当前位置: 仪器信息网 > 行业主题 > >

脉搏传感器

仪器信息网脉搏传感器专题为您提供2024年最新脉搏传感器价格报价、厂家品牌的相关信息, 包括脉搏传感器参数、型号等,不管是国产,还是进口品牌的脉搏传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合脉搏传感器相关的耗材配件、试剂标物,还有脉搏传感器相关的最新资讯、资料,以及脉搏传感器相关的解决方案。

脉搏传感器相关的论坛

  • 【资料】单片机脉搏测量仪详细介绍

    本文介绍一种用单片机制作的脉搏测量仪,只要把手指放在传感器内,很快就可以精确测出每分钟脉搏数,测量的结果用三位数字显示出来。  电路工作原理  电路原理见附图。电路由传感器电路、信号放大和整形电路、单片机电路、数码显示电路等四部分组成。file:///C:/Documents%20and%20Settings/Administrator/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/O9EZM3GH/20100418141025_4599.jpg传感器由红外线发射二极管和接收二极管组成,测量原理如下:将手指放在红外线发射二极管和接收二极管之间,血管中血液的流量随着心脏的跳动变化,由于手指放在光的传递路径中,血管中血液饱和度的变化将引起光的传递强度变化,此变化和心跳的节拍相对应,因此红外接收二极管的电流也跟着心跳的节拍改变,使得红外接收二极管输出与心跳节拍相对应的脉冲信号。该脉冲信号经F1~F3、R3~R5。C1、C2等组成的低通放大器放大,F4、R6、R7、C3组成的放大器进一步放大后,送给由F5、F6、RP1、R8等组成的施密特触发器整形后输出,作为单片机的外部中断信号。电路中的可变电阻RP1用来调整施密特触发器的阈值压。  IC2、X1、R10、C5等组成单片机电路。单片机对由P3.2输入的脉冲信号进行计算处理后,送到数码管显示。发光二极管VD3作脉搏测量状态显示,脉搏每跳动一次,VD3点亮一次。  三只数码管VT1~VT3、R12-R21等组成数码显示电路。本机采用动态扫描显示方式,使用共阳数码管,P3.3~P3.5口作三只数码管的动态扫描位驱动码输出,通过三极管VT1-VT3驱动数码管。P1.0-P1.6口作数码管段码输出。  软件设计  程序用C语言编写,由主程序、外部中断服务程序、定时器TO中断服务程序、延时子程序等模块组成。主程序主要完成程序的初始化。外部中断0服务程序由测量、计算、读数等部分组成。定时中断服务程序由计时、动态扫描显示、无测试信号判断等部分组成。程序中用变量n对时间计数,用变量m对脉搏脉冲信号个数计数。  从P3.2口输入的与脉搏相对应的脉冲信号作为外部中断0的请求中断信号,外部中断采用边沿触发的方式。由于脉冲信号的频率很低,所以不适宜用计数的方法进行测量,故而采用测脉冲周期的方法进行测量,即用脉冲来控制计时信号,通过计时数计算出脉冲周期,再由脉冲周期计算出频率,从P3.2口每输入一次脉冲信号就能显示一次脉搏数。  定时器TO的中断时间为5ms,每中断一次计时变量n加1,因此计时的基本单位为5ms,例如一个脉搏脉冲周期对应的n值为240,则对应的时间为1.2s,由此可得每分钟脉搏数为50。如果n的值达到2000,即10秒钟仍没有发生外部中断,则表示没有脉搏脉冲信号输入,于是n被清零,测量结果显示也为0。  读数采用三位数码显示。定时器TO每中断一次显示一个位,因此3次中断就可以刷新一次数据,即15ms刷新一次数据。安装与调试  传感器的制作是一个关键。可将红外线发射二极管和接收二极管分别固定在一个塑料夹子的两侧,用时只需将夹子夹在手指上即可。制作时注意保证红外线接收二极管在使用时不要受到外界光线的干扰。  调试的主要工作是通过对RP1的调节来调整电路的灵敏度,RP1的阻值越小灵敏度越高,反之灵敏度越低。调试时可通过VD3的发光状态进行观察,如果脉搏跳动时VD3不跟随发光,则说明灵敏度偏低,不易检测到脉搏信号;如果在没有脉搏跳动时VD3偶尔也点亮发光,说明灵敏度偏高,容易受到干扰。

  • 压电薄膜传感器_压电薄膜传感器详情

    话说这个压电薄膜传感器是具有一种很独特的特性的,它是一种动态模式的应变性传感器,一般通过在人体的皮肤表层进行植入或者植入到人体内部,用来监测人体的一些生命迹象以及特征。其中压电薄膜传感器里面的一些薄膜元件是非常灵敏的,可以隔着外套探测出人体的脉搏。OFweek Mall传感器商城网说一下压电薄膜传感器在医疗行业的应用。1、压电薄膜传感器工作原理当你拉伸或弯曲一片压电聚偏氟乙烯PVDF高分子膜(压电薄膜),薄膜上下电极表面之间就会产生一个电信号(电荷或电压),并且同拉伸或弯曲的形变成比例。一般的压电材料都对压力敏感,但对于压电薄膜传感器来说,在纵向施加一个很小的力时,横向上会产生很大的应力,而如果对薄膜大面积施加同样的力时,产生的应力会小很多。因此,压电薄膜传感器对动态应力非常敏感,28μm厚的PVDF的灵敏度典型值为10~15mV/微应变(长度的百万分率变化)。使用'动态应力'这个术语是因为形变产生的电荷会从与薄膜连接的电路流失,所以压电薄膜传感器并不能探测静态应力。当需要探测不同水平的预应力时,这反而成为压电薄膜传感器的优势所在。薄膜只感受到应力的变化量,最低响应频率可达0.1Hz。2、压电薄膜传感器特点压电薄膜很薄,质轻,非常柔软,可以无源工作,因此可以广泛应用于医用传感器,尤其是需要探测细微的信号时。显然,该材料的特点在供电受限的情况下尤为突出(在某些结构中,甚至还可以产生少量的能量)。而且压电薄膜传感器极其耐用,可以经受数百万次的弯曲和振动。3、压电薄膜传感器医疗应用利用压电薄膜传感器的动态应变片特性,可以轻松的将压电薄膜直接固定在人体皮肤上(例如手腕内侧)。精量电子—美国MEAS传感器的产品型号1001777是一款通用传感器,传感器的一侧涂有压力敏感胶。但这款胶未经生物兼容性认证,在短期试验中可以将3M9842(聚亚安酯胶带)固定在皮肤上,再将压电薄膜传感器粘贴在3M胶带上。压电薄膜之所以即能探测非常微小的物理信号又能感受到大幅度的活动,是因为PVDF膜的压电响应在相当大的动态范围内都是线性的(大约14个数量级)。多数情况下,只要能明显区分目标信号和噪声的带宽,细小的目标信号都可以通过过滤器采集到。类似的压电薄膜传感器已在睡眠紊乱研究中用于探测胸部,腿部,眼部肌肉和皮肤的运动。另外,传感器可以通过探测肌肉(例如拇指和食指之间的肌肉)对电击的反应作为检验麻醉效果的指示器(神经肌肉传导)。压电薄膜传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨[url=http://mall.ofweek.com/1877.html]压电薄膜传感器[/url]丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 压电薄膜传感器的设计要考虑什么因素

    [align=left]PVDF压电薄膜是一种新型的高分子压电材料,广泛应用于医疗压电薄膜传感器。它具有压电和薄膜软机械特性,用于制造压力传感器,设计紧凑、易于使用、高灵敏度、频率带宽、安全舒适地接触人体,靠近体壁,声阻抗和人体身体组织声阻抗非常接近一系列特征,可用于检测人体信号,如脉搏心音。脉搏心音信号携带人体重要的生理参数信息。通过有效处理信号,可以准确地获得波形、心率,为医生提供可靠的诊断依据。[/align]压电薄膜传感器的设计主要考虑传感器的灵敏度和信噪比。根据测量信号的频率和响应幅度,我们设计了压电薄膜传感器的结构。当采集人体心音信号时,心音具有较宽的频率响应范围,而物理使用硬质基板和中空设计,输出的信号值也很弱。这可以在接收心音信号时增加压电薄膜传感器中的膜的形状,从而提高信号强度。这种结构设计的缺点是结构不牢固并且需要长时间使用来校正。 PVDF压电薄膜的压电常数一般为D33 = 15×10-12C / N,g值较高,但内阻较高,一般高达1012Ω。制造的压电薄膜传感器的输出阻抗很大,这对后者不利。信号采集和放大。为了防止信号衰减,我们使用高输出阻抗FET作为阻抗转换器,这是测量系统的预电路。我们利用结FET的高输入阻抗特性,根据其静态工作点设计阻抗转换器。由压电薄膜传感器获得的人体信号通过阻抗转换器以获得可靠的低阻抗。输出信号。可以看出,在信号频率发生变化的情况下,压电薄膜传感器的输出阻抗基本保持不变。加速度计可用于米来测量加速度(随时间变化的速率)和倾斜度的测量(物体纵轴与垂直于地球表面的平面之间的倾斜度)。倾斜测量可以被视为“直流”或稳态测量。理论上,加速度可以是稳态,但在实际应用中,加速度通常是一种短期暂时现象。在非倾斜应用(短时加速)中,压电检测器或压电膜传感器可用作传感器。任何类型的压电薄膜传感器都具有与电容器串联的AC电压源等效电路(以及产生二阶效应的其他无功元件,这里未对其进行分析)。典型值是几百皮法到几纳法。电压源的电容耦合是器件不提供稳态倾斜测量的原因。上述等效电容加上输入或后续放大或缓冲电路的分流电阻构成单极高通滤波器(HPF)。在最好的情况下,分流电阻越大,高通滤波器中极点的时间常数越长。这意味着在时间常数效应削弱测量之前可以测量加速度更长的时间。从实际角度考虑(考虑到器件的可用性),可以选择1GΩ的电阻。由于该电阻值较大,所使用的放大器必须具有非常低的偏置或漏电流,最好高达1 pA。压电薄膜传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨压电薄膜传感器https://mall.ofweek.com/1877.html丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器[color=#333333]丨壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨[/color][color=#333333]电流传感器丨[/color][color=#333333]光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨传感器https://mall.ofweek.com/category_5.html丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 超声波传感器_超声波传感器探测功能

