性常以其灵敏度及特异性作为考核标准。临床应用的灵敏度用疾病患者试验阳性的百分率表示,特异性以无病者试验阴性的百分率表示。进行这种评价,首先需要收集有关的病人血清,然后用公认的检测该项标志物最可靠的试剂进行测定,以确定其为阳性或阴性。这一组表明测定物为阳性或阴性的血清组成"血清盘"(panel)。被评价的试剂测定此血清所得结果与血清盘标明的结果的关系如下表:血清盘结果合计+-受检试剂结果+aba+b-cdc+d合计a+cb+dA+b+c+d表中a为真阳性,b为假阳性,c为假阴性,d为真阴性。被评价试剂的各项性能指标按以下分式计算:灵敏度(%)=a/(a+c)×100%特异性(%)=b/(b+d)×100%[/

  • 质谱技术在临床诊断领域的应用趋势

    质谱技术是过去几十年中受到临床实验室认可并快速发展的最新技术, 近十年来影响了医学及临床实践的诸多领域。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱(gas chromatography/mass spectrometry, GC/MS)技术最早被应用于各类临床检测, 此后各类型质谱技术被不同应用领域所接受, 包括毒理学、微生物学、固相病理学等领域。[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱(liquid chromatography-mass spectrometry, [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])在临床检测领域具有诸多优势:可对特定物质进行精准定量, 可用于物质鉴定, 具有空间分辨模式检测能力等。当根据保留时间、相对分子质量及碎片模式分析相似化合物时, [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]具有较高的特异性。不同于免疫检测方法, [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]无需抗体, 可分析物质范围广, 高度灵活, 应用广泛。质谱技术临床实验室应用现状  目前, 临床实验室使用的质谱技术平台大致可归入3类:三重四极杆质谱用于定量检测, 如新生儿遗传代谢病(inborn errors of metabolism, IEM)筛查、内分泌/类固醇激素检测、治疗药物监测、药物滥用检测/疼痛管理等; 飞行时间质谱(time-of-flight mass spectrometry, TOF-MS)主要应用于微生物学、蛋白组学及成像领域; [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url](inductively coupled plasma mass spectrometry, [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])主要应用于生物标志物的鉴定及半定量检测、药物滥用检测、其他“ 组学” 方面。  目前, 三重四极杆质谱定量检测在临床实验室最为常用, 且应用范围不断扩大, 检测项目亦不断增加, 如药物检测、内分泌激素检测及治疗药物监测等。特定分析物包括维生素D[1, 2]、类固醇激素[3, 4, 5]、免疫抑制药物[6, 7]及IEM相关代谢产物[8, 9]。基质辅助激光解吸电离(matrix-assisted laser desorption/ionization, MALDI)质谱在细菌鉴定方面有出色的表现[10, 11], 而高分辨率质谱(high-resolution mass spectrometry, HRMS)的精准质量检测主要被用于蛋白组学及大部分其他“ 组学” 分析[12, 13]。[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]常被用于筛查金属毒物[14, 15], LC与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]联用(LC-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])常被用于鉴定各类含金属化合物, 包括砷、硒、汞、镉等[16]。  定量三重四级杆质谱  [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱(liquid chromatography-tandem mass spectrometry, [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)三重四级杆定量检测是临床实验室最常采用的检测技术, 采用这一技术开展的检测项目不断增加, 围绕各类生物基质中的待检物质的研究正在展开, 不断有新的分析物及方法被报道。目前, 多数检测项目还是以多重反应监测(multiple reaction monitoring, MRM)为基础加以开展。  [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS的发展受敏感性与特异性等多种因素影响, 主要原因是现有免疫检测技术用于特定待测物质时成本过高或存在干扰物质交叉反应。