当前位置: 仪器信息网 > 行业主题 > >

氡浓度检测

仪器信息网氡浓度检测专题为您提供2024年最新氡浓度检测价格报价、厂家品牌的相关信息, 包括氡浓度检测参数、型号等,不管是国产,还是进口品牌的氡浓度检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氡浓度检测相关的耗材配件、试剂标物,还有氡浓度检测相关的最新资讯、资料,以及氡浓度检测相关的解决方案。

氡浓度检测相关的资讯

  • 室内空气环境氡浓度检测
    世界小得像一条街的布景,我们相遇了,你点点头,省略了所有的往事,省略了问候, 也许欢乐只是一个过程,一切都已经结束 早安,有什么问题可以跟我联系了解更多详请咨询青岛路博环保马德举2017型测氡仪是采用高分辨率金硅面垒型半导体射线探测器,进行氡气测量的智能辐射防护检测仪表。该仪器能满足国家标准 GB50325-2010《民用建筑工程室内环境污染控制规范》和国家标准GB/T18883-2002《室内空气质量标准》及JJG825-2013 《测氡仪检定规程》。产品用途:(1) 室内空气环境氡浓度检测;(2) 建筑工程地点土壤中氡浓度检测;(3) 水中氡浓度检测;(4) 气态放射性样品α射线能谱分析;技术参数:探 测 器:φ30mm 金硅面垒型半导体探测器;氡子体静电高压收集腔:1.26L ;取样泵流量约3L/min;检测对象:Rn222 子体和 Rn220 子体;测量方式:256 道 α 能谱,Po218 能量分辨率 气压:精度±1.5mBar;测量对象: 空气氡浓度、土壤氡浓度、水中氡浓度、氡析出率测量;灵 敏 度: 嗅探模式≈0.47CPM/1pCi/L; (1pCi/L=37Bq/m3) 常规模式≈0.99CPM/1pCi/L;(10%RH 湿度下)探测下限: 2Bq/m3(120min,2σ) ,1Bq(60min,2σ)测量范围: 空气氡:1~65535Bq/m3 土壤氡:0.01~655.35kBq/m3 水中氡:0.01~655.35Bq/L 面积析出率:0.001~65.535Bq/m2• min重复性(相对标准差) : ≤5%(24 小时,每小时一次,1000Bq/m3) ;相对固有误差(年稳定性) : 不超过±5%(K=2,同一检定标准) ;体积活度响应: 不超过±10%(同一检定标准) ;短期稳定性 :优于±5%;LED 提示:电池电量、蓝牙连接、USB 连接以及启动测量;安装方式:干燥剂进气口可安装到标准相机架上,高度 4 档可调,收起约 45cm 高,全部拉升约 140cm 高,高度符合测量规范,也可以直接放置台面上或者地面上;打印存储:A.自动保存 4086 次能谱测量数据,可随时复查; B.支持蓝牙无线打印;通信接口: USB 接口(支持 Win7-64 系统) ,配专用数据读取和谱线显示软件,提供 USB 接口与仪器通信;液晶显屏: 480×272 65K 色触控屏,操控简单直观方便;支持单次数据显示,也支持多次数据列表显示。电 源: 3.7V/50Ah(可充电锂电池) ,支持充电宝充电;电池续航: 约能连续运行 6 天(140 小时) ;环境条件: 0℃~50℃,相对湿度≤90%;重 量: 主机约 6kg,配件装箱约 10kg;主机尺寸: 327*282*218mm;配置清单:1 RAD17 测氡仪 1 台 2 专用测量三脚架(相机接口) 1 个 3 测氡仪专用充电器(4.2V/5Ah) 1 个 4 过滤棉 1 包 5 USB 数据通信线 1 个 6 仪器使用说明书 1 个 7 计算机软件(Win7 64 位系统) 1 个 8 配件包装箱 1 个 9 土壤氡取气装置 1 个 10 土壤打孔钢钎 1 个 11 PU 连接气管(2 米) 2 根 12 PU 管 0.5 米 1 根 13 PU 管 0.2 米 1 根 14 干燥器气嘴塞子(备用) 2 个 15 大干燥器(含气嘴塞子) 1 个 16 中干燥器(含气嘴塞子) 1 个 17 小干燥管(含气嘴塞子) 1 个 18 蓝牙打印机 1 台 19 蓝牙打印机充电器(9V/1Ah) 1 个 20 打印纸 5 卷 选21 水氡测量配件 1 套 选配22 移动电源充电器(5V/1.2Ah) 1 个 选配23 10Ah 移动电源(含专用充电线) 1 个 选配24 土壤表面析出率测量配件 1 套 选配25 仪器检定证书 1 份 选配
  • 得利特实验室检测仪器---台式酸浓度计,台式碱浓度计
    目前,便携化、智能化、快捷化、多功能化的仪器才是市场发展的主流,虽然在某些场合对大型仪器的使用非常有必要,但在绝大多数的检测活动中,轻巧便携、操作简单、功能多样化的产品显然更受欢迎,所以我国的水质分析仪器制造水平要追平国际,就需要在这些方面下苦功夫,避免出现产品结构单一、功能单一、缺乏创新等状况。仪器生产商要积极进行市场调研,根据市场需求积极创新,发展出更满足客户需要的产品。当下我国的环保形势良好,国家对环境监测仪器的需求大,在政策上也多有扶持,所以行业内要及时抓住机遇,依托政策,积极引进先进技术,聚集人才,研发属于我们自己的国之重器,让国产仪器真正走出国门。当然,我国的仪器行业还存在一个状况,就是两极分化严重,一大批企业徘徊在中低端产品线上,而能与世界水平比肩的却寥寥无几,如果不能解决这个问题,长此以往,对我国的仪器行业发展并没有任何好处,水质分析仪器也如是,可见国产仪器商们要走的路还很长。B1120台式酸浓度计在电力工业中广泛应用的电磁式酸碱浓度计的新产品。在电力行业中主要用于离子交换法制取高纯水工艺中监测离子交换器中再生液的浓度,是离子交换法制取高纯水的必备仪表,可应用于电力、化工、冶金、食品、制药等行业中对各种HCl、H2SO4、NaOH、NaCl等强电解质的检测。仪器特点1、适合检查校验离子交换法制取高纯水工艺中的再生液浓度或锅炉管道酸洗液浓度配制2、它采用电磁感应原理,避免了酸、碱等强腐蚀溶液对电极的腐蚀、污染和极化效应。可以大大提高离子交换器的再生效果和避免发生阳床结钙、阴床结硅胶的事故,保障离子交换器的安全经济运行。技术参数显  示: 4位0.8英寸LED显示测量介质:HCl、NaOH、NaCl、H2SO4(每台仪表只能测量一种介质,订货时指明测量介质)量  程: HCl 0~10% H2SO4 0~5%精 度:  2.0级 (常用点校准后误差可小于0.05%)    分 辩 率:  0.01%温度补偿范围:(5~55)℃仪表供电: AC 220V 50Hz 5W仪表外形尺寸: 270×200×90mm探头尺寸: 39×100mm,引线长度1m仪表重量: 1.25kgB1130台式碱浓度计在电力工业中广泛应用的电磁式酸碱浓度计的zui新产品。在电力行业中主要用于离子交换法制取高纯水工艺中监测离子交换器中再生液的浓度,是离子交换法制取高纯水的必备仪表,可应用于电力、化工、冶金、食品、制药等行业中对各种HCl、H2SO4、NaOH、NaCl等强电解质的检测。仪器特点1、适合检查校验离子交换法制取高纯水工艺中的再生液浓度或锅炉管道酸洗液浓度配制2、它采用电磁感应原理,避免了酸、碱等强腐蚀溶液对电极的腐蚀、污染和极化效应。可以大大提高离子交换器的再生效果和避免发生阳床结钙、阴床结硅胶的事故,保障离子交换器的安全经济运行。技术参数显  示:4位0.8英寸LED显示测量介质:NaOH、NaCl(每台仪表只能测量一种介质,订货时指明测量介质)量  程:NaOH 0~5% NaCl 0~5%(重量百分比)精 度: 2.0级 (常用点校准后误差可小 于0.05%)    分 辩 率: 0.01%温度补偿范围: (5~55)℃仪表供电:AC 220V 50Hz 5W仪表外形尺寸:270×200×90mm探头尺寸:39×100mm,引线长度1m仪表重量:1.25kg
  • 新型SERS检测平台可实现不同种类低浓度毒品的高灵敏检测