    [align=left]超声波传感器是一种机械波,其振动频率高于声波。它是在电压激励下由换能器晶片的振动产生的。当超声波撞击杂质或界面时,它将产生显着的反射以形成回波的反射,当其撞击移动物体时可产生多普勒效应。因此,超声检测广泛应用于工业、防御、生物医学等方面。超声波传感器是利用超声波的特性开发的传感器。在工业中,超声波的典型应用是金属的无损检测和超声波厚度测量。超声波传感器的医学应用主要是诊断疾病,已成为临床医学中不可或缺的诊断方法。[/align]超声波传感器根据待检测物体的体积、材料、以及是否可移动而具有不同的检测方法。常见的检测方法如下:P超声波传感器发射器和接收器分别位于两侧,当待检测物体在它们之间通过时,根据超声波的衰减(或遮挡)检测。有限距离类型:发射器和接收器位于同一侧,当检测到的物体通过规定的距离时,根据反射检测超声波。适用范围:发射器和接收器位于限制范围的中心,反射器位于限制范围的边缘,当没有待检测物体时,反射波衰减值用作参考值。当要检测的对象在有限范围内通过时,基于反射波的衰减来检测(将衰减值与参考值进行比较)。回归反射型:发射器和接收器位于同一侧,检测对象(平面物体)用作反射表面,并根据反射波的衰减进行检测。超声波传感器检测的好坏用万用表直接测试P + F超声波传感器没有任何反映。为了测试超声波传感器的质量,可以使用音频振荡电路。当C1为390μF时,可在逆变器的第8和第10引脚之间产生约1.9kHz的音频信号。将要检测的超声波传感器(发射和接收)连接在8到10英尺之间 如果超声波传感器可以发出声音,那么超声波传感器基本上是好的。由超声波探头发射的超声波脉冲信号在气体中传播,并被空气和液体之间的界面反射。在接收到回波信号之后,计算超声波往返的传播时间,并且可以转换距离或距离水平高度。 超声波传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨气压感应器丨微型压力传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨压阻式压力变送器丨[/color]微型传感器[color=#333333]丨一氧化碳传感器丨风速传感器丨硫化氢传感器丨光离子传感器丨ph3传感器丨[/color][color=#333333]电化学传感器丨[/color][color=#333333]光纤传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]气压传感器丨bm传感器丨氧气传感器丨超声波风速传感器丨气压传感器丨电流传感器丨voc传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]光纤应变传感器丨流量传感器[/color][color=#333333]丨超声波传感器https://mall.ofweek.com/2133.html丨[/color][color=#333333]称重传感[/color][color=#333333]器[/color][color=#333333]丨压力传感器丨meas压力[/color][color=#333333]传感器丨位置传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨压电薄膜传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 超声波传感器测量方法_超声波液位传感器水位监测

    超声波传感器测量方法_超声波液位传感器水位监测

    [align=left]过去,河流水位监测通常使用手动现场测量来获取数据。虽然这种方法可靠,但同时存在许多问题,例如:[/align](1)河岸上的手工测量存在一定的风险(河流深5米)。(2)在恶劣天气下不能停止工作。(3)测量值不是很准确,只能作为参考。(4)人工成本高,每天需要多个现场数据记录。所以现在测量水位都采用相应的仪器仪表,最常用的还是超声波液位传感器了,超声波液位传感器使用超声波原理,发射和接收所需的时间以及液位或距离的转换是液位监测领域中经常使用的方法。这种非接触方法稳定可靠,因此超声波液位传感器被广泛使用。[b]超声波传感器测量方法:[/b]OFweek Mall了解到超声波物位测量有多种方法,如超声脉冲回波法、共振法、频差法、超声衰减法:超声波脉冲回波方法的基本原理是超声波探头发射超声波。当超声波遇到障碍物时,它将被反射。根据当前环境中的超声波,由单片机记录超声波传输的时间和接收回波的时间。传播速度可以通过公式S = C * t / 2计算(其中S是测量距离,C是超声波传播速度,t是回波时间。)计算超声波的距离,并且获得了障碍。测试系统的距离。共振方法的基本原理是调节超声波的频率,以便在探头和液体表面之间建立驻波共振状态。此时,探针和液体表面之间的距离与介质中超声波的波长成比例。当已知超声速度时,可以从共振频率计算波长,并且可以转换从探针到液体表面的距离。频差法是让超声波探头发出调频超声波。超声波的频率随传播距离而变化,并且可以根据接收信号和发送信号之间的频率差来获得从发送到接收的时间。超声波衰减测量顾名思义,测量介质中超声波的衰减随距离而变化,液位根据接收信号与发射信号之间的衰减变化来测量。从上述方法的比较可以看出,共振法检测液位受某些特定条件的限制,需要与液体表面建立驻波关系,属于接触测量方法。频率差方法要求频率调制器产生调制频率,衰减方法需要测量超声波的衰减量。相比之下,超声脉冲回波方法不需要与液面建立驻波,并且可以实现非接触检测。因此,脉冲回波方法是最合适的方法。OFweek Mall技术工程师推荐使用MB7066超声波液位传感器进行水位监测:[b]MaxBotix 超声波液位传感器-MB7066 [/b]精准而窄的波束角分辨率是1cmIP67防尘防水标准封装超低功耗适合电池供电系统体积小、多种输出方式小、轻重量为您简单集成的项目或产品而设计快速的测量周期可测距离长达10米[img=,293,258]https://ng1.17img.cn/bbsfiles/images/2018/11/201811141618574529_7904_3422752_3.png!w293x258.jpg[/img]超声波液位传感器MB7066是一种体积小但坚固的耐风雨的超声波传感器。符合IP67防护安全等级,可以防护灰尘吸入,可以短暂浸泡。可测距离长达10米,在远距离检测和水槽液位检测中,得到很好的应用。首先,超声波传感器发出噪声脉冲,然后用户可以基于反射信号几乎实时地知道水位。用户还可以使用雷达、深度水位传感器和其他技术,为他们的应用提供最佳解决方案。当使用超声波液位传感器时,用户可以获得所有需要的数据,用于绘制、绘图、分析、 API(应用程序编程接口)转发、数据下载和短信和电子邮件提醒。相关的地方部门可以根据超声波液位传感器反馈的数据快速部署洪水监测系统,具有很高的成本效益。设备可以安装在桥、河、流和任何需要安装远程监控系统的地方。预警系统将提醒您,水位正在上升,以便保护人民和社区免受洪水侵袭。由于数据读取方便。此外,所有超声波液位传感器测量数据的历史存储在云中,用户可以随时随地访问,从而便于历史分析。相关[url=https://mall.ofweek.com/category_5.html]传感器[/url]分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨可燃气体传感器丨酒精传感器丨PID传感器丨温湿度传感器丨湿度传感器丨光纤应变传感器丨voc传感器丨光电液位传感器丨超声波液位传感器https://mall.ofweek.com/category_136.html丨紫外线传感器丨CO2传感器丨CO传感器丨超声波传感器丨UV传感器丨光离子传感器丨氧化锆传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤传感器丨光纤压力传感器丨双气传感器丨PM2.5传感器

  • 东芝推出可佩戴智能生命体征传感器模块

    东芝公司(Toshiba Corporation)日前宣布,该公司已经开发出智能生命体征传感器模块Smart healthcare Intelligent Monitor Engine & Ecosystem(智能医疗智能监测引擎及生态系统),简称Silmee,它可同步感应到关键的生命体征信息,如心电图、脉搏、体温和运动,并可通过无线技术将数据传送给智能手机和平板电脑。东芝已经制造出该传感器模块的样机,其外形小巧,便于佩戴。东芝将在3月7日在日本东京明治大学(Meiji University)召开的2013年国际医疗信息通信技术研讨会(International Symposium on Medical ICT 2013)上展示并演示该样机。目前的医疗云服务利用了业已成熟的独立医疗设备,如血压计或临床体温计。由于设备体积过大且操作大量设备过于复杂,因此此类服务很难在市场得以普及。新近开发的Silmee将一个假片上系统(Pseudo-SoC)模拟前端,一个32位的ARM处理器芯片以及一个双模蓝牙裸芯片整合到14.5mm x 14.5mm的紧凑封装中。只需简单添加天线、电池和传感头等装置,即可成为一个完全可佩戴的生命体征传感器系统。在该模块所采用的芯片中,灵活而紧凑的假片上系统模拟前端可非常有效地实现生命体征传感器功能,推动了生命体征传感器技术的快速进步。东芝将演示如何使用这种非常紧凑的Silmee样机:一款面积25mm x 60mm、重10克的补片型产品,能够监测所有的生命体征。东芝将为智能个性化医疗服务的推进做出贡献,将该模块与样机终端部署到众多智能医疗服务开发与现场试验中。

  • 把握互联“脉搏”,重型装备告别孤岛

    把握互联“脉搏”,重型装备告别孤岛

    [align=center][color=#191919][img=,690,432]http://ng1.17img.cn/bbsfiles/images/2017/07/201707131054_01_3167777_3.png[/img][/color][/align][color=#191919]新华社记者王振宏、王炳坤“对流层”,一个有关大气的名词,应用到智能制造领域会发生什么样的变化?[/color][color=#191919]这是一款小小的智能硬件,将它嵌入机床,就可实时提取运行数据上传云端。再由云端将需求信息相匹配形成订单,回传到机床企业订制生产,从而形成数据的对流。[/color][color=#191919]在老工业城市沈阳,脉搏智造网正是依托“对流层”,让重型装备不再是一个个孤岛,而走进智能互联时代。[/color][b][color=#191919]打破信息孤岛[/color][/b][color=#191919]“如果没有脉搏智造,我不可能知道距离这么近就有一家优质企业可以合作。”沈阳弘宇阳机电设备有限公司总经理于明颇为感慨。[/color][color=#191919]3个月前,于明抱着试试看的想法,在脉搏智造网注册,并发出加工一批零件的需求。十几公里外,位于沈阳经济技术开发区的辽宁森邦电气有限公司很快接单,仅用3天就交付了产品,让于明对这家从未见过的合作对象刮目相看。[/color][color=#191919]“此前我们寻找合作客户,先得四处打听,随后上门调研,了解它的设备和技术能力后才敢下订单。”于明说,大量繁琐工作,让下上游企业之间如同一座座孤岛。[/color][color=#191919]脉搏智造网创始人李春伟介绍,像网上买卖服装、选择酒店一样,工业企业把需求订单、空置产能挂到网上,平台就能做好产能匹配。[/color][color=#191919]脉搏智造网更看重的是,通过嵌入小型化智能硬件,使企业任何型号的工业装备都实现互联,建立起企业产能管理云系统,从而打通产能与需求间的信息壁垒,为互联网+智能工业提供新的路径。[/color][b][color=#191919]捕捉过剩商机[/color][/b][color=#191919]从工业设计跨界进入工业互联网领域,源于李春伟凭借20多年服务装备制造业的经验,看到了产能过剩中隐藏的巨大商机。[/color][color=#191919]李春伟创建的沈阳梵天工业设计有限公司,从1996年起就为沈阳市的重点装备制造企业提供设计服务,2014年和2015年,公司设计的智能机床相继获得德国红点产品设计大奖和德国IF产品设计大奖,站到了行业“金字塔”的顶端。[/color][color=#191919]从外观和功能设计延伸,梵天公司逐渐融入工业装备运行领域。由于他们创造性地在设计中加入提取机器数据的功能,就像把住了工厂的“脉搏”一样,可以对每台机器的运行状态实时掌握。[/color][color=#191919]随着传统制造业产能过剩,机器设备闲置率攀升,不少企业为寻找订单而发愁。“我们将众多设备何时生产、何时闲置的大数据进行分析,不就能创造交易价值吗?”李春伟说,技术的突破和商业模式的创新,突然让他看到了一个机会。[/color][color=#191919]今年1月,脉搏智造网一上线就戳中了众多客户的“痛点”。到6月中旬,网络平台已迎来黑龙江、江苏、浙江、上海、广东、山东、河北等地5000多家工业企业注册入驻,同时吸引数万制造业人才参与发展,挂出设备3200多台,注册企业还在以每天60户-80户的速度不断增加。[/color][color=#191919]目前,脉搏智造平台已有上千单关于金属、塑料、橡胶等材质的加工订单,一批空闲产能在智能互联帮助下有效输出。浙江台州后祥机械公司负责人陈才金说,平台让企业在全国乃至全球范围内寻找配套商,随着视野的开阔和资源配置能力增强,中国制造的水平必然提升。[/color][b][color=#191919]跨进“智造”时代[/color][/b][color=#191919]东北老工业基地没能抓住互联网消费的潮头,但不能再错失工业4.0的机遇。[/color][color=#191919]从一家一户为装备企业做工业设计,到跨进工业互联时代助力“中国智造”,沈阳梵天的转型,体现出拥有雄厚制造基础的老工业基地的新追求。[/color][color=#191919]事实上,脉搏智造网下一步发展充满想象空间。李春伟说,未来平台将植入更多新功能,比如基于制造业大数据下行业趋势分析、整合制造业需求平台、智能制造技能培训等。“可以预见,网络平台甚至可以把握"中国制造"的脉搏!”[/color][color=#191919]“当今发达经济体,服务业占经济的比重达到70%,而制造领域的服务业又占服务业的70%。”国家发改委宏观经济研究院教授常修泽说,东北以重化工业为主的传统产业走向信息化、服务化正当时,像脉搏智造网一样,东北一批生产性服务企业大有可为。[/color][color=#191919]在规模庞大的互联网服务业中,工业服务可谓“蓝海”。红圈营销CEO刘学臣说,在我国,移动互联网软件还以消费级服务为主,随着消费领域的共享经济模式趋于饱和,企业级服务将迎来新一轮增长。[/color][color=#191919]李春伟说,雄厚工业基础培植的东北制造业优势,在工业互联时代如果迎来释放的舞台,这将成为东北的新机遇。[/color]