免疫分析中的干扰物质主要有3类:代谢产物、结构类似物以及与目标分析物活性不同的几何异构体[17]。在美国, 当缺少经食品与药品监督管理局(food and drug administration, FDA)认证的免疫分析方法或检测性能难以满足预期时, 可选择质谱法进行检测。  当然, 质谱检测对服务于内部开发即实验室自建检测项目(laboratory developed test, LDT)的技术要求较高, 开发成熟的检测方法需采用同位素内标, 并备有证明文件。LDT也需满足由美国FDA、美国临床实验室改进修正法规(the Clinical Laboratory Improvement Amendments of 1988, CLIA'88)、美国临床实验室标准化协会(the Clinical and Laboratory Standards Institute, CLSI)、欧洲药品管理局(European Medicines Agency, EMA)及美国各州法规所发布的标准及规定。  IEM筛查  串联质谱在技术改进后被用于IEM筛查, 从而最早在临床化学领域得到认可。虽然主要采用串联四极杆质谱技术, 但大多数IEM筛查采用的质谱技术依靠流动注射技术进行半定量或定性检测, 无需进行色谱分离。如结果阳性, 则采用串联四级杆质谱仪对样本进行更严格的定量分析, 如对酰基肉碱、有机酸、氨基酸及脂肪酸氧化指标进行测定[18]。   临床毒理学  药物滥用检测与疼痛管理 药物滥用检测与疼痛管理是拓宽质谱技术应用的两大重要领域。临床毒理学充分利用了质谱平台的特异性及多重检测能力, 当免疫检测方法提示疑似某类药物时, 可采用质谱技术对个别药物是否呈阳性进行验证。该技术在美国比在中国应用更为广泛。  常见的药物滥用检测针对而不限于安非他命、脱氧麻黄碱、苯二氮卓类、丁丙诺啡、巴比妥类、可卡因、美沙酮、大麻及鸦片类药物, 多可开发为独立的检测组合, 进行定性验证或定量检测。现有定量检测多以组合形式进行, 单个组合可检测多达300种分析物。总体而言, 鉴于不同仪器制造商、仪器模式、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统、分析柱类型的选择及医院或患者人群的特定需求, 实验室所采用的检测方法也不同。  新型合成类药物的不断出现给药物滥用检测领域带来挑战。随着新型药品的频繁上市, 需要及时开发出新的检测方法。美国仅有几家实验室具有相关资源及能力可建立针对这些“ 新型化合致幻药” 的检测方法, 可作为其他医院或社区卫生机构的参考实验室。  内分泌/类固醇激素检测  类固醇激素定量检测在内分泌疾病的诊疗中发挥着重要作用。人体内有数百种类固醇, 以四稠环体系为基础, 有相似的化学结构。尽管自动化免疫分析在类固醇检测中具有巨大优势, 但该法仍存在缺乏特异性、有基质效应及分析物动态范围有限等问题。  以睾酮为例, 相关检测对男、女性均具有重要意义, 但极富挑战。外周血睾酮水平受年龄和性别的影响, 动态范围跨度很大, 可低于0.7 ng/L, 也可高至120 ng/L。免疫检测始终在努力实现对低浓度样本的准确测量, 尤其对女性患者样本的检测, 但在内分泌及生殖系统疾病的诊断中仍然存在很多问题[19, 20]。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS检测睾酮具有更好的准确性及适宜的动态范围, 定量下限较免疫检测方法更低[21,22]。睾酮只是临床诊断所采用的类固醇激素指标之一, 先天性肾上腺皮质增生症(congenital adrenal hyperplasia, CAH)常需要通过[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS检测一系列类固醇后进行诊断。  [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS除具有更好的敏感性外, 与免疫学方法单次检测仅能测定1种激素相比, 还能通过单次检测全面体现各种类固醇激素的水平。内分泌激素检测的另一个例子是维生素D, 在临床质谱领域也受到广泛关注。维生素D在美国的检测需求巨大, 串联质谱检测技术在过去几年中发展迅速, 充分反映了[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS在临床检测中的特异性优势。维生素D是一类脂溶性类固醇激素衍生物, 在各类临床疾病中发挥重要的生物学作用, 缺乏维生素D可导致多种疾病发生。关于维生素D的生物功能及在人体中的含量对人类健康的影响尚有许多争议, 但临床诊断时普遍采用外周血25-羟基维生素D对维生素D含量进行评价, 亦常检测维生素D2和维生素D3代谢产物, 即25-羟基维生素D2和25-羟基维生素D3 。对儿童而言, 分离25-羟基维生素D2和25-羟基维生素D3的3-差向异构体能帮助准确检测25-羟基维生素D。  LDT中有各类检测维生素D的方法。鉴于分析样本制备、色谱分析、电离等各检测步骤的差异, 实验室间的标准化措施极为有限。这种差异也导致不同实验室间检测结果无法互认。