    p   中科院合肥物质科学研究院5日消息,该院科研人员提出一种新型检测平台,能够准确定位和捕获毒品分子痕迹,实现了不同种类低浓度毒品的高灵敏检测。相关成果近日发表在《Chemistry-A European Journal》上。& nbsp /p p   这种新型检测平台由该院智能所杨良保研究员等人提出,是一个新型的NaCl晶体诱导的SERS检测平台。 /p p   利用SERS技术进行物质检测时,活性基底起着至关重要的作用。传统的方法是在溶液状态下进行检测,聚集体会逐渐长大至发生沉降,导致信号减弱;并且同一样品不能进行多次检测。另外,检测时激光聚焦容易受外界环境和水的波动干扰,SERS信号会被溶液削弱。 /p p & nbsp /p p & nbsp /p p   基于上述传统液相的SERS检测方法面临的问题,杨良保研究员等提出了利用大体积微米级NaCl晶体诱导纳米级银溶胶聚集体自组装;由于毛细力的作用,大量痕量的毒品分子进入聚集体内,从而实现高效准确定位的检测。这种微米级NaCl晶体可作为模板,获取有效检测区域的光学位置,避免了大面积扫描图谱以获得高质量的待测物SERS信号。 /p p   另外,氯离子还可以替换掉银纳米颗粒表面的活性物质,降低SERS基底的背景信号。通过上述氯化钠晶体诱导的高灵敏可控检测,科研人员得到了高质量的海洛因、冰毒和可卡因的SERS图谱。 /p p   据介绍,这种检测方法不仅可以使纳米颗粒聚集体以一种可控的方式形成SERS热点区域,提供有效的SERS增强;还可以发展成为一种无标记的高灵敏检测其他类型毒品分子或毒品添加剂的通用方法 /p
  • 二氧化碳浓度检测仪安装及操作使用注意事项
    二氧化碳浓度检测仪是目前应用于二氧化碳的气体浓度检测及二氧化碳浓度超标报警,适用于各种工业环境和特殊环境中的二氧化碳浓度连续在线检测及现场声光报警,对危险现场的作业安全起到预警作用,可以精确检测二氧化碳的浓度并在现场显示实时浓度值、标准信号输出,具有信号稳定,灵敏度及精度高等优点,为了保证检测数据的准确性,做好安装工作是必不可少的。那么您知道二氧化碳浓度检测仪安装及使用注意事项有哪些吗?下面一起来看下吧。 二氧化碳浓度检测仪安装注意事项: 1、不要安装在水气,水滴多的地方(相对湿度 在90%),否则长期如果水气过高,二氧化碳浓度传感器会损坏。 2、不要安装在温度在-30℃以下和50℃以上的地方。 3、不要安装在周围浓度有过高的烟雾、喷气式杀虫剂(蒸发剂)、可燃性溶剂(涂料)的地方,否则的话亦有可能引起报警。 4、不要安装在排气口,换气扇,房门等风量流动大的地方,这样有可能会引起二氧化碳浓度检测仪精度受影响。 5、不要安装在强电磁的地方。 二氧化碳浓度检测仪使用注意事项 1、使用时,千万不要在开机检查状态下充电。 2、二氧化碳浓度检测仪的位置固定后,请勿任意移动其位置,以免损坏其配件。 3、标定校准人员必须经过培训,了解二氧化碳浓度检测仪的原理和性能,熟练掌握操作技能。 4、仪器长时间不用,需存放在干燥无尘的环境内,重新使用前应充电,开机十分钟以后再检查。 5、二氧化碳浓度检测仪的检查结果是在误差范围内定量的显示空气中二氧化碳浓度,按有关法规不应作为法定的检查结果。 6、报警时为二氧化碳浓度已超出设定的报警浓度,确认二氧化碳浓度超标的原因排除后,按复位键清除报警数据。 7、二氧化碳检测仪报警后,请勿打开电器开关,确认二氧化碳浓度超高的原因,并及时作出处理。 8、二氧化碳检测仪产生浓度报警信号后,所输出的控制信号(AC220V)被锁定,即使燃气浓度不再继续超限,所控制的设备也无法自动恢复报警前状态,必须人工进行恢复(按复位键或自检键持续3秒)。
  • 臭氧浓度检测仪:守护环境健康的科技哨兵
    在当今社会,随着工业化进程的加速和城市化水平的不断提升,空气质量成为了公众日益关注的焦点。其中,臭氧作为一种重要的空气污染物,其浓度变化直接影响着人类健康与生态环境的安全。因此,臭氧浓度检测仪作为监测空气质量的重要工具,正扮演着越来越重要的角色,成为守护我们环境健康的科技哨兵。  臭氧的双重性  臭氧,化学式为O₃ ,是一种由三个氧原子组成的强氧化性气体。在平流层中,臭氧层能够吸收太阳辐射中的紫外线,保护地球生物免受其害,是地球的天然保护伞。然而,在地面附近的对流层中,过高的臭氧浓度则成为一种有害污染物,能够引发一系列环境问题及健康危害,如刺激呼吸道、影响植物生长、降低大气能见度等。  臭氧浓度检测仪的重要性  鉴于臭氧的双重性质及其在环境中的复杂影响,准确、及时地监测臭氧浓度变得尤为重要。臭氧浓度检测仪应运而生,它利用先进的传感器技术和数据处理算法,能够实时、精确地测量空气中臭氧的浓度,为环境保护、气象观测、公共卫生等领域提供关键数据支持。  技术原理与应用  臭氧浓度检测仪通常采用电化学法、紫外吸收法或差分吸收光谱法等技术原理进行测量。电化学法通过臭氧与电极材料发生电化学反应产生电流或电势变化来检测臭氧浓度;紫外吸收法则利用臭氧对特定波长紫外光的吸收特性进行测量;而差分吸收光谱法则通过测量光在通过臭氧前后的光谱变化来计算其浓度。  这些检测仪广泛应用于城市空气质量监测站、工业园区环境监测、交通尾气排放检测、农业气象观测站等多个领域。它们不仅能够帮助环保部门及时掌握空气质量状况,制定有效的污染防治措施,还能为科研机构提供宝贵的研究数据,推动环境科学的发展。  面临的挑战与未来展望  尽管臭氧浓度检测仪在环境监测中发挥着重要作用,但其发展仍面临一些挑战。一方面,随着环境污染问题的日益复杂,对检测仪的精度、稳定性和抗干扰能力提出了更高的要求;另一方面,随着物联网、大数据等技术的快速发展,如何实现检测仪的智能化、网络化,提高监测数据的实时性和利用率,也是未来发展的重要方向。  展望未来,臭氧浓度检测仪将继续向高精度、高稳定性、智能化、网络化方向发展。同时,随着人们环保意识的不断提高和科技的持续进步,我们有理由相信,臭氧浓度检测仪将在守护环境健康、推动绿色发展方面发挥更加重要的作用。  总体而言,臭氧浓度检测仪作为现代环境监测体系中的重要组成部分,正以其独特的优势和技术特点,为我们提供着准确、及时的空气质量信息,成为守护我们环境健康的科技哨兵。
  • ATAGO(爱拓)在线检测浓度计又添新员
    欲了解更多物质浓度检测方案请联系ATAGO中国 电话:020-38106065 企业QQ:800064900 官方网站:http://www.atago-china.com/
  • 小学生500元自制粉尘浓度对比检测仪
    天气不好的时候,要不要开窗换气,许多人很纠结,西城区黄城根小学的郭宇华和回民小学杨易格,两位六年级的小学生却仅仅花费了500元自制出一台粉尘浓度对比检测仪,让大家不再纠结。   这台巴掌大小的仪器,比PM2.5小一半的微粒都能测出来,而且还能同时测室内外空气,实现同步比对,提醒何时最适宜开窗通风。这台仪器不仅博得了清华、北大、北师大、北理工等高校专家的青睐,还被评为第34届北京青少年科技创新大赛一等奖。   小学生发明的&ldquo 便携式粉尘浓度对比检测仪&rdquo 到底有什么神奇之处?   &ldquo 市场上的粉尘检测仪要么检测室内,要么检测室外,不能联网对比检测。我们做的检测仪不仅成本低、检测数据可信、可靠,而且能通过蓝牙传输装置,实现多个测试点检测数值间的无线传输、比较分析。&rdquo 郭宇华小大人儿般一本正经地为记者介绍:&ldquo 这对仪器分主机、副机,主机摆在室内,副机摆在室外,通过采集室内外的粉尘浓度,无线传输数据,进行实时对比,从而判断是否适宜通风换气。&rdquo   郭宇华和杨易格俩人经过对牛街等二环、三环周边的居民区数次采样分析,得出的结论是:生活在市区,尤其是交通主干道的居民,早晨晚间都不宜打开窗户通风,因为仪器数据显示,这时室内的粉尘量往往低于外界环境。   郭宇华从小爱天文,曾连续两届荣获市区级天文知识、天文摄影竞赛奖项 他还痴迷地铁,自幼热衷考察地铁系统,纷繁线路了熟于胸,自诩&ldquo 上知天文,下晓地铁&rdquo 。他的小发明刚刚入围第29届全国青少年科技创新大赛,暑假里他将代表北京队参加这项全国性赛事,所以六一也不能闲着。
  • 国产新型甲醛浓度实时检测仪问世 已批量销售
    日前,中科院苏州医工所传感创新中心周连群团队的甲醛浓度检测仪和芯片“健康果”研制成功并进入市场批量销售。  甲醛传感芯片是该创新中心研产项目之一,目的是为关注空气和呼吸健康的消费者提供一款实用、快速、准确、价格合理的甲醛检测仪器。“健康果”采用桌面电子表的造型,除了能够检测甲醛浓度,还有温度和时间显示,对甲醛最低检测限为0.01ppm,实时响应时间1秒,稳定测试时间小于30秒,超越绝大部分扩散式甲醛传感器。  其关键核心部件——甲醛传感芯片及模块的成功研制,弥补了目前市面上其他同类产品的检测精度不够、无法连续测试、预热时间久、稳定响应慢、校准时间长、进口仪器昂贵等不足。专业客户使用国际权威英国PPM公司甲醛检测仪和“健康果”在室内、车内、封闭空间等场合进行全方位对比测试,“健康果”表现出检测精度高、响应快、线性输出稳、连续周期短等优势。实验结果表明,“健康果”的各项检测指标均达到国际水平。
  • 山东出台低浓度废气监测技术规范