  • 超声波传感器检测方法_超声波传感器常见应用

    超声波传感器检测方法_超声波传感器常见应用

    [align=left]超声波是一种振动频率高于声波的机械波。它是在电压激励下由换能器透镜的振动产生的。它的高频率为、,短波长为、。衍射现象很小,特别是方向性好。、可以是射线和方向的。沟通等特点。液体固体的超声波渗透性很强,特别是在太阳光的不透明固体重量下,其可以穿透超过十米的深度。[/align]当超声波撞击杂质或界面时,它将产生显着的反射以形成回波的反射,当它撞击移动物体时可产生Domiller效应。这种超声波检测广泛应用于工业、防御、生物医学等方面。超声波传感器广泛用于现代工业领域。超声波传感器使用不同的检测方法。有四种常见的检测方法:1、透射:发射器和接收器分别位于两侧。当待测物体在它们之间通过时,根据超声波的衰减(或遮挡)检测。2、有限距离类型:发射器和接收器位于同一侧。当检测到的物体在限定的距离内通过时,根据反射的超声波检测物体。3、范围:发射器和接收器位于有限范围的中心,反射器位于有限范围的边缘,当没有待检测物体时的反射波衰减值用作参考值。当要检测的对象在有限范围内通过时,基于反射波的衰减来检测(将衰减值与参考值进行比较)。4、逆向反射:发射器和接收器位于同一侧,检测对象(平面物体)用作反射面,检测基于反射波的衰减。OFweek Mall技术工程师推荐使用以下几种超声波传感器:[b]MaxBotix 超声波传感器 人体检测传感器-MB1004[/b] 特点近端探测低成本的邻近目标检测方案测量周期快超低功耗适合电池供电系统可以自由运行测量或者外部触发测量宽供电电压2.5V~5.5V可输出高低电平报警信号[img=,262,231]https://ng1.17img.cn/bbsfiles/images/2018/11/201811091145153734_4623_3422752_3.png!w262x231.jpg[/img]超声波传感器可用于灰尘、雾、或蒸汽。它非常适合非接触式位置和距离测量。可以在不考虑颜色或形状的情况下以毫米精度检测不同材料的物体。超声波传感器使用超出人类可听声音的高频超声波作为测量介质。超声波传感器在工业中的三种常见应用主要体现在以下方面:1、超声波可应用于食品加工厂,实现塑料包装检测的闭环控制系统。采用新技术,它可以在湿环中进行测试,如洗瓶机、噪声环境、极端温度变化环境。2、用于医学检测的超声波传感器—— B超检查。3、超声波传感器质量检测——超声波探伤仪,超声波探伤仪主要用于金属部件内部的质量检测,如检测金属气泡,焊接部位未焊接等缺陷。超声波传感器https://mall.ofweek.com/2133.html丨超声波液位传感器丨无人机超声波传感器丨超声波风速传感器超声波水位传感器

  • 微压传感器具体应用说明

    微压传感器在测量过程,即压力直接作用在传感器的膜片上,使膜片产生与介质压力成正比的微位移,使传感器的电阻发生变化,同时通过电子线路检测这一变化,并转换输出一个对应于这个压力的标准信号得过程。    对于微压传感器来说,灵敏度和线性度是微压力传感器最重要的两个性能指标。为了制作出能够满足实际应用需求的传感器,必需探索出一种微压力传感器灵敏度和线性度的有效仿真方法。实际的研究中,发现一种基于对压阻式压力传感器薄膜表面应力的有限元分析(FEA)和路径积分的仿真方法。通过这一方法实现了在满量程范围内不同压力值下对传感器电压输出值的精确估计,在此基础上对压力传感器的灵敏度和线性度进行了有效仿真。    微压传感器发展迅速,新研制出的一类传感器采用压电单晶片结构,并内置前置放大器,通过放大器放大微弱信号并实现阻抗变换,从而使传感器具有量程小、灵敏度高、抗干扰性好等特点。这类传感器已广泛用于脉搏、管壁压力波动等微小信号的检测。但与此同时,对于微压传感器精准度的检验这一技术难题,就迫切需要简便的测量装置测量该类型传感器的性能。    为了解决微压力传感器灵敏度和非线性的矛盾,在结构上,综合梁膜结构与平膜双岛结构的优点,采用双岛-梁结构。岛区的面积不是按比例放大或缩小。首先,为了增加灵敏度,应尽可能减小窄梁区的长度和宽度。因为从对“梁-膜-岛”结构的有限元分析和近似解析分析中发现,减小窄梁区的长度和宽度可以明显地使梁上的应力增大。并且当中间窄梁的长度约为两边窄梁长度的2倍时,器件的线性度最好。虽然有双岛限位结构,但在高过载情况下,硅膜将首先从岛的边区和角区破裂。这是因为传统的岛膜结构都是采用常规的有掩模的各向异性湿法腐蚀,从硅片背面形成硅膜和背岛。硅膜是晶面,边框和背大岛侧面都是晶面,夹角为54.74°的锐角。    根据力学原理,在角区存在应力集中效应,使硅膜在正面或背面受压以后,角区会具有应力的极值,因此破裂首先从该处发生。引入应力匀散结构以后,使角区变成具有一定曲率的圆角区,使该区的应力极值下降。在硅膜与边框或背岛的交界处要形成有一定曲率半经的缓变结构,采用一般的常规各向异性湿法腐蚀是无法实现的。为此,采用了掩模-无掩模各向异性湿法腐蚀技术。

  • 【分享】世界最小超声波传感器问世

    英国研究人员16日说,他们制造出了世界上最小的超声波传感器。它是如此微小,以至于可以在一根头发丝上排成队列。这一成果可广泛用于探索细胞内部等微观环境。  英国诺丁汉大学当天发布公报说,该校应用光学研究小组制造出了这种微型超声波传感器。它比现有的超声波传感器要小许多,500个这种传感器排在一起才会达到一根头发丝的宽度。它同时具有超声波特性和光学特性,在感知到超声波时会微微变形,这种变形可以被照射它们的激光所探测到,从而获得超声波的信息 反过来,如果对它发出一个激光脉冲,它也可以受激向外发出超声波,探测目标对象。

  • 超声波风速传感器常见应用

    [align=center][/align]超声波风速传感器是一种全数字信号检测仪器,它可以通过空气中超声波的传播时间来计算风速。随着海洋的开发和利用,该设备被广泛应用于海洋领域。在开发海洋的同时,人们还必须防止海洋给人类带来的灾难,特别是表面上风速变化的问题。因此,超声波风速传感器已成为他们的首选。超声波风速传感器采用超声波时差法测量风速。空气中的声音速度将叠加在风速上。如果超声波的传播方向与风向相同,则其速度会增加。相反,如果超声波传播的方向与风向相反,则其速度将变慢。因此,在固定的检测条件下,超声波在空气中传播的速度可以对应于风速函数。通过计算可以得到准确的风速和风向。当声波在空中传播时,其速度受温度的影响很大 超声波风速传感器在两个通道上检测到两个相反的方向,所以温度对声波速度的影响可以忽略不计。在海洋领域中使用超声波风速传感器应该注意的是,根据该地区的使用情况,通常可以将其分成两个区域:海洋和离岸:超声波风速传感器的海洋应用:大部分海洋风暴实际上都来自遥远的海域,因此在这个位置建立一个气象观测平台可以作为早期预报。目前,为了研究海洋气象变化,人们在很多遥远的海域。设置了沿海气象观测平台,但由于偏远地区设备维护和恶劣天气环境的不便,目前这些气象平台采用低成本,鲁棒的仪器,如三杯超声波风速传感器。近海地区:在近海地区和沿海等地,通常人们会设置带有超声波风速传感器的气象站,因为这些地区维护,检查和其他工作更方便,因此可以使用一些高成本仪器,如超声波,光学其他风速传感器设备。由于传统的风速计有旋转的机械部件,使得这些运动部件容易受到传感器的损坏,超声波风速传感器的设计是为了避免任何机械部件,以确保更可靠的操作。同时,超声波风速传感器具有长期稳定性而无需维护。关于声音,声音通过流动的物体在交叉点传输。在电子声学传感器和它们之间的超声波信号之间进行传输。沿着正交轴,由风速引起的声波的传播时间是不同的。 CV7超声波风速传感器在它们之间传递了四个不同的测试,但是测试的头部被用于计算。结合测量计算风速,风向由基准轴计算。温度测量用于校准。超声波风速传感器的设计减少了倾角的影响(由于传感器空间的形状,传感器倾斜的影响可以被部分校正)。另外,CV7还可以传输4个独立的测试数据,以确保正向矢量计算的正确性。该方法的风速灵敏度为0.15m / S,线性度高达40m / s。在超声波风速传感器的应用中,超声波风速传感器具有重量轻,无移动部件,坚固耐用的特点。它不需要维护和现场校准,可以同时输出风速和风向。可以根据自己的需要选择风速,输出频率和输出格式单位。加热单元(推荐用于寒冷条件下)或模拟输出也可以根据需要选择。超声波风速传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨超声波风速传感器http://mall.ofweek.com/category_44.html[/color][color=#333333]丨氧气传感器丨电流传感器丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨位置传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 超声波液位传感器相对优势有哪些