美国国家标准和技术研究院(the National Institute of Standards and Technology, NIST)已发布了相应标准, 与监管机构推出的室间质评计划联合致力于理顺实验室间检测结果的一致性。维生素D亦可利用免疫学方法进行检测, 有多篇文献对2种方法的性能进行了比较[23, 24, 25, 26, 27]。免疫检测方法的不足、对[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS方法的开发需求以及开发过程中的问题, 在对维生素D的检测中均得到体现[28]。  免疫检测方法不足以区分25-羟基维生素D2和25-羟基维生素D3, 样本中的其他同分异构体会造成干扰, 令检测结果偏高。早期[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS方法也无法从目标分析物中分离出维生素D的差位异构体, 同样会使检测结果偏高。因此, 对饮食中未含有大量维生素D2或未服用维生素D2药物的人群, 免疫学检测不足以对其维生素D水平进行评价。需注意的是, 关于维生素D的代谢机制仍在研究论证中, 随着新型色谱方法与同位素内标的出现, 未来临床上将会对更多异构体及/或代谢产物进行准确定量检测。  治疗药物监测  免疫抑制药物雷帕霉素问世后, 其较窄的治疗窗令移植患者药物浓度监测成为必须采取的措施[29]。随着免疫抑制药物的开发, 出现了多种药物的定量检测方法, 单次分析可同时检测他克莫司、西罗莫司、依维莫司、环孢霉素A[30]。由于免疫检测方法的特异性不强, 尤其是待测物质的无活性代谢产物会对免疫检测方法产生一定的干扰[31, 32], 故多通过[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS检测免疫抑制药物浓度。随着其他种类免疫抑制剂的出现, 还需开发相应的新方法检测其浓度。免疫抑制剂并非唯一通过[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS进行检测的治疗药物, 还有抗抑郁药物(阿米替林)、抗癫痫药物(拉莫三嗪及左乙拉西坦)、抗真菌药(泊沙康唑)及用于监测阿片类药物依赖的丁丙诺啡, 均可通过[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS进行检测, 从而为患者个性化治疗提供参考。  方法开发与验证  以上例子均为临床实验室广泛采用的质谱检测方法, 其中大部分检测结果直接影响到患者预后。随着这些方法被开发和利用, 对严格遵守操作程序及质量保证计划的需求愈发凸显, 室间比对的开展提升了检测质量。目前关于维生素D定量检测所开展的工作就是很好的范例。生物相关物质的定量检测领域不断被拓展, 新的药物、生物标志物、代谢产物不断扩充检测物列表, 推进了仪器的研发与分析柱及样品制备方法的改进。新方法及改进后的方法也需要经过全面验证, 以确保检测的科学性及可靠性。  TOF-MS  MALDI TOF-MS是细菌鉴定领域的新趋势。MALDI为离子源, TOF-MS为质量分析器, MALDI TOF-MS图谱就像待鉴定化合物或微生物的质量“ 指纹” 。MALDI TOF-MS的出现改变了微生物学百年来的工作模式, 其成功离不开FDA对该领域平台及应用方法的批准。  多家仪器厂商已推出MALDI TOF-MS检测系统。其周转快、成本低、鉴定诊断速度快的特点促进了患者预后的改善, 临床应用日趋增多。MALDI TOF-MS在过去的几年中日受追捧, 但在操作方面仍如同一个“ 黑匣子” 。与大多数新技术一样, MALDI TOF-MS也存在着一定的局限性, 如菌种鉴定需基于数据库匹配, 尽管大部分数据库可进行扩展, 添加本地菌种谱, 但不在库中的菌种仍无法被识别。该系统最早被用于鉴定革兰阴性菌, 对革兰阳性菌、真菌及其他微生物的鉴定功能正逐渐被开发。质谱图主要来自核糖体蛋白, 所以即便培养条件不同, 样本所提供的图谱仍会保持稳定 [10]。   [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]与LC-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]  临床实验室过去主要采用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]检测血铅。该技术适用于血清、血液和尿液中的常量、微量、痕量元素分析。除血铅外, 这些检测项目需求小却会消耗大量的成本及人力, 常作为参考实验室外送检测项目。进行[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]检测的商业化实验室可检测多达70种元素, 包括砷、硼、镉、铈、铬、钴、铜、铁、铅、锂、镁、锰、汞、镍、磷、铂、铼、硒、硅、银、钛、铀、锌等。  有学者尝试将LC与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]联合使用[16]。金属的化学状态(形态)对其代谢、生物利用度及毒性影响巨大, 所以单凭其总浓度也许并不能准确反映相应的危害或益处, 因此针对铂类抗肿瘤药物及含金属元素的生物分子的复合物研究也是一个热点。