    p   为了获得准确的监测数据,必须对监测过程各环节进行全程序的质量保证和质量控制。尤其对实现超低排放的燃煤电厂和工业锅炉(窑炉)等固定污染源进行监测,对监测手段、标准方法、质量控制和保证,都提出了更高的要求。 /p p    strong ●现行的《固定污染源废气监测技术规范》(HJ/T 397-2007)缺少新的监测分析方法、技术和仪器设备方面的规定,已无法满足目前对固定源废气低浓度排放的监测要求和环境管理需要。 /strong /p p strong   新的《技术规范》可以规范、指导废气低浓度排放的监测工作,便于获取更加准确的监测数据,督促排污单位继续加强治污减排力度。 /strong /p p strong   ●固定污染源低浓度排放监测是一个严密、复杂的系统工程,包括监测方案制定、仪器设备和试剂的准备,样品采集和回收、分析,监测数据处理和结果报出等环节。要保证监测数据准确,需要对监测各环节进行全面质量控制。 /strong /p p   山东省质量技术监督局日前发布2015年第12号山东省地方标准公告,发布《固定污染源废气低浓度排放监测技术规范》(以下简称《技术规范》)等地方标准。 /p p   据了解,《技术规范》规定了废气低浓度排放监测的具体要求和内容,包括监测方案的制定、监测条件的准备和对污染源的工况要求等,增加了《固定污染源废气 氮氧化物的测定 非分散红外法吸收法》等方法内容,明确了采样频次和采样时间的要求,补充了废气净化装置性能测试的内容,对废气污染源监测的各个环节制定了质量保证和质量控制方面的要求。 /p p   山东省环保厅副厅长谢锋告诉记者:“《技术规范》填补了废气低浓度排放监测技术规范的空白。其发布实施,可以规范、指导废气低浓度排放的监测工作,便于获取更加准确的监测数据,督促排污单位继续加强治污减排力度。” /p p    strong 现行规范无法满足低浓度排放的监测要求 /strong /p p strong   部分燃煤机组实现超低排放,多项废气监测分析方法陆续出台,许多新的监测技术和仪器在实际监测中应用,现行技术规范缺少新监测分析方法、技术和仪器设备方面的规定 /strong /p p   去年以来,山东省燃煤机组在实现达标排放的基础上,开始试点超低排放技术改造,颗粒物、二氧化硫、氮氧化物排放浓度可分别达到5mg/m3、35 mg/m3、50mg/m3以下,远优于国家要求的燃煤机组污染物排放标准。目前,全省已有19台燃煤机组完成超低排放改造,总装机容量达6415兆瓦,预计今年年底前全省完成超低排放改造的燃煤机组可达62台,总装机容量达11783兆瓦。 /p p   山东省环境监测中心站副站长潘光对记者说:“为了获得准确的监测数据,必须对监测过程各环节进行全程序的质量保证和质量控制。尤其对低浓度排放的固定污染源进行监测,对监测手段、标准方法、质量控制和保证,提出了更高的要求。” /p p   据介绍,近年来,《固定污染源废气 氮氧化物的测定 非分散红外法吸收法》、《固定污染源废气 二氧化硫的测定 非分散红外法吸收法》等多项废气监测分析方法陆续出台。而且,随着环境管理日趋严格和环境污染治理技术的不断进步,许多新的监测技术和仪器设备已在实际监测工作中应用,有的已逐渐成为日常监测的重要手段。 /p p   潘光表示,现行的《固定污染源废气监测技术规范》(HJ/T 397-2007)缺少新的监测分析方法、技术和仪器设备方面的规定,已无法满足目前对固定源废气低浓度排放的监测要求和环境管理需要。为做好固定污染源废气低浓度排放监测,获得有代表、准确的监测数据,编制新的《技术规范》很有必要,具有重要的现实意义。 /p p    strong 先定方案 严格采样 /strong /p p strong   了解固定污染源生产装置的工艺过程和性能等技术资料,确定监测项目和监测方法,接着选择仪器、采样点和采样孔,随后采样、分析处理 /strong /p p   “《技术规范》对废气低浓度排放监测全程工作做了详细规定,主要包括:监测方案制定、监测条件准备,测定方法、采样位置和采样点确定,样品的采集和回收分析,以及监测数据处理等。” 山东省环境监测中心站工程师宋毅倩说。 /p p   《技术规范》要求,监测前要制定监测方案。具体做法是,首先收集相关的技术资料,了解固定污染源生产装置的工艺过程和性能、环保设施的性能,根据污染源的环保设施净化原理、工艺过程,以及主要技术指标和排放的主要污染物种类、浓度范围,结合环境监管需要,确定监测项目和监测方法。 /p p   《技术规范》列举的监测方法主要包括定点位电解法、非分散红外吸收法、紫外吸收法、傅里叶变换红外光谱法。监测仪器由采样管、预处理装置(由过滤装置、加热装置或除水装置组成)、抽气泵、分析仪主机等组成。 /p p   《技术规范》指出,监测分析方法的选用应充分考虑相关排放标准的规定、被测污染源排放特点、污染物排放浓度高低等因素。相关排放标准中有监测分析方法规定的,应采用标准中规定的方法。相关排放标准未规定监测分析方法的,应选用国家环境保护标准和环境保护行业标准规定的方法。根据选用的监测方法以及监测项目的需要,选择确定监测仪器。 /p p   选择了监测方法和仪器,接着选择采样点。《技术规范》规定,采样点位应优先选择在垂直管段,避开烟道弯头和断面急剧变化的部位。手工采样点位应位于自动监测设备采样点下游,且在互不影响测量的前提下,尽可能靠近。专家认为,这样选择采样点的位置,是为了使采取的污染物样品更接近污染源排放的污染物浓度。 /p p   《技术规范》对采样点位置的选定,还规定了具体的计算公式,对采样孔内径大小也做了详细的规定。还区别矩形、正方形烟道和圆形烟道等不同情况,规定了对采样点和采样孔位置的不同选择确定方法。 /p p   为了使采取的污染物样品更准确地反映污染物实际排放情况,《技术规范》要求,必须在生产和环保设施稳定运行的工况下采样。 /p
  • 上海天美参加湖南省血药浓度检测研讨班
    2012年10月底,上海天美科学仪器有限公司应邀出席了湖南省精神卫生专科医院检验科业务经验交流暨血药浓度检测研讨班,该研讨班邀请了了湖南省内几十家精神卫生专科医院。 活动现场 上海天美科学仪器有限公司的液相色谱LC2000,以其稳定的性能和简便的操作,获得了与会代表的一致好评,现在的用户数已经达到了十几家,随着血药项目的进行,上海天美液相色谱的用户数还会大幅提升。 为了解答用户的应用问题更好的为客户服务,上海天美科学仪器有限公司的高级工程师滕根发做了上海天美液相色谱LC2000在血药浓度检测中应用的报告。报告深入浅出,很好的贴近了客户的实际。 会后,上海天美科学仪器有限公司还为研讨班准备了抽奖活动。 上海天美市场部 2012年11月2日
  • “坦克车”随意开 监测有毒气体浓度
    p   5月14日,天津市河西区陈塘科技商务区南京理工大学北方研究院在津洽会举办推介会。在推介会上,北方研究院智能装备研发中心向大家展示了自动采样机器人,同时,研究院几家产业化公司也纷纷发布新型科技产品。 /p center img alt=" “坦克车”随意开 监测有毒气体浓度" src=" http://images.ofweek.com/Upload/News/2017-05/16/nick/1494901855880074044.jpg" width=" 300" height=" 225" / /center p   此次展示的“全地形智能机器人采样器”,外形类似遥控坦克车模型,虽然体积小巧,却有大本领,是一款基于解决非常环境下的环境监测智能装备。通过行走履带和各种传感器,可以在灾害环境中,监测温度、湿度、震动、易燃易爆有毒气体浓度等等。 /p p   为了确保产业化项目能够扎实推进,真正将南理工大学的一流专家和他们掌握的核心技术拿到河西区进行成果转化和产业化,北方研究院三个产业化项目公司,也对各自产品进行了推介。 /p p   我们身边正在发生,并将飞速提升的智能交通、智慧城市及共享经济的产品和技术与每个人的生活都密不可分。如今共享电动汽车已经逐渐走入我们的生活,作为本市唯一具有政、产、学、研究、用一体化背景的电网互动式新能源汽车充换电系统和智能交通运营服务解决方案的高新技术企业,天津瑞晟智通新能源科技有限公司现场介绍了其核心产品——智能充电桩,是目前国内充电速度最快的充电桩,25秒即可完成小型客车8%的充电,1分钟即可完成25%的充电,完成全部充电仅需要27分钟。 /p p   天津瑞晟晖能科技有限公司市场开发部经理昝峰博士向参会来宾展示了全固态薄膜锂电池产品样品,介绍了这个具有国际领先水平的技术研发情况及产品开发应用前景。未来这一技术将广泛应用于微电子器件、智能可穿戴设备、医疗电子等领域。 /p p   研究院第一家产业化公司——天津瑞晟先发激光科技有限公司的高功率光纤激光器的技术指标及质量控制状况,推介会后有来自全国各地的6家公司和机构,移场北方研究院研发产业基地进一步考察、商洽。 /p p   随着未来相关产业化项目规模的扩大,南京理工大学北方研究院将按照“研发总部+生产基地”的模式,在锁定相关项目的源头研发和产业链高端部分的基础上,在天津其他区县、其他省市建立承接在河西研发、转化的核心技术的生产基地,用最少的土地载体资源创造最大的价值,打造以河西区为策源地的全产业链创新生态系统。 /p