    [align=left]超声波液位传感器发出超声波脉冲,声波经液体表面反射后被超声波液位传感器接收器转换成电信号,由声波的发射和接收之间的时间来计算传感器与被测液体表面的距离。[/align]超声波液位传感器可将多种物位参数的变化转换成标准电流信号,远传至操作操纵室,供二次仪表或计算机进行集中显示、报警或自动操纵,其非常好的结构及安装方法使得超声波液位传感器可适用于 炎热的天气、高压、强腐蚀、易结晶、防阻塞、防冷结以及固体粉状、粒状物料等特殊条件下的液位,料位或物位的持续检测,可广泛应用于多种工业过程中的检测操纵。因为超声波液位传感器输出只与光电探头是不是接触液面相关,与介质的其它特性,如温度、压力、密度、电等参数无关,所以超声波液位传感器检测准确、重复精度高 响应速度快,液面操纵非常精确,而且不需调校,就能够直接安装使用。超声波液位传感器内部的全部元器件进行了树脂浇封处理,超声波液位传感器内部没有所有机械活动部件,所以光电液位传感器可靠性高、寿命长、免维护。假如超声波液位传感器安装的位置下面有障碍物,那么就不宜使用超声波液位传感器,有障碍物会影响超声波发射,导致信号丢失;需要调整或幸免障碍物的出现。超声波液位传感器价格较贵, 采纳非接触测量,液体黏稠度、腐蚀性等问题不会影响,更卫生。再比如一些其他的液位传感器的一些特点,光电式液位传感器内部的发光二极管所发出的光被导入传感器顶部的透镜。没有液体时,则发光二极管发出的光直接从透镜反射回接收器。当有水状态时,光折射到液体中,从而使接收器收不到或只能接收到少量光线。光电式液位传感器是利用光学反射原理来进行测量的,所以当在阳光直射或者其他有红外线干扰的情况下会影响液位检测。对此要进行安装调整或 采纳遮光罩幸免。超声波液位传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨超声波液位传感器https://mall.ofweek.com/category_136.html[/color][color=#333333]丨[/color][color=#333333]压电薄膜传感器丨[/color]微型传感器[color=#333333]丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]风速传感器丨微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨[/color][color=#333333]传感器https://mall.ofweek.com/category_5.html丨[/color][color=#333333]气压传感器丨[/color][color=#333333]硫化氢传感器丨一氧化碳传感器丨光离子传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]bm传感器丨电流传感器丨[/color][color=#333333]位置传感器丨[/color][color=#333333]风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 转速传感器

    转速传感器从原理(或器件)上来分,有磁电感应式、光电效应式、霍尔效应式、磁阻效应式、介质电磁感应式等。另外还有间接测量转速的转速传感器:如加速度传感器(通过积分运算,间接导出转速),位移传感器通过微分运算,间接导出转速),等等。测速发电机和某些磁电传感器在线性区域,可以直接通过交流有效值转 转速表换,来测量转速 ;大多数都输出脉冲信号(近似正弦波或矩形波)。针对脉冲信号测转速的方法有:频率积分法(也就是F/V转换法,其直接结果是电压或电流),和频率运算法(其直接结果是数字)。

  • 你听说过“水脉波”吗?

    你听说过“水脉波”吗?

    http://ng1.17img.cn/bbsfiles/images/2011/12/201112312210_343390_1606073_3.jpg水脉波水脉波(shuǐ maì bō)   水脉波对人体的危害  水脉波是地下水在流动时因受到障碍产生冲击而形成电力和磁力场。  这种波动力量能穿透地表到达地面,使建筑物墙体开裂,植物生长不旺盛,也可以让人体脑波和电磁体发生混乱,妨碍生理律动,如长期处于水脉波之上会导致中风、血压升高、心脾肥大等疾病。比方说:“有时候我们会觉得睡得很不舒服,而换个地方反而会改善,这就是水脉波造成的直观表现。这在东亚地区千年以来一直被理解为“瘴气”和“风水”。

  • 地面高精度气压传感器让气象预报更精准

    导读:我国突发性灾害发生的频率在逐年增加,由于气候极端异常,给人民生命财产安全带来了极大的危害。物联网技术的成功应用可以为气象预测安装上一双“智慧电子眼”,通过地面高精度气压传感器可收集到当地雨量和次声波等信息,通过互联网传输到地面自动气象站进行实时的气象数据监控和分析,根据分析结果,实施预警报告的分级警告。    近些年来,我国气候异常事件频发,如南方冰冻雨雪极端低温,南方持续干旱后的集中降雨引起的洪水,还有部分地区的高温天气。2008年奥运会开幕前每隔1小时的天气预报,让人们对天气的精准预报有了更高的期待。    我国突发性灾害发生的频率在逐年增加,由于气候极端异常,给人民生命财产安全带来了极大的危害。目前我国应对突发性自然灾害侧重在事后应急机制,对事前防范、强化气象预测和预警的力度不够。尽管,我们现在具备很多现代化的技术手段进行气象预报,如卫星、雷达等监控措施,但是由于在极端天气下设备的稳定性能差,边远地区通讯障碍等局限因素,直接导致我国的气象预报精度不够。    地质灾害催熟气象智能化    目前我国气象监控预测技术还比较落后,集中暴露出预警不精确、人为干扰大、自动化水平低下等问题。在这种情况下,就对气象智能化的发展提出了更高要求。    在信息化社会,任何气象智能化技术的发展和应用都离不开传感器和信号探测技术的支持。物联网技术的成功应用可以为气象预测安装上一双“智慧电子眼”,通过地面高精度气压传感器可收集到当地雨量和次声波等信息,通过互联网传输到地面自动气象站进行实时的气象数据监控和分析,根据分析结果,实施预警报告的分级警告。    将物联网技术应用到自然灾害的监控领域是必然之举,与传统气象预测相比,无线化、智能化的气象预测监控系统之所以倍受青睐,就在于其畅通、快速、精确稳定的通信信道。    地面高精度气压传感器让气象预报不再“爽约”    频频发生的自然灾害并不是不可控的,更重要的是要提高气象预测的精准度,真正实现灾害提前预警,从而将灾害损失减到最低。    传统的气象预测精度差有多方面的因素,我国地形复杂、技术设备在极端天气下的稳定性能差、边远地区通讯信号差等。这些都制约着气象预测数据的精准度和及时性。地面高精度气压传感器是以无线遥感网络来测量边远和恶劣地区的环境情况,将监测数据借助通讯产品进行传输,反馈到地面自动气象站,利用监控软件对数据进行分析处理,实施气象预警的分级告警。这一监控预警系统为自然灾害的及时检测和预警预报提供了畅通、快速、精准可靠的信号通道,让气象预报不再“爽约”,全面提升气象预测的信息化和智能化水平。    责任重于泰山,技术造福人类    面对国内日益频发的自然灾害,北京市科学技术委员会推出“地面高精度气压传感器产业化关键技术攻关”科技计划项目,进行利用物联网传感技术预测自然灾害的研究。昆仑海岸作为物联网技术应用领域内的骨干企业,承接了本次研究项目的关键技术攻关和传感器芯片的批量化生产关键技术的研发。    作为中国物联网行业传感器领域快速前进的参与者、见证者和领跑者,北京昆仑海岸一直紧贴物联网行业应用的脉搏,深入研究物联网技术在各行各业的应用。凭着对物联网行业的专注和默默耕耘,公司始终以技术创新为发展动力,重视研发新产品和新技术,同时积极开展与相关机构的科研合作和技术交流。北京昆仑海岸在压力、湿度、流量、风向等传感器(变送器)以及相应的仪器仪表研发方面具备很好的研究经验和研发能力。凭着丰富的行业经验、领先的技术优势,北京昆仑海岸一定会成为气象智能监测预警的先导。

  • 超声波液位传感器在是去排水系统中的应用

    超声波液位传感器在是去排水系统中的应用

    [align=left]伴随着城市人口的增加,城市建设的速度大大快于城市排水管网改造的速度。这为城市遇到特大暴雨等紧急情况下快速排水增加了相当多难度。这也是为什么相当多城市,一到雨季就被淹的原因。市政部门为了改善城市排水,也在尝试相当多办法。比如增加排水泵站,加大排水管道口径等等。[/align] 排水泵站在整个城市排水管网中的效果非常重要。起到加大排水速度,避免城市道路积水的效果。以往在泵站中使用的液位控制器,都是机械式浮球液位控制器。浮球的优点是安装简单,控制方便。缺点是寿命短,会出现触点不吸合的故障。现在各个泵站还在大范围使用。[img=,413,291]https://ng1.17img.cn/bbsfiles/images/2018/11/201811301633538310_805_3422752_3.jpg!w413x291.jpg[/img]最近几年,超声波液位传感器也被广泛使用在城市排水泵站的液位控制中。前些年,一直都是国外品牌占据着这些领域。随着国内一些公司在超声波液位传感器上技术的突破,产品质量的稳定,非常好的售后服务,国产品牌的超声波液位传感器也被各个城市的市政管理部门接受,而广泛应用到城市排水的各个方面。超声波液位传感器的优点是安装非常方便,液位监控一目了然,跟排放液体不接触,不会因为液体酸碱性的改变,而发生腐蚀。不过在安装时应考虑盲区的问题,比如,把安装高度提高,盲区在溢流口之上,这样就能有效避免盲区了。OFweek Mall技术工程师推荐使用MB7589:[b]MaxBotix IP67 防水超声波液位传感器 -MB7589[/b] 特点:MB7589传感器具有一种自清洗功能。它可以轻轻地加热传感器的表面,在传感器的换能器表面上雾化任何水分/冷凝。在遇到冷凝问题的各种应用中,许多这样的应用需要自清洗,MB7589就是这些应用而专门设计的。例如,在油箱中,或者是在水箱中,在晴朗的夜晚或寒冷的夜晚,这使得传感器硬件比周围环境更冷。在暴露的传感器硬件的表面上会形成凝结水或霜。水和霜会阻碍传感器操作,这些目标(在传感器表面)将被检测或引起反射,会降低传感器的灵敏度,使得检测数据不准确。自清洗操作的目的是防止积聚和消除堆积在传感器表面的水分和霜。[img=,319,301]https://ng1.17img.cn/bbsfiles/images/2018/11/201811301636247940_7831_3422752_3.png!w319x301.jpg[/img]IP67防尘防水标准封装体积小低成本方案高分辨率可达1mm多种输出方式,包括脉宽、模拟电压、串口超低功耗适合电池供电系统防结露防结霜可测距离长达5米超声波液位传感器具有非接触测量,安装方便的特点。超声波液位传感器在大池子里的安装,还是比较方便的,使用也没有多少问题。但有的池子仅仅有1米不到的深度,超声波液位传感器的盲区就有0.3米,最后这种小池子不能安装超声波液位传感器,或者在安装之后,被水淹掉,不得不使用投入式液位传感器来替代。在有些池子,超声波液位传感器被要求安装在盖板之下,这些液位传感器都没能逃脱被淹的命运。还有就是有些池子,超声波液位传感器在外边使用正常,安装在池子里后,一直处于搜索状态。因此,在使用超声波液位传感器的时候还是要视情况而定的。相关传感器分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨超声波传感器丨气体流量传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨可燃气体传感器丨温湿度传感器丨酒精传感器丨微量氧传感器丨PID传感器丨湿度传感器丨PM2.5传感器丨光纤应变传感器丨voc传感器丨氧化锆传感器丨光电液位传感器丨超声波液位传感器https://mall.ofweek.com/category_136.html丨紫外线传感器丨CO2传感器丨CO传感器丨UV传感器丨光离子传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤传感器丨光纤压力传感器丨双气传感器丨