LC-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]一般经优化后每次检测只针对1种元素, 近期方法学的进步允许其同时检测多种元素。在研究硒对砷中毒的保护作用时, LC-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]就具有一定的优势[33]。质谱技术的新应用  随着对质谱技术需求的增加与研究的进展, 已有许多检测项目适宜向临床推广。质谱技术在临床诊断领域的各个方面均有巨大发展, 包括针对特定蛋白质、多肽与其他“ 组学” 的定量分析、适用于越来越多临床情况及分析物的干血斑(dried blood spot, DBS)检测、MALDI病毒检测、病理解剖组织成像、试剂盒的开发、仪器的自动化与小型化、即时检验等。这些进展为质谱技术及其在临床诊断与个性化医疗中的应用不断带来更多启示与希望。  蛋白组学与其他“ 组学” 分析  甲状腺球蛋白的相对分子质量为660 000, 是[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS用于大分子蛋白检测的范例[34], 其他蛋白及多肽检测还包括胰岛素与生长激素等。不同于小分子蛋白, 大分子蛋白检测需要采用包括蛋白消化及多肽富集在内的新方法, 以便采用质谱技术进行定量检测。如目前甲状腺球蛋白定量检测方法首先利用胰蛋白酶消化样本, 继而以免疫方法捕获, 再通过[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS进行定量。  这些步骤在确保敏感性与准确性的同时可提升特异性, 将其省去可大大缩短分析时间、降低分析难度。质谱是蛋白组学研究的主流技术, 同时可用于包括代谢组学、脂质组学等其他“ 组学” 领域。蛋白组学着眼于器官和/或组织特异性蛋白表达, 而代谢组学则着眼于器官或组织功能, 脂质组学是代谢组学中的一个亚类, 着眼于脂质网络及通路。“ 组学” 谱通过单个研究即可提供丰富的信息, 在精准医学领域颇受重视。  DBS样本检测  DBS样本目前主要被用于IEM筛查。无论通过传统萃取法还是电喷雾电离及MALDI新技术, 利用此类样本开展各类分析均颇具潜力[35, 36]。目前, 相关研究正致力于提高DBS样本定量检测的水准, 以准确反映体液中分析物的水平, 并有望成为替代性采样手段。但是, 即便分析方法可避免检测技术现有的问题, 但DBS样本检测的固有问题并不会完全消除, 需进一步的研究和更新的技术加以解决。  成像技术  组织成像有望为固相病理学作出重大贡献[37]。质谱成像技术能够于原位对小分子药物及其代谢物、蛋白质及多肽等多种物质进行检测, 同时为传统组织学方法保留空间定位信息, 为疾病研究提供重要信息, 将在不久的未来对解剖病理学的发展产生巨大影响。目前, 供应商正致力于推出具备不同性能水平及复杂程度的检测系统。虽然围绕MALDI已进行了许多研发工作, 但新型电喷雾电离正成为另一种选择[38], 对空间分辨率的要求将影响该领域未来的发展。  MALDI  MALDI将继续进军多个临床化学领域, 在目前应用最多的细菌鉴定领域也将继续发展。现有的革兰阴性菌鉴定文库将纳入更多菌种并提升特异性, 在真菌鉴定方面也已取得了一定的进展, 并有望向其他病原微生物如病毒方面拓展。直接采集体液进行检测的技术飞跃将缩短这一进程。采用MALDI TOF-MS替代蛋白电泳检测免疫球蛋白对多发性骨髓瘤进行诊断已获得阶段性成果。除以上应用外, MALDI有望通过DBS检测协助诊断IEM及进行其他分析[36], 并通过成像技术分析发芯提示化学暴露史[39]。  试剂盒  试剂盒包含了[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS技术检测特定物质所需的一切材料, 其实用性的增强大大推进了临床实验室对[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS定量分析的接受度[40, 41]。这些试剂盒包含所需的分析柱、样品制备材料、校准品、质控品与软件, 甚至包含流动相和其他所需溶剂, 可减少实验室在方法开发阶段对[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS专业人员的需求。实验室不仅要对这类试剂盒的价值进行评估, 还要对其实际易用性、可靠性及可重复性进行评价。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS的应用是否广泛很大程度上取决于仪器最初的调试情况, 仪器供应商正不断努力开发整体解决方案, 以增强临床实验室在资源有限的情况下对[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS技术的适应性。  集成自动化化学分析仪  降低临床实验室[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS应用难度的方案之一是将其整合入大型自动化分析仪, 这需要经过一系列的研发, 但其预期效果值得仪器制造厂商加大投入。