  • 使用BeNano检测高浓度医用脂肪乳的Zeta电位
    关键词:Zeta电位、高浓度样品、脂肪乳图1. 不同浓度下的医用脂肪乳高浓度样品的Zeta电位测试一直是用户的关注点,而如何阐释测试结果也是困惑用户的问题之一。颗粒体系的Zeta电位取决于颗粒表面的化学组成和溶液环境,例如pH,盐的种类和浓度,表面活性剂等等添加物的种类和含量。在一个稀释的浓度下,Zeta电位和颗粒物的含量之间没有必然联系,然而当体系浓度超过一个临界浓度时,需要考虑到颗粒所携带的电荷对于环境的贡献、颗粒之间的相互作用力等等因素对于测试结果的影响。在这篇应用报告中,我们使用丹东百特仪器公司新推出的BeNano 90 Zeta纳米粒度电位仪检测了分散在水性环境中的不同浓度下的医用脂肪乳的Zeta电位。BeNano中的毛细管电极,具有较短的4mm光程,即使对于浓度较高的样品也可以进行有效测试。原理和设备 电泳光散射技术ELS是利用激光照射在样品溶液或者悬浮液上,检测向前角度的散射光信号。在样品两端施加一个电场,样品中的带点颗粒在电场力的驱动下进行电泳运动。由于颗粒的电泳运动,样品的散射光的频率会产生一个频移,即多普勒频移。利用数学方法处理散射光信号,得到散射光的频率移动,进而得到颗粒的电泳运动速度,即电泳迁移率μ。通过Herry方程,我们把颗粒的电泳迁移率和其Zeta电位ζ联系起来:其中ε为介电常数,𝜂为溶剂粘度,f(κα)为Henry函数,κ为德拜半径倒数,α代表粒径,κα代表了双电层厚度和颗粒半径的比值。丹东百特公司的BeNano 90 Zeta纳米粒度电位仪,使用波长671 nm,功率50 mW激光器作为光源,在90度角进行粒径检测,在12度角进行Zeta电位检测。采用PALS相位分析光散射技术。样品制备和测试条件脂肪乳原液浓度为20% w/v,由于脂肪乳的配方中没有发现盐类,所以使用蒸馏水将脂肪乳样品进行稀释,配置成不同浓度的样品。通过BeNano 90 Zeta内置的温度控制系统开机默认测试温度控制为25℃±0.1℃。样品注入毛细管电极,利用电泳光散射进行Zeta电位测试。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论图2. 不同浓度脂肪乳的Zeta电位通过图2不同浓度下脂肪乳的Zeta电位曲线可以看出,在2% - 20% w/v较高浓度范围内,样品的Zeta电位值的幅值极低大约在5-7 mV范围内。浓度低于2%时Zeta电位幅值随浓度降低逐渐升高,直至0.5%浓度。临界浓度出现在0.5%左右,0.5% - 0.002%的稀释浓度范围内,Zeta电位在-41mV至-44mV范围内小幅波动,可以认为电位值在这个区间内是稳定的。高浓度下脂肪乳的Zeta电位幅值极低,这可能是由于两个原因造成的。1.由于脂肪乳颗粒浓度非常高,脂肪乳在电场力作用下的电泳运动受限,颗粒之间的相互碰撞和颗粒之间的相互作用力导致电泳速度较慢。2.脂肪乳本身所携带的电荷对于溶液环境做出了不可忽视的贡献,增加了整体溶液环境的离子强度。相对较高的离子强度一定程度屏蔽了脂肪乳颗粒的Zeta电位。3.随着浓度降低,以上两个原因造成的影响逐渐降低,Zeta电位值向真实值回归我们可以认为,在临界浓度0.5%以上的较高浓度范围内检测到的Zeta电位为表观Zeta电位,并不代表体系的真实值。而在一个宽泛的稀释浓度范围内得到的相对稳定的Zeta电位值代表了体系的真实电位水平。结论这个应用报告中,我们采用了丹东百特公司的BeNano纳米粒度及Zeta电位仪对于一系列浓度下脂肪乳样品的Zeta电位进行了表征。结果展示出BeNano独有的光路体系和光程极短的毛细管电极对于高浓度样品的Zeta电位的表征能力。同时我们可以明显的看出颗粒物浓度对于Zeta电位的影响。为了准确的得到体系的Zeta电位,我们建议用户在不改变溶液环境的条件下,将高浓度样品进行一定程度的稀释,如果有必要的话更应该对于未知体系进行浓度滴定实验。
  • 山西建成全国首个温室气体浓度在线监测系统
    记者16日午后从山西省气象局了解,由中国气象局、山西省发展和改革委员会、山西省科技厅和山西省气象局共同投资,山西省气象科学研究所承建的“山西省温室气体观测站网建设(一期)工程”已顺利完成并正式试运行。   据了解,此工程实现了山西环境温室气体浓度数据的在线监测、在线传输、在线处理和在线发布。标志着山西率先建成全国首个省级环境温室气体浓度在线监测系统。   此工程依托温室气体观测站网,获取CO2/CH4等温室气体、SO2、NOX、PM10/PM2.5/PM1等大气成分观测数据和相关气象数据,通过信息传输系统传到中心站,从而建立起山西全省的环境温室气体浓度数据库。   此间专业人士称,建立温室气体观测站网为可准确掌握山西全省温室气体浓度变化状况及时空分布特征,了解全省不同地区温室气体浓度、排放种类及排放量和吸收汇的动态变化提供了重要技术支撑。同时,通过对数据进行分析处理并形成相关业务服务产品,定期向政府及相关部门报送,还有助于为各级政府应对气候变化提供科学数据和对策建议,为全省温室气体减排战略的制定和区域、部门产业及能源结构的调整等相关决策提供科学依据,为山西在未来的省际碳补偿、交易谈判中抢占制高点提供重要支持。   此工程于去年11月开工建设,总投资1025万元人民币,先后建成温室气体观测中心站、太原、临汾和大同子站,完成观测仪器、信息传输系统的安装调试,实现数据正常传输。   据称,目前,山西气科所也已对中心站和各子站的业务人员进行集中培训,为有效开展相关观测业务和服务奠定良好基础。
  • 大方科技发布大方科技超低浓度烟尘连续监测系统新品
    一、系统组成 DCM-100系列超低浓度烟尘在线监测系统是专为超低浓度烟尘监测量身打造的一款系统,具有极高的灵敏度和系统可靠性,符合我国环保政策对超低浓度烟尘监测的相关要求。系统主要由采样探头、预处理单元、测量单元、二次仪表、风机单元等组成。烟道内烟尘经过采样探头单元抽取到测量单元以供分析,并将分析后的废气排回烟道。预处理单元主要为烟尘加热,使烟尘温度在露点温度之上,消除液态水滴对测量的影响。测量单元完成对抽取烟尘的分析计算。风机单元则主要是对射流泵提供动力。二次仪表箱与测量单元完成实时通讯,显示测量结果、系统运行状态、报警信息等,并控制整套系统的加热、标定等功能。 二、测量原理 DCM-100系列超低浓度烟尘在线监测系统采用抽取式技术路线,从烟道中抽取部分烟气,经过探杆取样管,进入加热室预热到140℃以上,预热后的测试气体被送入测量池进行测量,然后通过射流泵和探杆排气管回到原烟道。 测量采用激光前向散射原理,激光器发射的激光束经过测量池,激光束照射烟尘颗粒,产生散射,收集散射面特定角度的前向散射激光信号,该散射信号与烟尘浓度成函数关系,以此计算烟尘浓度。通过前向散射信号接收,可获得极高的烟尘浓度检测灵敏度。 三、系统特点 1.采用抽取预处理结合激光前向散射技术,具有极高的灵敏度和可靠性,适合湿烟气的超低浓度在线监测; 2.量程可调,0~10.0mg/m3,0~200.0 mg/m3根据需求设定; 3.抽取样气经过恒温预热,消除湿烟气冷凝引起的测量误差; 4.连续的清洁空气吹扫,保护内部光学器件不受污染; 5.高端智能控制技术使用,实现零点和满量程自动标定以及光学表面污染的自动监测和校正; 6.便利的人机交互功能,二次仪表采用7.0英寸,800×480图形点阵,64K色触摸屏,时尚大气; 7.运行数据可存储,仪表具有SD卡存储功能; 8.配备上位机软件,运行和维护极其方便; 9.简洁并人性化的界面设置,操作方便、功能强大。 四、行业应用 燃煤锅炉烟气脱硫下游粉尘排放测量; 垃圾湿式净化器和垃圾焚烧厂粉尘排放测量; 工业生产过程中湿废气的粉尘含量等。 创新点:1、本设备采用石英导光棒作为光信号收集方式和传输方式。相较于直接使用光纤耦合的光信号收集方式,本设备采用的导光棒对入射光的角度不敏感,光信号的接收面积更大,使得在相同的噪声背景、相同的粉尘浓度下信噪比更高。相较于使用环形或其他形式反光镜的光信号收集方式,本设备采用的导光棒能够更有效的采用吹扫气保护,而反光镜方式的反光镜面积更大,形状不规则不容易进行吹扫保护,更容易受到污染,导致可靠性降低。另外采用石英导光棒作为光信号收集方式调光更容易、简单,导光棒耐高温等性能优于光纤、反光镜。 2、本设备具有一种可折叠校准机构,可在设备运行时自动将校准机构移动至测量光路,从而完成对光路的污染情况检查,对设备的零点、量程自动校准,全过程无需人为干预。 大方科技超低浓度烟尘连续监测系统