  • 超声波液位传感器在污水处理厂中的应用

    超声波液位传感器在污水处理厂中的应用

    [align=left]为了改善日益严重的水污染形势,许多城市建立了污水处理厂,污水处理率明显提高,水环境逐步改善。随着计算机技术的迅速发展和普及,超声波液位传感器数据采集系统正在迅速被使用。超声波液位传感器系统在生产过程中的应用可以收集生产现场、监控和记录的过程参数,提供信息和手段,以提高产品质量、以降低成本,是通过超声波液位传感器输出模拟信号并将其转换为计算机可以识别然后进一步处理的数字信号。[/align]在污水处理厂,进水负荷的变化导致出水水质波动。污水处理厂的进水水质有一定的变化规律。进水流量、 COD和NH3-N不断变化。如果工艺参数未根据进水负荷实时调整,则出水水质会发生波动,当出现峰值负荷时,出水水质可能超标。目前,在污水处理厂的水处理和处理过程中,没有足够的在线水质分析仪器来监测关键参数。因此,工作人员无法了解进水负荷的变化和过程操作的状态,从而导致根据出水水质调整过程参数。这种调整不够及时,出水水质的波动仍然比较大。[img=,346,218]https://ng1.17img.cn/bbsfiles/images/2019/01/201901171636509461_3921_3422752_3.png!w346x218.jpg[/img]污水处理站的作用是处理、生活污水的生产,以达到规定的排放标准,是一个重要的环境保护设施。工业化国家的污水处理站已经很普遍,中国乡镇的污水处理站很少,但未来会逐渐增加。为了使这些污水处理站真正发挥作用,它们还必须通过严格的排放系统、组织和管理系统来保证。乡镇污水主要由生活污水和农业废水组成。生活污水的成分相对固定,主要含有碳水化合物、蛋白质、氨基酸、脂肪等有机物质,它们更适合细菌的生长,成为细菌、病毒的繁殖和繁殖场所 但生活污水一般不含毒性,并具有一定的肥效,可用于灌溉农田。农业废水的成分多种多样。不同季节,不同地点,不同发展目标的乡镇需要不同的废水处理方法。在污水处理方面,为减少污水排放量及其复杂程度,应结合国家大力推广的沼气池建设,将冲洗水(黑水)与其他生活用水分开(灰水)在生活用水中。灰水用天然净化系统处理。黑水和人畜粪便均采用厌氧消化池处理,可减少污水排放的复杂性和处理成本,保护农村清洁新能源,保护生活环境,促进农村经济发展。社会的可持续发展等具有重要意义。所以说在污水处理厂中还是要使用相应的监测仪器对水位进行监控,OFweek Mall技术工程师了解到目前污水处理厂中应用的超声波液位传感器就是MB7380:[b]MaxBotix 液位超声波传感器-MB7389 MB7380[/b] 描述:对于需要使用的应用程序,hrxl-maxsonar-wr传感器是一种具有成本效益的解决方案。精度范围-查找,低电压操作,节省空间,低成本,和IP67的天气预报阻力。hrxl-maxsonar-wr传感器线提供高精度高分辨率超声接近在空气中探测和测距。该传感器线的特点是1毫米分辨率、目标尺寸和操作电压补偿。为了提高准确度,更好地拒绝外部噪声源,内部速度的温度补偿以及可选的外部温度补偿。hrxl-maxsonar-wr/wrc模型是可用的在5米或10米的模型中。这个超声传感器可以探测到从1毫米到30厘米的物体的物体,范围超过30厘米的物体通常被报告为30厘米。接口输出格式是脉冲在RS232(MB7360系列)或TTL(MB7380系列)中,宽度、模拟电压和数字串行。工厂校准是标准的。[img=,337,250]https://ng1.17img.cn/bbsfiles/images/2019/01/201901171636500576_6431_3422752_3.jpg!w337x250.jpg[/img]相关传感器分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨超声波传感器丨气体流量传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨可燃气体传感器丨温湿度传感器丨酒精传感器丨微量氧传感器丨PID传感器丨湿度传感器丨PM2.5传感器丨光纤应变传感器丨voc传感器丨氧化锆传感器丨光电液位传感器丨超声波液位传感器https://mall.ofweek.com/category_136.html丨紫外线传感器丨CO2传感器丨CO传感器丨UV传感器丨光离子传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤传感器丨光纤压力传感器丨双气传感器丨

  • 【原创大赛】指夹式脉搏血氧仪检测中面临的问题

    【原创大赛】指夹式脉搏血氧仪检测中面临的问题

    指夹式脉搏血氧仪是通过测量动脉搏动期间光吸收量的变化,以无创方式测量血氧饱和度和脉率的医用计量器具。在医疗机构多用于对病人生命体征的检测,也是多参数监护仪的一项关键参数,应定期进行检测确认计量性能。目前与该检测项目相关的技术规范主要有:JJG(粤)014-2010《医用多参数监护仪》检定规程、JJG(新)12-2014 《多参数监护仪》检定规程、[url=https://www.baidu.com/link?url=ujzCr9WfhTZh1U6XttSWxsRLM7E1hwAODALnCLCqGGuw0GEpapELiFMXiqbrzlmkilY6vrvPYfUKa21f5oK0IG78hGh0V8p9loFaHGxn-Ai&wd=&eqid=b5ed4dfd000bfb6b000000025da726f8][color=#434343]JJG([/color][color=#434343]闽) 1038-2011[/color][color=#434343]  《多参数监护仪》检定规程[/color][/url]、JJF(沪)5-2015《脉搏血氧计》校准规范 、[url=https://www.baidu.com/link?url=VmBMSozjIw2sB_fkfknlroqDnkxCVKd7g4fDNMWhkJi7FROQFT4AXibH7HD78c1B&wd=&eqid=a310e6b000079b64000000025da729bc][color=#434343]JJF([/color][color=#434343]京) 31-2003[/color][color=#434343]《脉搏血氧计  ([/color][color=#434343]试行)[/color][color=#434343]》校准规范  [/color][/url],均为地方性检定规程或校准规范,而且全部采用血氧饱和度模拟器作为检定或校准的主要检测设备。常见的血氧饱和度模拟器包括:FLUKE Index2血氧饱和度模拟器、SURPASS-A型反射式血氧饱和度模拟器、ProSim 8型病人模拟器等检测设备。该类检测设备只有在输出曲线与脉搏血氧仪预制的检测曲线相吻合的情况下,输出的参考值才能与脉搏血氧仪的测量结果进行比较。而对于血氧饱和度模拟器因曲线种类多样,且曲线不可知,仅能在使用中选择预置的曲线种类,模拟器提供的标准曲线是否准确无法验证,所以在时间检定、校准中该项目并没有严格的溯源关系。所以目前颁布执行的检定规程、校准规范虽然归定了血氧饱和度模拟器的测量范围和允许误差,但实际的检测结果却并不可靠,或部分规程直接回避了此项问题,不对脉搏血氧仪的准确度进行检定、校准,仅对测量重复性做出要求。如JJG(粤)014-2010《医用多参数监护仪》检定规程要求如下:[img=,355,181]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171359353146_2762_1638093_3.png!w355x181.jpg[/img]而血氧饱和度是一项重要的人体特征指标,正常应不低于94%,在94%以下为供氧不足。医疗机构使用脉搏血氧仪对病人的血氧饱和度进行实时监控,本意是通过对病人血氧饱和度的定量监控,掌握病人的生命体征状态,而目前执行的检定规程、校准规范,恰恰在对血氧饱和度测量误差的检定、校准方面存在不足。改进指夹式脉搏血氧仪检测的建议:1、指夹式脉搏血氧仪因不在《国家计量检定系统表》内,根据计量检定必需依据《国家计量检定系统表》进行的要求,该项目不适合通过检定的方式溯源,不应制定检定规程,或在检定规程中加入该项目。而是采用校准的方式确认脉搏血氧仪的计量性能。2、用于脉搏血氧仪检测使用的血氧饱和度模拟器目前没有严格的检定方法、校准方法,无法溯源,所以在无法确定准确度的情况下,应考虑检测结果的一致性。通过组织实验室间集中比对的方式,确定用于脉搏血氧仪校准使用的血氧饱和度模拟器各条检测曲线的参考值,每台模拟器在校准脉搏血氧仪时均向参考值修正,实现校准结果的一致性。[color=#434343]3[/color][color=#434343]、血氧饱和度模拟器的校准应由批准校准规范执行的机构组织执行,并通过建立计量标准的方式对脉搏血氧仪的校准工作进行管理,保证一定范围内脉搏血氧仪的校准结果的一致性。[/color]