利用现成的样本跟踪及处理程序可减少或解决许多临床质谱实验室所面临的问题, 如实验室信息管理系统与质谱仪之间“ 中间件” 的缺乏。此类系统方案将实现[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS技术向现有临床分析模式的集成。  小型化及即时检验  与向自动化学分析仪集成相同, 小型质谱仪的开发给即时检测带来了希望。该技术可用于无需精确定量的筛查。小型化大气压力喷雾电离技术可用于路边药物检测以确定司机是否服用过四氢大麻酚, 也可用于学校、诊所及其他场合的手持质谱筛查仪等[42]。总 结  在过去的10年间, 质谱技术在临床实验室的应用越来越广泛, 其具备传统方法所没有的独特优势, 包括敏感性和特异性, 特别在缺少经FDA批准的试剂盒可用时, 可满足实验室灵活开发LDT以满足患者需求。质谱技术目前已用于IEM筛查、药物滥用检测、疼痛管理、内分泌疾病诊断、治疗药物监测、细菌鉴定及痕量金属分析等多个领域。这些实验室开展的检测项目多基于三重四级杆质谱、TOF-MS及[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]这3类技术平台。  质谱技术依然在蓬勃发展, 且不断深入到临床实践的各个方面, 如蛋白组学和代谢组学分析、临床实验室MALDI TOF-MS开发、病理解剖学领域的组织成像技术等。此外, 一些试剂盒也正被研发用于简化实验室的LDT。质谱仪的自动化及小型化可大大提高检测平台的实用性与灵活性。质谱技术在诊断需求方面已发挥出重要作用, 极具前景。希望通过本文能帮助读者了解质谱技术当下及未来的应用及发展, 更好地服务患者。

  • 临床质谱有奖调研

    临床质谱有奖调研

    [font=&][back=#fdfdfe]非常多的临床工作者,既面临临床检测又需要进行临床研究工作。那么在临床研究中,需要什么工具,会遇到什么问题?欢迎各位老师参与本次有奖问卷调研。[/back][/font][b]调研入口:[/b][url]http://instrument-vip.mikecrm.com/zPtKJe2[/url][b]温馨提示:[/b]问卷中弹出的“礼物”标识是麦客表单平台广告,大家勿点!填写问卷,点击提交即可~[align=center][img=,690,211]https://ng1.17img.cn/bbsfiles/images/2022/06/202206221530411431_3168_3237657_3.jpg!w690x211.jpg[/img][/align]

  • 有哪些获得医疗器械注册的临床质谱仪?

    医疗器械注册,是指医疗器械产品的合法身份证,其依照法定程序,对拟上市销售、使用的医疗器械的安全性、有效性进行系统评价,以决定是否同意其销售、使用的过程。据仪器信息网跟踪,2017年8月国家食品药品监督管理总局(NMPA)发布了新版《医疗器械分类目录》。该分类目录中的二级产品类别中新增加了如下内容:基因测序仪、[color=#ff0000]质谱仪[/color]、生物安全柜和洁净工作台。其中,[color=#ff0000]微生物质谱鉴定仪器、微量元素分析仪器([url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法及质谱法)、质谱检测系统(如三重四极杆质谱仪、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱系统)、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析仪器、色谱柱等在管理类别中均属于第二类医疗器械。目前质谱仪器获得医疗器械注册的主要是[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]联用三重四极杆质谱系统([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])和微生物质谱(MALDI-TOF),2021年还增加了用于微量元素分析的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])这一品类。[/color]  随着精准医学的发展、多组学研究上的突破,临床质谱迎来了它的机会。作为产业链的终端用户,国内标杆的医院基本都有开展质谱项目,如解放军总医院、复旦大学附属中山医院等质谱检测平台从技术水平、仪器规模、开展项目等都处于领先水平,也发挥着非常大的示范作用,带动了一大批三甲、二甲医院开展质谱检测。不仅如此,质谱的临床应用也得到快速发展,从最初的新生儿筛查、维生素检测,已经扩展到激素、药物浓度监测、遗传性疾病检测以及痕量元素检测等诸多领域,可检测项目已扩展到几百项且还在不断增加。虽然同国外相比,中国在临床质谱应用方面起步较晚,但得益于国内对高端医疗技术需求的不断增强,质谱作为检验领域的后起之秀,在近些年得到了行业上下游生产厂商及医院、检验机构等的极大关注。  2004-2020年间,中国市场陆续涌现出几十家临床质谱企业。近几年国内厂商首先突破了研发MALDI-TOF的难题,目前获批的国产质谱厂商包括毅新博创、禾信仪器、融智生物等。