  • 东芝最新电化学DNA芯片可在低浓度下检测DNA
    日本东芝公司(Toshiba)日前宣布研制成功高灵敏度的电化学DNA芯片,这种芯片能够在非常低的浓度下检测DNA。 这款新型芯片集成了目前广泛使用的半导体电路技术之一的CMOS电路及传感器,是对东芝先进DNA芯片系列产品及相关技术的最新补,可迅速投入的应用包括抗癌药物的易感性分析及用于疾病起因的预防性诊断的健康监测。 东芝在2001年10月推出其第一款电化学DNA芯片,采用原始的电流检测方案,用于支持感染肝炎病人单个治疗方案的研制。该芯片能调查单个病人的治疗疗效和副作用。这项研究涵盖六个领域的疾病:肺结核、消化紊乱、抑郁症(ademonia)、高血脂症、心脏停搏(Cardiac Arrest)及癌症等。同年,东芝还针对风湿病患者推出了DNA芯片。根据基因数据,东芝此次推出的新的DNA芯片能测定药物疗效和副作用的可能性,以及与病人可能出现的并发症。
  • 1800万!安徽省温室气体浓度等监测系统气象探测装备
    项目编号: ZQC-Z22028项目名称:安徽省温室气体浓度等监测系统气象探测装备预算金额:1800.0000000 万元(人民币)采购需求:采购8套温室气体(CO2/CH4/H2O)浓度监测系统、8套三维风监测系统;升级现有2套温室气体(CO2/CH4/H2O)浓度监测系统。合同履行期限:合同签订后90天内交货,交货后30天内完成安装调试并具备验收条件本项目( 不接受 )联合体投标。
  • 通用生物传感器实现一“芯”多用,可同时检测8个数量级浓度差异的生物粒子
    研究人员开发了新的信号处理技术,与光流体生物传感器芯片一起使用,以检测浓度变化8个数量级的纳米珠混合物。图片来源:霍尔格施密特/加州大学圣克鲁斯分校美国加州大学圣克鲁斯分校团队在用于检测或分析物质的芯片传感设备方面取得重大进展,为研制高灵敏度的便携式集成光流体传感设备奠定了基础。这些设备即使涉及浓度变化很大且完全不同类型的生物粒子时,仍然可同时进行多类型的医学测试。该研究成果发表在最新一期《光学》杂志上。研究人员将新的信号处理技术应用于基于光流体芯片的生物传感器,能对8个数量级浓度的纳米珠混合物进行无缝荧光检测,将传感器可工作浓度范围扩大了1万倍以上。团队表示,新设备足够灵敏,不但可检测单个生物分子,还能在非常宽的浓度范围内工作,以同时测量和区分多种粒子类型。这一多类型分析测试平台,原理基于光流体芯片,通过用激光束照射粒子,然后用光敏探测器测量粒子的响应来检测粒子。还使得该平台具有执行各种类型分析所需的灵敏度,可检测包括核酸、蛋白质、病毒、细菌和癌症生物标志物等粒子。在这项新工作中,研究人员还开发了一种信号处理方法,得以同时检测高浓度和低浓度的粒子。他们结合不同的信号调制频率:高频激光调制以区分低浓度的单个粒子,低频激光调制以在高浓度下同时检测来自许多粒子的大信号。团队还应用到最近开发的一种极速算法,以实时识别和高精度区分。这种信号分析方法,本质是用不同浓度和各种荧光颜色的纳米珠溶液泵送光流体的生物传感器芯片。目前,其能正确识别浓度差异在混合物中超过1万倍的纳米珠。未来,其将用于分析来自人工神经元细胞组织类器官的分子产物,为人们带来神经源性疾病和儿科癌症等领域的新见解。
  • 科学家研发石墨烯材料传感器可检测分子级气体浓度变化
    英国南安普顿大学和日本先进科学技术研究所的科学家研发了一种以石墨烯为原材料的传感器,能检测出室内空气污染且精度极高。这一研究近日发表在《科学进展》期刊上。新研发的传感器可以感应到来自建筑、家具用品的二氧化碳分子以及挥发性有机化合物(VOC)气体分子。近年来,由个人居住环境中的空气污染引起的健康问题与日俱增。  这些有害化学气体的浓度水平一般在几十亿分之一(ppb),用现有的环境传感技术难以检测到,因为这些传感器只能检测到浓度为百万分之一(ppb)的此类气体。  该研究团队研发出的石墨烯传感器在通电后,可使单个的二氧化碳分子一个一个吸附到石墨烯材料上,并在分子水平上检测其浓度。其原理是:装置中的石墨烯材料采用单原子悬浮束式层状结构,石墨烯材料周边有弱电场分布。当单个二氧化碳分子或挥发性有机气体分子接触或离开石墨烯材料时,石墨烯的电阻率受影响发生改变,传感器能够检测到这种变化,由于能够检测到分子级的浓度变化,因此这种传感器拥有相当惊人的精度。在试验中,原型传感器可检测到一分钟内30ppb的二氧化碳浓度变化。而且传感器非常紧凑小巧,科学家相信其有望应用于制成便携廉价的空气污染监测装置。
  • 金域医学引领技术创新,破解药物浓度监测难题
    对于同一种药物,不同患者可能呈现出截然不同的反应。金域医学作为一家以第三方医学检验及病理诊断业务为核心的高科技服务企业,深知药物疗效和安全性在治疗过程中起着至关重要的作用。  打破质谱技术壁垒,应对药物浓度监测挑战  药物浓度监测通过血液中药物浓度的测定来评估治疗效果和安全性,为医生调整药物剂量提供了重要依据,以实现最佳疗效并避免潜在的风险。因此,为了确保患者接受的药物治疗既有效又安全,测定药物在体内的浓度显得尤为重要。在这一领域,高效液相色谱-串联质谱技术因其高灵敏度和稳定性而被广泛采用。然而,由于设备昂贵、专业性强,以及需要专业人员操作的限制,这一技术在医疗机构中的应用受到了一定的局限。  整合核心资源, 率先开展药物浓度监测服务  金域医学通过不断积累的“大平台、大网络、大服务、大样本和大数据”等核心资源优势,现已利用质谱技术平台率先开展了药物浓度监测服务,并建立了专业的报告解读团队。除了精准的药物浓度监测外,金域医学还引入了药物基因组学检测服务,将两者结合起来,与临床医生、检验技师和临床药师合作,为患者量身定制合理的个体化用药方案。  金域医学的药物浓度监测项目具有高分辨率、高灵敏度、高特异性和快速分析的优势,可检测超过200种药物的浓度。同时,其药物基因组学项目也具备多位点、高通量和快速周期的优势,数据分析更为便捷、快速和准确,报告周期缩短至3个工作日。  积极参与质评活动,不断提升服务质量  为保证服务质量,金域医学积极参与国内外室间质评和能力验证活动。目前已连续两年参与英国LGC药物浓度能力验证和卫健委室间质评活动,展现了其对服务质量的承诺和不断提升的态度。同时,金域医学致力于通过减少无效治疗和处理副作用,帮助患者减少医疗费用,提升患者对治疗方案的满意度和依从性。  随着药物浓度监测在临床中的认可度不断提升,金域医学凭借覆盖全国的服务网络和高质量的检测服务,在广州、杭州、长沙、昆明、郑州等7个城市建立了监测中心。每年超过40万例的药物浓度监测检测量,成功帮助临床解决了一些疑难杂症用药难题。  未来,金域医学将继续以“药物基因组学(PGx)+药物浓度监测(TDM)”为方向,辅助临床医生制定更具针对性的治疗方案。
  • 基于3D打印的浓度梯度微流控芯片用于微生物的快速药敏检测
    内容简介本研究论文聚焦微生物的快速药敏检测研究。抗生素耐药是目前全球公共卫生安全面临的一项严峻挑战。病原菌的耐药性加速进化增加了临床治疗多重耐药感染的用药难度与病人死亡率。及时得到微生物的抗生素药物敏感性结果对于临床多重耐药感染的精准诊断与用药治疗具有重要意义。这项研究中设计了基于流阻的微液滴芯片,结合应用刃天青生物指示剂可在5 h内指示微生物在不同浓度抗生素下的生长。该芯片有若干独立的截留腔室,可自动产生抗生素浓度梯度并形成独立的微液滴用于检测细菌药敏性。该芯片简化了控制操作和设备集成,相较于传统方法缩短了药敏检测时间,具有良好的应用前景。引用本文Zhang H, Yao Y, Hui Y, et al., 2022. A 3D-printed microfluidic gradient concentration chip for rapid antibiotic-susceptibility testing. Bio-des Manuf 5(1):210–219. 文章导读图1 用于细菌抗生素药物敏感性检测的浓度梯度微流控芯片的设计与应用示意图:(a)芯片的制造流程;(b)芯片内产生梯度浓度的过程。其中芯片模具是用摩方精密nanoArch S140制备。图2 不同浓度刃天青的显色荧光显色效果:(a)除去阴性对照后的相对荧光强度;(b)阳性对照和阴性对照的荧光显色图图3 三种不同浓度抗生素对大肠杆菌生长的影响查看更多:PuSL高精密3D打印 官网:https://www.bmftec.cn/links/7
  • 业内人士: PM2.5只监测浓度就够了吗?