  • 影响超声波传感器工作效果的四大因素

    影响超声波传感器工作效果的四大因素

    超声波传感器是利用传感器头部的压振陶瓷的振动,产生高频(人耳听不见)声波来进行感应的,如果这声波碰到了某个物体反射回来,传感器就能接收到回波。传感器根据声波波长和发射及接收回波的时间差就能确定传感器探头与物体之间的距离。典型应用,一个传感器可以通过按钮的设定来拥有近距离和远距离两种设定,无论物体在那一种界限里,传感器都可以检测到。例如:超声波传感器可以安装在一个装液体的池子上,或者是一个装小球的箱子上,向这个容器发出声波,通过接收到返回波的时间长短就能确定这个容器是满的、空的或者是部分满的。[align=center] [img=,220,223]http://ng1.17img.cn/bbsfiles/images/2018/01/201801261602452124_3575_3345088_3.png!w220x223.jpg[/img][/align]超声波传感器还可以是对射式的,即独立的发射器和接收器。当检测缓慢移动的物体,或者需要快速响应或者在潮湿环境中应用时,这种对射式或者叫分体式的超声波传感器非常适用。在检测透明或有色物体、液体,检测光滑、粗糙、有光泽、半透明等材料的物体表面,和检测不规则物体时,超声波传感器都是首选。因此超声波传感器广泛应用在工业、国防、生物医学等方面。对于超声波传感器的使用规则上,很多客户往往忽略了一些环境因素的影响,而对正常使用超声波传感器造成困扰。工釆网小编特别为客户研究总结了如下几大因素:[b] [/b]1、范围和尺寸被检测的物体的尺寸大小会影响超声波传感器的最大有效范围,传感器必须探测到一定级别的声波才能被激励输出信号,一个较大的物体可以将大部分声波反射给传感器,所以传感器可以在它的最大限度内对此物体进行感应,而一个小物体只能反射很少的声波,这样就明显地减小了感应的范围。2、被测物能运用超声波传感器进行检测的最理想的物体应该是大型、平坦、高密度的物体,垂直放置面对着传感器感应面。最难检测的是那些面积非常小,或者是可以吸收声波的材料制作的,比如泡沫塑料,或者是角面对着传感器的。一些比较困难被检测的物体可以先对物体的背景表面进行示教,再对放在传感器和背景之间的物体作出反应。用于液体测量时需要要液体的表面垂直面对超声波传感器,如果液体的表面非常不平整,波动大,那么传感器的响应时间(St)要调的更长一些,它会将这些变化做个平均,可以尽量减小非常不平整,波动大因素对测量结果带来的影响。3、振动无论是传感器本身还是周围机械的振动,都会影响距离测量的精确度,这时可以考虑采取一些减震措施,例如:用橡胶的抗震设备给传感器做一个底座,可以减少振动,用固定杆也可以消除或者最大程度的减少振动。 衰减 当周围环境温度缓慢变化的时候,有温度补偿的超声波传感器可以做出调整,但是如果温度变化过快,传感器将无法做出调整。4、误判声波可能会被附近的一些物体反射,比如导轨或者固定夹具,为了确保检测的可靠性,必须减少或者排除周围物体对声波反射的影响,为了避免对周围物体的错误检测,许多超声波传感器都有一个LED指示器来引到操作人员进行安装,来确保这个传感器被正确的装好,减少出错的风险。超声波传感器发射人耳无法听见的高频声音脉冲,并测量信号发射到被物体发射回来的时间差。坚固的超声波传感器已经在各种场合成功地展示了其优越的性能,尤其是非接触物体测量或检测。这也可用于非常恶劣的工作环境。让人们印象最深刻的性能是可以准确检测各种材料和颜色的物质(不受材料和颜色影响)。超声波传感器的检测范围取决于其使用的波长和频率。波长越长,频率越小,检测距离越大,如具有毫米级波长的紧凑型传感器的检测范围为300~500mm波长大于5mm的传感器检测范围可达8m。一些传感器具有较窄的6ordm 声波发射角,因而更适合精确检测相对较小的物体。另一些声波发射角在12ordm 至15ordm 的传感器能够检测具有较大倾角的物体。此外,我们还有外置探头型的超声波传感器,相应的电子线路位于常规传感器外壳内。这种结构更适合检测安装空间有限的场合。

  • 超声波液位传感器和浮球传感器哪个更具有优势

    超声波液位传感器和浮球传感器哪个更具有优势

    [font=宋体][color=#212121]超声波液位传感器和浮球传感器都是常见的液位传感器,但它们各自具有不同的优势。下面我们来比较一下这两种传感器的优劣。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]首先,超声波液位传感器采用超声波技术检测液位,不需要接触液体,因此不会对液体产生污染,符合食品级要求,可以保证液体的安全性。而浮球传感器则需要接触液体,容易受到液体污染,不太适合在食品、医疗等领域使用。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]其次,超声波液位传感器精度高、误差小,可以精确地检测液位变化。而浮球传感器的精度相对较低,误差较大,不太适合对液位变化要求较高的场合。[/color][/font][align=center][img=,385,254]https://ng1.17img.cn/bbsfiles/images/2023/06/202306141601536677_9599_4008598_3.jpg!w385x254.jpg[/img][/align][font=宋体][color=#212121]另外,超声波液位传感器可以检测非常高的液位,适用范围广,而浮球传感器的检测范围相对较窄,只适用于一些特定的场合。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]最后,超声波液位传感器体积小、安装方便,不需要额外的电源和控制器,维护简单。而浮球传感器体积较大,安装和维护相对较为复杂。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121][font=宋体]深圳市能点科技有限公司是一家专业的开关生产厂家,主要供应[url=https://www.eptsz.com]液位传感器[/url],倾倒开关,小型流量计,分离式液位开关,水位传感器,水位开关,轻触开关[/font][font=Helvetica],[/font][font=宋体]水箱控制开关,鱼缸自动智能补水器等产品。液位传感器广泛应用于扫拖机,洗地机,饮水机,咖啡机加湿器等家电设备。[/font][/color][/font][font=宋体][color=#212121][/color][/font]

  • 超声波传感器使用误区有哪些

    [align=center][/align]在生活中,我们可以很容易地找到超声波传感器的应用。超声波传感器广泛用于制造、电源、冶金测量建筑材料、化学品、晶粒、汽车、仓库、船舶、纺织品、流量、探测、液位、由于其高测量精度,稳定运行和温度补偿功能液位监测、开放式通道流量检测、机器人食品加工等行业,可以测量液体材料,还可以测量固体材料行业的液位测量。虽然超声波的应用被广泛使用,但俗话说好的黄金是不够的,没有人是完美的。从以往了解和使用超声波传感器的经验来看,超声波传感器有哪些优缺点?这些优点和缺点会对我们的生活产生一定的影响吗?这是我们对超声波传感器有深入了解的时候。需要注意。首先,我们来谈谈超声波传感器的工作原理:超声波传感器是利用超声波特性开发的传感器。超声波探头主要由压电晶片组成,可以传输超声波和超声波。压电超声波发生器实际上使用压电晶体的共振来操作。它有两个压电晶片和一个谐振板。当其两极的脉冲信号等于压电晶片的固有振荡频率时,压电晶片将谐振并驱动谐振板振动以产生超声波。另一方面,如果两个电极之间没有施加电压,当谐振板接收到超声波时,压电晶片被按压振动,机械能转换成电信号,此时变成超声波接收器。低功率超声波探头主要用于检测。它们有许多不同的结构。它们可以分为直探针(纵波)。、斜探针(横波)、表面探针(表面波)、兰姆波探针(兰波波形)、双探针(探针反射、以供探针接收)。其次,使用超声波特性来测量物体具有许多优点。这是因为超声波的频率高达、波长很短。衍射现象很小,特别是方向性好。可以成为射线和定向传播。液体、固体的超声波渗透很大,特别是在阳光不透明的固体中,它可以穿透数十米的深度。当超声波撞击杂质或界面时,它将产生显着的反射以形成回波的反射,当其撞击移动物体时可产生多普勒效应。基于超声波特性的传感器被称为“超声波传感器”,广泛用于工业、防御、生物医学。超声波传感器使用特殊的声波发射器,可以交替发送和接收声波。发射器发射的超声波被物体反射,然后由发射器再次接收。在发出声波之后,超声波传感器将切换到接收模式。发送和接收之间经过的时间与物体和超声波传感器之间的距离成比例。诱导必须在检测区域内发生。传感器的电位计或电子自学习功能(自学习按钮或外部自学习)可用于调整所需的感应范围。如果在设定区域内检测到物体,则输出状态将改变,并且通过集成LED可实现视觉显示。声波在硬表面上具有最佳反射。目标可能是固体、液体、颗粒或粉末。通常,超声波传感器主要用于物体检测领域,其中光学检测原理缺乏可靠性。超声波传感器器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨气压感应器丨[/color][color=#333333]电化学传感器丨[/color][color=#333333]微型压力传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨超声波传感器https://mall.ofweek.com/2133.html丨压电薄膜传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨光纤传感器丨风速传感器丨硫化氢传感器丨[/color]微型传感器[color=#333333]丨一氧化碳传感器丨光离子传感器丨ph3传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]气压传感器丨bm传感器丨电流传感器丨voc传感器丨风速传感器丨氧气传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨光纤应变传感器丨流量传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器[/color][color=#333333]丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 压电薄膜传感器压力感应情况如何

    [align=left]因为压电薄膜传感器的电介质的击穿场强是强度参数,并且在压电薄膜传感器的膜中不可避免地存在各种缺陷,所以压电膜的击穿场强具有相当大的分散性 电介质介质的击穿理论,对于完整的薄膜,随着薄膜厚度的减小,击穿场强应逐渐增加。[/align]然而,在实践中,由于压电薄膜传感器的膜含有许多缺陷,因此厚度越小,缺陷的影响越显着。因此,当厚度减小到一定值时,膜的击穿场强度急剧下降。对于压电薄膜传感器薄膜击穿场强,除了薄膜本身外,在测试过程中还存在电极边缘的影响。膜越厚,电极边缘处的电场越不均匀,因此膜的厚度增加,击穿场强度逐渐减小。除了上述因素之外,压电薄膜传感器介电膜的击穿场强也取决于膜结构。对于压电薄膜,击穿场强度也取决于电场的方向,即就击穿场强而言它也是各向异性的。由于压电薄膜传感器多晶膜具有晶界,因此其击穿场强度低于非晶膜的击穿场强度。由于类似的原因,优先取向的压电薄膜传感器在晶粒取向方向上的穿透场强高于在垂直方向上的穿透场强。击穿场强度较低。与其他介电压电薄膜传感器一样,压电薄膜的击穿场强也取决于外部因素,如电压波形、频率、温度和电极。因为压电薄膜的击穿场强与许多因素有关,所以相关文献中报道的击穿场强度对于同一薄膜通常不一致或甚至不同。例如,ZnO膜的击穿场强为0.01。 ~0.4MV / cm,AlN膜为0.5至6.0MV / cm。压电薄膜传感器最重要的特征参数是谐振频率f0,声阻抗Za和机电耦合系数K,因此声速υ和温度系数、的声阻抗和压电薄膜的机电耦合系数是特别严格。压电薄膜传感器的薄膜的性质不仅取决于薄膜中颗粒的弹性,还取决于介电薄膜的压电和热性能,以及压电薄膜传感器的结构,如颗粒堆的紧密度和优先取向的程度。在压电薄膜中,由于晶粒具有许多缺陷和应变,因此它不是完美的单晶,因此薄膜的物理常数与晶体值略有不同。由于压电薄膜的微结构与制备过程密切相关,即使对于相同的压电薄膜,各种文献中报道的性能值也常常不一致。在所有无机有色金属压电薄膜中,AlN薄膜具有大的弹性常数,小的密度和最大的声速,因此该薄膜最适合于UHF和微波器件。表面声波性能当声波在压电介质中传播时,其粒子位移幅度随着距介质表面的距离的增加而迅速衰减。因此,表面声波能量主要集中在表面的下两个波长的范围内。压电薄膜传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨压电薄膜传感器https://mall.ofweek.com/1877.html丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器[color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨[/color][color=#333333]电流传感器丨[/color][color=#333333]光离子传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨传感器https://mall.ofweek.com/category_5.html丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 位置传感器控件_位置传感器性能受损