而[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]在临床质谱市场占据较大份额,也是市场前景最广阔的一块,但其技术门槛较高,目前国内已有厂商正积极布局,或自主研发或与进口厂商合作推动该类仪器国产化,已取得了一些成果。例如,2021年3月,由中国科学院苏州医工所天津工研院自主研发的“高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱检测系统”取得注册证,这也是国内第一个自主知识产权的三重四极杆质谱仪医疗器械注册证。  为方便读者更全面地了解质谱仪器的临床认证情况,仪器信息网对截止发稿前获国家食品药品监督管理总局(NMPA)批准且在有效期内的可应用于临床检测的质谱产品进行了汇总,其中进口质谱共计10款,包括MALDI-TOF 3款、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url] 7款;国产质谱共计23款,MALDI-TOF 13款,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url] 8款,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 2款。[color=#ff0000][i](信息来源于国家食品药品监督总局以及各地方食品药品监督局公开信息,如有遗漏,欢迎联系本网进行信息补充,010-51654077-8223)。[/i][/color][align=center][img=1.png]https://img1.17img.cn/17img/images/202105/uepic/0f45efde-fded-4b4d-94b2-d49724bb9d2b.jpg[/img][/align]  由上表可以看出,自2020年起新增了10款获批临床质谱仪器,从品类上看,包括了MALDI-TOF、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]以及[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url],其中除了禾信仪器旗下的禾信康源申报的MALDI-TOF和中科院苏州医工所申报的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]外,几乎都是进口厂商的贴牌报证。据仪器信息网了解,赛默飞贴牌合作的企业有美康盛德、山东英盛、丰华生物、睿康生物等,安捷伦贴牌合作的南京品生医学,珀金埃尔默则是其收购的国内企业(新波生物)进行国产医疗器械注册。  值得一提的是,2019年中国医师协会检验医师分会临床质谱检验医学专业委员会制定的《质谱技术在临床微量元素检测中的应用共识》,为临床实验室采用质谱技术开展微量元素检测提供了基本指导。目前毅新博创和山东英盛的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]产品已经成功取得了医疗器械注册证。可以说,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]应用于临床微量元素检测的前景非常广阔。而如今生产[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]仪器的厂商已经增加到10家以上。进口的主要生产商有安捷伦、赛默飞、珀金埃尔默、岛津、耶拿等,国产分别有谱育科技、钢研纳克、东西分析、天瑞仪器、博晖创新(原Advion)、海光仪器、毅新博创、衡昇仪器等,而莱伯泰科等厂商也在积极研制[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]产品,相信未来这些国产厂商也会陆续加入临床检测这一蓝海市场。[align=center][img=2.png]https://img1.17img.cn/17img/images/202105/uepic/00d0fb4f-eefe-4bf2-a91b-68ec9d449545.jpg[/img][/align]  由上表看出,进口质谱当前获得进口医疗器械注册许可的共计10款,除3款MALDI-TOF外,其余均为三重四极杆[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]。这一部分的申报企业主要是梅里埃、SCIEX、布鲁克、安捷伦、沃特世、岛津等知名的进口质谱企业。  可以看到,中国临床质谱产业的发展一方面依靠资本的推动促进市场快速发展,一方面也需要国产厂商认清差距,加强自主研发能力,强化核心竞争力。政策方面,2021年初工业和信息化部针对《医疗装备产业发展规划(2021-2025年)》公开征求意见,可以看到 ,规划在第三部分提出了未来五年我国医疗设备行业重点发展的七大领域,其中一个领域是诊断检验装备,并将质谱分析设备纳入到重点发展的诊断检验装备中。这对于临床质谱产业来说,是一个重大的利好。随着近几年中国临床质谱的不断成熟发展,预计整个中国市场在未来5年将迎来高速增长。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制