    仪器信息网讯 自1月7日以来,我国中东部17个省区持续出现能见度较低的雾霾天气,北京西直门北交通污染监测点PM2.5实时监测浓度最高达993ug/m3。如此高的空气污染,给人们的工作、生活、身体健康带来了很大的影响。针对此事件,仪器信息网(www.instrument.com.cn)从业内专家处了解到,当前PM2.5监测仅限于污染物的浓度,而不能实时监测PM2.5污染物的化学组成。在相同的污染浓度下,不同的化学组成对人的危害有巨大差距。 PM2.5污染物的形成机制极为复杂   目前国际上PM2.5监测的主流方法有重量法、β射线法、震荡天平法。重量法是一种人工监测方法,工序繁琐且耗时。目前大量使用的是基于β射线法和震荡天平法的自动监测仪器,但是无论手动还是自动,监测指标均为浓度(单位:μg/m3)。   PM2.5污染物的形成机制极为复杂,目前开展的大范围的监测中,浓度已成为法定监测项目,然而这还远远不够,PM2.5的监测要关注的不仅仅是浓度,还有三方面的信息更为重要,那就是PM2.5由什么化学成分组成、来源于哪里、各种来源对PM2.5的贡献有多大。有了这些信息,才能真正的了解PM2.5的污染情况,并提出有目的性、有效的治理方案。   PM2.5的化学成分不同,对大气环境的影响有所不同。比如,黑炭颗粒的粒径非常小,在PM2.5中的比重很少,但其具有很强的吸光能力。有研究表明,污染源排放的黑炭颗粒在大气中与硫酸盐发生混合时,还能够进一步增强该颗粒其对太阳光的吸收能力,这个特性与大气能见度降低以及区域灰霾的形成具有重要的关系。可见,黑炭在PM2.5中的比重很小,却会对能见度及灰霾有很大的贡献。   排放源不同,排放源的贡献不同,对大气环境的影响也会有所不同。举例,相同的两个PM2.5的浓度数据,均为30μg/m3(年平均值),但其中一个主要是道路扬尘颗粒物对PM2.5的贡献,而另一个主要是含重金属铅(Pb)的颗粒物。前者对人体的健康影响远小于后者,而后者即使PM2.5浓度没有超标,但仍然会对人类健康构成巨大威胁。   这一问题的提出对监测仪器提出了更高的要求,比如,对环境的监测可以实时在线,而不要现场采样,再到实验室分析,这样可以避免样品在前处理、仪器分析时带来的损失及信息滞后等问题。   在实时获取污染颗粒物粒径分布时,同时获取这些颗粒物上的化学成分(混合状态)。有了这样的技术,我们才能判断污染物的来源及污染程度,从而为污染源治理,提供可靠的数据支持,让大气环境尽快得到改善。
  • 超微量分光光度计|蛋白以及细菌生长浓度的定量检测【恒美】
    点击此处可了解更多详情→超微量分光光度计 超微量分光光度计是一种高精度的分析仪器,主要用于核酸、蛋白定量以及细菌生长浓度的定量检测。它利用分光光度的原理,可以将样品中的物质进行分离和检测,以获得其具体的浓度和组成等信息。 超微量分光光度计具有很多优点,比如说它的测量精度非常高,可以检测出样品的微小差异;它的灵敏度也很高,可以检测出样品中微量的物质;此外,它还可以同时对多个样品进行检测,大大提高了工作效率。这些优点使超微量分光光度计成为生物医学、化学分析等领域中必不可少的实验仪器之一。 在使用超微量分光光度计的过程中,需要注意以下几点。 首先,要保证仪器的稳定性,避免在测量过程中出现误差;其次,要注意样品的准备,要将样品进行精细的稀释和纯化,以保证测量结果的可靠性;最后,要根据不同的样品选择合适的波长和测试条件,以便得到更准确的结果。 总的来说,超微量分光光度计是一种功能强大的实验仪器,它的应用范围广泛,可以用于核酸、蛋白定量以及细菌生长浓度的定量检测。它不仅可以提高实验的精度和效率,还可以为生物医学、化学分析等领域的研究提供有力的支持。
  • “湖北空气负氧离子浓度地方标准”出台 监测数据将公示
    11月18日,“湖北省空气负氧离子浓度等级”地方标准(以下简称标准)正式实施。该标准制定科学客观,公众易于理解,对湖北省空气负氧离子浓度的监测、评估和服务,以及指导公众健康生活,具有重要作用。  湖北省空气负氧离子浓度等级地方标准由湖北省气象局和湖北省林业科学研究院联合起草,结合湖北地域气候、地貌类型等特点,利用2014年湖北省逐10min的空气负氧离子浓度数据,统计各小时平均值作为建模数据,以反映空气的平均状态,建立空气负氧离子浓度等级。  标准界定:当负氧离子浓度100个/cm3时为Ⅴ级,当负氧离子浓度在100~500个/cm3时为Ⅳ级,当负氧离子浓度在500~1000个/cm3时为Ⅲ级,当负氧离子浓度在1000~1500个/cm3时为Ⅱ级,当负氧离子浓度≥ 1500个/cm3时为Ⅰ级。  据了解,湖北是全国较早开展空气负氧离子观测和应用的省份之一。2013年10月,由湖北省气象局和湖北省林业厅共同开展全省空气负氧离子站网建设,湖北省气象信息与技术保障中心、湖北省林业科学研究院作为具体承建单位于2014年1月完成了空气负氧离子观测仪器站网的建设,2014年3月提供湖北省空气负氧离子浓度的实时监测和服务。  随着湖北省空气负氧离子浓度等级地方标准的出台实施,湖北空气负氧离子浓度监测数据及相关服务产品也将陆续开始对公众发布。
  • 我国科学家团队成功开发超低浓度ctDNA富集检测平台
    ctDNA全称为circulating-tumor DNA,是指人血液中肿瘤细胞体细胞DNA经脱落或者当细胞凋亡后释放进入循环系统,故被称为循环肿瘤DNA,包含着癌症早期诊断和预后监测等重要信息。然而,ctDNA的精准检测面临着三大问题:临床样本(如血液、尿液、粪便)等成分复杂;ctDNA的半衰期较短(传统ctDNA富集和纯化通常是基于磁珠和二氧化硅膜,然而,当处理大量样品时,这些技术难以实现快速、高效的富集,并且操作复杂,检测灵敏度有限。因此,迫切需要一种创新的ctDNA富集与分析技术,以提高临床诊断的灵敏度。近日,北京航空航天大学王杨、常凌乾、樊瑜波,上海感染与免疫科技创新中心徐高连等在 ACS Nano 期刊上发表了题为:An ion concentration polarization micro-platform for efficient enrichment and analysis of ctDNA 的研究论文。该研究开发了一种基于离子浓度极化的微平台,能够在30秒内从血清、尿液和粪便等各种临床样品中,快速、高效地富集和纯化ctDNA。并集成了等温扩增模块,将ctDNA的检测灵敏度提高了100倍,显著消除了因ctDNA丰度低而导致的样本假阴性结果。离子浓度极化(ICP)是一种新兴的原位分子富集和纯化方法,在阳离子选择性的Nafion膜上施加垂直电场,根据带电分子的电渗透力和电泳力进行分离和纯化。同时结合“自由流动”的概念,形成基于“自由流动ICP(FF-ICP)”的连续分离方法。对于带有负电荷的核酸分子,受到向下的电渗透力(EO)和不断增加的向上的电泳力(EP)的共同作用,被电动力学捕获,形成离子富集区。同时,施加连续的水平驱动力,使被富集到的核酸或蛋白分子水平推进并收集,从而进行后续的扩增分析(图1)。图1. “自由流动ICP”的原理图基于FF-ICP的DNA富集策略,研究团队设计了一种自供电、集成的微流控芯片,用于高灵敏度的核酸检测。微平台有两个功能区:核酸富集区、核酸等温扩增检测区(图2a)。两个区域由一个“y形”提取通道连接。富集区内固定了阳离子选择性的Nafion膜。在垂直电场和水平驱动力作用下,液体样品中的核酸被富集,形成“阴离子流”,然后在“y”形提取通道处收集(图2b)。随后,“阴离子流”进入检测区,经等温扩增后进行定量分析(图2c)。剩余的溶液收集在废液池中(图2d)。富集后的核酸进入到核酸扩增区之后,在含有100个微孔的检测区,用LAMP法进行等温扩增(65℃)。采用阳性微孔总数和每个微孔的荧光强度作为双参数指示,使分析更加准确和稳定。为了给FF-ICP提供稳定的水平驱动力,团队在生物芯片中集成了一个自供电真空电池系统,电池使用预脱气的PDMS,通过液体通道和真空通道之间的气体交换提供“电力”,从而推动液体样品流动(图2e)。