    一般来说,一辆汽车最容易出现故障的地方就是它的发动机了,而我们都知道发动起是一个汽车的核心部位,如果发动机发生故障,那么整个车辆是无法运行的。发动机中位置传感器又是相对重要零部件,所以通常判断汽车发动机是有问题的时候都需要先对位置传感器的性能状态进行检查,排除一定的故障。位置传感器安装在曲轴前端、凸轮轴前端、分电器内或飞轮上,用于检测活塞上止点和曲轴的转角。曲轴位置和转速信号既发送给发动机电控单元,又发送给转速表。位置传感器损坏后,发动机既不会点火,也不会喷油。因此,位置传感器是发动机电子控制系统的最主要的传感器。  按照工作原理的不同,位置传感器划分为磁脉冲式、霍尔式和光电式等三大类。日产公爵王、伏尔加、本田雅阁、日产蓝鸟、北京切诺基、三菱太空以及丰田(K、5R、12R)等系列汽车采用磁脉冲式位置传感器,大众车系(桑塔纳、捷达、奥迪、红旗等)大多采用霍尔式位置传感器,而日产公司有的车型采用光电式位置传感器。  磁脉冲式位置传感器又称为可变磁阻式传感器,它是基于变化的磁场与电流之间相互感应这一电学原理而工作的。这种传感器带有磁铁和感应线圈(称为“传感头”),与安装在转动部位(如曲轴、飞轮)的铁磁质信号发生盘(俗称“转子”)配合工作。当带齿的信号发生盘转动时,转子与传感头之间的磁场产生变化,于是在传感头的线圈内感应出交流电压。如果信号发生盘的转速发生变化,传感头输出的信号电压和频率也随之变化,这就是磁脉冲式位置传感器的基本工作原理。   首先,位置传感器的脉冲信号发生盘的安装位置不能弄反,必须靠近传感头。否则,传感头感知不到曲轴位置的变化,甚至发出错误的信号,使得发动机ECU据此确定的点火指令和喷油指令也是错误的,进而导致发动机无法正常运转。  其次,磁脉冲式位置传感器信号发生盘的齿顶与传感头之间的气隙必须符合要求,否则难以感知磁力线的变化,将造成输出信号减弱或者无信号输出。  有的车型位置传感器的传感头固定在油底壳上,而信号发生盘安装在曲轴上,汽缸体与油底壳之间没有密封垫圈(依靠密封胶)。有时为防漏油,在汽缸体与油底壳之间加装密封垫圈,可致使位置传感器气隙达到3mm(标准为0.8~1.2mm)。位置传感器的传感头与信号发生盘的气隙过大,转速增加时,会出现曲轴位置信号不准或者丢失,导致发动机加速不良甚至无法启动等不良后果。  对于需要调整气隙的磁脉冲式位置传感器,可以采用类似分电器触点间隙的调整方法进行。装配位于飞轮上的位置传感器。应当在组装完大飞轮和变矩器以后,再安装位置传感器,而且要紧固可靠,不允许随意增加垫片,如果拧得不紧或乱加垫片,都会使位置传感器与飞轮的间隙超过规定值,从而导致曲轴转速及位置信号失常。位置传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器丨[url=http://mall.ofweek.com/category_127.html]位置传感器[/url][/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 电流传感器怎么用_电流传感器优势

    [align=center]电流传感器是一种检测装置,可以检测待测电流的信息,并可以将检测到的信息按照一定的规律转换成符合某些标准的电信号或其他所需形式的信息输出。满足信息传输,处理,存储,显示,记录和控制的要求。[/align]电流传感器也被称为磁性传感器,可用于家用电器,智能电网,电动汽车,风力发电等,我们的生活中使用许多磁性传感器,例如计算机硬盘,罗盘和家用电器。电流传感器是一个有源模块,如霍尔器件,运算放大器和最终功率管,所有这些都需要工作电源,并且还具有功耗。1、电流传感器参数详情:输出地集中在大电解降噪,电容位uF,二极管1N4004,变压器取决于传感器的功耗,直接检测类型(无放大)功耗:最大5mA 直视式放大功耗:最大±20毫安 磁补偿式功耗:20个输出电流 最大消耗工作电流20次,输出电流2次。功耗可以根据消耗的工作电流来计算。 2、霍尔电流传感器有哪些特性呢?霍尔电流传感器无论是开环还是闭环原理,基本性能差别不大,基本优点是:响应时间短,温漂低,精度高,体积小,频带宽,抗干扰能力强,过载能力强。怎样选择合适的电流传感器?①选择电流传感器时,注意穿孔尺寸是否能确保导线能够通过传感器 ②选用电流传感器时,应注意现场使用环境中是否存在高温,低温,高湿,强烈地震等特殊环境 ③选择电流传感器时,注意空间结构是否满足 使用电流传感器的过程中应该注意什么?①接线时,请注意接线端子裸露的导电部分,并尽量防止ESD影响。需要具有专业施工经验的工程师对本产品进行接线操作。电源,输入和输出的连接线必须正确连接。他们绝不能错位或颠倒。否则,产品可能会损坏。②产品安装环境应防尘,不腐蚀③严重的振动或高温也可能导致产品损坏。使用时必须小心。电流传感器有什么优势呢?①测量范围宽:可测量直流,交流,脉冲,三角波等任意波形的电流和电压,即使瞬态峰值电流和电压信号也能如实反映 ②快速响应:最快的响应时间只有1us。③高测量精度:测量精度优于1%,适用于任何波形测量。普通变压器是电感性组件,它们会在访问后影响测量的信号波形。一般精度为3%〜 5%,仅适用于50Hz正弦波形。④良好的线性度:优于0.2%⑤动态性能好:响应时间快,可小于1us 普通变压器的响应时间为10〜 20ms。⑥工作频带宽度:可测量0〜 100KHz频率范围内的信号。⑦高可靠性,平均无故障工作时间长:平均无故障障碍时间 5 10小时。电流传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333][url=http://mall.ofweek.com/category_63.html]电流传感器[/url]丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【原创大赛】对JJF(京)31《脉搏血氧计校准规范征求意见稿》的反馈意见

    【原创大赛】对JJF(京)31《脉搏血氧计校准规范征求意见稿》的反馈意见

    [size=18px] 脉搏血氧计是采用分光光度测定法,通过红光和近红外光通过组织的吸收比率而计算获得人体内动脉血氧饱和度的检测设备。为了解决该设备的定期溯源问题,早在2003年北京市就颁布了JJF(京)31-2003《脉搏血氧计较准规范》。但受当时技术能力所限,该较准规范并不完善。所以2019年对该规范进行了修订,并发布了征求意见稿,但该征求意见稿仍存在较多问题,主要问题如下:[/size][size=18px][b][font=仿宋] 一、《脉搏血氧仪校准规范征求意见稿》关于计量特性的描述与所选用的标准器执行的较准规范,[/font][url=https://www.baidu.com/link?url=t3jw72rHkO27MqiOv6MsTS8z9rqeroTi8vXKPZ4UQPy5Nir6ja1hv0-klUghSrqQR73xg8YwosNF42vcFf5V5a&wd=&eqid=99586bba0064ccc5000000035df2dcec][font=仿宋]JJF1542-2015《血氧饱和度模拟仪校准规范》  [/font][/url][font=仿宋]关于计量特性的描述存在冲突。[/font][/b][/size][size=18px][b][font=仿宋] [font=仿宋]《脉搏血氧仪校准规范征求意见稿》第5.2条款:“[/font][font=仿宋]5.[/font][font=仿宋]2 [/font][font=仿宋]血氧饱和度[/font][font=仿宋]SpO2测量误差:[75~100)%测量范围内:测量误差[/font][font=仿宋]不大于[/font][font=仿宋]2%[/font][font=仿宋];[/font][font=仿宋]小于75%的测量范围内:测量误差[/font][font=仿宋]不大于[/font][font=仿宋]3%[/font][font=仿宋]。[/font][font=仿宋]”。[/font][/font][/b][/size][size=18px][font=仿宋][font=仿宋] JJF1542-2015《血氧饱和度模拟仪校准规范》第5.1条款:“5.1血氧饱和度值:模拟仪血氧饱和度示值误差绝对值在75%~100%测量范围内不大于2%;在35%~74%测量范围内不大于3%。”。[/font][/font][/size][font=仿宋][font=仿宋][size=16.0000pt] 此处[b]《脉搏血氧仪校准规范征求意见稿》规定的[/b]脉搏血氧仪的测量误差与《血氧饱和度模拟仪校准规范》规定的血氧饱和度模拟仪的示值误差相等,属同等准确度。虽然《脉搏血氧仪校准规范征求意见稿》在表1 测量标准及其他设备中重新规定了血氧饱和度模拟仪的技术要求,但与JJF1542-2015《血氧饱和度模拟仪校准规范》给出的技术要求不一致。[/size][/font][/font][font=仿宋][size=16.0000pt][font=仿宋][img=,690,332]https://ng1.17img.cn/bbsfiles/images/2020/06/202006011031137099_4235_1638093_3.png!w690x332.jpg[/img][/font][/size][/font][font=仿宋][size=16.0000pt][font=仿宋] 征求意见稿给出的脉搏血样计的计量性能要求[/font][/size][/font][font=仿宋][size=16.0000pt][font=仿宋][img=,690,331]https://ng1.17img.cn/bbsfiles/images/2020/06/202006011032596591_314_1638093_3.png!w690x331.jpg[/img][/font][/size][/font][font=仿宋][size=16.0000pt][font=仿宋][img=,573,388]https://ng1.17img.cn/bbsfiles/images/2020/06/202006011035147276_8927_1638093_3.png!w573x388.jpg[/img][/font][/size][/font][font=仿宋][font=仿宋][size=16.0000pt][b] 《脉搏血氧仪校准规范征求意见稿》的成文时间明显晚于[b][url=https://www.baidu.com/link?url=t3jw72rHkO27MqiOv6MsTS8z9rqeroTi8vXKPZ4UQPy5Nir6ja1hv0-klUghSrqQR73xg8YwosNF42vcFf5V5a&wd=&eqid=99586bba0064ccc5000000035df2dcec]JJF1542-2015《血氧饱和度模拟仪校准规范》[/url]的颁布日期,对标准器性能上未做到统一,一旦实施,标准器的溯源将存在问题。[/b][/b][/size][/font][/font][size=16.0000pt] 二、[font=仿宋][font=仿宋][b]《脉搏血氧仪校准规范征求意见稿》[/b][/font][/font]7.2.2注释部分描述不准确[/size][font=仿宋][size=16pt][b][font=仿宋][b][img=,690,258]https://ng1.17img.cn/bbsfiles/images/2020/06/202006011040269965_6944_1638093_3.png!w690x258.jpg[/img][/b][/font][/b][/size][/font][font=仿宋][font=仿宋][font=仿宋]三、实际测量结果为脉搏血氧仪重复性却描述为误差[/font][/font][/font][font=仿宋][font=仿宋][font=仿宋][img=,564,248]https://ng1.17img.cn/bbsfiles/images/2020/06/202006011041284801_8900_1638093_3.png!w564x248.jpg[/img][/font][/font][/font][font=仿宋][font=仿宋][font=仿宋] 而且以血氧饱和度模拟仪提供的血氧饱和度的设定值作为约定真值也是不合理的。如血氧饱和度模拟仪提供的R曲线,与脉搏血样计的R曲线不匹配,测量结果将严重偏移模拟仪提供的参考值,标准偏差也会增大,不能真实反映脉搏血样仪的计量性能。[/font][/font][/font][size=16.0000pt]四、全部测量过程未进行测量误差的测量,[font=仿宋][font=仿宋][b]《脉搏血氧仪校准规范征求意见稿》[/b][/font][/font][/size][font=仿宋][size=16.0000pt]5.2计量性能描述内容为测量“重复性”而非“测量误差”?[/size][/font][font=仿宋][font=仿宋][size=16.0000pt] 虽然《脉搏血氧仪校准规范征求意见稿》在7.2.4中为了回避模拟仪溯源性的问题,采用了标准偏差的方式表示测量误差,但该方式是不准确的。该测量方法虽然以模拟器提供的示值作为约定真值,但计算结果所体现的还是脉搏血氧仪各次测量结果与约定真值间的分散性,是一种重复性,而不是误差。同时由于模拟器的溯源性一直存在争议,建议尽量回避采用误差描述测量结果。国家计量院研制的血氧饱和度模拟仪校准装置也仅体现了设备的测量重复性,而回避的示值误差,如需要确定测量误差,需改进血氧饱和度模拟仪的溯源方式,如:采用区域内比对的方式,确定模拟器参考值的修正值(但需不同的R校准曲线分别比对,工作量较大)。[/size][/font][/font][font=仿宋][size=21.3333px][b]结束语[/b][/size][/font]制定对社会公开发布的技术规范应该是很严谨的工作,[b][font=仿宋][b][font=仿宋]《脉搏血氧仪校准规范征求意见稿》也为广大计量技术人员提供了很好的反面教材,[/font][/b][/font][/b]在制定该类技术规范时应首先要了解设备的基本原理,可选用的标准器的性能和溯源性,采用合理的、能够真实反映被检设备计量性能检测方法。