使得整个平台能够在不需要外部泵的情况下,连续地向下游输送和富集核酸分子,并进行核酸扩增,具有用户友好的性能。图2. 基于FF-ICP的集成微平台用于连续的核酸富集和扩增利用微平台检测临床患者血清中的ctDNA。与未处理样品相比,该装置的富集效果和纯化能力明显高于试剂盒(图3a-3c)。同时,最终的扩增结果也显示,该微平台能够达到100拷贝/mL的灵敏度,比传统方法(基于二氧化硅/磁珠的DNA提取与PCR扩增)提高了100倍(图3d)。在临床应用中,对北京大学肿瘤医院提供的38例非小细胞肺癌患者的血清样本进行EGFR外显子19缺失突变的检测。结果表明,微平台的灵敏度显著高于传统PCR技术,达到了100%,能够大大避免了因ctDNA浓度不足而造成误诊的风险(图3e和3f)。此外,该装置检测到的早期患者血清中ctDNA的含量明显低于中晚期患者,证明该平台的定量判断能力可以预测患者的肿瘤发展(图3g和3h)。通过将分析物的提取和富集(FF-ICP)与进一步的生物分析技术进行无缝集成,为超低丰度生物标志物的检测带来巨大的好处。与传统检测技术相比,该平台的灵敏度显著提高了两个数量级,能够避免因浓度不足导致的误诊风险,尤其有利于临床感染筛查或者早期肿瘤诊断。图3. 用FF-ICP装置检测血清中ctDNA该研究第一单位为北航生物与医学工程学院和生物医学工程高精尖创新中心。通讯作者包括北航生物与医学工程学院常凌乾教授、樊瑜波教授、王杨副教授、上海感染与免疫科技创新中心徐高连研究员。核心作者包括北航博士生王之莹(第一作者)、硕士生刘明(共一)、北京大学肿瘤医院吴楠教授、北京大学第三医院林成浩主任(共一)等。
  • ATAGO(爱拓)麦芽汁浓度计-原麦芽汁浓度检测在啤酒行业的应用
    一般饮料酒的度数表示酒精的含量,所以简称为"酒度",而啤酒的"度"却指的是麦芽汁的浓度。制造啤酒的大麦芽和辅助原料大米等,经过麦芽淀粉酶和蛋白酶的作用,转化为麦芽糖类,以糖的含量来测定,如每公升麦芽汁含有120克糖类,就是12° 。当麦芽汁浓度为7° ~9° 时,称低浓度啤酒。麦芽汁浓度在18° ~20° 的称黑啤酒。麦芽汁浓度越高,营养价值就越好,同时泡沫细腻持久,酒味醇厚柔和,保管期也长。因此,&ldquo 原麦芽汁浓度&rdquo 是鉴定啤酒的一个硬性参考指标,根据它的浓度来鉴定啤酒可储存期。 概述 原麦芽汁浓度用来计量发酵前可发酵糖分的含量,是指开始发酵时原料中麦芽汁的糖度。原麦芽汁浓度是啤酒潜在烈性的代表性标志。1.040原麦芽汁浓度相当于10度的麦芽汁能产生出大约百分之四体积酒精度的啤酒。 麦芽汁浓度在18° ~20° 的称黑啤酒。 据测定,黑啤酒的酒精含量在4.8° ~5.6° 之间。 &ldquo 原麦芽汁浓度&rdquo 是鉴定啤酒的一个硬性参考指标,另外,鉴定啤酒有很多的硬性指标,这些指标就是鉴定啤酒的硬性依据。 根据麦芽汁浓度分类 低浓度型:麦芽汁浓度在6° ~8° (巴林糖度计),酒精度为2%左右,夏季可做清凉饮料,缺点是稳定性差,保存时间较短。 中浓度型:麦芽汁浓度在10° ~12° ,以12度为普遍,酒精含量在3.5%左右,是我国啤酒生产的主要品种。 高浓度型:麦芽汁浓度在14° ~20 ° ,酒精含量为4%~5%。这种啤酒生产周期长,含固形物较多,稳定性好,适于贮存和远途运输。 麦芽汁浓度测量 ATAGO(爱拓)PAL-Plato麦芽汁浓度计 这款是测量发酵前麦芽汁的产品。它以Plato作为其标度。操作简便,LCD显示很清晰,自动温度补偿范围到75度。与比重计比起来, 其需要的样品量只有0.3毫升。测量速度只需3秒钟。 型号 PAL-Plato 货号 4590 测量范围 Plato 0.0 至 30.0° P 溶解值 Plato 0.1° P测量准确度 Plato ± 0.2° P 环境温度 10 至 40° C 测量温度 10 至 75° C ( 自动温度补偿 ) 样本量 0.3 毫升 测量时间 3 秒 电源 2 × AAA 电池 如欲了解新产品测量方案,我们将热情提供完整、快速的现场分析试用,请点击这里。 要了解ATAGO(爱拓)仪器的信息,请访问:http://www.atago-china.com
  • Fab区限制性酶切-nSMOL技术助力抗体药物血药浓度监测
    导读抗体药物在临床上主要用于癌症、自身免疫、代谢和传染病等疾病的治疗。与小分子药物相比,抗体药物在体内的吸收、分布、代谢及排泄具有独特的药代动力学特征。2020版《抗肿瘤生物类似药治疗药物监测药学专家共识》中多数专家强烈推荐对其进行监测,以实施个体化治疗策略。纳米表面分子导向限制性酶解- nSMOL(nano-Surface and Molecular Orientation Limited Proteolysis)技术是岛津开发的革新性技术,可以选择性酶解Fab 区域特征肽段,克服了全酶解技术及ELISA法诸多缺点,具有更好的选择性和重现性,是复杂基质中抗体药物定量的新利器。突破传统方案,nSMOL技术 – 抗体药物定量新视野以往对抗体药物的检测主要是采用ELISA试剂盒完成,但ELISA方法存在开发时间长、准确性一般、假阳性率高、线性范围窄等问题。而LC-MS/MS方法可以很好地弥补ELISA法的不足,但是如果前处理方法不够成熟,面对复杂的基质组分,常导致选择性和重现性不佳、检测耗时或灵敏度不理想的情况。01 技术原理nSMOL技术同时弥补了ELISA法及传统全酶解LC-MS/MS法的不足,技术原理如图1所示,其利用胰酶纳米颗粒与固化树脂之间孔径的差异,限制胰蛋白酶与抗体药物的接触区域,可以选择性酶解Fab 区域特征肽段。图1. nSMOL技术选择性酶解原理摘自Iwamoto N. et. al.Analyst, 2014, 139, 576-58002 技术优势nSMOL技术能确保获得靶标蛋白特异性肽段,降低样品的复杂程度,克服了传统溶液全酶解技术中存在的酶解产物复杂、酶解效率低、酶解重现性差,内源性干扰严重等问题,从而表现出良好的选择性和重现性。与ELISA法相比(见表1),其开发周期更短,定量特性更适合高灵敏、高特异性、多种抗体药物的高通量测定。03 应用广阔nSMOL技术开启了抗体药物定量分析的新视野,经过岛津与客户的不断研究探索,该技术已在不同治疗用途抗体药物的研发、质控、临床治疗药物监测中得到成熟应用。图2展示了国内外相关应用成果。截至目前,全球已上市100余种抗体类药物,nSMOL技术应用前景十分广阔。图2. 国内外相关应用创新临床应用,nSMOL技术实现多种炎症治疗性抗体药物同时监测临床上多种抗体药物均可用于炎症性免疫疾病的治疗,因此同时定量监测人血液中多种抗体药物浓度的分析方法,具有迫切的临床需求。01 nSMOL临床应用nSMOL技术发明人 - 岛津生命科学研究中心Takashi Shimada博士及其科研团队,2019年在《Journal of Immunological Methods》期刊上发表文章,使用nSMOL技术开发了9种抗体和Fc-融合蛋白(英夫利昔单抗、阿达木单抗、尤特克单抗、戈利木单抗、依库珠单抗、依那西普和阿巴西普、托珠单抗和美泊利单抗)的LC-MS生物分析方法,通过临床试验进一步论证了该技术在多种抗体药物浓度同时监测应用中的巨大价值。该文章中样品的处理方式采用了改进的nSMOL反应条件, 如图3所示。图3. 9种抗体和Fc-融合蛋白的nSMOL样本处理流程首先样品在缓冲液中与结合有Protein A的树脂混合,样品中的抗体被亲和富集。第二步,富集后的树脂与含固定化胰酶纳米颗粒混合,其表面固化的胰蛋白酶可以与树脂所富集抗体的Fab区域进行充分接触,特别是Fab区域中的CDR相关特征肽段被选择性酶解下来,洗脱后进行LC-MS/MS定量。为提高低敏抗体托珠单抗和美泊利反应效率,采用了250 mM TCEP-HCl水溶液的酸化还原加速条件进行处理,得到了良好的结果。9种抗体和Fc-融合蛋白通过特征肽段的LC-MS/MS检测,获得了其典型MRM色谱图(图4a,图4b),9种药物具有良好的灵敏度、色谱保留及峰形。图4. 9种抗体和Fc-融合蛋白药物典型MRM色谱图根据日本厚生劳动省药品和食品安全局评估和许可司发布的《药物开发中生物分析方法验证指南》进行了详细验证。验证结果显示该方案的定量灵敏度、线性范围、重复性、准确性等指标均满足该类抗体治疗药物监测需求。02 临床研究2017年11月至2019年1月,京都大学医院招募了45名患有类风湿关节炎(RA)或炎症性肠病(IBD)的日本患者参加这项研究。作者使用临床患者样本对比分析了9种药物同时监测与单个监测方法所得结果的相关性。部分结果见图5。图5. 两种方法定量结果相关性分析线性回归拟合Pearson相关分析表明,两种监测方法所得结果之间具有良好的相关性,且对照组各数据在95%置信区间内具有较高的重现性和较低的变异。作者经过严苛的方法学验证及临床实验,证明了基于nSMOL技术的LC-MS/MS法可以同时定量人血清中多种抗体及Fc-融合蛋白药物,并应用于治疗药物监测,助力患者个体化精准用药。结语nSMOL技术结合岛津三重四极杆质谱仪能够较好地解决单克隆抗体药物在定量分析中的难题,是抗体药物血药浓度监测不可或缺的高效工具。该方案为治疗性抗体药物的治疗药物监测(TDM)提供了更加简便高效、准确稳定的检测方法,期待其临床应用能够助力个体化治疗策略的探索与实践。撰稿人:任彪文中推荐技术方法方案仅用于医学专业人士技术交流,不作为临床诊断依据。如需深入了解更多细节,欢迎联系津博士sshqll@shimadzu.com.cn
  • ATAGO爱拓全新推出2款数显酸度计 助力乳酸浓度检测
    ATAGO(爱拓)(简称:爱拓)公司是一家著名的旋光仪和折光仪的专业制造厂家。该公司成立于1940年,从1940年开始生产精确折射仪、折光仪、旋光仪起,至今已有上七十多年的历史。其生产的旋光仪及折光仪作为行业的领导者一直享誉全世界,主要产品包括各型号旋光仪、折光仪、盐度计、浓度计、糖度计等。近日爱拓公司全新推出2款数显酸度计,为咸菜、乳酸菌饮料中的乳酸浓度检测提供新的选择。 PAL-ACID3 酸度计测试箱(乳酸) PAL-ACID3 迷你数显酸度计用于测量咸菜、乳酸菌饮料中的乳酸浓度。 PAL-ACID3 迷你数显酸度计测量样品的总酸度,并将之转换为乳酸含量。 型号 PAL-ACID3 酸度计测试箱(乳酸) Cat.No. 4652 测量范围 乳酸含量1.0 to 45.0(g/l) (以乳酸为标度[g/l]) 分辨率 0.1(g/l) 重复性 1.0 to 20.0(g/l) ± 0.5(g/l) 20.1 to 40.0(g/l) ± 1.0(g/l) 测量温度 10 to 40° C (自动温度补偿) 环境温度 10 to 40° C 选件 &bull 校正溶液: RE-130002 &bull 反应试剂 10 pcs : RE-99432 &bull 反应试剂 20 pcs : RE-99430 &bull 反应试剂 50 pcs : RE-99431 电源 2 × AAA 电池 规格 55(W)× 31(D)× 109(H)mm, 100g (仅主机) PAL-ACID3 迷你数显酸度计(乳酸) 此货号仅为主机,不包含附件。 型号 PAL-ACID3(乳酸) Cat.No. 4642 测量范围 乳酸含量1.0 to 45.0(g/l) (以乳酸为标度[g/l])分辨率 0.1(g/l) 重复性 1.0 to 20.0(g/l) ± 0.5(g/l) 20.1 to 40.0(g/l) ± 1.0(g/l) 测量温度 10 to 40° C (自动温度补偿) 环境温度 10 to 40° C 选件 &bull 微量移液器 : RE-79401 &bull 校正溶液: RE-130002 &bull 反应试剂 10 pcs : RE-99432 &bull 反应试剂 20 pcs : RE-99430 &bull 反应试剂 50 pcs : RE-99431 电源 2 × AAA 电池 规格 55(W)× 31(D)× 109(H)mm, 100g (仅主机) MASTER-53S 手持式折射计乳白色样品首选 此产品克服了一直以来测试乳白色样品时,常会出现的界线不清的现象。 非常适合用于测试乳白色样品。 例如奶制调味品、酸奶、加奶咖啡、蛋黄酱、切削油等。 Model MASTER-53S 型号 2355 标度范围 Brix 0.0 至 53.0% (自动温度补偿型) 最小标度 Brix 0.5% 测量准确度 Brix ± 0.5%(10 至 30℃) 重复性 ± 0.25% 尺寸重量 3.2× 3.4× 16.8cm, 130g 欲知详细资料,请关注:http://www.atago-china.com 或者致电联系我们:020-38106065/38108256
  • “浓度检测,电泳,到蛋白纯化,一气呵成”GE产品春季特惠
    &ldquo 浓度检测,电泳,到蛋白纯化,一气呵成&rdquo GE产品春季特惠
  • 检测超低浓度葡萄糖 仿生离子通道布满“摄像头”
    记者28日从杭州医学院获悉,该校许秋然研究员团队联合华中科技大学科研人员,研发出一种基于亚微米通道异质膜的固态纳米通道生物传感器,实现了对不同pH值和线性范围为1皮摩/升—0.1微摩/升的超低浓度葡萄糖的无酶检测。相关研究论文近期发表于国际期刊《化学工程杂志》。活体细胞进行新陈代谢,会与周围环境进行物质交换,细胞膜上由特殊蛋白质组成的离子通道,就是这种物质交换的重要途径。在免疫反应、病原体感染等人体生理、病理变化活动中,细胞膜对糖类的识别起到重要作用。通过离子通道对糖类的分析检测,可以深入了解细胞间糖的选择性跨膜吸收和转运,作为生命科学、临床医学等领域研究的关键参数。此前,糖类检测技术均是基于100纳米孔径以下的纳米通道有可识别的电化学信号,但纳米通道空间有限,电阻较高,目标分子响应信号弱。科研人员持续追求高灵敏度、低检测限的糖类检测技术。本次研究中,该团队设计了一种仿生离子通道,选择具有耐高温、良好吸附性和透水性等特性的阳极氧化铝多孔通道膜AAO,作为这一通道的基底;通过聚多巴胺—金纳米颗粒多层组装的方法,在AAO通道内壁上原位生成并固定了大量可调节大小和密度的金纳米颗粒;通过将大量的糖分子探针修饰在金纳米颗粒的表面,制得了具有ICR特性,并对糖类响应良好的亚微米通道孔径的异质膜。“通俗地讲,修饰探针分子,相当于在仿生离子通道墙壁上安装了摄像头。AAO孔径269纳米,具有更大的修饰空间和流体运输通道,可输出更强的目标分子响应信号。”许秋然解释道,具有ICR特性,相当于给摄像头输入识别程序,更易识别细胞中糖类的电化学信号特征。许秋然表示,这一方法具有通用性,可据此研发出检测仪器,糖类检测仅是抛砖引玉,提供一个具体的检测案例。异质膜作为基底具有普适性,可拓展检测范围,通过修饰分子探针,对氨基酸、蛋白质、DNA等物质进行检测,好比给摄像头输入不同的程序,让它识别不同的对象。
  • 安徽蓝盾中标1276万气溶胶质量浓度监测项目
    2014年9月3日获悉,安徽蓝盾光电子股份有限公司中标中国气象局气象探测中心气溶胶质量浓度观测系统建设项目(项目编号:ZQC-H14107),中标金额为1276万元。   此次中标的仪器包括气溶胶质量浓度(PM10、PM2.5)观测系统97套及5年所需的耗材。 安徽蓝盾光电子股份有限公司是一家高新技术军工企业,注册资本8000.993万元。公司拥有一个省级工程技术研究中心(与中国科学院安徽光学精密机械研究所共建了国家环境光学监测仪器工程技术研究中心)和一个省级重点实验室(安徽省交通安全与智能交通技术省级实验室),在深圳清华港和合肥高新技术开发区建立了研发团队。公司承担了&ldquo 863计划&rdquo 等多项国家项目,并多次荣获国家科学技术进步二等奖和安徽省科学技术奖一等奖。 新闻来源:http://www.ccgp.gov.cn/cggg/zybx/zbgg/201409/t20140903_3745850.shtml
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制