  • 超声波液位传感器工作原理

    超声波液位传感器工作原理

    [font='Segoe UI'][color=#333333]超声波液位传感器是一种常用于测量液体水位的传感器。其工作原理是利用超声波的传播和反射来测量液体的高度。[/color][/font][font='Segoe UI'][color=#333333][font=Segoe UI]能点科技的超声波液位传感器检测距[/font] [font=Segoe UI]10cm-250cm ,连续实时检,RS485/UART 输出,防水等级达 IP66 ,可选带 LCD 显示屏。[/font][/color][/font][font='Segoe UI'][color=#333333]根据超声波的传播速度和反射时间,可以计算出液体的高度。传感器会测量从发射到接收到反射信号所经过的时间,然后根据声速和时间的关系,计算出液体的高度。[/color][/font][align=center][img=超声波液位传感器,690,690]https://ng1.17img.cn/bbsfiles/images/2023/07/202307141523457225_2491_4008598_3.jpg!w690x690.jpg[/img][/align][font='Segoe UI'][color=#333333]超声波[url=https://www.eptsz.com]液位传感器[/url]具有非接触式测量、高精度、稳定性好等优点。它广泛应用于各种液体储罐、水池、河流等场景中,用于实时监测液位变化。[/color][/font][font='Segoe UI'][color=#333333]安装方式需要开孔安装在水箱顶部,广泛应用于家用蓄水池、热水器、水井、水槽、工业设备、水坝、河流洪水监测等。[/color][/font][font='Segoe UI'][color=#333333][font=Segoe UI]可以检测[/font] [font=Segoe UI]各种液体[/font][font=Segoe UI](水(污水/净水),香薰液,消毒液,饮料,植物营养液,海水,油(汽油/柴油/食用油),化学试剂等)和固体(谷物,粉末,颗粒等)。[/font][/color][/font]

  • 简述风速传感器的应用领域以及超声波风速传感器优缺点

    简述风速传感器的应用领域以及超声波风速传感器优缺点

    风速传感器是可连续监测上述地点的风速、风量(风量=风速x横截面积)大小,能够对所处巷道的风速风量进行实时显示,是矿井通风安全参数测量的重要仪表。其传感器组件由风速传感器、风向传感器、传感器支架组成。主要适用于煤矿井下具有瓦斯爆炸危险的各矿井通风总回风巷、风口、井下主要测风站、扇风机井口、掘进工作面、采煤工作面等处,以及相应的矿产企业。然而对于气象数据的收集,通常比较受到人们的重视,所以会使用一些高精度的测量工具,当然,风速的收集工作也是如此,目前大多数的风速收集工作其实都是通过超声波风速传感器来完成的。[align=center][img=,378,267]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251531244576_3444_3345088_3.png!w378x267.jpg[/img][/align]在气象领域使用的超声波风速传感器比同类设备相比,在不同的气象环境下可以一更高的精度测量到更加准确的风速变化信息,而且在同一时间内,超声波传感器的响应时间也要高于同类设别,当需要测量周围温度的变化但又没有温度测量设备的时候,这个时候使用超声波风速传感器也可以测量到周围温度的变化,这就是超声波风速传感器的优势。但是超声波风速传感器设备其实并不是完美的,在高精度的背后,有着整体结构复杂,重量大,价格高的缺陷,这也是这种传感器一直没有被广泛使用的主要原因,不过相信随着高新技术的不断投入,这个问题早晚都会别解决。对于气象领域的监测工釆网小编推荐法国LCJ Capteurs [b]超声波风速传感器[/b] SONIC-ANEMO-MICRO[align=center][img=,292,285]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251531054007_844_3345088_3.png!w292x285.jpg[/img][/align] 由于传统的风速计有旋转的机械部分使得这些移动的部分容易使得传感器损坏,因此超声波传感器的设计在于避免任何的机械部分是为了确保更可靠的操作。同时超声波传感器有着长期的稳定性而不需要维护。关于声音方面,声音则是在交叉口由流动的物体传输。传输是是由电子声学传感器(1)用超声波信号(2)在他们之间通信,沿着正交轴, 由风速(3)引起声波传输时间不同。法国LCJ Capteurs 超声波风速传感器 SONIC-ANEMO-MICRO 则是在他们之间通信传输 4 种不同的测试,然而测试得到的食量头部风用于计算。结合测量计算出风速和根据基轴计算出风向。温度测量则是用于校准。传感器的设计减小倾角的影响(4)(传感器倾角的影响能被部分校正是由于传感器空间的形状) 。此外CV7 还可以传输了4 个独立的测试数据以保证检查用于头风矢量计算的正确性,这个方法给出了 0.15m/S的风速灵敏度,卓越的线性度,可达到 40m/S。在超声波传感器的应用中,超声波风速传感器它具有重量轻、没有任何移动部件、坚固耐用的特点, 而且不需维护和现场校准,能同时输出风速和风向。客户可根据需要选择风速单位、 输出频率及输出格式。也可根据需要选择加热装置(在冰冷环境下推荐使用)或模拟输出。可以与电脑、数据采集器或其它具有RS485或模拟输出相符合的采集设备连用。如果需要,也可以多台组成一个网络进行使用。超声波风速风向仪是一种较为先进的测量风速风向的仪器。 由于它很好地克服了机械式风速风向仪固有的缺陷, 因而能全天候地、长久地正常工作,越来越广泛地得到使用。它将是机械式风速仪的强有力替代品。[b] [/b]风速的变化,往往就表现出了当前时间风力数据的变化,所以在气象、地理等领域的许多工作当中往往都会使用到风速传感器这种传感器设备,那么平时我们常见的风速传感器的应用都有哪些呢?[b] 在新型能源开发领域的应用[/b]大多数的新型能源的开发工作其实都是在比较开阔的环境中进行的,尤其是对风能和太阳能的开发领域,往往由于安装环境十分开阔,所以一些重要的设备十分容易受到风速的变化的影响,而为了避免变化的风速影响到太阳能电池板或者风电机组的正常使用,国内的新型能源开发领域风杯式风速传感器的也得到了广泛的应用。[b]在工矿领域的应用[/b]无论是煤矿还是多种金属矿业的开采过程中,往往都需要注意矿井中的一些气体成分的变化,所以大多数的矿井通常在整合了多种气体传感器设备的同时,往往会注意通风系统的运行状况,而风速传感器就是用来监测矿井内部的通风效果的,所以为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器一类设备的规定。[b]塔式起重机上的应用[/b]通常,为了确保建筑工程的进行,大多数的塔式起重机通常都会安装风速传感器设备,它的存在可以让起重机在大风影响起重机工作的时候,发出报警,但是当大风已经开始影响起重机工作的时候,往往就需要注意风向的变化,这样才能针对不同风向的风做出应对措施,所以部分起重机上面已经使用了风向传感器设备。[b]煤矿上的应用[/b]安装在矿井中的通风设备,往往型号不一,而且其工作功率也有着较大的差别,所以需要使用风速传感器设备对各个通风道的风速值进行监视,防止某个位置的通风率过低而出现的有害气体浓度过高的现象出现。其实为了确保各大、中、小型煤矿生产工作安全的进行,根据相关规定,在煤矿中应该安装风速传感器设备,在每一个采矿区、翼回风巷以及总回风巷都应该设置风速传感器设备,而掘进工作面就属于采矿区的一部分,因此掘进工作面,是需要安装风速传感器的。掘进工作面更容易出现有害气体。其实在掘进面中需要安装风速传感器还有一个主要的原因,就是通常煤矿中的甲烷、一氧化碳、瓦斯等有害气体往往从掘进面出现的概率最大,甚至有些气体在地下形成的“气室”中的气体直接就是一些有害性气体,因此煤矿中需要在每个位置都安装风速传感器并连接通风设备。[b]气象上的应用[/b]在气象领域,通常需要对许多种自然现象进行观察,如风速与气象的变化,当然还有风向的变化,对于风向的测量工作,现在基本是使用风向仪或者风向传感器设备来解决这个问题。地面风向变化的测量:在沙漠、高原地区的风沙治理工作中,通常人们需要注意气流流动的速度与风向的变化,这样可以掌握到更多的气象数据,一边制定更完善的治理方案,所以在整个过程中用到风向传感器这种气象设备。海洋风暴预警:可以说海洋气象预警系统是风向传感器在气象领域重要应用之一,它为海洋气象预警系统提供的风向变化数据,是预测台风覆盖范围以及“运行”轨迹的重要参数之一。[b] [/b]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制